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In Memoriam

In his ‘23’ “Mathematische Probleme” lecture to
the Paris ICM in 1900∗, David Hilbert wrote

“Besides it is an error to believe that rigor
in the proof is the enemy of simplicity.”

Simon Fitzpatrick† (1953–2004).
∗See Ben Yandell’s fine account of the Hilbert Problems and
their solvers in The Honors Class, AK Peters, 2002.
(He also died young in 2004.)
†At his blackboard with Regina Burachik
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MOTIVATION and GOALS

To reduce as much of monotone operator theory
as possible to (elementary) convex analysis

To thereby illustrate (some of) Simon Fitzpatrick’s
many fine contributions

To shed new light on the remaining open questions
(in non-reflexive space)

F “Even convex objects are hard . . .”F

An essentially strictly convex function with non-
convex subgradient domain and not strictly convex:

max{(x− 2)2 + y2 − 1,−(xy)1/4}
J JMB & J Zhu (Springer, 2005) JMB & A Lewis I
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1. Preliminaries

Throughout X is a real Banach space. The domain
of an extended valued convex function, dom(f), is
the set of values less than +∞. A point s is in the
core of a set S (s ∈ core S) when X =

⋃
λ>0 λ(S−s).

Now x∗ ∈ X∗ is a subgradient of f : X → (−∞,+∞]
at x ∈ dom f provided that

f(y)− f(x) ≥ 〈x∗, y − x〉
for all y in Y . The set of all subgradients of f at
x is the subdifferential of f at x, denoted ∂f(x).

We need the indicator function ιC(x) which is zero
for x in C and +∞ otherwise, the Fenchel conju-
gate f∗(x∗) := supx{〈x, x∗〉 − f(x)} and the infimal
convolution

f∗21

2
‖ · ‖2∗(x∗) := inf

{
f∗(y∗) +

1

2
‖z∗‖2∗ : x∗ = y∗ + z∗

}
.

When f is convex and closed

x∗ ∈ ∂f(x) exactly when f(x) + f∗(x∗) = 〈x, x∗〉.
Finally, the distance function associated with a
closed set C, given by dC(x) := infc∈C ‖x− c‖, is
convex if and only if C is. Moreover, dC = ιC2‖ · ‖.
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We say T : X 7→ 2X∗
is monotone provided that for

any x, y ∈ X, and x∗ ∈ T (x), y∗ ∈ T (y),

〈y − x, y∗ − x∗〉 ≥ 0,

and that T is maximal monotone if its graph is not
properly included in any other monotone graph.

• The convex subdifferential in Banach space∗
and a skew linear matrix are the canonical ex-
amples of maximal monotone multifunctions

We save the notation J = JX for the duality map

JX(x) =
1

2
∂‖x‖2 =

{
x∗ ∈ X∗ : ‖x‖2 = ‖x∗‖2 = 〈x, x∗〉

}

• It is not an exaggeration to say the geometry
of Banach space devolves to a deep study of J

• The other foundational example is that of a
second order nonlinear elliptic PDE

∗There are several nice variational proofs. One based on the
Mean value theorem follows.
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Outline

Our goal is to derive all key results about maximal
monotone operators entirely from the existence of
subgradients and Sandwich theorem shown below

Section 2 considers general Banach spaces

Section 3 looks at (a-)cyclic operators

Section 4 presents our central result on maximal-
ity of the sum in reflexive space

Section 5 looks at more applications of the tech-
nique of Section 4

Section 6 provides limiting counter-examples.
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2. Maximality in General Banach Space

For a monotone mapping T , we associate the Fitz-

patrick function introduced in 1988 by Fitzpatrick.

It is

FT (x, x∗) := sup{〈x, y∗〉+ 〈x∗, y〉 − 〈y, y∗〉 : y∗ ∈ T (y)}
which is clearly lower semicontinuous and convex

as an affine supremum. Moreover,

Proposition 1 (Fitzpatrick) For every maximal

monotone operator T one has

FT (x, x∗) ≥ 〈x, x∗〉
with equality if and only if x∗ ∈ T (x).

• The equality FT (x, x∗) = 〈x, x∗〉 for x∗ ∈ T (x)

requires only monotonicity not maximality.

• In generality, FT is not useful for non-maximal

operators. As an extreme example, on R if

T (0) = 0 and T (x) = ∅ otherwise, then FT ≡ 0.

8



• The idea of associating a convex function to a

monotone operator and exploiting the relation-

ship was neglected for many years after its in-

troduction until revisited by Penot, Simons, Si-

mons and Zălinescu, Burachik and Svaiter etc.

Proposition 2 A proper lsc convex function on a

Banach space (i) is continuous throughout the core

of its domain; and (ii) has a non-empty subgradient

throughout the core of its domain.

These two basic facts lead to:

Theorem 1 (Hahn-Banach sandwich) Suppose

f,−g are lsc convex on a Banach space X and

f(x) ≥ g(x), for all x in X. Assume (CQ) holds:

0 ∈ core (dom(f)− dom(−g)) . (1)

Then there is an affine continuous function a such

that

f(x) ≥ a(x) ≥ g(x)

for all x in X.
9



Proof. The marginal, perturbation or value func-
tion

h(u) := inf
x∈X

f(x)− g(x− u)

is convex and (CQ) implies it is continuous at 0.
Hence there is −λ ∈ ∂h(0), which is the linear part
of the affine separator. As needed, we have

f(x)− g(u− x) ≥ h(u)− h(0) ≥ λ(u). ¥

−√−x ≥ √
x

• We refer to constraint

qualifications like (1) as

transversality conditions

¢ CQ failure

• It is easy to deduce

complete Fenchel duality

theorem from Thm 1

Proposition 3 For a closed convex function f and
fJ := f + 1

2‖ · ‖2 we have that
(
f +

1

2
‖ · ‖2

)∗
= f∗21

2
‖ · ‖2∗

is everywhere continuous. Also

v∗ ∈ ∂f(v) + J(v) ⇔ f∗J(v
∗) + fJ(v)− 〈v, v∗〉 ≤ 0.

10



2a. Representative Functions

A convex function HT is a representative function
for a monotone T on X×X∗ if (i) HT (x, x∗) ≥ 〈x, x∗〉
for all x, x∗; (ii) HT (x, x∗) = 〈x, x∗〉 if x∗ ∈ T (x).

For T maximal, Prop. 1 shows FT is a representa-
tive function as is the (closed) convexification

PT (x, x∗) = inf
N∑

i=1

λi〈xi, x
∗
i 〉

s.t.
∑

i

λi(xi, x
∗
i ,1) = (x, x∗,1), x∗i ∈ T (xi), λi ≥ 0.

Proposition 4 (Penot) For any monotone map-
ping T , PT is a representative convex function.

Proof. By monotonicity we have

PT (x, x∗) ≥ 〈x∗, y〉+ 〈y∗, x〉 − 〈y∗, y〉,
for y∗ ∈ T (y). Thus, for all points

PT (x, x∗) + PT (y, y∗) ≥ 〈x∗, y〉+ 〈y∗, x〉.
By definition PT (x, x∗) ≤ 〈x∗, x〉 for x∗ ∈ T (x).
Setting x = y and x∗ = y∗ shows PT (x, x∗) = 〈x∗, x〉
for x∗ ∈ T (x) while PT (z, z∗) ≥ 〈z∗, z〉 for (z∗, z) in
conv graphT : (also for PT ). ¥
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2b. Monotone Extension Theorems

A direct calculation shows (PT )∗ = FT for any

monotone T . This convexification originates with

Simons but was much refined by Penot.

We illustrate its flexibility by proving a central case

of the Debrunner-Flor theorem without Brouwer’s

theorem.

Theorem 2 Suppose T is monotone on X with

range contained in α BX∗, for some α > 0. Then

(a) For every x0 in X there is x∗0 ∈ conv∗R(T ) ⊂
α BX∗ such that (x0, x∗0) is monotonically related

to graph (T ).

(b) Hence, T has a bounded monotone extension

T with dom(T )=X and R(T ) ⊂ conv∗R(T ).

(c) Thence, a maximal monotone T with bounded

range has dom(T )=X.

12



Proof. (a) It is enough, after translation, to show
x0 = 0 ∈ dom(T ). Fix α > 0 with R(T ) ⊂ C :=
conv∗R(T ) ⊂ α BX∗.
Consider

πT (x) := inf {PT (x, x∗) : x∗ ∈ C} .

Then πT is convex since PT is. Observe that

PT (x, x∗) ≥ 〈x, x∗〉
and so πT (x) ≥ infx∗∈C〈x, x∗〉 ≥ −α ‖x‖ for all x in
X. As x 7→ infx∗∈C〈x, x∗〉 is concave and continuous
the Sandwich Theorem 1 applies.

Thus, there exist w∗ in X∗ and γ in R with

PT (x, x∗) ≥ πT (x) ≥ 〈x, w∗〉+γ ≥ inf
x∗∈C

〈x, x∗〉 ≥ −α ‖x‖
for all x in X and x∗ in C ⊂ α BX∗.
Setting x = 0 shows γ ≥ 0. Now, for any (y, y∗) in
the graph of T we have PT (y, y∗) = 〈y, y∗〉. Thus,

〈y − 0, y∗ − w∗〉 ≥ γ ≥ 0,

which shows that (0, w∗) is monotonically related
to the graph of T .

Finally, 〈x, w∗〉+ γ ≥ infx∗∈C〈x, x∗〉 ≥ −α ‖x‖ for all
x ∈ X involves three sublinear functions, and so
implies that w∗ ∈ C ⊂ α BX∗.

13



(b) Consider the set E of all monotone extensions
of T with range in C ⊂ α BX∗, ordered by inclusion.
By Zorn’s lemma E admits a maximal member T
and by (a) T has domain the whole space.
(c) follows immediately. ¥

I R(T ) ⊂ MBX∗ ⇒ πT := infX∗ PT (·, x∗) ≥ −M‖·‖
x∗ ∈ ∂πT (x) ⇔ πT (x) + FT (0, x∗) = 〈x, x∗〉

• (a) holds on any w∗-closed convex set C in
Hilbert space (Brezis). Our proof applies if

x0 ∈ core (domπT + dom sup
C

).

The full Debrunner-Flor extension theorem is next:

Theorem 3 (Debrunner-Flor) Suppose T is a
monotone operator on X with rangeT ⊂ C for
some weak-star compact and convex C. Suppose
also ϕ : C 7→ X is weak-star to norm continuous.
Then there is some c∗ ∈ C with

〈x− ϕ(c∗), x∗ − c∗〉 ≥ 0

for all x∗ ∈ T (x).

14



Theorem 4 The full Debrunner-Flor extension the-
orem is equivalent to Brouwer’s theorem.

Proof. Phelps derives Debrunner-Flor from Brouwer.
Conversely, let g be a continuous self-map of a
compact convex set K ⊂ intBX in finite dimen-
sions.

Apply Debrunner-Flor to

the identity I on BX and

to ϕ : BX 7→ X given by

ϕ(x) := g(PK x), where PK

is the metric projection. We

have x∗0 ∈ BX, x0 :=

ϕ(x∗0) = g(PK x∗0) ∈ K,

〈x− x0, x− x∗0〉 ≥ 0

for all x ∈ BX.

Since x0 ∈ intBX, for h ∈ X and small ε > 0 we
have x0 + εh ∈ BX and so 〈h, x0 − x∗0〉 ≥ 0 for all
h ∈ X. Thus, x0 = x∗0 and so PK x∗0 = PK x0 =
x0 = g(PK x∗0), is a fixed point of the arbitrary self-
map g. ¥

15



2c. Local Boundedness Results

Recall that an operator T is locally bounded around
a point x if T (Bε(x)) is bounded for some ε > 0.

Theorem 5 (Simons, Veronas) Let S, T : X →
2X∗

be monotone operators. Suppose
0 ∈ core [conv dom(T )− conv dom(S)].

There exist r, c > 0 so that, for all x with t∗ ∈ T (x)
and s∗ ∈ S(x),

max(‖t∗‖, ‖s∗‖) ≤ c (r + ‖x‖)(r + ‖t∗ + s∗‖).

Proof. Consider the convex lsc function∗

σT (x) := sup
z∗∈T (z)

〈x− z, z∗〉
1 + λ‖z|| .

First, conv dom(T ) ⊂ domσT , and 0 ∈ core

∞⋃

i=1

[{x : σS(x) ≤ i, ‖x‖ ≤ i} − {x : σT (x) ≤ i, ‖x‖ ≤ i}] ,

and apply conventional Baire category techniques–
with some care. ¥

∗This is a refinement of the function SF-JMB used to prove
local boundedness: FT(x,0) ≈ σT(x)
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Corollary 1 Let X be any Banach space. Suppose
T is monotone and

x0 ∈ core conv dom(T ).

Then T is locally bounded around x0.

Proof . Let S = 0 in Theorem 5 or directly apply
Proposition 2 to σT . ¥

We can also improve Theorem 2.

Corollary 2 A monotone mapping T with bounded
range admits an everywhere defined maximal
monotone extension with bounded range contained
in conv∗R(T ).

Proof. Let T̂ denote the extension of Theorem 2 (b).
Clearly it is everywhere locally bounded. The de-
sired extension T̃ (x) is the operator whose graph
is the norm-weak-star closure of the graph of
x 7→ conv T̂ (x), since this is both monotone and is
a norm-w∗ cusco.
Explicitly,

T̃ (x) := ∩ε>0conv ∗T̂ (Bε(x))

(see ToVA). ¥
17



A mapping is locally maximal monotone, or type
(FP), if (graphT−1)∩(V ×X) is maximal monotone
in V ×X, for every convex open set V in X∗ with
V ∩ rangeT 6= ∅.

• Simons showed subgradients are (FP). So are
maximal monotones on reflexive space (SF-P).

We may usefully apply Corollary 2 to

Tn(x) := T (x) ∩ n BX∗.

Often the extension, T̂n is unique:

Proposition 5 (Fitzpatrick-Phelps) Suppose T
is maximal and n is such that R(T )∩n intBX∗ 6= ∅.
(a) There is a unique maximal monotone T̂n with

Tn(x) ⊂ T̂n(x) ⊂ nBX∗

whenever Mn(x) :=

{x∗ ∈ nB∗ : 〈x∗ − z∗, x− z〉 ≥ 0,∀z∗ ∈ T (z) ∩ n intBX∗}
is monotone; in which case Mn = T̂n.

(b) This holds if T is type (FP) and BX∗ is strictly
convex; so for any maximal monotone on a rotund
dual reflexive norm, e.g. Hilbert space.

18



Proof. Since T̂n exists by Corollary 2 and since

T̂n(x) ⊂ Mn(x), (a) follows. We refer to Fitzpatrick

and Phelps for the fairly easy proof of (b). ¥

F {T̂n}n∈N is a non-reflexive generalization of the

resolvent -based Yosida approximate or the

Hausdorff-Moreau Lipschitz regularization of a

convex function.

In the (FP) case one also easily shows (F-P) that:

(I) T̂n(x) = T (x) ∩ n BX∗ if T (x) ∩ intn BX∗ 6= ∅

(II) T̂n(x) \ T (x) ⊂ n SX∗.

• clR(T ) is convex if

clR(T̂n) is for T type (II)

J function regularization

• For local properties (e.g.

differentiability) one may

replace T by T̂n

19



2d. Maximality of Subgradients

Theorem 6 Every closed convex function has a

(locally) maximal monotone subgradient.∗

Proof. (Sketch) Without loss we may suppose

〈0− x∗,0− x〉 ≥ 0 for all x∗ ∈ ∂f(x)

but 0 6∈ ∂f(0); so f(x)− f(0) < 0 for some x.

The Approximate mean value theorem (see [ToVA,

Thm. 3.4.6]) lets us find xn
f→ c ∈ (0, x] and

x∗n ∈ ∂f(xn) with

lim sup
n

〈x∗n, xn − c〉 ≤ 0, lim sup
n

〈x∗n, x〉 ≤ f(x)−f(0) < 0.

Now c = θ x for some θ > 0. Hence,

lim sup
n

〈x∗n, xn〉 < 0,

a contradiction. The locally maximal case follows

‘similarly’ on exploiting that f(xn) → f(c), and that

∂f is dense type. ¥
∗This fails in all incomplete normed spaces and in some
Fréchet spaces
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2e. Convexity of Range and Domain

Corollary 3 Let X be any Banach space. Suppose
that T is maximal monotone with core conv D(T )
nonempty. Then

core conv D(T ) = int conv D(T ) ⊂ D(T ). (2)

In consequence dom(T ) has both a convex closure
and a convex interior.

Proof. We first prove the inclusion in (2). Fix
x + ε BX ⊂ int conv dom(T ) and, via Cor. 1, select
M := M(x, ε) > 0 so that T (x + ε BX) ⊂ M BX∗.
For N > M define w∗-closed nested sets

TN(x) := {x∗ : 〈x− y, x∗ − y∗〉 ≥ 0,∀y∗ ∈ T (y) ∩NBX∗}.
By Theorem 2 (b), the sets are non-empty, and by
the next lemma, bounded, hence w∗-compact. By
maximality of T , T (x) = ∩NTN(x) 6= ∅, as a nested
intersection, and x is in dom(T ) as asserted.

Then int conv dom(T ) = int dom(T ) and so the
final conclusion follows. ¥
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Lemma 1 For x ∈ int conv dom(T ) and N suffi-
ciently large, TN(x) is bounded.

Proof. A Baire category argument shows for N

large and u ∈ 1/N BX that x + u ∈ cl conv DN for

DN := {z : z ∈ D(T ) ∩N BX , T (z) ∩N BX∗ 6= ∅} .

Now for each x∗ ∈ TN(x), since x + u lies in the
closed convex hull of DN , we have

〈u, x∗〉 ≤ sup{〈z−x, z∗〉 : z∗ ∈ T (z)∩NBX∗, z ∈ NBX}
≤ 2N2 and so ‖x∗‖ ≤ 2N3. ¥

Another nice application is:

Corollary 4 (Verona) Let X be Banach and let
S, T : X → 2X∗

be maximal monotone. Suppose

0 ∈ core [conv dom(T )− conv dom(S)].

Then for any x ∈ dom(T ) ∩ dom(S), T (x) + S(x)
is a w∗-closed subset of X∗.

Proof. Theorem 5 shows bounded w∗-convergent
nets in T (x)+S(x) have limits in T (x)+S(x). We
apply the Krein-Smulian theorem. ¥
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• Thus, we preserve some structure. It is still

open if T + S must actually be maximal.

We may neatly recover convexity of intD(T ) :

Theorem 7 (Simons, 2005) Suppose T is maxi-

mal monotone and int dom(T ) is nonempty. Then

int dom(T ) = int {x : (x, x∗) ∈ domFT}.

• Suppose T is domain regularizable: for ε > 0,

there is a maximal Tε with H (D(T ), D(Tε)) ≤ ε

and coreD(Tε) 6= ∅. In reflexive space we can

use

Tε :=
(
T−1 + N−1

εBX

)−1
.

Then dom(T ) is convex.
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3. Cyclic and Acyclic Monotone Operators

We recall that for N = 2,3, . . ., a multifunction T

is N-monotone if

N∑

k=1

〈x∗k, xk − xk−1〉 ≥ 0

whenever x∗k ∈ T (xk) and x0 = xN .

T is cyclically monotone if T is N-monotone for all
N ∈ N, as hold for convex subgradients.

• Monotonicity and 2-monotonicity coincide

• (N + 1)-monotone ( N-monotone (Asplund)

• It is a classical result of Rockafellar that every
maximal cyclically monotone operator is the
subgradient of a proper closed convex function
(and conversely).

We recast this result to make the parallel with the
Debrunner-Flor Theorem 2 explicit.
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Theorem 8 (Rockafellar) Suppose C is cyclically
monotone on a Banach space X.

Then C has a maximal cyclically monotone exten-
sion C, which is of the form C = ∂fC for some
proper closed convex function fC.

Moreover R(C) ⊂ conv∗R(C).

Proof. We fix x0 ∈ domC, x∗0 ∈ C(x0) and define

fC(x) := sup
x∗k∈C(xk)

{〈x∗n, x− xn〉+
n−1∑

k=1

〈x∗k−1, xk − xk−1〉}

where the ‘sup’ is over all n ∈ N and all such chains.
The proof in Phelps’ monograph shows that

C ⊂ C := ∂fC.

The range assertion follows because fC is the supre-
mum of affine functions whose linear parts all lie
in rangeC. This is most easily seen by writing
fC = g∗C with

gC(x∗) := inf{
∑

i

tiαi :
∑

i

tix
∗
i = x∗,

∑

i

ti = 1, ti > 0}

for appropriate αi ∈ R. ¥
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The relationship of F∂f and ∂f is complicated:

〈x, x∗〉 ≤ F∂f(x, x∗) ≤ f(x) + f∗(x∗) ≤ F∗∂f(x, x∗)
≤ 〈x, x∗〉+ ι∂f(x, x∗),

(see Bauschke et al.) Two central questions are:

Q1. When is a maximal monotone operator T
the sum of a subgradient ∂f and a skew lin-
ear S? This is closely related to the behaviour
of

FLT (x) :=
∫ 1

0
sup

x∗(t)∈T (tx)
〈x, x∗(t)〉 dt

when 0 ∈ core domT , then FLT = FL∂f = f
and we call T (fully) decomposable.

Fitzpatrick’s Last Function ∗†
∗The use of FLT originates in discussions I had with Fitz-
patrick shortly before his death.
†T ‘inherits the differentiability’ of FLT .
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Q2. How does one generalize the decomposi-

tion of a linear monotone operator L into a

symmetric (cyclic) and a skew (acyclic) part?

Viz

L =
1

2
(L + L∗|X) +

1

2
(L− L∗|X).
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3a. Asplund’s approach to Q2

Every 3-monotone operator such that 0 ∈ T (0) has
the local property that

〈x, x∗〉+ 〈y, y∗〉 ≥ 〈x, y∗〉 (3)

whenever x∗ ∈ T (x) and y∗ ∈ T (y). We call a
monotone operator satisfying (3), 3−-monotone,
and write T ≥N S if T = S + R with R being N-
monotone (T ≥ω0 S if R is cyclically monotone.)

Proposition 6 (Dini Property) Let N be 3−,3,4,

. . ., or ω0. Consider an increasing (infinite) net
of monotone operators on a space X, satisfying

0 ≤N Tα ≤N Tβ ≤2 T

if α < β ∈ A. Suppose that 0 ∈ Tα(0),0 ∈ T (0) and
that 0 ∈ core domT . Then

a) There is a N-monotone TA with Tα ≤N TA ≤2
T, for all α ∈ A.

b) If R(T ) ⊂ MBX∗ for some M > 0 then one may
suppose R(TA) ⊂ MBX∗.
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Proof. a) The single-valued case. Since 0 ≤2
Tα ≤2 Tβ ≤2 T , while T (0) = 0 = Tα(0), we have

0 ≤ 〈x, Tα(x)〉 ≤ 〈x, Tβ(x)〉 ≤ 〈x, T (x)〉,
for all x in domT . This shows 〈x, Tα(x)〉 converges
as α goes to ∞. Fix ε > 0, M > 0 with T (ε BX) ⊂
M BX∗. We write Tβα = Tβ − Tα for β > α, so that
〈Tβαx, x〉 → 0 for x ∈ domT as α, β →∞.
We appeal to (3) to obtain

〈x, Tβα(x)〉+ 〈y, Tβα(y)〉 ≥ 〈Tβα(x), y〉, (4)

for x, y ∈ domT . Also, 0 ≤ 〈x, Tβα(x)〉 ≤ ε for
β > α > γ(x) for all x ∈ domT .

Now, 0 ≤ 〈y, Tβα(y)〉 ≤ 〈y, T (y)〉 ≤ ε M for ‖y‖ ≤ ε2.
Thus, for ‖y‖ ≤ ε and β > α > γ(x) we have

ε(M + ε) ≥ 〈x, Tβα(x)〉+ 〈y, T (y)〉 (5)

≥ 〈x, Tβα(x)〉+ 〈y, Tβα(y)〉
≥ 〈y, Tβα(x)〉,

from which we obtain ‖Tβα(x)‖ ≤ M + ε for all
x ∈ domT , while 〈y, Tβα(x)〉 → 0 for all y ∈ X.

We conclude that {Tα(x)}α∈A is a norm-bounded
weak-star Cauchy net and so weak-star convergent
to the desired N-monotone limit TA(x).
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The set-valued case uses (3) to deduce that Tβ =

Tα + Tβα where (i) Tβα ⊂ (M + ε)BX∗ and (ii) for

each t∗βα ∈ Tβα one has t∗βα ⇁∗ 0 as α, β → ∞.

The conclusion is as before but somewhat more

technical.

b) Fix x ∈ X, and apply (3 to Tα to write

〈Tx, x〉+ 〈Ty, y〉 ≥ 〈Tαx, x〉+ 〈Tαy, y〉 ≥ 〈Tαx, y〉
for all y ∈ D(T ) = X, by Theorem 2 (c). Hence

〈Tx, x〉+ M‖y‖ ≥ ‖Tαx‖ ‖y‖, ∀‖y‖
Let ‖y‖ → ∞ to show Tα(x) lies in the M-ball, and

since the ball is weak-star closed, so does TA(x).

The set-valued case is analogous but messier. ¥

• 0 ≤2 (−ny, nx) ≤2 (−y, x) for n ∈ N, shows the

need for (3) in the deduction that Tβα(x) are

equi-norm bounded.

30



F (Daniel property) If X is an Asplund space,

the proof of Prop 6 can be adjusted to show

TA(x) = norm− limα→∞ Tα(x)

Definition 1 We say a maximal monotone oper-

ator A is acyclic if whenever A = ∂g + S with S

maximal monotone and g closed and convex then

g is necessarily linear.

We provide a broad extension of Asplund’s original

idea:

Theorem 9 (Asplund Decomposition) Suppose

T is maximal monotone with core domT 6= ∅.

a) Then T may be decomposed as T = ∂f + A,

where f is closed and convex while A is acyclic.

b) If the range of T lies in M BX∗ then f may be

assumed M-Lipschitz.
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A Hilbert curve in 3D

is more constructive

Proof. a) We normalize so 0 ∈ T (0). Zorn’s
lemma applies to the cyclically monotone operators

C := {C : 0 ≤ω0 C ≤2 T, 0 ∈ C(0)}
in the cyclic order. By Prop. 6 every chain in C
has a cyclically monotone upper-bound.

Fix a maximal C with 0 ≤ω0 C ≤2 T . Hence
T = C + A where by construction A is acyclic. Now,
T = C +A ⊂ ∂f +A, by Rockafellar’s result. Since
T is maximal the decomposition is as asserted.

b) We use the facts that (i) 0 ≤3− U ≤2 T im-
plies ‖U(x)‖ ≤ ‖T (x)‖ for all x and (ii) an M-
bounded cyclically monotone operator extends to
an M-Lipschitz subgradient—as Theorem 8 con-
firms. ¥
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By way of application we offer:

Corollary 5 Let T be an arbitrary maximal
monotone operator T . For µ > 0 one may decom-
pose

T ∩ µBX∗ ⊂ T̂µ = ∂fµ + Aµ,

where fµ is µ-Lipschitz and Aµ is acyclic
(with bounded range).

Proof. Combining Theorem 9 with Proposition 5
we deduce that the composition is as claimed. ¥

• In Corollary 5, rangeAµ is bounded. Thus, it
is only skew and linear when T is cyclic—so a
non-cyclic range bounded monotone operator
is never fully decomposable in the sense of Q1.

• Theorem 9 et al are entirely existential: can
one prove Theorem 9 constructively in finite
dimensions?

• How does one effectively diagnose acyclicity?
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An Acyclic Monotone Operator

A concrete example in R2 is implicit in these ob-
servations (JMB-Wiersma).

• Rθ: rotation by θ < π/2

• R̂θ: the range restriction

to B1 extended to be max-

imal with range in B1.

• R̂θ is acyclic: since any

cyclic part Pθ has convex

range while R(Pθ)∩S1 = ∅.

3

2

2

1

1

-2

-1

3

0

-3 -1-2 0

-3

For π/2, we obtain

R̂(x) = α(x)R

(
x

‖x‖

)
+ β(x)

x

‖x‖
where

α(x) :=

√
1− 1 ∧ 1

‖x‖2
and

β(x) := 1 ∧ 1

‖x‖.
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3b. Fitzpatrick Functions of Order N

• The Fitzpatrick function of order N is:

FN
T (x, x∗) := sup

xN=x



〈x1, x∗〉+

N−1∑

k=1

〈xk+1 − xk, x∗k〉




where x∗k ∈ T (xk) for 1 ≤ k ≤ N − 1.

• The Rockafellar function of order N is:

RN
T (x, x1, x∗1) : =

sup 〈x− xN−1, x∗N−1〉 +
N−2∑

i=1

〈xi+1 − xi, x
∗
i 〉,

for x∗1 ∈ T (x1), x ∈ X and N ≥ 3, over all
x∗k ∈ T (xk) (for 2 ≤ k ≤ N − 1).

Then F∞T :=
(
P∞T

)∗
= supFN

T , P∞T := inf PN
T ,

and RT := infRN
T . Moreover, for a maximal N-

monotone T we have

FN
T (x, x∗) ≥ 〈x, x∗〉

with equality if and only if x∗ ∈ T (x).
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We recast Rockafellar’s Theorem 8:

Theorem 10 Suppose A is cyclically monotone.
For a∗1 ∈ A(a1), x 7→ RA(x, a1, a∗1) is closed and
convex and RA(a1, a1, a∗1) = 0 . Also for every
x ∈ X, A(x) ⊂ ∂RA(x, a1, a∗1). When A is maximal
cyclically monotone one has A = ∂RA. Moreover,
for every closed f satisfying ∂f = A, one has

f(x)− f(a1) = RA(x, a1, a∗1) for x ∈ X.

We now connect the infinite Fitzpatrick function
to the Rockafellar function.

Theorem 11 (Bartz-Bauschke-Borwein-Reich -
Wang) Let A be cyclically monotone. For each
closed convex function f on X such that A ⊂ ∂f

one has

F∞A (x, x∗) = f(x) + sup
a∗1∈A(a1)

〈x∗, a1〉 − f(a1),

for (x, x∗) ∈ X × X∗. If actually domA = dom ∂f

then

F∞A (x, x∗) = (f ⊕ f∗)(x, x∗) := f(x) + f∗(x∗),
for all (x, x∗) ∈ X ×X∗.
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The Fitzpatrick Functions of a Rotation

Theorem 12 (BaBW) Let θ ∈ [0, π/2] and

Aθ :=

(
cos θ − sin θ
sin θ cos θ

)
.

1. θ = 0. then Aθ = I = ∇1
2‖ · ‖2 is cyclically

monotone, F∞I = 1
2‖ · ‖2 ⊕ 1

2‖ · ‖2, and n ≥ 2

Fn
I : (x, u) 7→ n− 1

2n

(
‖x‖2 + ‖u‖2

)
+

1

n
〈x, u〉. (6)

2. θ ∈ ]0, π/2]. For n ≥ 2, if n ∈ [2, π/θ[, then Aθ
is n-cyclically monotone and

Fn
Aθ

: (x, u) 7→ sin(n− 1)θ

2 sinnθ

(
‖x‖2 + ‖u‖2

)

+
sin θ

sinnθ
〈x, An−1

θ u〉. (7)

For π/θ ∈ N, Aθ is (π/θ)-monotone and

F
π/θ
Aθ

= ιGraphAθ
+ 〈·, ·〉. (8)

If n ∈ ]π/θ,+inf[, then Aθ is not n-cyclically
monotone since Fn

Aθ
≡ +∞.
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4. Maximality in Reflexive Banach Space

We begin with:

Proposition 7 A monotone operator T on a re-

flexive Banach space is maximal iff the mapping

T (·+ x) + J is surjective for all x in X.

Moreover, when J and J−1 are both single valued,

a monotone mapping T is maximal if and only if

T + J is surjective.

Proof. We prove the ‘if’. The ‘only if’ is com-

pleted in Corollary 8. Assume (w, w∗) is monoton-

ically related to the graph of T . By hypothesis, we

may solve w∗ ∈ T (x + w) + J(x). Thus w∗ = t∗+ j∗
where t∗ ∈ T (x + w), j∗ ∈ J(x). Hence,

0 ≤ 〈w − (w + x), w∗ − t∗〉
= −〈x, w∗ − t∗〉 = −〈x, j∗〉 = −‖x‖2 ≤ 0.

Thus, j∗ = 0, x = 0. So w∗ ∈ T (w), and we are

done. ¥
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We now prove our central result whose proof—
originally hard and due to Rockafellar—has been
revisited over many years culminating in recent re-
sults of Simons, Penot, Zălinescu among others:

Theorem 13 (Sum) Let X be reflexive, let T be
maximal monotone and f closed and convex. Sup-
pose 0 ∈ core {conv dom(T )− conv dom(∂f)}. Then

(a) ∂f + T + J is surjective.

(b) ∂f + T is maximal monotone.

(c) ∂f is maximal monotone.

Proof. (a) We consider the Fitzpatrick function
FT (x, x∗) and fJ(x) := f(x) + 1/2‖x‖2.

Let G(x, x∗) := −fJ(x)− f∗J(−x∗). Observe that

FT (x, x∗) ≥ 〈x, x∗〉 ≥ G(x, x∗)
pointwise thanks to the Fenchel-Young inequality

fJ(x) + f∗J(−x∗) ≥ 〈x,−x∗〉,
for all x ∈ X, x∗ ∈ X∗, along with Proposition 1.
The (CQ) assures the Sandwich theorem applies
to FT ≥ G since f∗J is everywhere finite by Prop. 3.
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Then there are w ∈ X and w∗ ∈ X∗ such that

FT (x, x∗)−G(z, z∗) ≥ w(x∗ − z∗) + w∗(x− z) (9)

for all x, x∗ and all z, z∗. In particular, for x∗ ∈ T (x)

and for all z∗, z we have

〈x− w, x∗ − w∗〉 +
[
fJ(z) + f∗J(−z∗) + 〈z, z∗〉]

≥ 〈w − z, w∗ − z∗〉.
Now use the fact that −w∗ ∈ dom(∂f∗J), by Prop.

3, to deduce that −w∗ ∈ ∂fJ(v) for some v and so

〈v − w, x∗ − w∗〉 + [fJ(v) + f∗J(−w∗) + 〈v, w∗〉]
≥ 〈w − v, w∗ − w∗〉 = 0.

The second term on the left is zero and so by

maximality w∗ ∈ T (w). Substitution of x = w and

x∗ = w∗ in (9), and rearranging yields

〈w, w∗〉 + {〈−z∗, w〉 − f∗J(−z∗)}
+ {〈z,−w∗〉 − fJ(z)} ≤ 0,

for all z, z∗. Taking the supremum over z and z∗
produces 〈w, w∗〉+ fJ(w) + f∗J(−w∗) ≤ 0.
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This shows −w∗ ∈ ∂fJ(w) = ∂f(w) + J(w) via the

sum formula for subgradients, implicit in Prop. 3.

Thus, 0 ∈ (T + ∂fJ)(w). As all translations of

T + ∂f may be used, while (CQ) is undisturbed,

we see that (∂f + T ) (x+ ·)+ J is surjective which

completes (a).

(b) ∂f + T is maximal by Proposition 7.

(c) Setting T ≡ 0 we recover the reflexive case of

the maximality for a lsc convex function. ¥

Recall that the normal cone NC(x) to a closed con-

vex set C at a point x in C is NC(x) = ∂ιC(x).

Corollary 6 The sum of a maximal monotone op-

erator T and a (necessarily maximal) normal cone

NC on a reflexive space is maximal monotone when-

ever the transversality condition

0 ∈ core [C − conv dom(T )]

holds.
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• In particular, if T is monotone and

C := cl conv dom(T )

has nonempty interior, then for any maximal
extension T the sum T + NC is a ‘domain pre-
serving’ maximal monotone extension of T .

Einstein, 1924

• “Quantentheorie des einatomigen idealen Gases”

• On Bose-Einstein condensates, in Paul Ehren-
fest’ papers in Leiden. Confirmed in 1995.
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Corollary 7 (Rockafellar) The sum of maximal
monotone operators T1 and T2, on a reflexive space,
is maximal when the transversality condition

0 ∈ core [conv dom(T1)− conv dom(T2)] holds.

Proof. Theorem 13 applies to the product
T (x, y) := (T1(x), T2(y)) and the indicator function
f(x, y) := ι{x=y} of the diagonal in X ⊗X.

We check that the given transversality condition
implies the needed (CQ), as in Theorem 13. Hence,
T + JX⊗X + ∂ι{x=y} is surjective. Thus, so is

T1 + T2 + 2 J

and we are done. ¥

• One may easily replace the core condition by a
relativized version—wrt the closed affine hull.

We re-record that F∂f(x, x∗) ≤ f(x) + f∗(x∗), and
that we have exploited the beautiful inequality

FT (x, x∗) + f(x) + f∗(−x∗) ≥ 0, (10)

for all x ∈ X, x∗ ∈ X∗, valid for any maximal
monotone T and any convex function f .
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4a. The Fitzpatrick Inequality

We have a stronger Fitzpatrick inequality

FT1
(x, x∗) + FT2

(x,−x∗) ≥ 0 (11)

for all x ∈ X, x∗ ∈ X∗, valid for any maximal
monotone T1, T2. By Proposition 1

F∗T (x∗, x) ≥ sup
y∗∈T (y)

〈x, y∗〉+ 〈x∗, y〉 − FT (y, y∗)

= FT (x, x∗) (12)

and we clearly have an extension of (11) in that

H1
T (x, x∗) +H2

S(x,−x∗) ≥ 0,

for any representative functions H1
T and H2

S. Let-
ting F̂S(x, x∗) := FS(x,−x∗), we may establish:

Theorem 14 (Sums) Let S and T be maximal
monotone on a reflexive space. Suppose that∗

0 ∈ core {dom(FT )− dom(F̂S)} as happens if
0 ∈ core {conv graph (T )− conv graph (−S)}.

Then

0 ∈ range (T + S).

∗This works for any representative functions.
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Proof. We use Fenchel duality or follow the steps
of Theorem 13. We have µ ∈ X, λ ∈ X∗, β ∈ R with

FT (x, x∗) − 〈x, λ〉 − 〈µ, x∗〉+ 〈µ, λ〉 ≥ β

≥ −FS(y,−y∗) + 〈y, λ〉 − 〈µ, y∗〉 − 〈µ, λ〉,
for all variables x, y, x∗, y∗. Hence for x∗ ∈ T (x) and
−y∗ ∈ S(y) we obtain

〈x− µ, x∗ − λ〉 ≥ β ≥ 〈y − µ, y∗ + λ〉.
If β ≤ 0, we derive that −λ∗ ∈ S(µ) and so β = 0;
consequently, λ ∈ T (µ) and since 0 ∈ (T + S)(µ)
we are done. If β ≥ 0 we argue first with T . ¥

• A graph (CQ) is formally tougher than a do-
main (CQ) as conv graph (J`2) is the diagonal
in `2 ⊗ `2 = dom(FJ

`2
), while

FJ
`2
(x, x∗) =

1

4
‖x + x∗‖2,

yielding a simple proof in `2 of Cor. 8 below.

• Zalinescu has adapted this to extend results
like those of Simons in the reflexive case: the
sum has a semi-convex graph.
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Corollary 8 (Rockafellar-Minty surjectivity the-
orem) For a maximal monotone operator on a re-
flexive Banach space, range (T + J) = X∗.

Proof. Let f ≡ 0 in Theorem 13. Alternatively,

on noting that FJ(x, x∗) ≤ ‖x‖2+‖x∗‖2
2 , we may apply

Theorem 14. ¥

4b. Extensions to Non-reflexive Space

Let T denote the monotone closure of T in
X∗∗ ×X∗. That is, x∗ ∈ T (x∗∗) when

inf
y∗∈T (y)

〈x∗ − y∗, x∗∗ − y〉 ≥ 0.

Recall that T is type (NI) if

inf
y∗∈T (y)

〈x∗ − y∗, x∗∗ − y〉 ≤ 0

for all x∗∗ ∈ X∗∗, x∗ ∈ X∗:

Corollary 9 (Gossez for (D)). For T type (NI)

R(T + ∂f∗∗ + J∗∗) = X∗.

Proof. Mimic the steps of Theorem 13. ¥
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4c. A Non-reflexive Sum Rule

Theorem 15 Suppose that A and B are maximal

monotone in Banach space. If either

a) int (D(A) ∩ intD(B) is nonempty;

b) int (D(A) ∩D(B) 6= ∅ while D(B) is closed and

convex; or

c) (Voisei) Both D(A), D(B) are closed and con-

vex and

0 ∈ core conv {D(A)−D(B)} . (13)

Then A + B is maximal monotone.
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Proof. Voisei (2005) shows, as in §6, that (13)
implies

ΦA,B(x, x∗) := FA(x, ·)¤FB(x, ·)(x∗)
= (PA(x, ·)¤PB(x, ·))∗ (x∗) ≥ 〈x, x∗〉

with equality if and only if x∗ ∈ (A + B)(x).

Moreover,

FA+B ≤ ΦA,B ≤ PA+B.

Hence A + B is maximal iff

FA+B(x, x∗) ≥ 〈x, x∗〉, (14)

for all x, x∗. Now all three conditions imply that

conv D(A) ∩ conv D(B) ⊂ D(A + B)
alg

,

since D(A) is convex when D(A) has nonempty
interior. This in turn implies (14). ¥

Corollary 10 Suppose that T is maximal monotone,
C is closed and convex while C ∩ intD(T ) 6= ∅.

Then T + NC is maximal monotone.

In particular, when D(T ) has nonempty interior,
then T is of type (FPV).
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5. Further Reflexive Applications

Another very useful result is:

Theorem 16 (Composition) Suppose X and Y

are Banach spaces with X reflexive, that T is max-
imal monotone operator on Y , and that A : X 7→ Y ,
is a bounded linear mapping. Then

TA := A∗ ◦ T ◦A

is maximal monotone on Xwhenever

0 ∈ core (range (A) + conv domT )

Proof. Monotonicity is clear. To obtain maximal-
ity, use the Fitzpatrick inequality (11) to write

f(x, x∗) + g(x, x∗) ≥ 0,

where

f(x, x∗) := inf{FT (Ax, y∗): A∗y∗ = x∗}
and

g(x, x∗) :=
1

2
‖x‖2 +

1

2
‖x∗‖2.

49



Apply Fenchel’s duality theorem—or use the Sand-
wich theorem directly—to deduce the existence of
x ∈ X, x∗ ∈ X∗ with

f∗(x∗, x) + g∗(x∗, x) ≤ 0. (15)

Carefully using the standard formula for the conju-
gate of a convex composition —we have for some
y∗ with A∗y∗ = x∗:

f∗(x∗, x) = inf{F∗T (Ax, y∗): A∗y∗ = x∗}
= min{F∗T (y∗, Ax): A∗y∗ = x∗}
= F∗T (y∗, Ax) ≥ FT (Ax, y∗),

the last inequality following from (12). Moreover,

g∗(x∗, x) =
1

2
‖x‖2 +

1

2
‖A∗y∗‖2.

Thus, (15) implies that
{
FT (Ax, y∗)− 〈y∗, Ax〉

}

+
{
1

2
‖x‖2 +

1

2
‖A∗y∗‖2 + 〈y∗, Ax〉

}
≤ 0.

We see that y∗ ∈ T (Ax), −x∗ := −A∗y∗ ∈ JX(x),
since both bracketed terms are non-negative. Hence,

0 ∈ JX(x) + TA(x).
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In the same way if we start with

f(x, x∗) := inf{FT (Ax, y∗): A∗y∗ = x∗ + x∗0},

g(x, x∗) :=
1

2
‖x‖2 +

1

2
‖x∗‖2 − 〈x, x∗0〉,

we deduce, x∗0 ∈ JX(x) + TA(x). This applies to all
domain translations of T . As in Theorem 13, this
is sufficient to conclude TA is maximal. ¥

• This recovers the reflexive case of the formula
that A∗∂f(Ax) = ∂(fA)(x) with the same (CQ).

• A recent paper [Bot et al] relaxes the (CQ) to

{(A∗y∗, Ax, r): F∗T (Ax, y∗) ≤ r} (16)

is relatively closed in X∗ ×R(A)× R.

• Application of Theorem 16 to

T (x, y) := (T1(x), T2(y)),

and A(x) := (x, x) yields TA(x) = T1(x)+T2(x)
and recovers Theorem 13. With more effort
one may equally embed Theorem 16 in Theo-
rem 13.
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Note only X need be reflexive. A key case of The-
orem 16 is a reflexive injection.

Corollary 11 Let T be maximal monotone on a
Banach space Y . Let ι denote the injection of a
reflexive subspace Z ⊂ Y into Y .
Then TZ := ι∗ ◦ T ◦ ι is maximal monotone on Z if

0 ∈ core (Z + conv domT ).

Hence, if 0 ∈ core (conv domT ), then TZ is maximal
for each reflexive Z.

• In this case, (16) implies the result holds when

{(y∗|Z, z, r): H∗T (z, y∗) ≤ r, z ∈ Z}
is relatively closed in Z∗ × Z × R
What happens generally?∗

∗Conjecture: ‘most’ subspaces behave well ⇒ T is (FPV)
and so D(T ) convex.
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Conjectural Details

1. For a lsc representative HT and dim F < ∞, if

HF
T (y, y∗) := inf{HT (y, x∗): x∗|F = y∗}

is lsc on F × F ∗ then TF is maximal.

2. Equivalently, this holds if

epiH+ {0} × F⊥ × {0} (17)

is closed.

3. Hence, if (17) holds for ‘most’ F meeting domT ,
we have a net of approximating ‘nice’ maximal
monotone (e.g., FPV, FP) operators.

Example 1 Consider T (x1, x2) := ∂f(x1, x2) and
HT (x1, x2, x∗1, x∗2) := f(x1, x2) + f∗(x∗1, x∗2) where

f(x1, x2) := max{|x1|,1−
√

x2}, x2 ≥ 0

f∗(x2
1, x2

2) =
{(|x∗1| − 1) ∨ x∗2}2

4x2
− (|x∗1| − 1) ∨ x∗2,

and |x∗1| ≤ 1, x∗2 < 0. Then (only) TR×0 is not
maximal and, necessarily, HR×0

T is not lsc.
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A Dense Limiting Example

Example 2 Let C be closed convex and bounded
in an infinite dimensional Banach space X and fix
x0 6= 0 in X. Define

fC(x) := inf{t ∈ R : x + t x0 ∈ C}.
Set cx := x− fC(x)x0 ∈ C. Then fC is closed and

convex and has no global minimum. Moreover,
∂fC(x) = ∂fC(cx). This implies that

dom ∂fC ⊂ suppC.

Now arrange that 0 ∈ C, that

Y
⋂

span (C ∪ {x0}) = 0

for a dense subspace Y, while span C is also dense.
It follows that (∂fC)F fails to be maximal for every
non-trivial finite dimensional subspace F ⊂ Y .

Explicitly, take the (norm-compact) Hilbert cube
K := {x ∈ `2 : |xn| ≤ 1/2n,∀n ∈ N} and x0 :=
(1/2n) so that

fK(x) := sup
n∈N

|2n xn − 1|,

and take Y \ {0} to contain only more slowly de-
creasing sequences.
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5a. Variational Inequalities

T is coercive on C if

inf
y∗∈T (y)+∂ιC(y)

〈y, y∗〉/‖y‖ → ∞

as y ∈ C goes to infinity in

norm.a

aThis may be weakened signifi-
cantly, especially if 0 ∈ C.

A variational inequality V(T,C) requests a solu-
tion y ∈ C and y∗ ∈ T (y) to

〈y∗, x− y〉 ≥ 0 ∀x ∈ C.

Equivalently

0 ∈ T (y) + NC(y)

or

0 ∈ T (y) + ∂ιC(y).

• This models the necessary condition

〈∇f(x), c− x〉 ≥ 0

for all c ∈ C.

55



Corollary 12 Suppose T is maximal monotone on

a reflexive space and is coercive on the closed con-

vex set C while 0 ∈ core (C − conv dom(T )). Then

V (T, C) has a solution.

Proof. Let f := ιC, the indicator function. For

n = 1,2,3 · · · , let Tn := T + J/n. We solve

0 ∈ (Tn + ∂ιC) (yn) = (T + ∂ιC) +
1

n
J(yn) (18)

and take limits as n goes to infinity.

More precisely, Theorem 13, yields yn in C, and

y∗n ∈ (T + ∂ιC) (yn), j∗n ∈ J(yn)/n with y∗n = −j∗n.
Then

〈y∗n, yn〉 = −1

n
〈j∗n, yn〉 = −1

n
‖yn‖2 ≤ 0,

and so coercivity of T + ∂ιC implies that ‖yn‖ re-

mains bounded and so j∗n → 0. We may assume

yn ⇁ y.

Since T +∂ιC is maximal monotone (again by The-

orem 13), it is demi-closed. It follows that

0 ∈ (T + ∂ιC)(y), and y is as required. ¥
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Letting C := X in Corollary 12 we deduce

Corollary 13 Every coercive maximal monotone
operator on a Banach space is surjective if (and
only if) the space is reflexive.

Proof. To complete the proof we recall that, by
James’ theorem, surjectivity of J is equivalent to
reflexivity of the corresponding space. ¥

We may improve Corollary 3 in the reflexive setting:

Theorem 17 Suppose T is maximal monotone on
a reflexive space. Then dom(T ) and range (T )
have convex closure (and interior).

Proof. Without loss, we assume 0 is in the clo-
sure of conv dom(T ). Fix y ∈ dom(T ), y∗ ∈ T (y).
Corollary 8 applied to T/n solves w∗n/n + j∗n = 0
with w∗n ∈ T (wn), j∗n ∈ J(wn), for integer n > 0. By
monotonicity

1

n
〈y∗, y − wn〉 ≥ 1

n
〈w∗n, y − wn〉 = ‖wn‖2 − 〈j∗n, y〉

where ‖wn‖2 = ‖j∗n‖2 = 〈j∗n, wn〉 and wn ∈ dom(T ).
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We deduce supn ‖wn‖ < ∞. Thus, (j∗n) has a weak

cluster point j∗. Thence, denoting D := dom(T )

d2
D(0) ≤ lim inf

n→∞ ‖wn‖2 ≤ inf
y∈D

〈j∗, y〉
= inf

y∈conv D
〈j∗, y〉 ≤ ‖j∗‖ dconv D(0) = 0.

We have shown that cl conv dom(T ) ⊂ cl dom(T )

and so cl dom(T ) is convex as required.

As range (T ) = dom(T−1) and X∗ is reflexive we

are done. ¥

More generally:

Theorem 18 (Fitzpatrick, Phelps) Every locally

maximal monotone operator on a Banach space

has cl rangeT convex.

Proof. We suppose not and then that there are

±x∗ in cl rangeT of unit-norm but with midpoint

0 6∈ cl rangeT .
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Proof. We build the ball

B
′
:= conv {±2x∗, α B∗X}

where 0 < α < 1/2 is chosen with

(rangeT ) ∩ 2αB∗X = ∅.
We extend T ∩B

′
as in Prop. 5, so that

R(T̂ ) ⊂ cl conv {R(T )∩B
′} and R(T̂ )\R(T ) ⊂ bdB

′
.

It follows that

range T̂ ⊂ (R(T )∩B′)
⋃

(cl conv {R(T )∩B
′}∩bdB

′
).

Hence range T̂ is weak-star disconnected. As T̂

is a weak-star cusco it has a weak-star connected
range which contradicts the construction. ¥

B
′
(red), α BX∗ (yellow) and 2α BX∗ (grey)
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Corollary 14 Suppose T is maximal monotone on

a reflexive Banach space X and is locally bounded

at each point of cl dom(T ). Then dom(T ) = X.

Proof. Observe dom(T ) must be closed and so

convex. By the Bishop-Phelps theorem, there is

some boundary point x ∈ dom(T ) with a non-zero

support functional x∗.
Then T (x) + [0,∞)x∗ is monotonically related to

the graph of T . By maximality

T (x) + [0,∞)x∗ = T (x)

which is non-empty and (linearly) unbounded. ¥
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6. Limiting Examples and Constructions

• It is unknown outside reflexive space whether

cl dom(T ) must always be convex for a maxi-

mal monotone operator

• Reflexivity in Theorem 17 may be relaxed to

R(T + J) is boundedly w∗-dense—as an exam-

ination of the proof will show

We do however have the following result:

Theorem 19 (JB-SF-Vanderwerff) TFAE.

(a) A Banach space X is reflexive

(b) int range (∂f) is convex for each coercive lsc

convex function f on X

(c) int range (T ) is convex for each coercive maxi-

mal monotone mapping T .
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Proof. Suppose X is nonreflexive and p ∈ X with
‖p‖ = 5 and p∗ ∈ Jp where J is the duality map.
Define

f(x) := max
{
1

2
‖x‖2, ‖x∓ p‖ − 12± 〈p∗, x〉

}

for x ∈ X. By the max-formula, for x ∈ BX,

∂f(±p) = BX∗ ± p∗, ∂f(x) = Jx (19)

using inequalities like ‖p − p‖ − 12 + 〈p∗, p〉 = 13
> 25

2 = 1
2‖p‖2.

Moreover, f(0) = 0 and f(x) > 1
2‖x‖ for ‖x‖ > 1,

thus ‖x∗‖ > 1
2 if x∗ ∈ ∂f(x) and ‖x‖ > 1. Combining

this with (19) shows

range (∂f) ∩ 1

2
BX∗ = range (J) ∩ 1

2
BX∗.

Let U := UX∗ denote the open unit ball in X∗. Now
James’ theorem gives x∗ ∈ 1

2UX∗ \ range (J), thus
UX∗ \ range (∂f) 6= ∅. However, from (19)

U ⊂ conv {(p∗ + U) ∪ (−p∗ + U)} ⊂ conv intR(∂f)

so range (∂f) has non-convex interior. This shows
that (b) implies (a) while (c) implies (b) is clear.

Finally (a) ⇒ (c) follows from Theorem 17. ¥
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• Every locally maximal operator T has cl rangeT

convex (Fitzpatrick-Phelps)

Observe the two roles of convexity in the proof

of (a) ⇔ (c). One often uses the same logic to

establish a result of the form

“Property P holds for all maximal monotone

operators if and only if X is a Banach space

with property Q.”

Two other examples are:

• “Every monotone operator T on a space X is

bounded on bounded subsets of int domT iff X

is finite dimensional.”

• “Every monotone operator T on a space X is

single valued and norm-continuous on a generic

subset of int domT iff X is an Asplund space.”
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Example 3 Most explicitly Fitzpatrick and Phelps

used c0, the space of null sequences, and

f(x) := ‖x− e1‖∞ + ‖x + e1‖∞ (20)

where e1 is first unit vector. Then int range ∂f is

not convex (disconnected):

int range(∂f) =
{
U`1 + e1

}
∪

{
U`1 − e1

}

cl-int range(∂f) =
{
B`1 + e1

}
∪

{
B`1 − e1

}

both of which are far from convex. ¥

The range of ∂f in `1

H It is instructive to compute cl-range (∂f)
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Example 4 Gossez gives a coercive maximal
monotone operator T with full domain whose range
has a non-convex closure.

T is of the form 2−n J`1 + S for some n > 0 large
with bounded linear S : `1 → `∞ given by

(Sx)n := −
∑

k<n

xk +
∑

k>n

xk, ∀x = (xk) ∈ `1, n ∈ N.

In fact, ∓S : `1 7→ `∞ is skew bounded
and S∗ is not monotone but −S∗ is.

• Hence, −S is both of dense type and locally
maximal monotone (also called FP) while S is
in neither class (Bauschke-JMB) ¥

• Relatedly, let ι be the injection of `1 into `∞.
For small ε > 0

Sε := ει + S

is a coercive maximal monotone operator for
which the closure Sε fails to be coercive in X∗∗.

One may use a smooth renorming of `1. This
means T +λJ is single-valued, demicontinuous.
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Example 5 (Some further related results) More
abstractly, one can show that if the underlying
space X is rugged, meaning cl span range (J−J) =
X∗, then the following are equivalent whenever T

is bounded linear and maximal monotone:

i) T is of dense type.

ii) cl − range (T + λJ) = X∗, ∀λ > 0.

iii) cl − range (T + λJ) is convex, ∀λ > 0.

iv) T + λJ is locally maximal monotone, ∀λ > 0.

• Equivalences i)–iv) hold for the following rugged
spaces: c0, c, `1, `∞, L1[0,1], L∞[0,1], C[0,1].

In cases like c0 or C[0,1], which contain no
complemented copy of `1, a maximal monotone
bounded linear T is always of dense type.∗

In particular, S in Example 4 is necessarily not
of dense type, etc.

∗SF and JMB spent several weeks in 1994 looking for a
counter-example in C[0,1].
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7. Conclusion

Fitzpatrick’s function was built to provide a trans-
parent convex alternative to earlier saddle function
constructions of Krauss. His interests were more
in differentiation theory for Lipschitz functions.

Results relating when a maximal monotone T is
single-valued to differentiability of FT were not
forthcoming, and he put the function aside.

D-Drive

• This is still the one area where to the best of
my knowledge FT has proved of little help—in
part because generic properties of domFT and
of dom(T ) seem poorly related.
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• By contrast, Fitzpatrick’s function and its rela-
tives now provide the easiest access to a gamut
of solvability and boundedness results.

The clarity of the constructions also offers hope for
resolving some of the most persistent open ques-
tions about maximal monotone operators such as:

Q3. Must cl dom(T ) always be convex? Simons
shows this is so for operators of dual type (FPV).

Q4. Can T1 + T2 fail be maximal when

0 ∈ core conv (dom(T1)− dom(T2))?

Q5. Given a maximal monotone T , can one asso-
ciate a convex fT with T in such fashion that
T (x) is singleton as soon as ∂fT (x) is?

Q6. Are there some nonreflexive spaces, such as
c0, for which such questions can be answered
in the affirmative?∗

∗Conjecture. On c0 all maximal operators are type (NI).
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Non-convex

functions are

hard too . . .
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