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Bessel functions are among the most important functions in 
mathematical physics and the theory of special functions.The 
ability to compute their values is equally important.

The standard method of evaluating the Bessel functions has 
been to use an ascending series for small argument, and the 
asymptotic (but divergent) series for large argument. In this 
talk, we describe a new series (based on arc-trig series) that 
is geometrically convergent in the number of summands, with 
explicitly computable error estimates for the tails.

Abstract and Outline

Moore’s Law

•• Motivation and ContextMotivation and Context (JMB)

• Earlier Talk on Laguerre Asymptotics

•• Our New AlgorithmsOur New Algorithms (O-YC) 

• Preprint related to Current Talk

http://users.cs.dal.ca/~jborwein/laguerre-talk.pdf
http://locutus.cs.dal.ca:8088/archive/00000371/


This was needed by Crandall to perform high 
precision computation of Riemann-Zeta, say near 
(1+1010i,1+2·1010i) to treat primes around 1020

Motivation and Context



For example we obtain the large n asymptotic

Motivation and Context

We manage this in part by finding the most 
effective contour  for Laguerre polynomials 
experimentally (C_1 dominates)



Motivation and Context

This is what the 
new DLMF (A&S) 
provides

(with metadata 
suppressed)
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Motivation and Context
Inter alia we obtained expressions for Jν

 

(and Iν

 

) at integer order:



Motivation and Context
This development depended critically on the following  exp-arc expansions:

I learned (1) from Ramanujan and 
Berndt while doing number theory



Motivation and Context
We  noted more generally, for z and ν

 

having positive real part, that

The paper concluded with several open questions: notably

And this is what we now consider …
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For any complex pair (p, q) and real numbers α, β ∈ (−π, π), let

I(p, q, α, β) :=

∫ β

α
e−iqωep cos ωdω.

Then we have the absolutely convergent representation

I(p, q, α, β) =
iep

q

∞
∑

k=0

rk+1(−2iq)

k!

∫ sin
β
2

sin α
2

xke−2px2
dx ,

where

r2m+1(ν) := ν

m
∏

j=1

(

ν2 + (2j − 1)2
)

, r2m(ν) :=

m
∏

j=1

(

ν2 + (2j − 2)2
)

.

These are, you may recall, the coefficients in the series
expansion of exp(arcsin x).
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In particular, for the case where (α, β) = (−π/2, π/2), we have

I(p, q) := I(p, q,−π/2, π/2) =
2iep

q

∞
∑

k=0

r2k+1(−2iq)

(2k)!
Bk (p),

with

Bk (p) :=

∫ 1/
√

2

0
x2ke−2px2

dx =
1

2k+1
√

2

∫ 1

0
e−puuk−1

2 du

= − e−p

p2k+1
√

2
+

(

k − 1
2

)

Bk−1(p)

2
.
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For integral order, we have from the Laguerre paper

Jn(z) =
1

2π

(

e−inπ/2I(iz, n) + einπ/2I(−iz, n)
)

,

and

In(z) =
1

2π
(I(z, n) + cos(πn)I(−z, n)) .

As Jon mentioned, we want to use the integral representations
to get expressions for general ν.
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The integral representations are:

Jν(z) =
1
π

∫ π

0
cos(νt − z sin t)dt − sin νπ

π

∫ ∞

0
e−νt−z sinh tdt ,

Yν(z) =
1
π

∫ π

0
sin(z sin t − νt)dt

− 1
π

∫ ∞

0
(eνt + e−νt cos νπ)e−z sinh tdt ,

Iν(z) =
1
π

∫ π

0
ez cos t cos νt dt − sin νπ

π

∫ ∞

0
e−z cosh t−νtdt ,

and

Kν(z) =

∫ ∞

0
e−z cosh t cosh νt dt =

1
2

∫ ∞

−∞
e−z cosh t−νtdt .
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The integrals on [0, π] can be expressed in terms of the I
function. Specifically,

Jν(z) =
1

2π

(

e−iνπ/2I(iz, ν) + eiνπ/2I(−iz, ν)
)

− sin νπ

π

∫ ∞

0
· · ·

Yν(z) =
1

2πi

(

e−iνπ/2I(iz, ν) − eiνπ/2I(−iz, ν)
)

− 1
π

∫ ∞

0
· · ·
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Iν(z) =
1
2

(

I(z, ν) + eiνπI(−z, ν, 0, π/2) + e−iνπI(−z,−ν, 0, π/2)
)

− sin νπ

π

∫ ∞

0
· · ·

=
1

2π
(I(z, ν) + cos νπI(−z, ν) − sin νπI ∗(−z, ν))

− sin νπ

π

∫ ∞

0
· · · ,

where

I ∗(z, ν) =
2ez

ν

∞
∑

n=0

r2n+2(2iν)

(2n + 1)!
B

n+
1
2
(z).
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To get the generalizations we want, we basically just need to
evaluate the infinite integrals.

Let us look at the integrals in the J and Y cases. A change of
variables plus integration by parts gives us

∫ ∞

0
e−νt−z sinh tdt =

1
ν
− z

ν

∫ ∞

0
e−zse−ν arcsinh sds.

The expansion of e−ν arcsinh s about s = 0, used in the finite
case to obtain the series, is only valid on [0, 1).
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For large s, it makes sense to expand about infinity!

The series, valid on (1,∞), is

sνe−ν arcsinh s =

∞
∑

n=0

An(ν)

s2n ,

where A0(ν) = 2−ν and for n ≥ 1,

An = −(ν + 2n − 2)(ν + 2n − 1)

4n(n + ν)
An−1,

from which we easily obtain

An(ν) =
(−1)nν2−ν(ν + n + 1)n−1

22nn!
.
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Note that when ν is a negative integer, we have problems with
the recurrence.

When n = ⌊(1 − ν)/2⌋, the numerator is 0. When n = −ν, the
denominator is zero.

In this case, An(ν) = (−1)ν+1An+ν(−ν) for n ≥ −ν
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If we only used the expansions at 0 and ∞, we could get a
series; but there are issues with interchanging summations and
integration, since we are integrating up to the boundary of the
interval of convergence.

Even after justifying the interchange, the resulting series is very
slow due to the “bad” approximation by the series near the
boundary.
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Localize!

For fixed k , fk (s) := e−ν arcsinh(k+s) satisfies the second order
differential equation

f ′′k (s) =
1

k2 + 1 + 2ks + s2

(

ν2fk (s) − (k + s)f ′k (s)
)

.

So if we set

e−ν arcsinh(k+s) =
∞
∑

n=0

an(k , ν)

n!
sn,

then we have the recurrence relation

an+2 =
1

k2 + 1

(

(ν2 − n2)an − k(2n + 1)an+1

)

,

with
a0 = (k +

√

k2 + 1)−ν , a1 = − νa0√
k2 + 1

.
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We can subdivide [0,∞) into the intervals
[0, 1/2], [1/2, 3/2], . . . , [N − 1/2, N + 1/2], [N + 1/2,∞) and on
each interval expand e−ν arcsinh s at k , the centre of the interval.

Each of these series has radius of convergence
√

k2 + 1 and
so we may interchange summation and integration.

For the infinite interval at the end, we use the expansion about
infinity.
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Thus for any positive integer N, we have
∫ ∞

0
e−zse−ν arcsinh sds =

∞
∑

n=0

(

an(0, ν)

n!
αn(z) + βn(z)

N
∑

k=1

e−kz an(k , ν)

n!

+ An(ν)Gn(N + 1
2 , z, ν)

)

,

where

αn(z) :=

∫ 1/2

0
e−zssnds = −e−z/2

2nz
+

n
z

αn−1(z),

βn(z) :=

∫ 1/2

−1/2
e−zssnds =

ez/2

(−2)nz
− e−z/2

2nz
+

n
z

βn−1(z),
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and

Gn(θ, z, ν) :=
e−θz

θ2n+ν−1

∫ ∞

0
e−θzs(1 + s)−2n−νds

=
1

(ν + 2n − 1)(ν + 2n − 2)
×

(

e−θz(ν + 2n − 2 − θz)

θ2n+ν−1 + z2Gn−1(θ, z, ν)

)

.
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So we have found a representation for the Bessel functions in
terms of several sums:

Sums involving I from the integral on [0, π], where each
summand looks like

rn+1(2ν)

n!
Bn(+1/2)(z),

sums from the subdivisions of the real line on the infinite
integral, where a typical summand is

an(k , ν)

n!
βn(z)e−kz ,

and the sum from the tail, where each summand is

An(ν)Gn(N + 1
2 , z, ν).
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Let us first look at
rn+1(2ν)

n!
.

For simplicity we consider the case n even, n = 2m. Then this
is

m
∏

j=1

(

1 − 1
2j

− 4ν2

(2j − 1)(2j)

)

,

which is bounded and decreasing for m > 2|ν|2. Similarly for
odd n.

Also, (for arbitrary n)

Bn(z) =
1

2n+3/2

∫ 1

0
e−zuun−1/2du

so it is bounded by

|Bn(z)| ≤ max(1, e−Re(z))

2n+3/2
.
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.

For simplicity we consider the case n even, n = 2m. Then this
is

m
∏

j=1

(

1 − 1
2j

− 4ν2

(2j − 1)(2j)

)

,

which is bounded and decreasing for m > 2|ν|2. Similarly for
odd n.

Also, (for arbitrary n)

Bn(z) =
1

2n+3/2

∫ 1

0
e−zuun−1/2du

so it is bounded by

|Bn(z)| ≤ max(1, e−Re(z))

2n+3/2
.
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Thus the terms of type

rn+1(2ν)

n!
Bn(z) = Oν,z(2−n),

where the big-O constant can be explicitly computed.
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For terms of the type

an(k , ν)

n!
βn(z)e−kz ,

note that an(k , ν)/n! are the Taylor coefficients, and so they are

O
(

1
(k2+1)n/2

)

from the radius of convergence. We can fairly

easily get a weaker but explicit geometric bound using the
recurrence relation for an(k , ν).

βn(z) is the n-th moment of the exponential, and can be
explicitly computed. A simple estimate yields

|βn(z)e−kz | ≤ e−(k−1/2) Re(z)

2n .
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For terms of the type

An(ν)Gn(N + 1
2 , z, ν),

we can get a bound

|An(ν)| ≤ |ν2⌈|ν|⌉−ν−1|
n

from the explicit formula,

and use bounds for the incomplete gamma function to get
explicit big-O constants for the bound

Gn(N + 1
2 , z, ν) = Oν,z((N + 1/2)−Re(ν)−2n).

D. Borwein, J. M. Borwein, O-Y. Chan Effective Computation of Bessel Functions, Part II



For terms of the type

An(ν)Gn(N + 1
2 , z, ν),

we can get a bound

|An(ν)| ≤ |ν2⌈|ν|⌉−ν−1|
n

from the explicit formula,

and use bounds for the incomplete gamma function to get
explicit big-O constants for the bound

Gn(N + 1
2 , z, ν) = Oν,z((N + 1/2)−Re(ν)−2n).

D. Borwein, J. M. Borwein, O-Y. Chan Effective Computation of Bessel Functions, Part II



Putting it all together, we see that the (slowest) sums converge
like 2−n, and with explicit big-O constants we may determine
how many terms are needed for a specific accuracy.
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Other features to note:

For each type of sum, the summands are all computable
via recursion.

The most difficult computation involved are the
computation of B0 and G0, each of which involves an
incomplete gamma evaluation. It should be noted that this
can be done via continued fractions, so this scheme can
be thought of as a continued fraction evaluation scheme for
Bessel functions.

The sum involving AnGn is bounded like Oν(e−z(N+1/2)) by
estimating the integral of the tail. So one can avoid the
computation of G0 altogether by choosing a large enough
N.
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Along the same lines, one does not need to compute all of
the sums involving βn for large k unless one needs
accuracy beyond about e−(k−1/2) Re(z).

In addition to choosing an optimal N, one can also adjust
the intervals in dividing the integral on [0,∞). In particular,
the sum arising out of an interval on (a, b) expanded at k
converges like

O
(

(b − a)e−a Re(z) max(|k − a|n, |b − k |n)

(k2 + 1)n/2

)

.
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Our computation scheme has some advantages over the
traditional ascending-asymptotic switching scheme:

Our series are all uniformly geometrically convergent,
whereas some asymptotic formulas are divergent series,
and some are only algebraically convergent (i.e., like n−α

rather than 2−n).

Each summand in our series is a product of functions that
depend only on ν or only on z, and thus these values can
be stored and recycled for one-ν-many-z or one-z-many-ν
computations. Note also that each of these functions is
eventually decreasing.

The following table compares the performance between the
ascending series, the standard divergent asymptotic series,
and our series for Jν with the choice N = 1.
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Table: Comparison between various series for Jν(z).

Absolute value of the difference between the true value and
(ν, z) M Ascending Series Asymptotic Series Exp-arc Series

10 1022 10−32 10−5

ν = 6.2 50 1041 10−76 10−18

z = 100 100 1022 10−89 10−33

150 10−19 10−79 10−49

200 10−75 10−55 10−64

10 1018 10−23 102

ν = 12.3 30 1017 10−41 10−10

z = 50 50 106 10−45 10−17

70 10−11 10−42 10−23

100 10−45 10−28 10−33

10 1027 10−4 1013

ν = 12.3 50 1038 10−48 10−17

z = 75 + 57i 100 1014 10−59 10−33

120 10−2 10−56 10−39

150 10−31 10−47 10−48

200 10−89 10−20 10−64
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Thank you for your attention!

The paper is in press in JMAA.

A preprint is available at the AARMS docserver
http://locutus.cs.dal.ca:8088/archive/00000371/
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