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Abstract

Stimulated by earlier work by Moll and his coworkers [1], we evaluate var-
ious basic log Gamma integrals in terms of partial derivatives of Tornheim–
Witten zeta functions and their extensions arising from evaluations of Fourier
series. In particular, we fully evaluate

LGn =

∫ 1

0
logn Γ(x) dx

for 1 ≤ n ≤ 4 and make some comments regarding the general case. The
subsidiary computational challenges are substantial, interesting and significant
in their own right.
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1 Euler’s integral and some preliminaries

Throughout this paper, we make extensive of use of Γ, the classical gamma function
[2, 5, 17] defined for Re x > 0 by

Γ(x) :=

∫ ∞
0

tx−1e−t dt.

It will also help to recall that the logsin integrals are defined, for 0 ≤ τ ≤ 2π, n =
1, 2, 3, . . . , by

Lsn (τ) := −
∫ τ

0

logn−1

(
2 sin

θ

2

)
dθ. (1)

It is useful to know that Lsn (2π) = 2 Lsn (π) and that we have the exponential
generating function [9]

− 1

π

∞∑
m=0

Lsm+1 (π)
λm

m!
=

Γ (1 + λ)

Γ2
(
1 + λ

2

) =

(
λ
λ
2

)
. (2)

This implies the recurrence

(−1)n

n!
Lsn+2 (π) = π α(n+ 1) +

n−2∑
k=1

(−1)k

(k + 1)!
α(n− k) Lsk+2 (π) , (3)

where

α(m) :=
∞∑
k=1

(−1)k+1

km
=
(
1− 21−m) ζ(m),

and resolves all such integrals.
Victor Moll in [5] and with coauthors in [1] considers the integrals

LGn :=

∫ 1

0

logn Γ(x) dx, (4)

for n = 1, 2, 3, . . . . For n = 1 there is a classical evaluation due to Euler, see [5, p.
186] or [16, (7) p. 203] (where it is ascribed to Raabe). We establish it as follows:

Theorem 1 (Euler). ∫ 1

0

log Γ(x) dx = log
√

2π. (5)
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Proof. Since LG1 =
∫ 1

0
log Γ(1− x) dx, we have

2LG1 =

∫ 1

0

log (Γ(x)Γ(1− x)) dx,

=

∫ 1

0

log(2π) dx−
∫ 1

0

log (2 sin(πx)) dx

= log(2π),

as required, since the first integral is constant and the second logsin integral [9] is

zero:
∫ 1

0
log (2 sin(πx)) dx = Ls2 (2π) = 0. Above, as in [5] we have used the classic

product formula

Γ(x) Γ(1− x) =
π

sin(πx)

for x in (0, 1).

A beautiful 1840 extension, see [1], in which 0 log 0 := 0, is

Theorem 2 (Raabe). For t ≥ 0∫ 1

0

log Γ(x+ t) dx = log
√

2π + t log t− t. (6)

Proof. We rewrite (6) as∫ 1+t

t

log Γ(x) dx
?
= log

√
2π + t log t− t. (7)

We check that both sides of (7) have derivative of log t. Hence, by the Fundamental
theorem of calculus, the result follows from Theorem 1.

In the same fashion, for t ≥ 0∫ 1

0

log2 Γ(x+ t) dx = LG2 + log2 t− 2t log t+ 2t+ 2

∫ t

0

Γ(s) log s ds. (8)

Example 1 (Average value of Γ). Combining Raabe’s result (6) for t = 0, 1, . . . n−1
produces

1

n

∫ n

0

log Γ (x) dx = LG1 −
n− 1

2
+

1

n

n−1∑
k=1

k log k. (9)

for n = 1, 2, 3, . . .. More exotic variants can be derived by applying the Gauss
multiplication formula for the Gamma function [2, 17]. ♦
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In [1] the more general integral

LGa,b :=

∫ 1

0

loga Γ(x) logb Γ(1− x) dx, (10)

for nonnegative integers a, b is studied. We note that LGa,b = LGb,a and LGa = LG0,a.
These objects prove very helpful for our study.

The rest of the paper is organized as follows. In Section 2 we recover (see Theorem
3) a slightly more efficient form the evaluation of LG2 as given in [5, 1]. (We give the
argument in entirety as parts of it are used in the new results.) This is followed in
Section 3 by a study of partial derivatives of Witten zeta-functions. These objects
which appear implicitly in LG2 make it possible to fully evaluate LG3 in Theorem 6
of Section 4. The precise result is

LG3 =
3

4

(
ζ (3)

π2
+

1

3
LG1

)
A2 − 3

2

(
ζ

′
(2, 1)

π2
+ 2LG1

ζ
′
(2)

π2

)
A+

3

2
LG1

ζ
′′

(2)

π2

+

(
LG3

1 +
1

16
LG1 π

2 +
3

16
ζ (3)

)
− 3

8

ω1,1,0(1, 1, 1)− 2ω1,0,1(1, 1, 1)

π2
, (11)

where ω1,1,0(1, 1, 1) and 2ω1,0,1(1, 1, 1) are examples of our new Witten values. Like-
wise LG4 is obtained in Theorem 7 and Theorem 8 of Section 5. Finally, in Section 6
we make various comments regarding LG5 and the general case of LGn. The growing
complexity of terms in the evaluation of LG4 makes it clear that further progress
awaits a deeper understanding — theoretical and algorithmic of partial derivatives
of Witten sums. We return to this matter in the conclusion.

2 The integral LG2

In [5, 1] the following evaluation is given:

LG2 =
1

12
γ2 +

1

48
π2 +

1

6
γ log (2 π) +

1

3
log2 (2 π)− (γ + log (2 π))

ζ
′
(2)

π2
+

1

2

ζ
′′
(2)

π2
.

(12)

Note that

∞∑
k=1

1

k2
= ζ(2) =

π2

6
,

∞∑
k=1

log k

k2
= −ζ ′

(2),
∞∑
k=1

log2 k

k2
= ζ

′′
(2),

4



are classical and known to Maple. Likewise ζ(0) = −1
2
, ζ

′
(0) = −LG1 and Ψ(1) =

Γ
′
(1) = −γ,Γ′′

(1) = γ2 + ζ(2). Here γ := limn→∞
∑n

k=1
1
k
− log n is the Euler-

Mascheroni constant, also known as the first Stieltjes constant γ0.
In the same vein as above we may determine that

LG2 + LG1,1 =
1

2
log2 (2π)− 1

4π2
Ls3 (2π)

=
1

2
log2 (2π) +

π2

24
. (13)

It remains either to find another relation between
∫ 1

0
log Γ(x) log Γ(1− x) dx and

LG2, or to otherwise try and improve the result given in [5].
Generally, we have a more convenient version of a result in [1]:

Proposition 1. For n = 1, 2, . . . we have∑
a+b=n

(
n

a

)
LGa,b =

1

2π

∑
a+b=n

(
n

a

)
(−1)a+1 Lsa+1 (2π) log(2π)b. (14)

Proof. We write

log(Γ(x)) + log(Γ(1− x)) = log(2π)− log(2 sin πx) (15)

and integrate term by term after using the binomial theorem on both sides.

When n = 1 this recovers Theorem 1 since Ls1 (2π) = 2π,Ls2 (2π) = 0. We recall
that the exact structure of Lsa+1 (2π) = 2 Lsa+1 (π) is well understood [9] and that
each such integral has a closed form as in (3).

2.1 Fourier series related to log Γ

We will have reason to use

− log (2 sin(πx)) =
∞∑
n=1

1

n
cos(2nπx). (16)

for 0 < x < 1 [16, (1) p. 202].
Indeed, as in [1] we shall rely on Kummer’s 1847 Fourier series, see [2, p. 28], or

[16, (15) p. 201], giving

log Γ(x)− 1

2
log(2π) =− 1

2
log (2 sin(πx)) +

1

2
(1− 2x) (γ + log(2π))

+
1

π

∞∑
k=2

log k

k
sin(2πkx) (17)
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for 0 < x < 1. Note that direct integration of the right-side of (17) to zero now
verifies Theorem 1. Making the change of variable x 7→ 1 − x, and considering the
symmetry of sin(πkx), we obtain

log Γ (1− x)− 1

2
log(2π) =− 1

2
log (2 sin (π x))− 1

2
(1− 2x) (γ + log(2π))

− 1

π

∞∑
k=2

log k

k
sin(2πkx) (18)

We may now apply Parseval’s theorem to obtain an expression for LG2. This is
best done by adding (easy and equivalent to (13)) and subtracting (more interest-
ingly) (17) and (18).

We write:

log (Γ(x)Γ(1− x)) = log(2π)− log (2 sin(πx)) , (19)

log

(
Γ(x)

Γ(1− x)

)
= (1− 2x) (γ + log(2π)) +

2

π

∞∑
k=2

log k

k
sin(2πkx). (20)

It follows from (19) that

I1 :=

∫ 1

0

log2 (Γ (x) Γ (1− x)) dx = log2(2π)− 1

2π
Ls3 (2π)

= log2(2π) +
π3

12
, (21)

and from (20) that

I2 :=

∫ 1

0

log2

(
Γ(x)

Γ(1− x)

)
dx =

1

3
(γ + log(2π))2

− 8

π
(γ + log(2π))

∞∑
k=2

log k

k

∫ 1

0

x sin(2πkx) dx

+
4

π2

∫ 1

0

(
∞∑
k=2

log k

k
sin(2πkx)

)2

dx, (22)

so that

I2 =
1

3
(γ + log (2 π))2 +

4

π2
(γ + log(2π))

∞∑
k=2

log k

k2
+

2

π2

∞∑
k=2

log2 k

k2

=
1

3
(γ + log (2 π))2 − 4

π2
(γ + log(2π)) ζ

′
(2) +

2

π2
ζ

′′
(2). (23)
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Now LG1,1 = 1
4
(I1−I2), and LG2 = 1

2
log2(2π)+ π2

24
− 1

4
I1 + 1

4
I2 from (13). Hence

from (21) and (23) we have:

Theorem 3 (Evaluation of LG2).

LG2 =
1

4
log2(2π) +

1

48
π2 +

1

12
(γ + log(2π))2 − 1

π2
(γ + log(2π)) ζ

′
(2) +

1

2π2
ζ

′′
(2),

(24)

LG1,1 =
1

4
log2(2π) +

1

48
π2 − 1

12
(γ + log(2π))2 +

1

π2
(γ + log(2π)) ζ

′
(2)− 1

2π2
ζ

′′
(2),

(25)

Moll’s evaluation in (12) agrees with (24).
Before continuing, it is helpful to identify two well-known classes of multi-zeta

values.

3 Tornheim–Witten zeta functions and Euler sums

The Witten, Tornheim–Witten or Mordell–Tornheim–Witten zeta [4, 13, 14] function
is defined by

ω(r, s, t) :=
∞∑
n=1

∞∑
m=1

1

nrms (n+m)t
(r, s, t ≥ 0). (26)

The double sum clearly converges for r > 1 and s > 1 and is well defined for
r + t > 1, s+ t > 1, r + s+ t > 2. Correspondingly

ζ(t, s) :=
∞∑
n=1

∞∑
m=1

1

ms (n+m)t
=
∑

n>m>0

1

ntms

is an Euler double sum. The central evaluation ζ(2, 1) = ζ(3) is described in detail
in [6].

There is a simple algebraic relation

ω(r, s, t) = ω(r − 1, s, t+ 1) + ω(r, s− 1, t+ 1). (27)

This is based on writing

m+ n

(m+ n)t+1
=

m

(m+ n)t+1
+

n

(m+ n)t+1
.
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Clearly

ω(r, s, t) = ω(s, r, t), (28)

and it is straight-forward to check that

ω(r, s, 0) = ζ(r) ζ(s), ω(r, 0, t) = ζ(t, r). (29)

Hence, ω(s, s, t) = 2ω(s, s− 1, t+ 1), so

ω(1, 1, 1) = 2ω(1, 0, 2) = 2 ζ(2, 1) = 2 ζ(3).

We observe that the analogue to (27), ζ(s, t) + ζ(t, s) = ζ(s) ζ(t) − ζ(s + t), shows
that

ω(s, 0, s) = 2 ζ(s, s) = ζ2(s)− ζ(2s).

In particular, ω(2, 0, 2) = 2 ζ(2, 2) = π4/36− π4/90 = π4/72.
Indeed, if δ denotes any derivative wrt order of a Witten sum then linearity of

the differentiation operator means that the partial fraction argument leads to:

δ(r, s, t) = δ(r − 1, s, t+ 1) + δ(r, s− 1, t+ 1), (30)

and if δ is symmetric in the first two variables then δ(s, s, t) = 2 δ(s, s− 1, t+ 1).

Remark 1 (Alternating Tornheim sums). If we define

ν(r, s, t) :=
∞∑
n=1

∞∑
m=1

(−1)n+m

nrms (n+m)t
(r, s, t > 0), (31)

then, just as above,

− ν(r, s, t) = ν(r − 1, s, t+ 1) + ν(r, s− 1, t+ 1). (32)

Thence, in the language of MZV’s [7, 8] we have

−ν(s, s, t) = ζ(t+ 1, s) :=
∑

n>m>0

(−1)n

nt+1

∑ 1

ms
.

In particular, −ν(1, 1, 1) = ζ(3)/4, −ν(2, 1, 1) = 5ζ(4)/16 while

−ν(1, 1, 2) = 2ν(1, 0, 3) = 2 ζ(3, 1) = 4 Li4

(
1

2

)
+

1

6
log4 2−1

6
π2 log2 2+

7

2
ζ (3) log 2− 1

24
π4,
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see [10]. Likewise

ν(2, 0, 2) = −4 Li4

(
1

2

)
− 1

6
log4 2 +

1

6
π2 log2 2− 7

2
ζ (3) log 2 +

13

288
π4.

and all other ν(a, b, c) with a + b + c = 4 are similarly expressible. For example,
ν(3, 0, 1) = 3 ζ(3) log(2)/4− 5 ζ(4)/16. ♦

The general form of the reduction for integers r, s, and t is due to Tornheim, and
expresses ω(r, s, t) in terms of ζ(a, b) with weight a+ b = N := r + s+ t:

Theorem 4 (Reduction to Euler sums). For positive integers r, s, and t

ω(r, s, t) =

max{r,s}∑
i=1

{(
r + s− i− 1

s− 1

)
+

(
r + s− i− 1

r − 1

)}
ζ (i, N − i) . (33)

The same argument allows us more generally to reduce partial derivatives:

Theorem 5 (Reduction of Derivatives). Let nonnegative integers a, b, c and r, s, t be
given. Then for δ := ωa,b,c we have

δ(r, s, t) =
r∑
i=1

(
r + s− i− 1

s− 1

)
δ (i, 0, N − i) +

s∑
i=1

(
r + s− i− 1

r − 1

)
δ (0, i, N − i) . (34)

Proof. For non-negative integers r, s, t, v, with r + s+ t = v, and v fixed, we induct
on s. Both sides satisfy the same recursion (30):

d(r, s, t) = d(r − 1, s, t+ 1) + d(r, s− 1, t+ 1)

and the same initial conditions (r + s = 1).

Of course (34) holds for any δ satisfying recursion (30) (without being restricted
to partial derivatives).

Example 2 (Values of δ). Richard Crandall using the techniques in [11] provides:

ω1,1,0(1, 0, 3) = 0.07233828360935031113948057244763953352659776102642...

ω1,1,0(2, 0, 2) = 0.29482179736664239559157187114891977101838854886937848122804...

ω1,1,0(1, 1, 2) = 0.14467656721870062227896114489527906705319552205284127904072...

while

ω1,0,1(1, 0, 3) = 0.14042163138773371925054281123123563768136197000104827665935...

ω1,0,1(2, 0, 2) = 0.40696928390140268694035563517591371639834128770661373815447...

ω1,0,1(1, 1, 2) = 0.4309725339488831694224817651103896397107720158191215752309...

and

ω0,1,1(2, 1, 1) = 3.002971213556680050792115093515342259958798283743200459879...
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We note that ω1,1,0(1, 1, 2) = 2ω1,1,0(1, 0, 3) and ω1,0,1(1, 0, 3)+ω1,0,1(0, 1, 3)−ω1,0,1(1, 1, 2)

= 0.140421631387733719247 + 0.29055090256114945012− 0.43097253394888316942

= 0.00000000000000000000...,

both in accord with (30). We note also that PSLQ predicts

ζ
′′
(4)

?
= 2ω1,0,1(1, 0, 3)− 2ω1,1,0(2, 0, 2) + 4ω1,0,1(2, 0, 2),

which also validates Crandall’s computational accuracy. ♦

For computational and related reasons, the following formula is quite useful (a
more subtle algorithm is given in [4, 11]):

ω(r, s, t) =
1

Γ(t)

∫ 1

0

Lir(σ) Lis(σ)
(− log σ)t−1

σ
dσ. (35)

Here the polylogarithm is defined by Lis(x) :=
∑

n>0 x
n/ns for |x| < 1 and real s > 1,

continued analytically. Equation (35) has the feature that it can be differentiated
symbolically wrt t. Thus, the first two partials wrt to t can be written as

ω0,0,1(r, s, t) =
1

Γ(t)

∫ 1

0

(− log x)t−1 Lir (x) Lis (x) (log (− log x)−Ψ (t))

x
dx (36)

and

ω0,0,2(r, s, t) =

1

Γ(t)

∫ 1

0

(− log x)t−1 Lir (x) Lis (x)
(
log2 (− log x)− 2Ψ (t) log (− log x)−Ψ

′
(t) + Ψ2 (t)

)
x

dx

We shall also meet higher-dimensional sums such as the generalized Tornheim
sum

ω(a1, a2, . . . , an, d) : =
∑
mi>0

1

ma1
1 ma2

2 · · ·man
n (m1 +m2 + . . .+mn)d

(37)

=
1

Γ(d)

∫ 1

0

(
n∏
i=1

Liai(σ)

)
(− log σ)d−1

σ
dσ. (38)
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Finally, we introduce the following two-parameter or double Witten zeta-function:
with M,N positive integers with M ≤ N :

ω(s1, . . . , sN | t1, . . . , tM) :=
∑

ni>0,mj>0

∑
∑N

i=1 ni=
∑M

j=1mj

N∏
i=1

1

nisi

M∏
j=1

1

mj
tj

(39)

=
1

2π

∫ 2π

0

N∏
i=1

Lisi
(
eiθ
) M∏
j=1

Litj
(
e−iθ

)
dθ. (40)

If M = 1 this devolves to the previous form. In this notation (87) below can
be written as ω1,1,1,1(1, 1 | 1, 1). The two terms correspond to the possible number
of positive and negative terms in any cosine expression originating in the Fourier
analysis. Thus, for LG6 we have 6 = 5 + 1 = 4 + 2 = 3 + 3.

3.1 Further computation of ω(r, s, t) and its partials

While there is a substantial literature regarding special values of Tornheim sums
[1, 13, 14, 15], we have not found it to be of much help for current computational
purposes — with the striking exception of the new paper [11].

Our goal is to access effective high-precision algorithms for sums such as:

ωa,b,c(r, s, t) :=
∞∑
n=1

∞∑
m=1

logam logb n logc(m+ n)

nrms (n+m)t
(41)

with non-negative integers a, b, c, r, s, t and r + s+ t > 2 etc. so as to assure conver-
gence. Recall that the Witten–Tornheim sums are:

ω(r, s, t) =
∞∑
n=1

∞∑
m=1

1

nrms (n+m)t
(r, s, t > 0, r + s+ t > 2)

=
1

Γ(t)

∫ 1

0

Lir(σ) Lis(σ)
(− log σ)t−1

σ
dσ.. (42)

For example, ω1,1,0(1, 1, 1) and ω1,0,1(1, 1, 1) = ω0,1,1(1, 1, 1) will occur in our
evaluation of LG3 and LG2,1. Each sum in (41) is clearly a partial derivative of
above-defined the Tornheim sum. Special cases then provide algorithms for partial
derivatives of ζ(s), ζ(r, s). Indeed, we shall see in the last section that for present
purposes we need only evaluate first partials of ω with r = s = t = 1 and similar
functions.
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We also record a Bose-Einstein formula for the derivative of Lis(x) with respect
to s:

∂Lis (x)

∂s
=

x

2 Γ (s)

∫ ∞
0

e−tts−1 (log (t)−Ψ (s)) coth

(
t− log (x)

2

)
dt. (43)

More sophisticated computational formulae for the polylogarithm of order s —
Lis(z) =

∑
m≥1 z

m/ms — include the following pair due to Erdélyi et al [12] and
recorded in [18, 11]. If s = n is a positive integer,

Lin(z) =
∞ ′∑
m=0

ζ(n− 1−m)
logm z

m!
+

logn−1 z

(n− 1)!
(Hn−1 − log(− log z)) , (44)

valid for | log z| < 2π, where Hn := 1+ 1
2

+ 1
3

+ · · ·+ 1
n
. The primed sum

∑′
means we

avoid the singularity at ζ(1). Otherwise — for any complex s not a positive integer
—

Lis(z) =
∑
m≥0

ζ(s−m)
logm z

m!
+ Γ(1− s)(− log z)s−1.

One of Crandall’s contributions in [11] is to adapt these formulae to allow effective
computation of derivatives with respect to the order when s is integral.

Example 3 (Efficient computation of derivative sums, I). Crandall [11, Eqn. (43)]
provides formulae such as

L
′

1(z) =
∞∑
n=1

ζ
′
(1− n)

logn z

n!
− γ1 −

1

12
π2 − 1

2
(γ + log (− log z))2 , (45)

for | log z| < 2π. Here γ1 is the second Stieltjes constant, and is known to Maple and
Mathematica. So to resolve integrals such as (86) below we may use the Taylor series
for L

′
1(z)n/z on (0, 1/e) and (45) on (1/e, 1). For details, see [11, Eqns. (39–46)].

A key component is that

Um,n :=

∫ 1

1/e

(log z )m (log(− log z))n

z
dz =

(−1)m+n n!

(m+ 1)n+1

is pre-computed for nonnegative integers m and n and the integral is reduced to an
accelerated double sum. Combining these ideas, after differentiating the integral (42)

12



with respect to r and s, we obtain:

ω1,1,0(1, 1, 1) =
∑
m,n≥1

logm log n

mn(m+ n)
e−m−n +

∫ 1

1/e

Li
′

1 (t)2

t
dt (46)

=
∑
m,n≥1

logm log n

mn(m+ n)
e−m−n + β (47)

+
∑
m,n≥1

ζ(1)(1−m)

m!

ζ(1)(1− n)

n!
Um+n,0

−
∑
m≥1

ζ(1)(1−m)

m!
(2αUm,0 + 2γ Um,1 + Um,2) ,

where

α := γ1 +
1

2
γ2 +

π2

12
, β := 6 + 2α + α2 − 6γ − 2αγ + 2γ2.

Taking 375 terms of every summation index, Crandall obtains a 140-digit value

ω1,1,0(1, 1, 1) ≈ 4.302447620342226433319851798186989427520194474304362255

6974983373406896458605708423834220669589660132906320814

8486726643672303984788203157062362239952566110607182604 .

To compute ω1,0,1(1, 1, 1) we apply the same ideas to a special case of (36):

ω1,0,1(1, 1, 1) = −
∫ 1

0

Li
′

1 (x) Li1 (x)

x
(log (− log x) + γ) dx. (48)

and we use (44) as well. ♦

In conjunction with (44) and the techniques of (45) and Example 3, it would ap-
pear that (40) provides a good entree to the numerical computation of two-parameter
Witten zeta functions — as we shall see in Section 5.1.

Remark 2. Note that

ζ(3) = ζ(2, 1), ζ
′′
(3) =

∑
n≥1

log2 n

n3
,

∑
n>m>0

log n

n2m
= −ζ ′

(2, 1)

where the derivative is with respect to the outer parameter. Moreover, it follows
from

ζ(s, 1) = − 1

Γ(s)

∫ 1

0

(− log x)s−1 log(1− x)

1− x
dx

13



that

ζ
′
(2, 1) = (2− γ) ζ (3) +

1

2

∫ ∞
0

log2
(
1− e−t

)
log (t) dt.

or

ζ
′
(2, 1) = 2 ζ

′
(3) + (2− γ)ζ(3)−

∫ ∞
0

log (et − 1)

et − 1
t log (t) dt

≈ −2.42573972340456234746086319943.

Likewise

ζ
′
(s, 1) =

(
γ −

s−1∑
k=1

1

k

)
ζ(s, 1)− 1

Γ(s)

∫ 1

0

log(− log x)
(− log x)s−1 log(1− x)

1− x
dx.

These allow adequate manipulation of many quantities like ζ
′
(2, 1). ♦

4 The integral LG3

In light of Proposition 1, to obtain LG3 it is sufficient to generate one more relation
engaging LG3 and LG2,1 since we have evaluated

LG3 + 3LG2,1 =
16LG3

1 + LG1π
2 + 3 ζ(3)

4
. (49)

A good candidate is:

LG3 − LG2,1 =

∫ 1

0

log2 Γ(x) log
Γ(x)

Γ(1− x)
dx

= LG1

∫ 1

0

log2 Γ(x)

Γ(1− x)
dx− 1

2

∫ 1

0

log (2 sin(πx)) log2 Γ(x)

Γ(1− x)
dx

= LG1 I2 − I3. (50)

Here, on setting A := γ + log(2π) and using (23),

I2 =
1

3
A2 − 4

π2
A ζ ′

(2) +
2

π2
ζ

′′
(2). (51)

Likewise from (20)

I3 :=
1

2

∫ 1

0

log (2 sin(πx))

(
(1− 2x)A+

2

π

∞∑
k=2

log k

k
sin(2πkx)

)2

dx

= I4 + I5 + I6, (52)

14



where I3 ≈ −2.56253700205652436832032167784 and

I4 :=
A2

4π3

∫ 2π

0

(π − θ)2 log

(
2 sin

θ

2

)
dθ

= −A2 ζ(3)

π2
, (53)

I5 :=
A
π3

∫ 2π

0

(π − θ) log

(
2 sin

θ

2

)( ∞∑
k=2

log k

k
sin(kθ)

)
dθ

= −2
A
π2

∑
n>0

Hn−1 log n

n2
. (54)

Thus, it remains to resolve I6. Now

I6 :=
1

π3

∫ 2π

0

log

(
2 sin

θ

2

)( ∞∑
k=2

log k

k
sin(kθ)

)2

dθ

=
1

π3

∞∑
j,k=1

log j

j

log k

k

∫ 2π

0

log

(
2 sin

θ

2

)
sin(jθ) sin(kθ) dθ

=
1

4π2

∑
n≥1

log2 n

n3
− 1

π2

∑
m>n≥1

log n logm

mn

(
1

m+ n
− 1

m− n

)
, (55)

on separating the terms with k = j. Here we rely on the formulas∫ 2π

0

log

(
2 sin

θ

2

)
cos(kθ) dθ = −π

k
,

∫ 2π

0

log

(
2 sin

θ

2

)
sin2(kθ) dθ =

π

4k
,

for k = 1, 2, . . . , and the double angle formula.
Hence

I6 =
1

2π2
ζ

′′
(3)− 1

2π2

∑
n,m≥1

log n logm

mn

1

m+ n
+

1

π2

∑
m>n≥1

log n logm

mn

1

m− n
. (56)

It is nearly immediate from the definition of ω and (56), that

I6 :=
1

2π2
(ωa − 2ωb) ≈ −0.664996157325088098366858564213, (57)

15



where
ω1 := ω1,1,0(1, 1, 1),

and the subscript also denotes a partial derivative with respect to that parameter,
while

ω2 :=
∑

m>n≥1

log n logm

mn

1

m− n
= ω1,0,1(1, 1, 1).

To see this write

ω2 :=
∑

m>n≥1

log n logm

mn

1

m− n
=
∑
k,n≥1

log n log(n+ k)

(n+ k)n

1

k
.

Thus, all the new quantities are partial derivatives of Tornheim–Witten zeta
functions with weight r + s+ t = 3.

For example
ζ

′
(2, 1) = ω0,0,1(1, 0, 2),

and
ζ

′′
(2, 1) = ω0,0,2(1, 0, 2).

In light of (35) we have

ωa =

∫ 1

0

Li
(1)
1 (σ)2

σ
dσ

≈ 4.302447620342226433319851798186989427520194474304362255697498337340,
(58)

ωb = −
∫ 1

0

log (1− σ) Li
(1)
1 (σ)

σ
(log (− log (σ)) + γ) dσ

≈ 8.714472811214314238163007854462420651620135416423321505237309933615.
(59)

We note that Example 3 has indicated how to obtain much higher accuracy for such
ω values. Here again Li

(1)
1 (σ) = −

∑
n≥1

logn
n
σn.

So combining results, with

A := γ + log(2π)

16



we have

LG3 + 3LG2,1 =
16LG3

1 + LG1π
2 + 3 ζ(3)

4
(49) (60)

LG3 − LG2,1 = LG1 I2 − (I4 + I5 + I6) (50)

I2 =
1

3
A2 − 4

π2
A ζ ′

(2) +
2

π2
ζ

′′
(2) (51)

I4 = −A2 ζ(3)

π2
(53), I5 = 2A ζ

′
(2, 1)

2π2
(54)

I6 =
1

2π2
(ω1,1,0(1, 1, 1)− 2ω1,0,1(1, 1, 1)) (57).

Putting all the terms in (60) together produces:

Theorem 6 (Evaluation of LG3).

LG3 =
3

4

(
ζ (3)

π2
+

1

3
LG1

)
A2 − 3

2

(
ζ

′
(2, 1)

π2
+ 2LG1

ζ
′
(2)

π2

)
A

+

(
LG3

1 +
1

16
LG1 π

2 +
3

16
ζ (3)

)
+

3

2
LG1

ζ
′′

(2)

π2

− 3

8

ω1,1,0(1, 1, 1)− 2ω1,0,1(1, 1, 1)

π2
. (61)

−LG2,1 =
1

4

(
ζ (3)

π2
+

1

3
LG1

)
A2 − 1

2

(
ζ

′
(2, 1)

π2
+ 2LG1

ζ
′
(2)

π2

)
A

+

(
LG3

1 +
1

16
LG1 π

2 +
3

16
ζ (3)

)
+

1

2
LG1

ζ
′′

(2)

π2

− 1

8

ω1,1,0(1, 1, 1)− 2ω1,0,1(1, 1, 1)

π2
. (62)

This has resolved all terms to “order three” zeta-type derivatives when one sets
A = log(2π) + γ = 2LG1 + γ uses the order-counting method in [1] — differentiation
increases the order by one — and is a direct extension of the formulas (24) and (25).

Note that (30) implies that the choice of omega partials is not fully determined
in (62) or in Theorem 8 below. Determining appropriate bases is a topic for future
study.

Remark 3. We also record for possible future use that we can prove that

ω1,1,0(1, 1, 1) = 2 γ
(
ζ

′
(2, 1) + ζ

′
(3)
)
− 2 γ2ζ (3)−

∫ 1

0

z

(∫ 1

0

log (− log (t))

1− zt
dt

)2

dz,

(63)
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while ∫ 1

0

log (− log (t))

1− zt
dt =

∞∑
n=1

zn−1 (γ + log n)

n

= −Li
′

1(z) + γ log(1− z)

z
.

Likewise, writing the final integral, say T , in (63) as a triple integral and integrating
w.r.t. to z first, leads to

T = −
∫ 1

0

∫ 1

0

log (− log t) log (− log s)
s log(1− t)− t log(1− s)

s(t− s)t
dt ds

=
∞∑
n=2

1

n

∫ 1

0

∫ 1

0

log (− log t) log (− log s)
tn−1 − sn−1

t− s
dt ds

=
∞∑
n=2

1

n

∑
j+k=n

(γ + log j)(γ + log k)

j k
(64)

≈ 8.1325183431514868017969743982392235319381843270460.

So

ω1,1,0(1, 1, 1) = 2 γ
(
ζ

′
(2, 1) + ζ

′
(3)
)
− 2 γ2ζ (3)−

∞∑
n=2

1

n

∑
j+k=n

(γ + log j)(γ + log k)

j k
.

(65)

Which is quite an attractive expression. ♦

5 The integral LG4.

We give the following result as a partial counterpart to Proposition 1. When com-
bined with (20) it provides another identity involving the LGa,b integrals.

Proposition 2. For n = 2, 4, 6, . . . we have∑
a+b=n

(−1)b
(
n

a

)
LGa,b =

∫ 1

0

logn
(

Γ(x)

Γ(1− x)

)
dx. (66)
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One strategy is to obtain the Fourier series for log2
(

Γ(x)
Γ(1−x)

)
and the other terms

on the right of (67) and then to use

4 log2(Γ(x)) =

(
log

(
Γ(x)

Γ(1− x)

)
+ log (Γ(x)Γ(1− x))

)2

(67)

= log2

(
Γ(x)

Γ(1− x)

)
+ 2 log

(
Γ(x)

Γ(1− x)

)
log

(
2π

2 sin(πx)

)
+ log

(
2π

2 sin(πx)

)2

.

Recall from (16) and (20) that

log

(
2π

2 sin(πx)

)
= log(2π) +

∞∑
k=1

1

k
cos(2kπx). (68)

log

(
Γ(x)

Γ(1− x)

)
= (1− 2x) (γ + log(2π)) +

2

π

∞∑
k=2

log k

k
sin(2πkx). (69)

for 0 < x < 1. At this point, in principle results are accessible from Parseval’s
formula.

With hindsight, however, it is more efficient to organize as follows. Let

C0(x) :=
∞∑
n=1

1

n
cos(2nπx), S1(x) :=

2

π

∞∑
n=1

log n

n
sin(2nπx). (70)

Note that S1 is closely related to the derivative of Clausen’s function with respect to
its order.

(a.) Using Proposition 1, this time with a+ b = 4,

2LG4 + 8LG3,1 + 6LG2,2 =

∫ 1

0

log4

(
2π

2 sin(πx)

)
dx

=
19

240
π4 + 6 log (2π) ζ (3) +

1

2
log2 (2 π) π2 + log4 (2π) .

(71)

(b.) The alternating Proposition 2 yields

2LG4 − 8LG3,1 + 6LG2,2 =

∫ 1

0

log4

(
Γ(x)

Γ(1− x)

)
dx

=
4∑

a=0

(
4

a

)
A4−a

∫ 1

0

S1(x)a (1− 2x)4−a dx

=
4∑

a=0

(
4

a

)
A4−aM4(a) , (72)
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where we have denoted

M4(a) :=

∫ 1

0

S1(x)a (1− 2x)4−a dx.

Note that M4(0) = 1/5.
(c.) Finally,

2LG4 − 2LG2,2 =

∫ 1

0

log2

(
Γ(x)

Γ(1− x)

)
log2

(
2π

2 sin(πx)

)
dx

= 2 I3 log(2π)−
∫ 1

0

log2

(
Γ(x)

Γ(1− x)

)
C2

0(x) dx

= 2 I3 log(2π)−A2

∫ 1

0

(1− 2x)2C2
0(x) dx−

∫ 1

0

S2
1(x)C2

0(x) dx

= 2 I3 log(2π)−A2 11

90
π2 − CS2,2 , (73)

where in terms of (70) we set

CSa,b :=

∫ 1

0

Ca
0 (x)Sb1 (x) dx. (74)

We have obtained the following theorem:

Theorem 7 (Evaluation of LG4). LG4,LG3,1,LG2,2 are determined by the system of
equations

2LG4 + 8LG3,1 + 6LG2,2 =
19

240
π4 + 6 log (2π) ζ (3) +

1

2
log2 (2 π) π2 + log4 (2π)

(75)

2LG4 − 8LG3,1 + 6LG2,2 =
4∑

a=0

(
4

a

)
A4−aM4(a) (76)

2LG4 − 2LG2,2 = 2 I3 log(2π)−A2 11

90
π2 − CS2,2 (77)

where A = log(2π) + γ,

I3 = −A2 ζ(3)

π2
+ 2A ζ

′
(2, 1)

2π2
+

1

2π2
(ω1,1,0(1, 1, 1)− 2ω1,0,1(1, 1, 1)) ,

while evaluations ofM4(a) for a = 0 . . . 4, and CS2,2 in terms of Witten zeta-values
are given in Theorem 8.
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Theorem 8 (M4(a) and CS2,2 as Mordell–Tornheim–Witten type sums).

M4(0) =
1

5
(78)

M4(1) = 12
ζ

′
(4)

π4
− 2

ζ
′
(2)

π2
(79)

M4(2) =
8

π4
ω0,1,1(2, 1, 1)− 4

π4
ω1,1,0(1, 1, 2) +

2

3

ζ
′′
(2)

π2
(80)

M4(3) =
6

π2
(ω1,1,0,1(1, 1, 1, 1)− ω1,1,0,1(1, 1 | 1, 1)) +

2

π2
ω1,1,1,0(1, 1, 1, 1) (81)

M4(4) =
6

π4
ω1,1,1,1(1, 1 | 1, 1)− 8

π4
ω1,1,1,1(1, 1, 1, 1) (82)

CS2,2 =
1

π2
ω1,0,0,1(1, 1, 1, 1) +

1

π2
ω1,0,0,1(1, 1 | 1, 1) (83)

− 1

π2
ω1,1,0,0(1, 1, 1, 1)− 1

2π2
ω1,1,0,0(1, 1 | 1, 1).

Proof. We outline two paths to these evaluations in the next section.

5.1 The integrals M4(a) for a = 0 . . . 4, and CS2,2

It remains to explain the evaluation of the five Fourier integrals in the section title.
Recall that

M4(a) =

(
2

π

)a ∫ 1

0

(
∞∑
n=1

log n

n
sin(2nπx)

)a

(1− 2x)4−a dx

=
2a−1

π5

∫ π

−π

(
∞∑
n=1

(−1)n log n

n
sin(nθ)

)a

θ4−a dθ. (84)

We have already notedM4(0) = 1/5. Now careful computation of the Fourier co-
efficients in M4(1), . . .M4(4), and exploiting symmetries yields evaluations as mul-
tiple sums many of which can be resolved entirely in terms of generalized Witten
sums ((37) and (40)).

For numerical validation we record — in addition to the values in Example 2 —
that to 30 places or more:

M4(1) = 0.181497695704128118600461629915

M4(2) = 0.375057423854310553199190528120
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M4(3) = 1.10960028805783273110415747593

M4(4) = 4.38814464723368637538540662018714860589879572327399747349605

and
CS2,2 = 5.74302357346759158873745269146.

In each case it is easiest to compute these integrals by using (68) and (69) but
they can also be computed by the methods of [11].

To fully evaluate LG4 we must resolve CS2,2 and refine the values of M4(a).
Observe that as defined, all M4(a) have order a and involve only a-th derivatives.

For a = 2. We obtain

M4(2) =
32

π4

∞∑
n=1

n−1∑
m=1

log n logm

(n2 −m2)2 − 4
ζ

′′
(4)

π4
+

2

3

ζ
′′
(2)

π2
.

Now the partial fraction decomposition

1

(m2 − n2)2 =
1

4

1

nm (n−m)2 −
1

4

1

nm (n+m)2

leads to

M4(2) =
8

π4

∞∑
n=1

n−1∑
m=1

log n logm

mn (n−m)2 −
8

π4

∞∑
n=1

n−1∑
m=1

log n logm

mn (n+m)2 − 4
ζ

′′
(4)

π4
+

2

3

ζ
′′
(2)

π2

=
8

π4
ω0,1,1(2, 1, 1)− 4

π4
ω1,1,0(1, 1, 2) +

2

3

ζ
′′
(2)

π2
.

This is as listed in (80) and is confirmed by the δ values in Example 2.

For a = 3. From the integral representation for M4(3), one may similarly
symbolically integrate the three-sine product, to arrive at

M4(3) =
6

π2

′∑
m,n,p≥1

logm log n log p

mnp(m+ n− p)
+

2

π2
ω1,1,1,0(1, 1, 1, 1), (85)

where ω1,1,1,0(1, 1, 1, 1) = −58.8368314340690776787166767527937449633 . . . and
the other sum S is

S :=
1

2π

∫ 2π

0

Li
′

1(eit)2Li
′

1(e−it)
(
Li1(eit)− Li1(e−it)

)
dt

= 37.6264697231531518794265551021654802334 . . . .
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For verification, we note that with these numerics,

6

π2
S+

2

π2
ω1,1,1,0(1, 1, 1, 1)−M4(3) = −0.000000000000000000000000000000000001 . . .

This then reduces to the value give in (81) in terms of double Witten zeta function
derivatives.

As Crandall notes: To achieve such numerics, one may use either series methods,
or careful quadrature, or a combination of these — sometimes a combination is best
in practice.

For a = 4. We write the product of four sin terms in the Fourier expansion as
a sum of eight single cos(n ± m ± j ± k) terms: those with j + k + m = n (four
symmetries) yield the Tornheim partials

ω1,1,1,1(1, 1, 1, 1) =

∫ 1

0

Li
′

1(σ)3

σ
(log (− log σ) + γ) dσ, (86)

= 393.9564419029741769026955454796027719391267774734182602...

since much as with ωa above, we obtain partials of the (generalized) Tornheim sum.
Those with j+k = m+n (three symmetries) lead to the second sum not directly

expressible as a ω derivative:

∑
N

( ∑
m+n=N

log n logm

nm

)2

=
1

π

∫ π

0

∣∣∣Li
′

1

(
eiθ
)∣∣∣4 dθ (87)

= 596.5161194394250137631544371515880910084673922558488607068...

where the integral (see also (40)) is a consequence of
∫ π
−π exp(nt i) dt = 2πδn,0, and is

easily computed via (45). Over-counting in the terms with two minus signs leads to
boundary terms with all four integers equal say n, n, n, n, or two pairs say n, n,m,m.
The first sum is again expressible in terms of the double Witten-zeta function. Thus,
we arrive at the form

M4(4) =
6

π4
ω1,1,1,1(1, 1 | 1, 1)− 8

π4
ω1,1,1,1(1, 1, 1, 1) +

a

π4
ζ(4)(4) +

b

π4

(
ζ(2)(2)

)2
.

(88)

Here a, b are rational. Ultimately, we determine that these boundary terms contribute
zero and we simplify to (82).

For CS2,2. Using (70) we have a version of a = 4 with only two partial derivatives.
This can be cast in terms of the double Witten-zeta function much as was M4(4)
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in equation (82). This leads to (83) as required. An alternative route is shown in
Example 4 below.

For CS2,2 Parseval’s equation is also useful. Indeed

π C0(x)S1(x) =
∞∑
N=1

sin (2πN x)
N−1∑
n=1

log n

(N − n)n
+
∞∑
N=1

N−1∑
n=1

log n sin (2π x(2n−N))

(N − n)n

=
∞∑
N=1

(aN + bN) sin(2πNx), (89)

where bN = −
∑∞

n=N+1
logn−log(n−N)

(N−n)n
. Hence we derive

CS2,2 =
1

π2

∞∑
N=1

(
N−1∑
n=1

log n

(N − n)n
−

∞∑
n=N+1

log n− log(n−N)

(N − n)n

)2

. (90)

Example 4 (Efficient computation of derivative sums, II). In hindsight, there is
a universal approach to evaluating any of the M4(a) as well as the CS2,2 integral
in terms of our ω-sums. Moreover, in this scenario one never need manipulate any
explicit sums! Namely, observe these polylogarithmic representations implicit in (40):

ω(r, s, t, u) =
1

2π

∫ 2π

0

Lir(e
iz)Lis(e

iz)Lit(e
iz)Liu(e

−iz) dz,

ω(r, s | t, u) =
1

2π

∫ 2π

0

Lir(e
iz)Lis(e

iz)Lit(e
−iz)Liu(e

−iz) dz,

CS2,2 =
1

8π3

∫ 2π

0

(
Li1(eiz) + Li1(e−iz)

)2
(

Li
′

1(eiz)− Li
′

1(e−iz)
)2

dz,

and for z ∈ (0, 2π),

1

2
(π − z) =

1

2i

(
Li1(eiz)− Li1(e−iz)

)
.

With these relations — and the partial derivatives wrt order of the ω expressions— in
hand, one only need inspect the integrands for the variousM(a), with a = 0, 1, 2, 3, 4,
and of CS2,2 to resolve each case as a superposition of ω-sums and their derivatives.
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For instance, upon expanding out the integrand for CS2,2 we quickly recover that

CS2,2 =
1

π2

(
−ω1,1,0,0(1, 1, 1, 1) + ω1,0,0,1(1, 1, 1, 1)− 1

2
ω1,1,0,0(1, 1 | 1, 1) + ω1,0,0,1(1, 1 | 1, 1)

)
.

For numerical purposes, we record

ω1,1,0,0(1, 1 | 1, 1) = 43.78725884010477262465257089189816 . . . ,

ω1,0,0,1(1, 1 | 1, 1) = 45.66756444527985328540421583307340 . . . ,

ω1,0,0,1(1, 1, 1, 1) = 54.945741698299297391060048257220775 . . . ,

ω1,1,0,0(1, 1, 1, 1) = 22.03830598727108693460524659084436 . . . .

Each value is correct to the precision shown. ♦

6 The integral LG5 and higher order analogues

The process used for LG4 can be performed likewise for LG5. Here again three
relations are needed. One comes from Propositions 1 but Proposition 2 is of no use
when N is odd. Nonetheless, we may obtain additional relations of the kind we
obtained when N = 3. One may — at least in outline — provide evaluations of all
LGN in terms of such Witten derivative values.

Example 5 (The general structure). Fix positive integers a and b with a ≥ b, and
set a+ b = N . Beginning again with (19) and (20):

U := log (Γ(x)Γ(1− x)) = log(2π)− log (2 sin(πx)) , (91)

V := log

(
Γ(x)

Γ(1− x)

)
= (1− 2x) (γ + log(2π)) +

2

π

∞∑
k=2

log k

k
sin(2πkx). (92)

we may obtain a multinomial type expansion for LGa,b. Note that

LGa,b =
1

2N

∫ 1

0

(
U2 − V2

)b
(U + V)a−b dx (93)

After expanding (93), complete evaluation now relies on addressing terms of the form∫ 1

0
U j Vk dx, and on using (91) and (92) this leads to terms CSn,m,p :=(

2

π

)m+1 ∫ 2π

0

(
Li1(eiz) + Li1(e−iz)

)n (
Li

′
1(eiz)− Li

′
1(e−iz)

)m( 1

2i

(
Li1(eiz)− Li1(e−iz)

))p
dz.
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All such terms are susceptible to extensions of the treatment afforded CS2,2,0 in
Example 4. Moreover, this shows that the basis elements always occur with a very
specific form only engaging Li1 and Li

′

1, via (39) and (40), for which we Crandall
has provided excellent computational tools as described in Example 3. Precisely we
need only study n-fold derivatives of the form

ωδ1,··· ,δn(1, · · · 1 | 1, 1, · · · 1)

with each δi = 0 or 1. ♦

For N ≥ 6 it appears fruitless to follow our current strategy in full, and further
progress requires a better understanding of derivatives of Witten-like zeta functions.
This will reveal what the appropriate bases and are.

Given the computational tools it should also be able to use PSLQ to explore and
reveal the nascent structures! But a full study awaits careful implementation of the
necessary extensions of the algorithms developed in [11]. As in many other settings,
the interplay between theory driving the need for better computational tools and
improved computational techniques unleashing new theory beckons.

Much of this technology is now available in [3] in which theory and computation
have been sufficiently developed to fully express all LGn in terms of appropriate
extensions of our Mordell-Tornheim-Witten (MTW) sums. We finish by remarking
that—as suggested by previous work on such integrals— can be seen as a form of
degree n, where the degree of each real number appearing in the formula which had
previously been heuristically assigned is now the well-defined weight of a MTW sum
[3]. A fascinating byproduct is

Theorem 9. For n = 1, 2, . . .

LGn =
∑

m1,...,mn≥1

ζ∗(m1) ζ∗(m2) · · · ζ∗(mn)

m1m2 · · ·mn(m1 + . . .mn + 1)
, (94)

where ζ∗(1) := γ and ζ∗(n) := ζ(n) for n ≥ 2.

In particular, the Euler’s evaluation of LG1 leads to a rapidly convergent rational
zeta-series:

log
√

2π =
∑
m≥1

ζ∗(m)

m(m+ 1)
=

1

2
+ γ +

∑
m≥2

ζ(m)− 1

m(m+ 1)
.

We do not completely understand how the higher LGn can be finite superpositions
of derivative MTWs, as we now know, and yet as infinite sums require only the
ζ-function convolutions as in Theorem 9 above.
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