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Moreover a mathematical problem should be
difficult in order to entice us, yet not com-
pletely inaccessible, lest it mock our efforts.
It should be to us a guidepost on the mazy
path to hidden truths, and ultimately a re-
minder of our pleasure in the successful solu-
tion. · · · Besides it is an error to believe that
rigor in the proof is the enemy of simplicity.
(David Hilbert, 1900)
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Ten Computational Challenge Problems

This lecture will look at ‘lists and challenges’

and discuss three lists, two of which are sets

of Ten Computational Mathematics Problems

including

∫ ∞
0

cos(2x)
∞∏

n=1

cos
(

x

n

)
dx

?
=

π

8
.

This problem set was stimulated by Nick Tre-

fethen’s recent more numerical SIAM 100 Digit,

100 Dollar Challenge.∗

• We start with a general description of the Digit

Challenge† and finish with an examination of some

of its components and of some in our own list.

∗The talk is based on an article to appear in the May
2005 Notices of the AMS, and related resources such as
www.cs.dal.ca/∼jborwein/digits.pdf.
†Quite full details of which are beautifully recorded on Borne-
mann’s website
www-m8.ma.tum.de/m3/bornemann/challengebook/
which accompanies The Challenge.
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Lists, Challenges, and Competitions

These have a long and primarily lustrous—social

constructivist—history in mathematics.

I Consider the Hilbert Problems∗, the Clay Insti-

tute’s seven (million dollar) Millennium problems,

or Dongarra and Sullivan’s ‘Top Ten Algorithms’.

In 2000, Sullivan and Dongarra wrote “Great algo-

rithms are the poetry of computation,” when they

compiled a list of the 10 algorithms having “the great-

est influence on the development and practice of sci-

ence and engineering in the 20th century”.†

• Newton’s method was apparently ruled ineligible

for consideration.

∗See the late Ben Yandell’s wonderful The Honors Class:
Hilbert’s Problems and Their Solvers, A K Peters, 2001.
†From “Random Samples”, Science page 799, February 4,
2000. The full article appeared in the January/February 2000
issue of Computing in Science & Engineering. Dave Bailey
wrote the description of ‘PSLQ’.
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I. The 20th century’s Top Ten

#1. 1946: The Metropolis Algorithm for Monte

Carlo. Through the use of random processes,
this algorithm offers an efficient way to stumble
toward answers to problems that are too compli-
cated to solve exactly.

#2. 1947: Simplex Method for Linear Program-

ming. An elegant solution to a common problem
in planning and decision-making.

#3. 1950: Krylov Subspace Iteration Method. A
technique for rapidly solving the linear equations
that abound in scientific computation.

#4. 1951: The Decompositional Approach to Ma-

trix Computations. A suite of techniques for
numerical linear algebra.

#5. 1957: The Fortran Optimizing Compiler. Turns
high-level code into efficient computer-readable
code.
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#6. 1959: QR Algorithm for Computing Eigenvalues.
Another crucial matrix operation made swift and
practical.

#7. 1962: Quicksort Algorithms for Sorting. For
the efficient handling of large databases.

#8. 1965: Fast Fourier Transform. Perhaps the
most ubiquitous algorithm in use today, it breaks
down waveforms (like sound) into periodic com-
ponents.

#9. 1977: Integer Relation Detection. A fast method
for spotting simple equations satisfied by collec-
tions of seemingly unrelated numbers.

#10. 1987: Fast Multipole Method. A breakthrough
in dealing with the complexity of n-body calcula-
tions, applied in problems ranging from celestial
mechanics to protein folding.

Eight of these appeared in the first two decades of
serious computing. Most are multiply embedded in
every major mathematical computing package.
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• We turn to the story of a more recent highly suc-

cessful challenge and associated book.

The book under review also makes it clear

that with the continued advance of comput-

ing power and accessibility, the view that “real

mathematicians don’t compute” has little trac-

tion, especially for a newer generation of math-

ematicians who may readily take advantage

of the maturation of computational packages

such as Maple, Mathematica and MATLAB.

(JMB, 2005)

• But we take a longer perspective.
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Numerical Analysis Then and Now

Emphasizing quite how great an advance positional

notation was, Ifrah writes:

A wealthy (15th Century) German merchant,

seeking to provide his son with a good busi-

ness education, consulted a learned man as to

which European institution offered the best

training. “If you only want him to be able to

cope with addition and subtraction,” the ex-

pert replied, “then any French or German uni-

versity will do. But if you are intent on your

son going on to multiplication and division –

assuming that he has sufficient gifts – then

you will have to send him to Italy. (Georges

Ifrah∗)

∗From page 577 of The Universal History of Numbers: From
Prehistory to the Invention of the Computer, translated from
French, John Wiley, 2000.

8



Archimedes method

George Phillips has accurately called Archimedes the
first numerical analyst. In the process of obtaining
his famous estimate

3 +
10

71
< π < 3 +

10

70
he had to master notions of recursion without com-
puters, interval analysis without zero or positional
arithmetic, and trigonometry without any of our mod-
ern analytic scaffolding ...

A modern computer algebra system can tell one that

0 <
∫ 1

0

(1− x)4x4

1 + x2
dx =

22

7
− π, (1)

since the integral may be interpreted as the area un-
der a positive curve.

We are though no wiser as to why! If, however, we
ask the same system to compute the indefinite inte-
gral, we are likely to be told that

∫ t

0
· = 1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t) .

Now (1) is rigourously established by differentiation
and an appeal to the Fundamental theorem of calcu-
lus. 2
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• While there were many fine arithmeticians over

the next 1500 years, Ifrah’s anecdote above shows

how little had changed, other than to get worse,

before the Renaissance.

• By the 19th Century, Archimedes had finally been

outstripped both as a theorist, and as an (applied)

numerical analyst:

In 1831, Fourier’s posthumous work on equations showed

33 figures of solution, got with enormous labour. Think-

ing this is a good opportunity to illustrate the superi-

ority of the method of W. G. Horner, not yet known

in France, and not much known in England, I pro-

posed to one of my classes, in 1841, to beat Fourier

on this point, as a Christmas exercise. I received sev-

eral answers, agreeing with each other, to 50 places of

decimals. In 1848, I repeated the proposal, requesting

that 50 places might be exceeded: I obtained answers

of 75, 65, 63, 58, 57, and 52 places.∗ (Augustus

De Morgan)

∗Quoted by Adrian Rice in “What Makes a Great Mathemat-
ics Teacher?” on page 542 of The American Mathematical
Monthly, June-July 1999.

11



A pictorial proof

• De Morgan seems to have been one of the first
to mistrust William Shanks’s epic computations
of Pi—to 527, 607 and 727 places, noting there
were too few sevens.

• But the error was only confirmed three quarters
of a century later in 1944 by Ferguson with the
help of a calculator in the last pre-computer cal-
culations of π.∗

^ Until around 1950 a “computer” was still a per-
son and ENIAC was an “Electronic Numerical In-
tegrator and Calculator” on which Metropolis and
Reitwiesner computed Pi to 2037 places in 1948
and confirmed that there were the expected num-
ber of sevens.

∗A Guinness record for finding an error in math literature?
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Reitwiesner, then working at the Ballistics Research
Laboratory, Aberdeen Proving Ground in Maryland,
starts his article with:

Early in June, 1949, Professor John von Neu-
mann expressed an interest in the possibility
that the ENIAC might sometime be employed
to determine the value of π and e to many
decimal places with a view to toward obtain-
ing a statistical measure of the randomness
of distribution of the digits.

The paper notes that eappears to be too random—
this is now proven—and ends by respecting an oft-
neglected ‘best-practice’:

Values of the auxiliary numbers arccot 5 and
arccot 239 to 2035D ... have been deposited
in the library of Brown University and the
UMT file of MTAC.

• Just as layers of software, hardware & middleware
have stabilized, so have their roles in scientific and
especially mathematical computing.
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• Thirty years ago, LP texts concentrated on ‘Y2K’-
like tricks for limiting storage demands.

– Now serious users and researchers will often
happily run large-scale problems in MATLAB

and other broad spectrum packages, or rely
on NAG library routines.

– While such out-sourcing or commoditization of
scientific computation and numerical analysis
is not without its drawbacks, the analogy with
automobile driving in 1905 and 2005 is apt.

• We are now in possession of mature—not to be
confused with ‘error-free’—technologies. We can
be fairly comfortable that Mathematica is sensi-
bly handling round-off or cancelation error, using
reasonable termination criteria etc.

– Below the hood, Maple is optimizing poly-
nomial computations using tools like Horner’s
rule, running multiple algorithms when there
is no clear best choice, and switching to re-
duced complexity (Karatsuba or FFT-based)
multiplication when accuracy so demands.∗

∗Though, it would be nice if all vendors allowed as much peering
under the bonnet as Maple does.
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About the Contest

In a 1992 essay “The Definition of Numerical Analy-

sis”∗. Trefethen engagingly demolishes the conven-

tional definition of Numerical Analysis as “the science

of rounding errors”. He explores how this hyperbolic

view emerged and finishes by writing:

I believe that the existence of finite algorithms for cer-

tain problems, together with other historical forces, has

distracted us for decades from a balanced view of nu-

merical analysis. ... For guidance to the future we

should study not Gaussian elimination and its beguil-

ing stability properties, but the diabolically fast con-

jugate gradient iteration, or Greengard and Rokhlin’s

O(N) multipole algorithm for particle simulations, or

the exponential convergence of spectral methods for

solving certain PDEs, or the convergence in O(N) it-

eration achieved by multigrid methods for many kinds

of problems, or even Borwein and Borwein’s magical

AGM iteration for determining 1,000,000 digits of π in

the blink of an eye. That is the heart of numerical

analysis.

∗SIAM News, November 1992.
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In SIAM News (Jan 2002), Trefethen liste ten diverse
problems used in teaching modern graduate numer-
ical analysis in Oxford. Readers were challenged to
compute 10 digits of each, with a dollar per digit
($100) prize to the best entry. Trefethen wrote,

“If anyone gets 50 digits in total, I will be
impressed.”

• And he was, 94 teams from 25 nations submitted
results. Twenty of these teams received a full
100 points (10 correct digits for each problem).

– They included the late John Boersma working
with Fred Simons and others, Gaston Gonnet
(a Maple founder) and Robert Israel, a team
containing Carl Devore, and the current au-
thors variously working alone and with others.

– An originally anonymous donor, William J. Brown-
ing, provided funds for a $100 award to each
of the twenty perfect teams.

– JMB, David Bailey∗ and Greg Fee entered, but
failed to qualify for an award.†

∗Bailey wrote the introduction to the book under review.
†We took Nick at his word and turned in 85 digits!
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II. The Ten Digit Challenge Problems

The purpose of computing is insight, not num-
bers.∗ (Richard Hamming)

#1. What is limε→0
∫ 1
ε x−1 cos(x−1 logx) dx?

#2. A photon moving at speed 1 in the x-y plane
starts at t = 0 at (x, y) = (1/2,1/10) heading due
east. Around every integer lattice point (i, j) in
the plane, a circular mirror of radius 1/3 has been
erected. How far from the origin is the photon at
t = 10?

#3. The infinite matrix A with entries a11 = 1, a12 =
1/2, a21 = 1/3, a13 = 1/4, a22 = 1/5, a31 = 1/6,
etc., is a bounded operator on `2. What is ||A||?

#4. What is the global minimum of the function

exp(sin(50x)) + sin(60ey) + sin(70 sinx)

+sin(sin(80y))− sin(10(x + y)) + (x2 + y2)/4?

∗In Numerical Methods for Scientists and Engineers, 1962.
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#5. Let f(z) = 1/Γ(z), where Γ(z) is the gamma

function, and let p(z) be the cubic polynomial

that best approximates f(z) on the unit disk in

the supremum norm || · ||∞. What is ||f − p||∞?

#6. A flea starts at (0,0) on the infinite 2-D integer

lattice and executes a biased random walk: At

each step it hops north or south with probability

1/4, east with probability 1/4 + ε, and west with

probability 1/4 − ε. The probability that the flea

returns to (0,0) sometime during its wanderings

is 1/2. What is ε?

#7. Let A be the 20000 × 20000 matrix whose en-

tries are zero everywhere except for the primes

2,3,5,7, · · · ,224737 along the main diagonal and

the number 1 in all the positions aij with |i− j| =
1,2,4,8, · · · ,16384. What is the (1,1) entry of

A−1.
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#8. A square plate [−1,1]× [−1,1] is at temperature

u = 0. At time t = 0 the temperature is increased

to u = 5 along one of the four sides while being

held at u = 0 along the other three sides, and heat

then flows into the plate according to ut = ∆u.

When does the temperature reach u = 1 at the

center of the plate?

#9. The integral I(α) =
∫ 2
0 [2+sin(10α)]xα sin(α/(2−

x)) dx depends on the parameter α. What is the

value α ∈ [0,5] at which I(α) achieves its maxi-

mum?

#10. A particle at the center of a 10 × 1 rectangle

undergoes Brownian motion (i.e., 2-D random

walk with infinitesimal step lengths) till it hits the

boundary. What is the probability that it hits at

one of the ends rather than at one of the sides?

Answers correct to 40 digits are at

web.comlab.ox.ac.uk/oucl/work/nick.trefethen/hundred.html

19



About the Book and Its Authors

Success in solving these problems requires a broad
knowledge of mathematics and numerical analysis,
together with significant computational effort, to ob-
tain solutions and ensure correctness of the results.

• The strengths and limitations of Maple, Math-
ematica, Matlab (The 3Ms), and other software
tools such as PARI or GAP, are strikingly revealed
in these ventures.

• Almost all of the solvers relied in large part on
one or more of these three packages, and while
most solvers attempted to confirm their results,
there was no explicit requirement for proofs to be
provided.

In December 2002, Keller wrote:

To the Editor: ... found it surprising that no proof
of the correctness of the answers was given. Omitting
such proofs is the accepted procedure in scientific com-
puting. However, in a contest for calculating precise
digits, one might have hoped for more.

Joseph B. Keller, Stanford University
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Keller’s request for proofs as opposed to compelling
evidence of correctness is, in this context, somewhat
unreasonable and even in the long-term somewhat
counter-productive.
Nonetheless, the The Challenge makes a complete
and cogent response to Keller and much much more.
The interest in the contest has extended to The
Challenge, which has already received reviews in places
such as Science where mathematics is not often seen.

• Different readers, depending on temperament, tools
and training will find the same problem more or
less interesting and more or less challenging.

• Problems can be read independently : multiple so-
lution techniques are given, background, imple-
mentation details—variously in each of the 3Ms
or otherwise—and extensions are discussed.

• Each problem has its own chapter and lead au-
thor : Folkmar Bornemann, Dirk Laurie, Stan Wagon
and Jörg Waldvogel come from 4 countries on 3
continents and did not know each other, though
Dirk did visit Jörge and Stan visited Folkmar as
they were finishing up.
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Some High Spots

The book proves the growing power of collaboration,
networking and the grid—both human and computa-
tional. A careful reading yields proofs of correctness
for all problems except for #1, #3 and #5.

• For #5 one difficulty is to develop a robust
interval implementation for both complex com-
putation and, more importantly, for the Gamma
function. Error bounds for #1 may be out of
reach, but an analytic solution to #3 seems tan-
talizingly close.

• The authors ultimately provided 10,000-digit so-
lutions to nine of the problems. They say that
this improved their knowledge on several fronts
as well as being ‘cool’.

– success with Integer Relation Methods often
demands ultrahigh precision computation.

• One (and only one) problem remains totally in-
tractable —by this rarefied measure. As of today
only 300 digits of #3 are known.
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Some Surprising Outcomes

The authors∗ were surprised by the following:

#1. The best algorithm for 10,000 digits was the trusty
trapezoidal rule—a not uncommon personal ex-
perience of mine.

#2. Using interval arithmetic with starting intervals of
size smaller than 10−5000, one can still find the
position of the particle at time 2000 (not just
time ten), which makes a fine exercise for very
high-precision interval computation.

#4. Interval analysis algorithms can handle similar prob-
lems in higher dimensions. As a foretaste of fu-
ture graphic tools, one can solve this problem us-
ing current adaptive 3-D plotting routines which
can catch all the bumps.

As an optimizer by background this was the first
problem my group solved using a damped Newton
method.

∗Stan Wagon and Folkmar Bornemann, private communica-
tions.
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#5. While almost all canned optimization algorithms
failed, differential evolution, a relatively new type
of evolutionary algorithm worked quite well.

#6 This has an almost-closed form via elliptic inte-
grals and leads to a study of random walks on
hypercubic lattices, and Watson integrals

#9. The maximum parameter is expressible in terms
of a MeijerG function. Unlike most contestants,
Mathematica and Maple both figure this out.

– This is another measure of the changing en-
vironment.∗ It is a good idea—and not at all
immoral—to data-mine and find out what your
one of the 3Ms knows about your current ob-
ject of interest. Thus, Maple says:

The Meijer G function is defined by the inverse
Laplace transform

MeijerG([as,bs],[cs,ds],z)
/

1 | GAMMA(1-as+y) GAMMA(cs-y) y
= ------ O ------------------------- z dy

2 Pi I | GAMMA(bs-y) GAMMA(1-ds+y)
/

L
where ...

∗As is Lambert W, see Brian Hayes’ Why W?
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Two Big Surprises

Two solutions really surprised the authors: #7 Too
Large to be Easy, Too Small to Be Hard.

Not so long ago a 20,000 × 20,000 matrix was large
enough to be hard. Using both congruential and p-
adic methods, Dumas, Turner and Wan obtained a
fully symbolic answer, a rational with a 97,000-digit
numerator and like denominator. Wan has reduced
the time needed to 15 minutes on one machine, from
using many days on many machines.

• While p-adic analysis is parallelizable it is less easy
than with congruential methods; the need for bet-
ter parallel algorithms lurks below the surface of
much modern computational math.

• The surprise here, though, is not that the solu-
tion is rational, but that it can be explicitly con-
structed.

The chapter, like the others offers an interest-
ing menu of numeric and exact solution strate-
gies. Of course, in any numeric approach ill-
conditioning rears its ugly head while the use of
sparsity and other core topics come into play.
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Problem #10: Hitting the Ends

(My personal favourite, for reasons that may be ap-

parent.) Bornemann starts the chapter by exploring

Monte-Carlo methods, which are shown to be im-

practicable.

• He then reformulates the problem deterministi-

cally as the value at the center of a 10 × 1 rec-

tangle of an appropriate harmonic measure of

the ends, arising from a 5-point discretization of

Laplace’s equation with Dirichlet boundary con-

ditions.

• This is then solved by a well chosen sparse Cholesky

solver. At this point a reliable numerical value of

3.837587979 · 10−7

is obtained.

And the posed problem is solved numerically to

the requisite 10 places.

But this is only the warm up ...
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Analytic Solutions

We proceed to develop two analytic solutions, the

first using separation of variables∗ on the underlying

PDE on a general 2a× 2b rectangle. We learn that

p(a, b) =
4

π

∞∑

k=0

(−1)k

2k + 1
sech

(
(2k + 1)

π

2
ρ

)
(2)

where ρ := a/b.

A second method using conformal mappings, yields

arccot ρ = p(a, b)
π

2
+ argK

(
eip(a,b)π

)
(3)

where K is the complete elliptic integral of the first

kind.

• It will not be apparent to one unfamiliar with in-

version of elliptic integrals that (2) and (3) en-

code the same solution—though they must as the

solution is unique in (0,1)—and each can now be

used to solve for ρ = 10 to arbitrary precision.

∗As with the trapezoidal rule, easy can be good.
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Enter Srinivasa Ramanujan

Bornemann finally shows that, for far from simple

reasons, the answer is

p =
2

π
arcsin (k100) , (4)

where

k100 :=

((
3− 2

√
2

) (
2 +

√
5

) (
−3 +

√
10

) (
−
√

2 +
4√
5

)2
)2

• No one anticipated a closed form like this—a sim-

ple composition of Pi, one arcsin and a few square

roots.∗

B Let me show how to finish up the feast.

∗Actually fundamental units of real (quadratic/quartic) fields;
solutions to Pell’s equation.
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An apt result in Pi and the AGM is that

∞∑

n=0

(−1)n

2n + 1
sech

(
π(2n + 1)

2
ρ

)
=

1

2
arcsin k, (5)

exactly when kρ2 is parametrized by theta functions

in terms of the elliptic nome as Jacobi discovered.

We have thus gotten

kρ2 =
θ2
2(q)

θ2
3(q)

=

∑∞
n=−∞ q(n+1/2)2

∑∞
n=−∞ qn2 q := e−πρ.(6)

Comparing (5) and (2) we see that the solution is

k100 = 6.02806910155971082882540712292 . . .·10−7

as asserted in (4).

• The explicit form follows from 19th century mod-

ular function theory . 2

• If only Trefethen had asked for a
√

210 × 1 box,

or even better a
√

15×√14 one.

– k15/14 and k210 share their units (Pi & AGM).
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A Singular Interlude

Indeed k210 is the singular value sent to Hardy in
Ramanujan’s famous 1913 letter of introduction—
ignored by two other famous English mathematicians.

k210 :=
(√

2− 1
)2 (√

3− 2
) (√

7− 6
)2 (

8− 3
√

7
)

×
(√

10− 3
)2 (√

15−
√

14
) (

4−
√

15
)2 (

6−
√

35
)

GH Hardy (1877–1947)

CP Snow’s description in
A Mathematician’s Apology
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A Modern Finale

Alternatively, armed only with the knowledge that the
singular values are always algebraic we may finish with
an au courant proof: numerically obtain the minimal
polynomial from a high precision computation with
(6) and recover the surds.

Maple allows the following

> Digits:=100:with(PolynomialTools):

> k:=s->evalf(EllipticModulus(exp(-Pi*sqrt(s)))):

> p:=latex(MinimalPolynomial(k(100),12)):

> ’Error’,fsolve(p)[1]-evalf(k(100)); galois(p);

-106

Error, 4 10

"8T9", {"D(4)[x]2", "E(8):2"}, "+", 16, {"(4 5)(6 7)",

"(4 8)(15)(26)(3 7)", "(1 8)(2 3)(4 5)(6 7)",

"(2 8)(1 3)(4 6)(5 7)"}

This finds the minimal polynomial for k100, checks it
to 100 places, tells us the galois group, and returns
a latex expression ‘p’ which sets as:

1 − 1658904 X − 3317540 X 2 + 1657944 X 3 + 6637254 X 4

+ 1657944 X 5 − 3317540 X 6 − 1658904 X 7 + X 8,

and is self-reciprocal:
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It satisfies p(x) = x8p(1/x).

This suggests taking a square root and we discover
y =

√
k100 satisfies

p(y) = 1 − 1288 y + 20 y2 − 1288 y3 − 26 y4

+ 1288 y5 + 20 y6 + 1288 y7 + y8.

Now life is good. The prime factors of 100 are 2 and
5 prompting:

subs(_X=z,[op(((factor(p,{sqrt(2),sqrt(5)}))))]))

The code yields four quadratic terms, the desired one
being

q = z2 + 322 z − 228 z
√

2 + 144 z
√

5− 102 z
√

2
√

5

+ 323− 228
√

2 + 144
√

5− 102
√

2
√

5.

For security,

w:=solve(q)[2]: evalf[1000](k(100)-w^2);

gives a 1000-digit error check of 2.20226255 ·10−998.

• We can work a little more to find, using one of
the 3Ms, the beautiful form of k100 given in (4).

2
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III. The Ten Symbolic Challenge Problems

Each of the following∗ requires numeric work—some

times considerable—to facilitate whatever transpires

thereafter.

#1. Compute the value of r for which the chaotic

iteration xn+1 = rxn(1 − xn), starting with some

x0 ∈ (0,1), exhibits a bifurcation between 4-way

periodicity and 8-way periodicity.

Extra credit: This constant is an algebraic num-

ber of degree not exceeding 20. Find its minimal

polynomial.

#2. Evaluate

∑

(m,n,p)6=0

(−1)m+n+p
√

m2 + n2 + p2
, (7)

where convergence is over increasingly large cubes

surrounding the origin.

Extra credit: Identify this constant.

∗To appear in the MAA Monthly.
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#3. Evaluate the sum

∞∑

k=1

(
1− 1

2
+ · · ·+ (−1)k+11

k

)2
(k + 1)−3.

Extra credit: Evaluate this constant as a multi-

term expression involving well-known mathemat-

ical constants. This expression has seven terms,

and involves π, log 2, ζ(3), and Li5(1/2).

Hint: The expression is “homogenous.”

#4. Evaluate

∞∏

k=1

[
1 +

1

k(k + 2)

]log2 k

=
∞∏

k=1

k

[
log2

(
1+ 1

k(k+2)

)]

Extra credit: Evaluate this constant in terms of

a less-well-known mathematical constant.
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#5. Given a, b, η > 0, define

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...

.

Calculate R1(2,2).

Extra credit: Evaluate this constant as a two-

term expression involving a well-known mathe-

matical constant.

#6. Calculate the expected distance between two ran-

dom points on different sides of the unit square.

Hint: This can be expressed in terms of integrals

as

2

3

∫ 1

0

∫ 1

0

√
x2 + y2 dx dy

+
1

3

∫ 1

0

∫ 1

0

√
1 + (y − u)2 du dy.

Extra credit: Express this constant as a three-

term expression involving algebraic constants and

the natural logarithm with an algebraic argument.
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Similarly:

#7. Calculate the expected distance between two ran-

dom points on different faces of the unit cube.

Hint: This can be expressed in terms of integrals

as

4

5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
x2 + y2 + (z − w)2 dw dx dy dz +

1

5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
1 + (y − u)2 + (z − w)2 du dw dy dz.

Extra credit: Express this constant as a six-term

expression involving algebraic constants and two

natural logarithms.

Answers to all ten are detailed in our paper [Bailey,

Borwein, Kapoor and Weisstein].

• The final three we finish by further discussing...
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#8. Calculate
∫ ∞
0

cos(2x)
∞∏

n=1

cos
(

x

n

)
dx. (8)

Extra credit: Express this constant as an ana-
lytic expression.

Hint: It is not what it first appears to be.

#9. Calculate

∑

i>j>k>l>0

1

i3jk3l
.

Extra credit: Express this constant as a single
well-known mathematical constant.

Solution. In the notation of Lecture II:

ζ(3,1,3,1) =
2π8

10!
,

and is the second case of Zagier’s conjecture,
now proven (see APPENDIX I, D).

#10. Evaluate

W1 =

∫ π

−π

∫ π

−π

∫ π

−π

1

3− cos (x)− cos (y)− cos (z)
dx dy dz.

Extra credit: Express this constant in terms of
the Gamma function.
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History and Context

The challenge of showing that the value of π2 < π/8

was posed by Bernard Mares, Jr., along with the prob-

lem of showing

π1 :=
∫ ∞
0

∞∏

n=1

cos
(

x

n

)
dx <

π

4
. (9)

This is indeed true, although the error is remarkably

small, as we shall see.

Solution The computation of a high-precision nu-

merical value for this integral is rather challenging,

due in part to the oscillatory behavior of
∏

n≥1 cos(x/n)

but mostly due to the difficulty of computing high-

precision evaluations of the integrand function.

Let f(x) be the integrand function. We can write

f(x) = cos(2x)




m∏

1

cos(x/k)


 exp(fm(x)), (10)

where we choose m > x, and where

fm(x) =
∞∑

k=m+1

log cos
(

x

k

)
. (11)
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The log cos evaluation can be expanded as follows:

log cos
(

x

k

)
=

∞∑

j=1

(−1)j22j−1(22j − 1)B2j

j(2j)!

(
x

k

)2j
,

where B2j are Bernoulli numbers. Note that since

k > m > x in (11), this series converges. We can now

write

fm(x) =
∞∑

k=m+1

∞∑

j=1

(−1)j22j−1(22j − 1)B2j

j(2j)!

(
x

k

)2j
,

which after interchanging the sums gives

fm(x) = −
∞∑

j=1

(22j − 1)ζ(2j)

jπ2j




∞∑

k=m+1

1

k2j


 x2j.

or as follows:

fm(x) = −
∞∑

j=1

(22j − 1)ζ(2j)

jπ2j


ζ(2j)−

m∑

k=1

1

k2j


 x2j.

We have more compactly

fm(x) = −
∞∑

j=1

ajbj,mx2j,

where

aj =
(22j − 1)ζ(2j)

jπ2j
bj,m = ζ(2j)−

m∑

k=1

1/k2j. (12)
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With this evaluation scheme for f(x) in hand, the in-
tegral (8) can be computed using, for instance, the
tanh-sinh quadrature algorithm, which can be imple-
mented fairly easily on a personal computer or work-
station, and which is also well-suited for highly par-
allel processing .

• This algorithm approximates an integral f(x) on
[−1,1] by transforming it to an integral on (−∞,∞),
using the change of variable x = g(t), where
g(t) = tanh(π/2 · sinh t):

∫ 1

−1
f(x) dx =

∫ ∞
−∞

f(g(t))g′(t) dt

= h
∞∑

j=−∞
wjf(xj) + E(h). (13)

Here xj = g(hj) and wj = g′(hj) are abscissas
and weights for the tanh-sinh quadrature scheme
(which can be pre-computed), and E(h) is the
error in this approximation.

• The tanh-sinh quadrature algorithm is designed
for a finite integration interval. The simple sub-
stitution s = 1/(x+1) reduces again to an integral
from 0 to 1.
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In spite of the substantial precomputation required,

the calculation requires only about one minute, us-

ing Bailey’s ARPREC software package The first 100

digits of the result are:

0.39269908169872415480783042290993786052464543418723
1595926812285162093247139938546179016512747455366777

The Inverse Symbolic Calculator , e.g., suggests this

is likely π/8. But a careful comparison with π/8:

0.392699081698724154807830422909937860524646174921888
227621868074038477050785776124828504353167764633497...,

reveals they differ by approximately 7.407× 10−43.

• These two values are provably distinct. The rea-

son is governed by the fact that

55∑

n=1

1

2n + 1
> 2 >

54∑

n=1

1

2n + 1
.

m We do not know a concise closed-form evaluation

of this constant.
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Further History and Context

Recall the sinc function

sinc(x) :=
sin(x)

x
.

Consider, the seven highly oscillatory integrals below.

I1 :=
∫ ∞
0

sinc(x) dx =
π

2
,

I2 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
dx =

π

2
,

I3 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
sinc

(
x

5

)
dx =

π

2
,

. . .

I6 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
· · · sinc

(
x

11

)
dx =

π

2
,

I7 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
· · · sinc

(
x

13

)
dx =

π

2
.

However,

I8 :=
∫ ∞
0

sinc(x)sinc
(

x

3

)
· · · sinc

(
x

15

)
dx

=
467807924713440738696537864469

935615849440640907310521750000
π

≈ 0.499999999992646π.
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• When shown this, a friend using a well-known

computer algebra package, and the software ven-

dor concluded there was a “bug” in the software.

• Not so! It is easy to see that the limit of these

integrals is 2π1.

Fourier analysis, via Parseval’s theorem, links

IN :=
∫ ∞
0

sinc(a1x)sinc (a2x) · · · sinc (aNx) dx

with the volume of the polyhedron PN given by

PN := {x : |
N∑

k=2

akxk| ≤ a1, |xk| ≤ 1,2 ≤ k ≤ N},

where x := (x2, x3, · · · , xN).

If we let

CN := {(x2, x3, · · · , xN) : −1 ≤ xk ≤ 1,2 ≤ k ≤ N},
then

IN =
π

2a1

Vol(PN)

Vol(CN)
.
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• Thus, the value drops precisely when the con-

straint
N∑

k=2

akxk ≤ a1

becomes active and bites into the hypercube CN ;

this occurs exactly when
∑N

k=2 ak > a1.

• 1
3 + 1

5 + · · ·+ 1
13 < 1, but on addition of 1

15, the

sum exceeds 1, the volume drops, and IN = π
2 no

longer holds.

Before and after the bite

• A similar analysis applies to π2. Moreover, it is

fortunate that we began with π1 or the falsehood

of the identity analogous to that displayed above

would have been much harder to see.
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#10. History and Context

The integral arises in Gaussian and spherical models
of ferromagnetism and in the theory of random walks
(as in extensions of Trefethen #6). It leads to one
of the most impressive closed-form evaluations of an
equivalent integral due to G.N. Watson:

Ŵ =
∫ π

−π

∫ π

−π

∫ π

−π

1

3− cos (x)− cos (y)− cos (z)
dx dy dz

=
1

96
(
√

3− 1)Γ2
(

1

24

)
Γ2

(
11

24

)
(14)

= 4π
(
18 + 12

√
2− 10

√
3− 7

√
6

)
K2 (k6) ,

where k6 =
(
2−√3

) (√
3−√2

)
is the sixth singular

value.

The most self contained derivation of this very subtle
result is due to Joyce and Zucker.

Solution. We apply the formula

1

λ
=

∫ ∞
0

e−λt dt, Re(λ) > 0 (15)

to W3. The 3-dimension integral is reducible to a sin-
gle integral by using

1

π

∫ ∞
0

exp(t cos θ)dθ = I0(t) (16)

is the modified Bessel function of the first kind.
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It follows from this that

W3 =
∫ ∞
0

exp(−3t)I3
0(t)dt.

which evaluates to arbitrary precision giving:

W3 = 0.505462019717326006052004053227140 . . . .

Finally an integer relation hunt to express logW in

terms of logπ, log 2, logΓ(k/24) and log(
√

3− 1) will

produce (14).

• We may also write W3 only as a product of Γ−values.

This is what our Mathematician’s ToolKit returned:

0= -1.* log[w3] + -1.* log[gamma[1/24]] + 4.*log[gamma[3/24]] +
-8.*log[gamma[5/24]] + 1.* log[gamma[7/24]] +
14.*log[gamma[9/24]]+-6.*log[gamma[11/24]] +

-9.*log[gamma[13/24]] +18.*log[gamma[15/24]] +
-2.*log[gamma[17/24]] +-7.*log[gamma[19/24]]

• which is proven by comparing the result with (14)

and establishing the implicit Γ - representation of

(
√

3− 1)2/96.
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• Similar searches suggest there is no similar four
dimensional closed form.

• We found that W4 is not expressible as a product
of powers of Γ(k/120) (for 0 < k < 120) with
coefficients of less than 12 digits.

– This does not, of course, rule out the possibil-
ity of a larger relation, but it does cast doubt,
experimentally, that such a relation exists.

– enough to stop looking!

Advanced Collaborative Environment
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CONCLUSION

The many techniques and types of mathematics used
are a wonderful advert for multi-field, multi-person,
multi-computer, multi-package collaboration.

• Edwards comments in his recent Essays on Con-
structive Mathematics that his own preference for
constructivism was forged by experience of com-
puting in the fifties, when computing power was
as he notes “trivial by today’s standards”.

My similar attitudes were cemented primarily by the
ability in the early days of personal computers to
decode—with the help of APL—exactly the sort of
work by Ramanujan which finished #10.
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CARATHÉODORY and CHRÉTIEN

I’ll be glad if I have succeeded in impressing

the idea that it is not only pleasant to read

at times the works of the old mathematical

authors, but this may occasionally be of use

for the actual advancement of science. (Con-

stantin Carathéodory, 1936)

• Addressing the MAA (retro-digital data-mining?)

A proof is a proof. What kind of a proof? It’s

a proof. A proof is a proof. And when you

have a good proof, it’s because it’s proven.

(Jean Chrétien)

The then Prime Minister, explaining in 2002 how

Canada would determine if Iraq had WMDs, sounds

a lot like Bertrand Russell!
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APPENDIX I: INTEGER RELATIONS

The USES of LLL and PSLQ

I A vector (x1, x2, · · · , xn) of reals possesses an inte-

ger relation if there are integers ai not all zero with

0 = a1x1 + a2x2 + · · ·+ anxn.

PROBLEM: Find ai if such exist. If not, obtain

lower bounds on the size of possible ai.

• (n = 2) Euclid’s algorithm gives solution.

• (n ≥ 3) Euler, Jacobi, Poincare, Minkowski, Per-

ron, others sought method.

• First general algorithm in 1977 by Ferguson &

Forcade. Since ’77: LLL (in Maple), HJLS,

PSOS, PSLQ (’91, parallel ’99).
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I Integer Relation Detection was recently ranked among

“the 10 algorithms with the greatest influence on the

development and practice of science and engineering

in the 20th century.” J. Dongarra, F. Sullivan, Com-

puting in Science & Engineering 2 (2000), 22–23.

Also: Monte Carlo, Simplex, Krylov Subspace, QR

Decomposition, Quicksort, ..., FFT, Fast Multipole

Method.

A. ALGEBRAIC NUMBERS

Compute α to sufficiently high precision (O(n2)) and

apply LLL to the vector

(1, α, α2, · · · , αn−1).

• Solution integers ai are coefficients of a polyno-

mial likely satisfied by α.

• If no relation is found, exclusion bounds are ob-

tained.
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B. FINALIZING FORMULAE

I If we suspect an identity PSLQ is powerful.

• (Machin’s Formula) We try lin dep on

[arctan(1),arctan(
1

5
),arctan(

1

239
)]

and recover [1, -4, 1]. That is,

π

4
= 4arctan(

1

5
)− arctan(

1

239
).

[Used on all serious computations of π from 1706

(100 digits) to 1973 (1 million).]

• (Dase’s ‘mental‘ Formula) We try lin dep on

[arctan(1),arctan(
1

2
),arctan(

1

5
),arctan(

1

8
)]

and recover [-1, 1, 1, 1]. That is,

π

4
= arctan(

1

2
) + arctan(

1

5
) + arctan(

1

8
).

[Used by Dase for 200 digits in 1844.]
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C. ZETA FUNCTIONS

I The zeta function is defined, for s > 1, by

ζ(s) =
∞∑

n=1

1

ns
.

• Thanks to Apéry (1976) it is well known that

S2 := ζ(2) = 3
∞∑

k=1

1

k2
(
2k
k

)

A3 := ζ(3) =
5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

)

S4 := ζ(4) =
36

17

∞∑

k=1

1

k4
(
2k
k

)

I These results strongly suggest that

ℵ5 := ζ(5)/
∞∑

k=1

(−1)k−1

k5
(
2k
k

)

is a simple rational or algebraic number. Yet, PSLQ

shows: if ℵ5 satisfies a polynomial of degree ≤ 25

the Euclidean norm of coefficients exceeds 2× 1037.
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D. ZAGIER’S CONJECTURE

For r ≥ 1 and n1, . . . , nr ≥ 1, consider:

L(n1, . . . , nr;x) :=
∑

0<mr<...<m1

xm1

m
n1
1 . . . mnr

r
.

Thus

L(n;x) =
x

1n
+

x2

2n
+

x3

3n
+ · · ·

is the classical polylogarithm, while

L(n, m;x) =
1

1m

x2

2n
+ (

1

1m
+

1

2m
)

x3

3n
+ (

1

1m
+

1

2m
+

1

3m
)

x4

4n

+ · · · ,

L(n, m, l;x) =
1

1l

1

2m

x3

3n
+ (

1

1l

1

2m
+

1

1l

1

3m
+

1

2l

1

3m
)

x4

4n
+ · · · .

• The series converge absolutely for |x| < 1 and

conditionally on |x| = 1 unless n1 = x = 1.
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These polylogarithms

L(nr, . . . , n1;x) =
∑

0<m1<...<mr

xmr

mnr
r . . . m

n1
1

,

are determined uniquely by the differential equa-

tions

d

dx
L(nr, . . . , n1;x) =

1

x
L(nr − 1, . . . , n2, n1;x)

if nr ≥ 2 and

d

dx
L(nr, . . . , n2, n1;x) =

1

1− x
L(nr−1, . . . , n1;x)

if nr = 1 with the initial conditions

L(nr, . . . , n1; 0) = 0

for r ≥ 1 and

L(∅;x) ≡ 1.
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Set s := (s1, s2, . . . , sN). Let {s}n denotes concate-

nation, and w :=
∑

si.

Then every periodic polylogarithm leads to a function

Ls(x, t) :=
∑
n

L({s}n;x)twn

which solves an algebraic ordinary differential equa-

tion in x, and leads to nice recurrences.

A. In the simplest case, with N = 1, the ODE is

DsF = tsF where

Ds :=
(
(1− x)

d

dx

)1 (
x

d

dx

)s−1

and the solution (by series) is a generalized hyperge-

ometric function:

Ls(x, t) = 1 +
∑

n≥1

xn ts

ns

n−1∏

k=1

(
1 +

ts

ks

)
,

as follows from considering Ds(xn).
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B. Similarly, for N = 1 and negative integers

L−s(x, t) := 1 +
∑

n≥1

(−x)n ts

ns

n−1∏

k=1

(
1 + (−1)k ts

ks

)
,

and L−1(2x− 1, t) solves a hypergeometric ODE.

I Indeed

L−1(1, t) =
1

β(1 + t
2, 1

2 − t
2)

.

C. We may obtain ODEs for eventually periodic Euler

sums. Thus, L−2,1(x, t) is a solution of

t6 F = x2(x− 1)2(x + 1)2 D6F

+ x(x− 1)(x + 1)(15x2 − 6x− 7)D5F

+ (x− 1)(65x3 + 14x2 − 41x− 8)D4F

+ (x− 1)(90x2 − 11x− 27)D3F

+ (x− 1)(31x− 10)D2F + (x− 1)DF.
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• This leads to a four-term recursion for F =
∑

cn(t)xn

with initial values c0 = 1, c1 = 0, c2 = t3/4, c3 =

−t3/6, and the ODE can be simplified.

We are now ready to prove Zagier’s conjecture. Let

F (a, b; c;x) denote the hypergeometric function. Then:

Theorem 1 (BBGL) For |x|, |t| < 1 and integer n ≥
1

∞∑

n=0

L(3,1,3,1, . . . ,3,1︸ ︷︷ ︸
n−fold

;x) t4n

= F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1;x

)
(17)

× F

(
t(1− i)

2
,
−t(1− i)

2
; 1;x

)
.
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Proof. Both sides of the putative identity start

1 +
t4

8
x2 +

t4

18
x3 +

t8 + 44t4

1536
x4 + · · ·

and are annihilated by the differential operator

D31 :=
(
(1− x)

d

dx

)2 (
x

d

dx

)2
− t4 .

QED

• Once discovered — and it was discovered af-

ter much computational evidence — this can be

checked variously in Mathematica or Maple (e.g.,

in the package gfun)!

Corollary 2 (Zagier Conjecture)

ζ(3,1,3,1, . . . ,3,1︸ ︷︷ ︸
n−fold

) =
2π4n

(4n + 2)!
(18)
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Proof. We have

F (a,−a; 1; 1) =
1

Γ(1− a)Γ(1 + a)
=

sinπa

πa

where the first equality comes from Gauss’s evalua-

tion of F (a, b; c; 1).

Hence, setting x = 1, in (17) produces

F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1; 1

)
F

(
t(1− i)

2
,
−t(1− i)

2
; 1; 1

)

=
2

π2t2
sin

(
1 + i

2
πt

)
sin

(
1− i

2
πt

)

=
coshπt− cosπt

π2t2
=

∞∑

n=0

2π4nt4n

(4n + 2)!

on using the Taylor series of cos and cosh. Comparing

coefficients in (17) ends the proof. QED
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I What other deep Clausen-like hypergeometric fac-

torizations lurk within?

• If one suspects that (2) holds, once one can com-

pute these sums well, it is easy to verify many

cases numerically and be entirely convinced.

♠ This is the unique non-commutative analogue of

Euler’s evaluation of ζ(2n).
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APPENDIX II. MATHEMATICAL MODELS

Felix Klein’s heritage

Considerable obstacles generally present them-
selves to the beginner, in studying the ele-
ments of Solid Geometry, from the practice
which has hitherto uniformly prevailed in this
country, of never submitting to the eye of the
student, the figures on whose properties he is
reasoning, but of drawing perspective repre-
sentations of them upon a plane. . . .
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I hope that I shall never

be obliged to have recourse

to a perspective drawing of

any figure whose parts are

not in the same plane. Au-

gustus de Morgan (1806–

71).

• First President of the LMS, he was equally influ-

ential as an educator and a researcher

• There is evidence young children see more natu-

rally in three than two dimensions

Donald Coxeter’s

(1907–2003)

octahedral

kaleidoscope

built in Liverpool

(circa 1925)
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4D

Coxeter

polytope

with 120

do-

decahedral

faces

• In a 1997 paper, Coxeter showed his friend M.C.

Escher, knowing no math, had achieved “math-

ematical perfection” in etching Circle Limit III.

“Escher did it by instinct,” Coxeter wrote, “I did

it by trigonometry.”

David Mumford recently noted that Donald Coxeter

placed great value on working out details of compli-

cated explicit examples:
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In my book, Coxeter has been one of the

most important 20th century mathematicians

—not because he started a new perspective,

but because he deepened and extended so

beautifully an older esthetic. The classical

goal of geometry is the exploration and enu-

meration of geometric configurations of all

kinds, their symmetries and the constructions

relating them to each other. The goal

is not especially to prove theorems but to

discover these perfect objects and, in doing

this,theorems are only a tool that imperfect

humans need to reassure themselves that they

have seen them correctly. (David Mumford,

2003)
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20th C. MATHEMATICAL MODELS

Ferguson’s “Eight-Fold Way” sculpture
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The Fergusons won the 2002 Communications Award,

of the Joint Policy Board of Mathematics. The cita-

tion runs:

They have dazzled the

mathematical community

and a far wider public

with exquisite sculptures

embodying mathematical

ideas, along with artful

and accessible essays and

lectures elucidating the

mathematical concepts.

It has been known for some time that the hyperbolic

volume V of the figure-eight knot complement is

V = 2
√

3
∞∑

n=1

1

n
(
2n
n

)
2n−1∑

k=n

1

k

= 2.029883212819307250042405108549 . . .
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Ferguson’s “Figure-Eight Knot Complement”

sculpture
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In 1998, British physicist David Broadhurst conjec-

tured V/
√

3 is a rational linear combination of

Cj =
∞∑

n=0

(−1)n

27n(6n + j)2
. (19)

Ferguson’s

subtractive image

of the

BBP Pi formula

Indeed, as Broadhurst found, using PSLQ (Fergu-

son’s Integer Relation Algorithm):

V =

√
3

9

∞∑

n=0

(−1)n

27n
×

{
18

(6n + 1)2
− 18

(6n + 2)2
− 24

(6n + 3)2

− 6

(6n + 4)2
+

2

(6n + 5)2

}
.
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• Entering the following code in the Mathemati-

cian’s Toolkit, at www.expmath.info:

v = 2 * sqrt[3] * sum[1/(n*binomial[2*n,n])

* sum[1/k,{k, n,2*n-1}], {n, 1, infinity}]

pslq[v/sqrt[3],

table[sum[(-1)^n/(27^n*(6*n+j)^2),

{n, 0, infinity}], {j, 1, 6}]]

recovers the solution vector

(9, -18, 18, 24, 6, -2, 0)

• The first proof that this formula holds is given in

our recent book

• The formula is inscribed on each cast of the sculpture—

marrying both sides of Helaman!
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21st C. MATHEMATICAL MODELS

Knots 10161 (L) and 10162 (C) agree (R)∗

In a NewMedia Cave or Plato’s?

∗KnotPlot: from Little (1899) to Perko (1974) and on

73


	Title

	I. Top Ten Algorithms 
	II. The 100 Digits Challenge
	III. 10 Symbolic Problems

	Conclusion

	References
	A1. Integer Relations

	A2. Mathematical Models

