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Abstract

We provide evaluations of several recently studied higher and multiple
Mahler measures using log-sine integrals. This is complemented with an anal-
ysis of generating functions and identities for log-sine integrals which allows
the evaluations to be expressed in terms of zeta values or more general poly-
logarithmic terms. The machinery developed is then applied to evaluation of
further families of multiple Mahler measures.

1 Preliminaries

For k functions (typically Laurent polynomials) in n variables the multiple Mahler
measure, introduced in [16], is defined by

µ(P1, P2, . . . , Pk) :=

∫ 1

0

· · ·
∫ 1

0

k∏
j=1

log
∣∣Pj (e2πit1 , . . . , e2πitn)∣∣ dt1dt2 . . . dtn.

When P = P1 = P2 = · · · = Pk this devolves to the higher Mahler measure, µk(P ),
as introduced and examined in [16]. When k = 1 both reduce to the standard
(logarithmic) Mahler measure [11].
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For n = 1, 2, . . ., we consider the log-sine integrals defined by

Lsn (σ) := −
∫ σ

0

logn−1
∣∣∣∣2 sin

θ

2

∣∣∣∣ dθ (1)

and their moments for k ≥ 0 given by

Ls(k)n (σ) := −
∫ σ

0

θk logn−1−k
∣∣∣∣2 sin

θ

2

∣∣∣∣ dθ. (2)

This is the notation used by Lewin [18, 19], and the integrals in (2) are usually
referred to as generalized log-sine integrals. Note that in each case the modulus is
not needed for 0 ≤ σ ≤ 2π. Various log-sine integral evaluations may be found in
Lewin’s book [19, §7.6 & §7.9].

We observe that Ls1 (σ) = −σ and that Ls(0)n (σ) = Lsn (σ). In particular,

Ls2 (σ) = Cl2 (σ) :=
∞∑
n=1

sin(nσ)

n2
(3)

is the Clausen function which plays a prominent role below. Generalized Clausen
functions will be introduced in (8).

Remark 1.1. We remark that it is fitting given the dedication of this article and
volume that Alf van der Poorten wrote the foreword to Lewin’s “bible” [19]. In fact,
he enthusiastically mentions the evaluation

−Ls
(1)
4

(π
3

)
=

17

6480
π4

and its relation with inverse central binomial sums. This will be explained in Example
2.5. Evaluations of log-sine integrals at π/3 are discussed in Section 2.2. ♦

Example 1.2 (Two classical Mahler measures revisited). As we will have recourse
to the methods used in this example, we reevaluate µ(1+x+y) and µ(1+x+y+z).
The starting point is Jensen’s formula:∫ 1

0

log
∣∣α + e2πi t

∣∣ dt = log (max{|α|, 1}) . (4)

To evaluate µ(1 + x+ y), we use (4) to obtain

µ(1 + x+ y) =

∫ 5/6

1/6

log(2 sin(πy)) dy =
1

π
Ls2

(π
3

)
=

1

π
Cl2

(π
3

)
, (5)
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which is a form of Smyth’s seminal 1981 result, see [11, Appendix 1].
To evaluate µ(1 + x + y + z), we follow Boyd [11, Appendix 1] and observe, on

applying Jensen’s formula, that for complex constants a and b

µ(ax+ b) = log |a| ∨ log |b|. (6)

Writing w = y/z we have

µ(1 + x+ y + z) = µ(1 + x+ z(1 + w)) = µ(log |1 + w| ∨ log |1 + x|)

=
1

π2

∫ π

0

dθ

∫ π

0

max

{
log

(
2 sin

θ

2

)
, log

(
2 sin

t

2

)}
dt

=
2

π2

∫ π

0

dθ

∫ θ

0

log

(
2 sin

θ

2

)
dt

=
2

π2

∫ π

0

θ log

(
2 sin

θ

2

)
dθ

= − 2

π2
Ls

(1)
3 (π) =

7

2

ζ(3)

π2
. (7)

The final result is again due originally to Smyth. ♦

In the following developments,

Lia1,...,ak(z) :=
∑

n1>···>nk>0

zn1

na11 · · ·n
ak
k

denotes the generalized polylogarithm as is studied in [5] and in [3, Ch. 3]. For
our purposes, the a1, . . . , ak will be positive integers. For example, Li2,1(z) =∑∞

k=1
zk

k2

∑k−1
j=1

1
j
. In particular, Lik(x) :=

∑∞
n=1

xn

nk
is the polylogarithm of order k

and

Tik(x) :=
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)k

the related inverse tangent of order k. We use the same notation for the analytic
continuations of these functions.

Moreover, multiple zeta values (MZVs) are denoted by

ζ(a1, . . . , ak) := Lia1,...,ak(1).
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Similarly, we consider the multiple Clausen functions (Cl) and multiple Glaisher
functions (Gl) of depth k and weight w = a1 + . . .+ ak defined as

Cla1,...,ak (θ) =

{
Im Lia1,...,ak(e

iθ) if w even
Re Lia1,...,ak(e

iθ) if w odd

}
, (8)

Gla1,...,ak (θ) =

{
Re Lia1,...,ak(e

iθ) if w even
Im Lia1,...,ak(e

iθ) if w odd

}
. (9)

As illustrated in (3) and later in (16), the Clausen and Glaisher functions alternate
between being cosine and sine series with the parity of the dimension. Of particular
importance will be the case of θ = π/3 which has also been considered in [5]. Note
that (8) agrees with the definition of Cl2 given in (3).

To conclude this section we recall the following Kummer-type polylogarithm,
[19, 5], which has been exploited in [10] among other places:

λn(x) := (n− 2)!
n−2∑
k=0

(−1)k

k!
Lin−k(x) logk |x|+ (−1)n

n
logn |x|, (10)

so that

λ1
(
1
2

)
= log 2, λ2

(
1
2

)
=

1

2
ζ(2), λ3

(
1
2

)
=

7

8
ζ(3),

and λ4
(
1
2

)
is the first to reveal the presence of Lin

(
1
2

)
.

Our other notation and usage is largely consistent with that in [19] and that in
the newly published [20] in which most of the requisite material is described. Finally,
a recent elaboration of what is meant when we speak about evaluations and “closed
forms” is to be found in [7].

2 Log-sine integrals at π and π/3

The multiple Mahler measure

µk(1 + x+ y∗) := µ(1 + x+ y1, 1 + x+ y2, . . . , 1 + x+ yk) (11)

was studied by Sasaki [22, (4.1)]. He uses Jensen’s formula (4) to observe that

µk(1 + x+ y∗) =

∫ 5/6

1/6

logk
∣∣1− e2πi t∣∣ dt (12)

and so provides an evaluation of µ2(1 + x + y∗). On the other hand, immediately
from (12) and the definition (1) of the log-sine integrals we have:
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Theorem 2.1. For positive integers k,

µk(1 + x+ y∗) =
1

π
Lsk+1

(π
3

)
− 1

π
Lsk+1 (π) . (13)

In Sections 2.1 and 2.2 we will cultivate Theorem 2.1 by showing how to recur-
sively evaluate the log-sine integrals at π and π/3 respectively. In view of Theorem
2.1 this then provides evaluations of all multiple Mahler measures µk(1 + x+ y∗) as
is made explicit in Section 3.1.

Further Mahler measure evaluations given later in this paper will further involve
the generalized log-sine integrals, defined in (2), at π. These are studied in Section
2.3.

2.1 Log-sine integrals at π

First, [18, Eqn (8)] provides

Lsn+2 (π) = (−1)nn!

(
π α(n+ 1) +

n−2∑
k=1

(−1)k

(k + 1)!
α(n− k) Lsk+2 (π)

)
, (14)

where α(m) = (1− 21−m)ζ(m). Note that α(1) = 0 while for m ≥ 2

α(m) = −Lim(−1) =
∞∑
k=1

(−1)k+1

km
.

This is a consequence of the exponential generating function [19, Eqn. (7.109)] for
the requisite log-sine integrals:

−
∞∑
m=0

Lsm+1 (π)
xm

m!
= π

Γ (1 + x)

Γ2
(
1 + x

2

) = π

(
x

x/2

)
. (15)

This will be revisited and explained in Section 4.1.
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Example 2.2 (Values of Lsn(π)). We have Ls2 (π) = 0 and

−Ls3 (π) =
1

12
π3,

Ls4 (π) =
3

2
π ζ(3),

−Ls5 (π) =
19

240
π5,

Ls6 (π) =
45

2
π ζ(5) +

5

4
π3ζ(3),

−Ls7 (π) =
275

1344
π7 +

45

2
π ζ2(3),

Ls8 (π) =
2835

4
π ζ(7) +

315

8
π3ζ(5) +

133

32
π5ζ(3),

and so forth. The fact that each integral is a multi-variable rational polynomial
in π and zeta values follows directly from the recursion (14). Alternatively, these
values may be conveniently obtained from (15) by a computer algebra system as the
following snippet of Maple code demonstrates:
for k to 7 do simplify(subs(x=0,diff(Pi*binomial(x,x/2),x$k))) od ♦

2.2 Log-sine integrals at π/3

In this section, we turn to the log-sine integrals integrals at π/3. It is shown in [8]
that the log-sine integrals Ls(k)n (τ) can be evaluated in terms of zeta values with the
addition of multiple Clausen and Glaisher functions at τ . The gist of the technique
originates with Fuchs ([14], [19, §7.10]). In the case τ = π/3 the resulting evaluations
usually allow considerable reductions. This is because the basic sixth root of unity
ω = eiπ/3 satisfies ω = ω2. As a consequence, the log-sine integrals Ls(k)n (π/3) are
more tractable than those at other values; which fact we illustrate next.

Example 2.3 (Reducibility). Proceeding as in [8], in addition to Ls(n−1)n (τ) =
−τn/n and Ls2 (τ) = Cl2 (τ), we have

−Ls3 (τ) = 2 Gl2,1 (τ) +
1

12
τ(3π2 − 3πτ + τ 2)

Ls
(1)
3 (τ) = Cl3 (τ) + τ Cl2 (τ)− ζ(3),
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as well as

−Ls4 (τ) = −6 Cl2,1,1 (τ) +
3

2
Cl4 (τ) +

3

2
(π − τ) Cl3 (τ)− 3

4
(π − τ)2 Cl2 (τ)− 3

2
πζ(3),

Ls
(1)
4 (τ) =

1

180
π4 − 1

16
τ 4 +

1

6
πτ 3 − 1

8
π2τ 2 − 2 Gl3,1 (τ)− 2τ Gl2,1 (τ) ,

Ls
(2)
4 (τ) = −2 Cl4 (τ) + 2τ Cl3 (τ) + τ 2 Cl2 (τ) .

In the case τ = π/3 these evaluations can be further reduced as will be shown
in Example 2.4. On the other hand, it appears that, for instance, Gl2,1 (τ) is not
reducible even for the special values τ = π/2 or τ = 2π/3. Here, reducible means
expressible in terms of multi zeta values and Glaisher (resp. Clausen) functions of the
same argument and lower weight. Yet, Gl2,1 (2π/3) is reducible to one-dimensional
polylogarithmic terms at different arguments as will be shown in (62).

More generally, in [2] explicit reductions for all weight-four-or-less polylogarithms
are given. ♦

Example 2.4 (Values of Lsn (π/3)). The following evaluations may be obtained with
the help of the implementation1 accompanying [8]:

Ls2

(π
3

)
= Cl2

(π
3

)
,

−Ls3

(π
3

)
=

7

108
π3,

Ls4

(π
3

)
=

1

2
π ζ(3) +

9

2
Cl4

(π
3

)
,

−Ls5

(π
3

)
=

1543

19440
π5 − 6 Gl4,1

(π
3

)
,

Ls6

(π
3

)
=

15

2
π ζ(5) +

35

36
π3ζ(3) +

135

2
Cl6

(π
3

)
,

−Ls7

(π
3

)
=

74369

326592
π7 +

15

2
πζ(3)2 − 135 Gl6,1

(π
3

)
,

Ls8

(π
3

)
=

13181

2592
π5ζ(3) +

1225

24
π3ζ(5) +

319445

864
πζ(7)

+
35

2
π2 Cl6

(π
3

)
+

945

4
Cl8

(π
3

)
+ 315 Cl6,1,1

(π
3

)
,

and so forth, where we note that each integral is a multivariable rational polynomial
in π as well as Cl, Gl, and zeta values.

1available for download from http://arminstraub.com/pub/log-sine-integrals
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The first presumed-irreducible value that occurs is

Gl4,1

(π
3

)
=
∞∑
n=1

∑n−1
k=1

1
k

n4
sin
(nπ

3

)
=

3341

1632960
π5 − 1

π
ζ(3)2 − 3

4π

∞∑
n=1

1(
2n
n

)
n6
. (16)

The final evaluation is described in [5]. Extensive computation suggests it is not
reducible in the sense of Example 2.3. Indeed, conjectures are made in [5, §5] for the
number of irreducible Clausen and Glaisher values at each depth. ♦

Example 2.5 (Central binomial sums). As suggested by (16), the log-sine integral
Ls(1)n (π/3) has an appealing evaluation in terms of the central binomial sum

S±(n) :=
∞∑
k=1

(±1)k+1(
2k
k

)
kn

which is given by

− Ls
(1)
n+2

(π
3

)
= n!

(
−1

2

)n
S+(n+ 2). (17)

This is proven in [5, Lemma 1], in connection with a study of Apéry-like sums — of
which the value 5

2
S−(3) = ζ(3) plays a role in Apéry’s proof of the later’s irrationality.

The story of Apéry’s proof is charmingly described in Alf van der Poorten’s most
cited paper [21].

Comtet’s evaluation S+(4) = 17
36
ζ(4) thus also evaluates Ls

(1)
4

(
π
3

)
= −17π4

6480
, while

the classical arcsin series gives Ls
(1)
2

(
π
3

)
= −π2

18
. We recall from [5] that, for instance,

S+(8) =
3462601

2204496000
π8 +

1

9
π2ζ(3)2 − 38

3
ζ(3)ζ(5)− 14

15
ζ(5, 3)− 4πGl6,1

(π
3

)
.

Thus, apart from MZVs, S+(8) involves the same Clausen value Gl6,1
(
π
3

)
as appears

in Ls7
(
π
3

)
(and hence µ6(1 + x+ y∗)). In other words, µ6(1 + x+ y∗) can be written

entirely in terms of MZVs and S+(8). This is true for the other cases in Example
3.1 as well: µk(1 + x+ y∗) can be written in terms of MZVs as well as S+(k + 2) for
k ≤ 6. ♦
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2.3 Generalized log-sine integrals at π

Following [8], we demonstrate how the generalized log-sine integrals Ls(k)n (π) may
be extracted from a generating function given in Theorem 2.6. As Lewin [19, §7.9]
sketches, at least for small values of n and k, these log-sine integrals at π have closed
forms involving zeta values and Kummer-type constants such as Li4(1/2). This will
be made more precise in Remark 2.8. We start with the generating function identity

−
∑
n,k≥0

Ls
(k)
n+k+1 (π)

λn

n!

(iµ)k

k!
=

∫ π

0

(
2 sin

θ

2

)λ
eiµθ dθ

= ieiπ
λ
2 B

(
µ− λ

2
, 1 + λ

)
− ieiπµB1/2

(
µ− λ

2
,−µ− λ

2

)
(18)

given in [19]. Here Bx is the incomplete Beta function. With care — because of the
singularities at zero — (18) can be differentiated as needed as suggested by Lewin.

Using the identities, valid for a, b > 0 and 0 < x < 1,

Bx(a, b) =
xa(1− x)b−1

a
2F1

(
1− b, 1
a+ 1

∣∣∣∣ x

x− 1

)
=
xa(1− x)b

a
2F1

(
a+ b, 1

a+ 1

∣∣∣∣x) ,
found for instance in [20, §8.17(ii)], the generating function (18) can be rewritten as

−
∑
n,k≥0

Ls
(k)
n+k+1 (π)

λn

n!

(iµ)k

k!
= ieiπ

λ
2

(
B1

(
µ− λ

2
, 1 + λ

)
−B−1

(
µ− λ

2
, 1 + λ

))
.

Upon expanding the right-hand side this establishes the following computationally
more accessible form given in [8]:

Theorem 2.6 (Generating function for Ls
(k)
n+k+1 (π)). For 2|µ| < λ < 1 we have

−
∑
n,k≥0

Ls
(k)
n+k+1 (π)

λn

n!

(iµ)k

k!
= i
∑
n≥0

(−1)n
(
λ

n

)
eiπ

λ
2 − (−1)neiπµ

µ− λ
2

+ n
. (19)

The log-sine integrals Ls(k)n (π) can be quite comfortably extracted from (19) by
appropriately differentiating its right-hand side. For that purpose it is very helpful
to observe that

(−1)α

α!

(
d

dλ

)α(
λ

n

)∣∣∣∣
λ=0

=
(−1)n

n

∑
n>i1>i2>...>iα−1

1

i1i2 · · · iα−1
. (20)

Fuller theoretical and computational details are given in [8].

The general process is now exemplified for the cases Ls
(2)
4 (π) and Ls

(1)
5 (π).
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Example 2.7 (Ls
(k)
4 (π) and Ls

(k)
5 (π)). In order to find Ls

(2)
4 (π) we differentiate (19)

once with respect to λ and twice with respect to µ. To further simplify computation,
we take advantage of the fact that the result will be real which allows us to neglect
imaginary parts:

−Ls
(2)
4 (π) =

d2

dµ2

d

dλ
i
∑
n≥0

(
λ

n

)
(−1)neiπ

λ
2 − eiπµ

µ− λ
2

+ n

∣∣∣∣
λ=µ=0

= 2π
∑
n≥1

(−1)n+1

n3
=

3

2
πζ(3). (21)

In the second step we were able to drop the term corresponding to n = 0 because its
contribution −iπ4/24 is purely imaginary.

Similarly, writing H
(1,1)
n−1 =

∑
n>n1>n2

1
n1n2

, we obtain Ls
(1)
5 (π) as

−Ls
(1)
5 (π) =

3

4

∑
n≥1

6(1− (−1)n)

n5
− π2

n3
+

8(1− (−1)n)

n4

(
nH

(1,1)
n−1 −Hn−1

)
=

9

2
(ζ(5)− Li5(−1))− 3

4
π2ζ(3)

+ 6 (Li3,1,1(1)− Li3,1,1(−1)− Li4,1(1) + Li4,1(−1))

= 2λ5
(
1
2

)
− 3

4
π2ζ(3)− 93

32
ζ(5). (22)

Here λ5 is as defined in (10). Further such evaluations include

−Ls
(1)
4 (π) = 2λ4

(
1
2

)
− 19

8
ζ(4), (23)

−Ls
(2)
5 (π) = 4π λ4

(
1
2

)
− 3

40
π5, (24)

−Ls
(3)
5 (π) =

9

4
π2ζ(3)− 93

8
ζ(5). (25)

Ls
(2)
5 (π) has also been evaluated in [19, Eqn. (7.145)] but the exact formula was not

given correctly. ♦

Remark 2.8. From the form of (19) and (20) we can see that the log-sine integrals
Ls(k)n (π) can be expressed in terms of π and the polylogarithms Lin,{1}m(±1). Further,
the duality results in [4, §6.3, and Example 2.4] show that the terms Lin,{1}m(−1)
will produce explicit multi-polylogarithmic values at 1/2. ♦
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The next example illustrates the rapidly growing complexity of these integrals,
especially when compared to the evaluations given in Example 2.7.

Example 2.9 (Ls
(k)
6 (π) and Ls

(3)
7 (π)). Proceeding as in Example 2.7 and writing

Li±a1,...,an = Lia1,...,an(1)− Lia1,...,an(−1)

we find

−Ls
(1)
6 (π) = −24 Li±3,1,1,1 +24 Li±4,1,1−18 Li±5,1 +12 Li±6 +3π2ζ(3, 1)− 3π2ζ(4) +

π6

480

=
43

60
log6 2− 7

12
π2 log4 2 + 9ζ(3) log3 2 +

(
24 Li4

(
1
2

)
− 1

120
π4

)
log2 2

+
(
36 Li5

(
1
2

)
− π2ζ(3)

)
log 2 + 12 Li5,1

(
1
2

)
+ 24 Li6

(
1
2

)
− 247

10080
π6

= 2λ6
(
1
2

)
− 6 Li5,1(−1)− 3ζ(3)2 − 451

10080
π6. (26)

In the first equality, the term π6/480 is the one corresponding to n = 0 in (19).
Similarly, we find

−Ls
(2)
6 (π) = 4πλ5

(
1
2

)
− π3ζ(3)− 189

16
πζ(5), (27)

−Ls
(3)
6 (π) = 6π2λ4

(
1
2

)
− 12 Li5,1(−1)− 6ζ(3)2 − 187

1680
π6, (28)

−Ls
(4)
6 (π) = −45

2
πζ(5) + 3π3ζ(3), (29)

as well as

−Ls
(3)
7 (π) =

9

35
log7 2 +

4

5
π2 log5 2 + 9ζ(3) log4 2− 31

30
π4 log3 2

−
(

72 Li5
(
1
2

)
− 9

8
ζ(5)− 51

4
π2ζ(3)

)
log2 2

+
(
72 Li5,1

(
1
2

)
− 216 Li6

(
1
2

)
+ 36π2 Li4

(
1
2

))
log 2 + 72 Li6,1

(
1
2

)
− 216 Li7

(
1
2

)
+ 36π2 Li5

(
1
2

)
− 1161

32
ζ(7)− 375

32
π2ζ(5) +

1

10
π4ζ(3)

= 6π2λ5
(
1
2

)
+ 36 Li5,1,1(−1)− π4ζ(3)− 759

32
π2ζ(5)− 45

32
ζ(7). (30)

Note that in each case the monomials in Ls(k)n (π) are of total order n — where π is
order one, ζ(3) is order three and so on. ♦
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Remark 2.10. A purely real form of Theorem 2.6 is the following:∫ π

0

(
2 sin

θ

2

)x
eθydθ =

∞∑
n=0

(−1)n
(
x
n

) (
y
(
(−1)n eπy − cos πx

2

)
−
(
n− x

2

)
sin πx

2

)(
n− x

2

)2
+ y2

.

(31)
One may now also deduce one-variable generating functions from (31). For instance,

∞∑
n=0

Ls
(1)
n+2 (π)

λn

n!
=
∞∑
n=0

(
λ

n

)
(−1)n cos πλ

2
− 1(

n− λ
2

)2 , (32)

and we may again now extract individual values. ♦

2.4 Hypergeometric evaluation of Lsn (π/3)

We close this section with an alternative approach to the evaluation of Lsn (π/3)
complementing the one given in Section 2.2.

Theorem 2.11 (Hypergeometric form of Lsn
(
π
3

)
). For nonnegative integers n,

(−1)n+1

n!
Lsn+1

(π
3

)
= n+2Fn+1

({
1
2

}n+2{
3
2

}n+1

∣∣∣∣14
)

=
∞∑
k=0

2−4k

(2k + 1)n+1

(
2k

k

)
. (33)

Consequently,

−
∞∑
n=0

Lsn+1

(π
3

) sn
n!

=
1

s+ 1
2F1

( 1
2
, s
2

+ 1
2

s
2

+ 3
2

∣∣∣∣14
)

=
∞∑
k=0

2−4k

2k + 1 + s

(
2k

k

)
.

Proof. We compute as follows:

−Lsn+1

(π
3

)
=

∫ π/3

0

logn
(

2 sin
θ

2

)
dθ

=

∫ 1

0

logn(x)√
1− x2/4

dx

=
∞∑
k=0

2−4k
(

2k

k

)∫ 1

0

x2k logn(x) dx.

The claim thus follows from∫ 1

0

xs−1 logn(x) dx =

∫ ∞
0

(−x)ne−sx dx =
(−1)nΓ(n+ 1)

sn+1

which is a consequence of the integral representation of the gamma function.
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Observe that the sum in (33) converges very rapidly and so is very suitable for
computation. Also, from Example 2.4 we have evaluations — some known — such
as

∞∑
k=0

2−4k

(2k + 1)

(
2k

k

)
=
π

3

and
∞∑
k=0

2−4k

(2k + 1)2

(
2k

k

)
= Cl2

(π
3

)
.

Remark 2.12. As outlined in [12], the series (33) combined with (17) can also
be used to produce rapidly-convergent series for certain multi zeta values including
ζ(5, 3), ζ(7, 3) and ζ(3, 5, 3). ♦

3 Log-sine evaluations of multiple Mahler mea-

sures

We first substantiate that we can recursively determine µk(1 +x+ y∗) from equation
(13) as claimed.

3.1 Evaluation of µk(1 + x+ y∗)

Substituting the values given in Example 2.4 and Example 2.2 into equation (13) we
obtain the following multiple Mahler evaluations:

Example 3.1 (Values of µk(1 + x+ y∗)). We have

µ1(1 + x+ y∗) =
1

π
Cl2

(π
3

)
, (34)

µ2(1 + x+ y∗) =
π2

54
, (35)

µ3(1 + x+ y∗) =
9

2π
Cl4

(π
3

)
− ζ(3), (36)

µ4(1 + x+ y∗) =
6

π
Gl4,1

(π
3

)
− π4

4860
, (37)

µ5(1 + x+ y∗) =
135

2π
Cl6

(π
3

)
− 15ζ(5)− 5

18
π2ζ(3), (38)

µ6(1 + x+ y∗) =
135

π
Gl6,1

(π
3

)
+ 15ζ(3)2 − 943

40824
π6, (39)

13



and the like. The first is again a form of Smyth’s result (5). ♦

Remark 3.2. Note that we may rewrite the multiple Mahler measure µk(1 +x+y∗)
as follows:

µk(1 + x+ y∗) = µ(1 + x, . . . , 1 + x︸ ︷︷ ︸
k−1

, 1 + x+ y). (40)

This is easily seen from Jensen’s formula (4). Indeed, using (4) the left-hand side of
(40) becomes

µk(1 + x+ y∗) =

∫ 1

0

· · ·
∫ 1

0

k∏
j=1

log
∣∣1 + e2πis + e2πitj

∣∣ dsdt1 · · · dtk
=

∫ 1

0

[∫ 1

0

log
∣∣1 + e2πis + e2πit

∣∣ dt]k ds

=

∫
logk

∣∣1 + e2πis
∣∣ ds

where the last integral is over 0 ≤ s ≤ 1 such that |1 + e2πis| ≥ 1. The same integral
is obtained when applying (4) to the right-hand side of (40). ♦

3.2 Evaluation of µk(1 + x+ y∗ + z∗)

We next follow a similar course for multiple Mahler measures built from 1+x+y+z
to that given for µk(1 + x+ y∗) in Section 3.1. Analogous to (11) we define:

µk(1 + x+ y∗ + z∗) := µ(1 + x+ y1 + z1, . . . , 1 + x+ yk + zk). (41)

Working as in (7) we may write

µk(1 + x+ y∗ + z∗) =
1

π

∫ π

0

[
1

π

∫ π

0

max

{
log

(
2 sin

θ

2

)
, log

(
2 sin

σ

2

)}
dσ

]k
dθ.

We observe that the inner integral with respect to σ evaluates separately, and on
recalling that Ls2 (θ) = Cl2 (θ) and Cl2 (π) = 0 we arrive at:

Theorem 3.3. For all positive integers k, we have

µk(1 + x+ y∗ + z∗) =
1

πk+1

∫ π

0

(
θ log

(
2 sin

θ

2

)
+ Cl2 (θ)

)k
dθ. (42)
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Example 3.4 (Values of µk(1+x+y∗+z∗)). Thus, for µ2(1+x+y∗+z∗), we obtain

π3 µ2(1 + x+ y∗ + z∗) = −Ls
(2)
5 (π) +

∫ π

0

Cl22(θ) dθ +

∫ π

0

2θ log

(
2 sin

θ

2

)
Cl2 (θ) dθ.

Applying Parseval’s equation evaluates the first integral in this equation to π5/180.
Integration by parts of the second integral shows that it equals minus the first one.

For k = 3, one term is a log-sine integral and two of the terms are equal, but we
could not completely evaluate the two remaining terms.

Hence, from (42), we have:

µ1(1 + x+ y∗ + z∗) = − 2

π2
Ls

(1)
3 (π) =

7

2

ζ(3)

π2
, (43)

µ2(1 + x+ y∗ + z∗) = − 1

π3
Ls

(2)
5 (π) +

π2

90
=

4

π2
Li3,1(−1) +

7

360
π2, (44)

µ3(1 + x+ y∗ + z∗) =
2

π4

∫ π

0

Cl32(θ) dθ +
3

π4

∫ π

0

θ2 log2

(
2 sin

θ

2

)
Cl2 (θ) dθ

− 1

π4
Ls

(3)
7 (π) . (45)

The first of these is a form of (7) which originates with Smyth and Boyd [11]. The

relevant log-sine integrals have been discussed in Section 2.3. In particular, Ls
(2)
5 (π)

and Ls
(3)
7 (π) have been evaluated in (24) and (30).

It is possible to further reexpress the integrals in (45) but we have not so far
found an entirely satisfactory resolution. ♦

3.3 Evaluation of µ(1 + x, . . . , 1 + x, 1 + x+ y + z)

Recall from Remark 3.2 that the multiple Mahler measure µk(1 + x + y∗) can be
rewritten as µ(1+x, . . . , 1+x, 1+x+y) with the term 1+x repeated k−1 times. This
is not possible for µk(1+x+y∗+z∗) which is distinct from µ(1+x, . . . , 1+x, 1+x+y+z)
which we study next.

Applying Jensen’s formula as in (7) for k = 0, 1, 2, . . . we obtain (46) below. Then
(47) follows on integrating by parts.
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Theorem 3.5. For all nonnegative integers k we have:

µ(1 + x, . . . , 1 + x︸ ︷︷ ︸
k

, 1 + x+ y + z)

= − 1

π2
Ls

(1)
k+3 (π) +

1

π2

∫ π

0

Ls2 (θ) logk
(

2 sin
θ

2

)
dθ (46)

= − 1

π2
Ls

(1)
k+3 (π)− 1

π2

∫ π

0

Lsk+1 (θ) log

(
2 sin

θ

2

)
dθ. (47)

Example 3.6. Equation (47) recovers (7) when k = 0 since Ls1 (θ) = −θ. Setting
k = 1 in (47) we obtain

µ(1 + x, 1 + x+ y + z) = − 1

π2
Ls

(1)
4 (π) +

1

π2

∫ π

0

Cl2 (θ) log

(
2 sin

θ

2

)
dθ

= − 1

π2
Ls

(1)
4 (π)− 1

2π2
Cl22(π)

= − 1

π2
Ls

(1)
4 (π) =

2

π2
λ4
(
1
2

)
− 19

720
π2 (48)

on again using Ls2 (θ) = Cl2 (θ) and Cl2 (π) = 0. The final evaluation was given in
(23) of Example 2.7. For k = 2 we have

µ(1 + x, 1 + x, 1 + x+ y + z) = − 1

π2
Ls

(1)
5 (π) +

1

π2

∫ π

0

Ls2 (θ) log2

(
2 sin

θ

2

)
dθ

= − 1

π2
Ls

(1)
5 (π)− 2

3π2
λ5
(
1
2

)
+

155

32π2
ζ(5),

where the last integral was found via PSLQ. This agrees with the more complicated
version conjectured in [15]. We may use (22) of Example 2.7 to arrive at

µ(1 + x, 1 + x, 1 + x+ y + z) =
4

3π2
λ5
(
1
2

)
− 3

4
ζ(3) +

31

16π2
ζ(5). (49)

For k = 3, things are more complicated as is suggested by (26). ♦

4 Moments of random walks

The s-th moments of an n-step uniform random walk are given by

Wn(s) =

∫ 1

0

. . .

∫ 1

0

∣∣∣∣∣
n∑
k=1

e2πitk

∣∣∣∣∣
s

dt1 · · · dtn (50)
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and their relation with Mahler measure is observed in [9]. In particular,

W ′
n(0) = µ(1 + x1 + . . .+ xn−1)

with the cases n = 3 and n = 4 given in (5) and (7) respectively. The cases n = 5
and n = 6 are discussed in (78) and (79) respectively. Higher derivatives of Wn

correspond to higher Mahler measures:

W (k)
n (0) = µk(1 + x1 + . . .+ xn−1). (51)

More general moments corresponding to other Mahler measures were introduced in
[1] and studied in [16] as zeta Mahler measures.

4.1 Evaluation of µk(1 + x)

Equipped with the results of the first section, we may now fruitfully revisit another
recent result which is concerned with the evaluation of W

(k)
2 (0) = µk(1 + x).

A central evaluation in [16, Thm. 3] is:

µk(1 + x) = (−1)kk!
∞∑
n=1

1

4n

∑
bj≥2,

∑
bj=k

ζ(b1, b2, . . . , bn). (52)

We note that directly from the definition and an easy change of variables

µk(1 + x) = − 1

π
Lsk+1 (π) . (53)

Hence, we have closed forms such as provided by Example 2.2.

Example 4.1. For instance,

−µ5(1 + x) =
45

2
ζ(5) +

5

4
π2ζ(3), (54)

µ6(1 + x) =
45

2
ζ2(3) +

275

1344
π6. (55)

These are derived more elaborately in [16, Ex. 5] from the right of equation (52). ♦

We have, inter alia, evaluated the multi zeta value sum on the right of equation
(52) as a simple log-sine integral.

Also, note that the evaluation W2(s) =
(
s
s/2

)
, [9], in combination with (53) thus

explains and proves the generating function (15).
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4.2 A generating function for µk(1 + x+ y)

The evaluation of the Mahler measures W ′
3(0) = µ(1 +x+ y) and W ′

4(0) = µ(1 +x+
y + z) is classical and was discussed in Example 1.2.

The derivatives W ′′
3 (0) = µ2(1 + x + y) and W ′′

4 (0) = µ2(1 + x + y + z) were
evaluated using explicit forms for W3(s) and W4(s) in [9, §6]. For example,

W ′′
3 (0) =

π2

12
− 4 log 2

π
Cl2

(π
3

)
− 4

π

∞∑
n=0

(
2n
n

)
42n

∑n
k=0

1
2k+1

(2n+ 1)2
. (56)

We shall revisit these two Mahler measures in (61) and (76) of Sections 4.3 and 4.4.
As a consequence of the study of random walks in [9] we record the following

generating function for µk(1+x+y) which follows from (51) and the hypergeometric
expression for W3 in [9, Thm. 10]. There is a corresponding expression, using a
single Meijer-G function, for W4 (i.e., µm(1 + x+ y + z)) given in [9, Thm. 11].

Theorem 4.2. For complex |s| < 2, we may write

∞∑
m=0

µm(1 + x+ y)
sm

m!
= W3(s) =

√
3

2π
3s+1 Γ(1 + s/2)2

Γ(s+ 2)
3F2

( s+2
2
, s+2

2
, s+2

2

1, s+3
2

∣∣∣∣14
)
. (57)

The particular measure µ2(1 + x + y) will be investigated in Section 4.3. The
general case µm(1 + x+ y) is studied in [2].

4.3 Evaluation of µ2(1 + x+ y)

Example 4.3. A purported evaluation given in [16] is:

µ2(1 + x+ y) = µ2(1 + x+ y)
?
=

5

54
π2 = 5µ2(1 + x+ y∗) (58)

where the last equality follows from (35). However, we are able to numerically
disprove (58).2 Indeed, we find µ2(1 + x+ y) ≈ 0.419299 while 5

54
π2 ≈ 0.913852. ♦

We note that for integer k ≥ 1 we do have

µk(1 + x+ y) =
1

4π2

∫ 2π

0

dθ

∫ 2π

0

(
Re log

(
1− 2 sin(θ)ei ω

))k
dω, (59)

directly from the definition and some simple trigonometry, since Re log = log | · |.
We revisit Example 4.3 in the next result, in which we evaluate µ2(1 + x + y) as a
log-sine integrals as well as in terms of polylogarithmic constants.

2There are two errors in the proof given in [16, Theorem 11]. A term is dropped between lines
8 and 9 of the proof and the limits of integration are wrong after changing s(1− s) to t.
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Theorem 4.4. We have

µ2(1 + x+ y) =
24

5π
Ti3

(
1√
3

)
+

2 log 3

π
Cl2

(π
3

)
− log2 3

10
− 19π2

180
(60)

=
π2

4
+

3

π
Ls3

(
2π

3

)
. (61)

Remark 4.5. We note that

Ls3

(
2π

3

)
= −

∫ π/3

0

log2

(
2 cos

θ

2

)
dθ

and that these log-cosine integrals have fewer explicit closed forms. Using the results
of [8] to evaluate log-sine integrals in polylogarithmic terms we find that

Ls3

(
2π

3

)
= − 13

162
π3 − 2 Gl2,1

(
2π

3

)
. (62)

In fact, this is automatic if we employ the provided implementation. Theorem 4.4
thus also gives a reduction of Gl2,1

(
2π
3

)
to one-dimensional polylogarithmic constants.

♦

A preparatory result is helpful before proceeding to the proof of Theorem 4.4.

Proposition 4.6 (A dilogarithmic representation). We have:

(a)
2

π

∫ π

0

Re Li2
(
4 sin2 θ

)
dθ = 2ζ(2). (63)

(b)

µ2(1 + x+ y) =
1

36
π2 +

2

π

∫ π/6

0

Li2
(
4 sin2 θ

)
dθ. (64)

Proof. For (a) we define τ(z) := 2
π

∫ π
0

Li2
(
4z sin2 θ

)
dθ. This is an analytic function

of z. For |z| < 1/4 we may use the original series for Li2 and expand term by term
using Wallis’ formula to derive

τ(z) =
2

π

∑
n≥1

(4z)n

n2

∫ π

0

sin2n θ dθ = 4z 4F3

(
1, 1, 1, 3

2

2, 2, 2

∣∣∣∣4z)

= 4 Li2

(
1

2
− 1

2

√
1− 4z

)
− 2 log

(
1

2
+

1

2

√
1− 4z

)2

.
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The final equality can be obtained in Mathematica and then verified by differenti-
ation. In particular, the final function provides an analytic continuation and so we
obtain τ(1) = 2ζ(2) + 4iCl2

(
π
3

)
which yields the assertion.

For (b), commencing much as in [16, Thm. 11], we write

µ2(1 + x+ y) =
1

4π2

∫ π

−π

∫ π

−π
Re log

(
1− 2 sin(θ)ei ω

)2
dω dθ.

We consider the inner integral ρ(α) :=
∫ π
−π (Re log (1− α ei ω))

2
dω with α := 2 sin θ.

For |θ| ≤ π/6 we directly apply Parseval’s identity to obtain

ρ(2 sin θ) = π Li2
(
4 sin2 θ

)
. (65)

In the remaining case we write

ρ(2 sin θ) =

∫ π

−π

{
log |α|+ Re log

(
1− α−1 ei ω

)}2
dω

= 2π log2 |α| − 2 log |α|
∫ π

−π
log
∣∣1− α−1 ei ω

∣∣ dω + π Li2

(
1

4 sin2 θ

)
= 2π log2 |2 sin θ|+ π Li2

(
1

4 sin2 θ

)
, (66)

where we have appealed to Parseval’s and Jensen’s formulas. Thus,

µ2(1 + x+ y) =
1

π

∫ π/6

0

Li2
(
4 sin2 θ

)
dθ +

1

π

∫ π/2

π/6

Li2

(
1

4 sin2 θ

)
dθ +

π2

54
, (67)

since 2
π

∫ π/2
π/6

log2 α dθ = µ2(1 +x+ y∗) = π2

54
. Now, for α > 1, the functional equation

in [18, A2.1 (6)] — Li2(α) + Li2(1/α) + 1
2

log2 α = 2ζ(2) + iπ logα — gives:∫ π/2

π/6

{
Re Li2

(
4 sin2 θ

)
+ Li2

(
1

4 sin2 θ

)}
dθ =

5

54
π3. (68)

We now combine (63), (68) and (67) to deduce the desired result in (64).

We are now in a position to prove the desired evaluation of µ2(1 + x + y) as a
log-sine integral.
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Proof of Theorem 4.4. Using Proposition 4.6 we have:

µ2(1 + x+ y) =
π2

36
+

2

π

∫ π/6

0

Li2
(
4 sin2w

)
dw

=
π2

36
+

2

π

∑
n≥1

4n

n2

∫ π/6

0

sin2nw dw

=
π2

36
+

√
3

π

∑
n≥1

(
2n−1
n−1

)
4n

∞∑
k=n

1

(2 k + 1)
(
2 k
k

) , (69)

where the last line is a consequence of the formula∫ π/6

0

sin2nw dw =

√
3

2

(
2n−1
n−1

)
4n

∞∑
k=n

1

(2 k + 1)
(
2 k
k

)
given in [16]. Hence, on using a beta-integral and then exchanging sum and integral
we obtain:

µ2(1 + x+ y) =
π2

36
+

2
√

3

π

∑
n≥1

(
2n− 1

n− 1

)∫ 1/2

0

tn(1− t)n

1− t+ t2
dt

=
π2

36
+

2
√

3

π

∫ 1/2

0

∑
n≥1

(
2n− 1

n− 1

)
(t(1− t))n

1− t+ t2
dt

=
π2

36
+

√
3

π

∫ 1/2

0

2 Li2 (t)− log2 (1− t)
1− t+ t2

dt (70)

where the last equality comes from evaluating the power series above.
Further careful integrations by parts let us use [19, Appendix A5.3, (1)] to derive

πµ2(1 + x+ y) =
67

324
π3 + 2 Cl2

(π
3

)
log 3− 8 Im Li3

(
i
√

3
)

+ 4 Im Li3

(
3 + i

√
3

2

)
. (71)

Next, we note that

Im Li3

(
3 + i

√
3

2

)
=

55

1296
π3 +

5

48
π log2 3 + Im Li3

(
3− i

√
3

6

)
, (72)
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while

Im Li3

(
i
√

3
)

=
1

16
π3 +

1

16
π log2 3− 1

6
Ti3

(
1√
3

)
. (73)

Above, we have had recourse to various reduction formulae [19, 6] for higher Clausen
functions to arrive at the final form. Substituting (72), (73) in (71), we arrive at the
asserted result (60).

A connection with the log-sine integrals is made by noting that

Ti3

(
1√
3

)
=

5

8
Ls3

(
2π

3

)
− 1

2
Ti2

(
1√
3

)
log 3− 1

48
π log2 3 +

2

27
π3, (74)

Ti2

(
1√
3

)
=

5

6
Cl2

(π
3

)
− π

12
log 3. (75)

These follow from [19, Eqn. (44), p. 298] and [19, Eqn. (18), p. 292] respectively.
Applying (74) and (75) to (60) now yields (61).

Finally, we observe that it is possible to take the analysis of µn(1 + x + y) for
n ≥ 3 a fair distance. This will be detailed in the forthcoming paper [2].

4.4 Evaluation of µ2(1 + x+ y + z)

Paralleling the evaluation of µ2(1 +x+ y) in Theorem 4.4 we now give a closed form
for µ2(1 + x + y + z) which was obtained in [9] by quite different methods to those
of Theorem 4.4.

Theorem 4.7. We have

µ2(1 + x+ y + z) =
12

π2
λ4
(
1
2

)
− π2

5
(76)

where λ4 is as defined in (10).

Proof. The formula

π2W ′′
4 (0) = 24 Li4(

1
2
)− 18ζ(4) + 21ζ(3) log 2− 6ζ(2) log2 2 + log4 2

was deduced in [9]. We now observe that

24 Li4(
1
2
)− 18ζ(4) + 21ζ(3) log 2− 6ζ(2) log2 2 + log4 2

= 12λ4
(
1
2

)
− π4

5
,

and appeal to equation (51) for µ2(1 + x+ y + z) = W ′′
4 (0).
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4.5 A conjecture of Rodriguez-Villegas

Finally, we mention two conjectures concerning the Mahler measures µ(1 + x + y +
z+w) and µ(1+x+y+z+w+v), contained in slightly different form in [13]. These
correspond to the moment values W ′

5(0) and W ′
6(0).

Recall that η is the Dirichlet eta-function given by

η(τ) = η(q) := q1/24
∞∏
n=1

(1− qn) = q1/24
∞∑

n=−∞

(−1)nqn(3n+1)/2 (77)

where q = e2πiτ .
The following two conjectural expressions have been put forth by Rodriguez-

Villegas:

µ(1+x+y+z+w)
?
=

(
15

4π2

)5/2 ∫ ∞
0

{
η3(e−3t)η3(e−5t) + η3(e−t)η3(e−15t)

}
t3 dt (78)

and

µ(1 + x+ y + z + w + v)
?
=

(
3

π2

)3 ∫ ∞
0

η2(e−t)η2(e−2t)η2(e−3t)η2(e−6t) t4 dt. (79)

As discussed in [9], we have confirmed numerically that the evaluation of µ(1 + x+
y + z + w + v) in (78) holds to 600 places. Likewise, we have confirmed that (79)
holds to 80 places.

5 Conclusion

It is reasonable to ask what other Mahler measures can be placed in log-sine form,
and to speculate as to whether the η integrals (78) and (79) can be.

As described in [17], it is a long standing question due to Lehmer as to whether,
for single-variable integer polynomials P , µ(P ) can be arbitrarily close to zero. For
higher Mahler measures [17, Thm. 7] shows that for k = 1, 2, . . . the measure
µ2k+1 ((xn − 1)/(x− 1)) does tend to zero as n goes to infinity.

It was shown in (13) that for positive integers k,

π µ(1 + x+ y1, 1 + x+ y2, . . . , 1 + x+ yk) = Lsk+1

(π
3

)
− Lsk+1 (π) . (80)

This rapidly tends to zero with k since |Lsk+1

(
π
3

)
−Lsk+1 (π) | ≤ 2π

3
logk 2. Can one

find any natural polynomial sequences so that µ(Pn, Qn) tends to zero with n and so
generalize [17, Thm. 7] ?
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