Math: What's New, What's Possible, What's Coming

*Jonathan Borwein, fRSC www.cs.dal.ca/~jborwein Canada Research Chair in Collaborative Technology
"intuition comes to us much earlier and with much less outside influence than formal arguments which we cannot really understand unless we have reached a relatively high level of logical experience and sophistication."

AB Lucas Secondary School
December 12 ${ }^{\text {th }} 2007$

DALHOUSIE UNIVERSITY Inspiring Minds
Faculty of Computer Science

George Polya 1887-1985

Jon Borwein's Math Resource Portal

The following is a list of useful math tools.

Utilities

1. ISC2.0: The Inverse Symbolic Calculator
2. EZ Face: An interface for evaluation of Euler sums and Multiple Zeta Values
3. 3D Function Grapher
4. GraPHedron: Automated and computer assisted conjectures in graph theory
5. Julia and Mandelbrot Set Explorer
6. Embree-Trefethen-Wright pseudospectra and eigenproblem

Reference

7. The On-Line Encyclopedia of Integer Sequences
8. Finch's Mathematical Constants
9. The Digital Library of Mathematical Functions
10. The Prime Pages

Content

11. Experimental Mathematics Website
12. Wolfram Mathworld
13. Planet Math
14. Numbers, Constants, and Computation
15. Wikipedia: Mathematics

ICCOPT 2007 Short Course

16. Jon's Lectures

1. Moore's Law and Implications

"The complexity for minimum component costs has increased at a rate of roughly a factor of two per year ...

- now taken as "every 18 months to 2 years"

Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. That means by 1975, the number of components per integrated circuit for minimum cost will be 65,000. I believe that such a large circuit can be built on a single wafer.

Gordon Moore (Intel) "Cramming more components onto Electronic Circuits", Electronics Magazine 19 April 1965

Unprecedented and expected to continue for 10-20 years.

Microprocessor

4004	1971	2,300
8008	1972	2,500
8080	1974	4,500

8086	1978	29,000

Intel286	1982	134,000
It		

Intel386'" processor	1985	275,000
Intel486 ${ }^{\prime \prime \prime}$ processor	1989	$1,200,000$

Intel ${ }^{*}$ Pentium ${ }^{*}$ processor	1993	$3,100,000$
Intel * Pentium ${ }^{*}$ II processor	1997	$7.500,000$
Ins		

Intel ${ }^{\bullet}$ Pentium ${ }^{*}$ ill processor	1999	9,500,000
Intel ${ }^{*}$ Pentium* 4 processor	2000	42,000,000
Intel ${ }^{\text {® }}$ Itanium ${ }^{\text {a }}$ processor	2001	25,000,000
Intel ${ }^{\star}$ Itanium ${ }^{\text {® }} 2$ processor	2003	220,000,000
Intel* Itanium 2 processor (9MB cache)	2004	592,000,000

Year of Introduction

Transistors

Moore's Law 1965 to 2005

This picture is worth 100,000 ENIACs 0

The number of ENIACS needed to store the 20 Mb TIF the Smithsonian sold me

1947 The past (5Kb)

NERSC's 6000 cpu Seaborg in 2004 (10Tflops/sec)

- we need new software paradigms for 'bigga-scale' hardware

IBM BlueGene/L system at LLNL

Supercomputer doubles own record

The Blue Gene/L supercomputer has broken its own record to achieve more than double the number of calculations it can do a second.

It reached 280.6 teraflops that is 280.6 trillion calculations a second.

Blue Gene/L is the fastest computer in the world

2.8/5.6 GF/s	5.6/11.2 GF/s
4 MB	0.5 GB DDR

The future 2005-2010
2^{17} cpu's
Oct 2007 It has now run Linpack benchmark at over 596 Tflop Isec (5 x Canada)

"It says it's sick of doing things like inventories and payrolls, and it wants to make some breakthroughs in astrophysics."

2. New Ways of Doing Math

and related subjects: Computer Science,
Statistics, Engineering, all Sciences, every other subject

- Experimentally on the Computer
- Visual or Haptic or Acoustic Output
- Simulations and Emersions
- With Web-services, Databases, Wikis, ...

Also New Ways of Collaborating

Experimental Mathodology

1. Gaining insight and intuition
2. Discovering new relationships
3. Visualizing math principles
4. Testing and especially falsifying conjectures
5. Exploring a possible result to see if it merits formal proof
6. Suggesting approaches for formal proof
7. Computing replacing lengthy hand derivations
8. Confirming analytically derived results

Experimental Mathematics in Action

David H. Bailey
Jonathan M. Borwein Neil J. Calkín Roland Girgensohn D. Russell Luke VictorH. Moll

Thelast twenty years have been witnessto a fundamental shift in the way mathematics is practiced. With the continued advance of computing power and accessibility, the view that "real mathematicians don't compute" no longer has any traction for a newer generation of mathematicians that can really take advantage of computer-aided research, especially given the scope and availability of modern computational packages such as Maple, Mathematica, and MATLAB. The authors provide a coherent variety of accessible examples of modern mathematics subjects in which intelligent computing plays a significant role.

Advance Praise for Experimental Mathematics in Action
"Experimental mathematics has not only come of age but is quickly maturing, as this book shows so clearly. The authors display a vast range of mathematical understanding and connection while at the same time delineating various ways in which experimental mathematics is and can be undertaken, with startling effect."
-Prof. John Mason, Open University and University of Oxford
"Computing is to mathematics as telescope is to astronomy: it might not explain things, but it certainly shows 'what's out there.' The authors are expert in the discovery of new mathematical 'planets,' and this book is a beautifully written exposé of their values, their methods, their subject, and their enthusiasm about it. A must read."
-Prof. Herbert S. Wilf, author of generatingfunctionology
"From within the ideological blizzard of the young field of Experimental Mathematics comes this tremendous, clarifying book. The authors - all experts-convey this complex new subject in the best way possible; namely, by fine example. Let me put it this way: Discovering this book is akin to finding an emerald in a snowdrift.'
-Richard E. Crandall, Apple Distinguished Scientist, Apple, Inc.

BAILEY BORWEIN
CALKIN
GIRGENSOHN
LUKE
MOLL

David H. Bailey

 Jonathan M. Borwein Neil J. Calkin Roland Girgensohn D. Russell LukeVictor H. Moll
Experimental Mathematics in Action

Math-Physics-Computing

- En français

Haptics and Light Paths

D-DRIVE Doug our haptic mascot

Haptic Devices extend the world of I/O into the tangible and tactile

We link multiple devices so two or more users may interact at a distance (BC/NS Demo April 06)

- in Museums, Aware Homes, elsewhere

Sensable's Phantom Omni

- Kinesiology, Surgery, Music, Art ...

Cost effective 3D visualization in 2007

19th C model

 recent photo and $21^{\text {st }} \mathrm{C}$ rendition

Mathematical Form 0001
Helicoid: minimal surface.

Dalhousie Distributed Research Institute and Virtual Environment

Coast to Coast Seminar Series ('C2C’)

Lead partners:
Dalhousie D-Drive - Halifax Nova Scotia

IRMACS - Burnaby, British Columbia

Other Participants so far incude:

University of British Columbia, University of Alberta, University of Alberta, University of Saskatchewan, Lethbridge University, Acadia University, MUN, Mt Allison, St Francis Xavier University, University of Western Michigan, MathResources Inc, University of North Carolina

Dalhousie Distributed Research Institute and Virtual Environment

The Experience

Fully Interactive multi-way audio and visual interaction

Given good bandwidth audio is much harder

The closest thing to being in the same room

Shared Desktop for viewing presentations or sharing software

Dalhousie Distributed Research Institute and Virtual Environment

Jonathan Borwein, Dalhousie University

High Quality Presentations

 Mathematical Visualization

Peter Borwein, IRMACS The Riemann Hypothesis

Uwe Glaesser, Simon Fraser University Semantic Blueprints of Discrete Dynamic Systems

Arvind Gupta, MITACS
 \title{
"No one explains chalk"
 \title{
"No one explains chalk"
 Jonathan Schaeffer, University of Alberta
Solving Checkers
 Jonathan Schaeffer, University of Alberta
Solving Checkers
}

Przemyslaw Prusinkiewicz, University of Calgary Computational Biology of Plants

Karl Dilcher, Dalhousie University Fermat Numbers, Wieferich and Wilson Primes

Future Libraries will include very complex objects

"Solving Checkers"
Speaker in Edmonton

Audience in
Vancouver

3. New Ways of Seeing Math

- The Colour Calculator
- numbers as pictures
- The Inverse Calculator
- numbers go in and symbols come out
- The Top Ten Numbers Website

- http://ddrive.cs.dal.ca/~isc/portal

A Colour and an Inverse Calculator (1995 \& 2007)

Inverse Symbolic Computation

Archimedes: $223 / 71<\pi<22 / 7$ Inferring mathematical structure from numerical data

- Mixes large table lookup, integer relation methods and intelligent preprocessing - needs micro-parallelism
- It faces the "curse of exponentiality"
- Implemented as identify in Maple

Inverse 5 Ymbolic Colculator

Please enter a number or a Maple expression:

relation algorithms in
 with a user-defined, truncated decimal expansion (represented as a floating point expression) a closed form representation for the real number.

iSC \dagger) isyerster similicor

as input. However, for Maple syntax requiring too long for
evaluation, a timeout has been
implemented.
visit

Jon Borvein's Mebpage

David Bailey's Webpage

Math Resources Portal Webpage

Math Resources Portal
5.859874482 Tryit!
3.146264370 Try it!

- ISC+ runs on Glooscap
- Less lookup \& more
\square The orisinal ISC

Striking fractal patterns formed by plotting complex zeros for all polynomials in powers of x with coefficients 1 and -1 to degree 18
Coloration is by sensitivity of polynomials to slight variation around the values of the zeros. The color scale represents a normalized sensitivity to the range of values; red is insensitive to violet which is strongly sensitive.

- All zeros are pictured (at $\mathbf{3 6 0 0} \mathbf{~ d p i)}$
- Figure 1 b is colored by their local density
- Figure 1d shows sensitivity relative to the \mathbf{x}^{9} term
- The white and orange striations are not understood

A wide variety of patterns and features become visible, leading researchers to totally unexpected mathematical results

[^0]

Interactive Proofs

The Perko Pair 10_{161} and 10_{162}

 are two adjacent 10-crossing knots (1900)

- first shown to be the same by Ken Perko in 1974
- and beautifully made dynamic in KnotPlot (open source)

"What it comes down to is our software is too hard and our hardware is too soft."

4. Amazing New Web Services

Online Encyclopedia of Sequences

What is $1,2,3,6,11,23,47,106,235, \ldots$?

- arar Integer Sequences besEarcm

The On-Line Encyclopedia of Integer Sequences
Enter a sequence, O word, or O sequence number:
$1,2,3,6,11,23,47,106,235$
Searn Restore example Clear | Hints | Advanced look-up

Digital Library of Math Functions What is an Airy Function?

Supernumerary Rainbow over Newton's birthplace

Soon the texts will also do the mathematics

Greetings from the On-Line Encyclopedia of Integer Sequences!

Matches (up to a limit of 30) found for 1236112347106235 :
[It may take a few minutes to search the whole database, depending on how many matches are found (the second and later loo are faster)]
ID Humber:
URL:
Sequence:

Number of trees with n unlabeled nodes.

Comments: Also, number of unlabeled 2-gonal 2-trees with n 2-gons.
References F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
N. L. Biggs et al., Graph Theory 1736-1936, 0xford, 1976, p. 49.
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. $295-316$.
D. D. Grant, The stability index of graphs, pp. 29-52 of Combipatorial Mathematics (Proceedings 2nd Austyalian Conf.), Lect. Notes Math. 403, 1974.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.

- moderated

An Exemplary Database

Sequence: www.research.at.com/ projects
$1,1,1,1,2,3,6,11,23,47,106,235,551,1301,3159,7741,19320$, $48629,123867,317955,823065,2144505,5623756,14828074$, $39299897,104636890,279793450,751065460,2023443032$, $5469566585,14830871802,40330829030,109972410221$

. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 58 and 244.
D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88.
R. C. Read and R. J. oilson, An Atlas of Graphs, Oxford, 1998.
J. Riordan, An Intyoduction to Combinatorial Analysis, Wiley, 1958, p. 138.

- AP book had 5,000

Links:
P. J. Cameron, Sequences realized by oligomorphic permutation groups Steven Fingh, Otter's Tree Enumeration Constants
E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of dikanes (or 4-Valent Trees) N. J. A. Sloane, Illustration of initial terms
E. J. Weisstein, Link to a section of The World of Mathematics.

Index entries for sequences related to trees

Index entries for "core" sequences

G. Labelle, C. Lamathe and P. Leroux, Labeled and unlabeled enumeration of k-gonal 2-tr G.f.: $\mathrm{A}(\mathrm{x})=1+\mathrm{T}(\mathrm{x})-\mathrm{T}^{\wedge} 2(\mathrm{x}) / 2+\mathrm{T}\left(\mathrm{x}^{\wedge} 2\right) / 2$, where $\mathrm{T}(\mathrm{x})=\mathrm{x}+\mathrm{x}^{\wedge} 2+2^{\star} \mathrm{x}^{\wedge} 3+\ldots$
 http://dlmf.nist.gov First 21C database

Chapter Al. Airy \& Related Functions
Properties

§AI.4. Maclaurin Series

For $z \in \mathbb{C}$
AI.4. 1
$\mathrm{Ai}(z)=\mathrm{Ai}(0)\left(1+\frac{1}{3!} z^{3}+\frac{1 \cdot 4}{6!} z^{6}+\frac{1 \cdot 4 \cdot 7}{9!} z^{9}+\cdots\right)+\mathrm{Ai}^{\prime}(0)\left(z+\frac{2}{4!} z^{4}+\frac{2 \cdot 5}{7!} z^{7}+\frac{2 \cdot 5 \cdot 8}{10!} z^{10}+\right.$

National Institute of Standards and Technology

- Formula level
- Index
\rightarrow Notation
\rightarrow Search
for what
1 ShowAnnotations
Need Help?
- Accessible output About the Project © Copyrigt/Privacy Policy QLMF fat Arictux Jaraay 12,2008 PNG MathML
metadata
coo Mathematical searching
 PNG MathML

Symbols used:

AiryAi cdots and \bar{z}
A\&S Ref:
10.4.2 (with 10.4 .4 and 10.4.5)

Encodings:
LaTeX
Parsed:

- AiryAi@ $(z)=$ AiryAi@ (0) * (1 + (1 / 3!)
* $z^{\wedge} 3+((1 \operatorname{cdot} 4) / 6!) * z^{\wedge} 6+$
((1 cdot 4 cdot 7) / 9!) * z 人 $9+$
cdots $)+($ diffop@(Airyhi, l)) $0(0)$ * (z +
(2 / 4!) * $z \times 4+((2 \operatorname{cdot} 5) / 7!) * z$
$\wedge 7+((2 \operatorname{cdot} 5 \operatorname{cdot} 8) / 10!) * z \wedge 10$
+ cdots)

Al4. 2
$A i^{\prime}(z)=\mathrm{Ai}^{\prime}(0)\left(1+\frac{2}{3!} z^{3}+\frac{2 \cdot 5}{6!} z^{6}+\frac{2 \cdot 5 \cdot 8}{9!} z^{9}+\cdots\right)+\mathrm{Ai}(0)\left(\frac{1}{2!} z^{2}+\frac{1 \cdot 4}{5!} z^{5}+\frac{1 \cdot 4 \cdot 7}{8!} z^{8}+\cdots\right)$,
Al. 4.3
$\mathrm{Bi}(z)=\mathrm{Bi}(0)\left(1+\frac{1}{3!} z^{3}+\frac{1 \cdot 4}{6!} z^{6}+\frac{1 \cdot 4 \cdot 7}{9!} z^{9}+\cdots\right)+\mathrm{Bi}^{\prime}(0)\left(z+\frac{2}{4!} z^{4}+\frac{2 \cdot 5}{7!} z^{7}+\frac{2 \cdot 5 \cdot 8}{10!} z^{10}+\right.$
Al. 4.4
$\mathrm{Bi}^{\prime}(z)=\mathrm{Bi}^{\prime}(0)\left(1+\frac{2}{3!} z^{3}+\frac{2 \cdot 5}{6!} z^{6}+\frac{2 \cdot 5 \cdot 8}{9!} z^{9}+\cdots\right)+\mathrm{Bi}(0)\left(\frac{1}{2!} z^{2}+\frac{1 \cdot 4}{5!} z^{5}+\frac{1 \cdot 4 \cdot 7}{8!} z^{8}+\cdots\right)$.

- Index
- Notations
-

Search

- Need Help?
- Customize
- Show

Annotations
About the Project
Copyright/Privacy Policy
Feedback

Feedback

Narional Institute of Standords and Technology National Leli Foundation citbrins 450 Yret -

The faint line below the main colored arc is a 'supernumerary rainbow', produced by the interference of different sun-rays traversing a raindrop and emerging in the same direction. For each color, the intensity profile across the rainbow is an Airy function. Airy invented his function in 1838 precisely to describe this phenomenon more accurately than Young had done in 1800 when pointing out that supernumerary rainbows require the wave theory of light and are impossible to explain with Newton's picture of light as a stream of independent corpuscles. The house in the picture is Newton's birthplace.

Enigma
J.M. Borwein and D.H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century A.K. Peters, 2003. and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A.K. Peters, 2004, 2008. [Active CDs 2006]
D.H. Bailey and J.M Borwein, "Experimental Mathematics: Examples, Methods and Implications," Notices Amer. Math. Soc., 52 No. 5 (2005), 502-514.
J. Borwein, D. Bailey, N. Calkin, R. Girgensohn, R. Luke, and V. Moll, Experimental Mathematics in Action, A.K. Peters, 2007.
"The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it."

- J. Hadamard quoted at length in E. Borel, Lecons sur la theorie des fonctions, 1928.

[^0]: "The idea that we could make biology mathematical, I think, perhaps is not working, but what is happening, strangely enough, is that maybe mathematics will become biological!" Greg Chaitin, Interview, 2000.

