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If mathematics describes an objective world
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NEXT YEAR IN D-DRIVE

www.cs.dal.ca/ddrive

The Dalhousie Distributed Research Institute
and Virtual Environment is opening this month.

www.cs.math.ca/ddrive

2



MATH AWARENESS MONTH is APRIL

• Interactive graphics will become integral
part of math. Features gravitational boost-
ing, gravity waves, Lagrange points . . .

www.mathaware.org
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FOUR FORMS of EXPERIMENTS

• 1. Kantian example: generating “the

classical non-Euclidean geometries (hyperbolic,

elliptic) by replacing Euclid’s axiom of parallels

(or something equivalent to it) with alternative

forms.”

• 2. The Baconian experiment is a contrived

as opposed to a natural happening, it “is the

consequence of ‘trying things out’ or even of

merely messing about.”

• 3. Aristotelian demonstrations: “apply elec-

trodes to a frog’s sciatic nerve, and lo, the leg

kicks; always precede the presentation of the

dog’s dinner with the ringing of a bell, and lo,

the bell alone will soon make the dog dribble.”
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• 4. The most important is Galilean: “a crit-

ical experiment – one that discriminates be-

tween possibilities and, in doing so, either gives

us confidence in the view we are taking or

makes us think it in need of correction.”

• It is also the only one of the four forms

which will make Experimental Mathemat-

ics a serious enterprise.

• From Peter Medawar’s Advice to a Young

Scientist, Harper (1979).

Julia

and

Mandelbrot

sets

aleph0.clarku.edu/∼djoyce/julia/explorer.htm
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HOW NOT TO EXPERIMENT

Pooh Math

‘Guess and Check’ while Aiming Too High
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DEFINITIONS

mathematics, n. a group of related subjects,

including algebra, geometry, trigonometry and

calculus , concerned with the study of number,

quantity, shape, and space, and their inter-

relationships, applications, generalizations and

abstractions.

Science November 19, 2004
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MODES OF REASONING

induction, n. any form of reasoning

in which the conclusion, though sup-

ported by the premises, does not follow

from them necessarily.

and

deduction, n. a process of reason-

ing in which a conclusion follows neces-

sarily from the premises presented, so

that the conclusion cannot be false if

the premises are true.

b. a conclusion reached by this process.
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MATHEMATICS and COMPUTATION

The emergence of powerful mathematical com-
puting environments like Maple and Matlab,
the growing availability of correspondingly pow-
erful (multi-processor) computers and the per-
vasive presence of the internet allow for re-
search mathematicians, students and teachers,
to proceed heuristically and ‘quasi-inductively’.

We may increasingly use symbolic and numeric
computation, geometry packages:
Geometer’s SketchPad, Cabri and Cinderella

www.cinderella.de

Also visualization tools, simulation and data
mining.

An aesthetic appreciation of mathematics may
be given to a much broader audience.

THE TALK IS ORGANIZED SO IT ENDS WHEN IT ENDS

9



Many of the benefits of computation are acces-

sible through low-end ‘electronic blackboard’

versions of experimental mathematics. This

permits livelier classes, more realistic exam-

ples, and more collaborative learning.

The unique features of mathematics make

this more problematic and challenging.

• For example, there is still no truly satisfac-

tory way of displaying mathematical nota-

tion on the web;

• and we care more about the reliability of

our literature than does any other science.

The traditional central role of proof in math-

ematics is arguably under siege.
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QUESTIONS

F What constitutes secure mathematical knowl-
edge?

F When is computation convincing? Are hu-
mans less fallible?

• What tools are available? What method-
ologies?

• What about the ‘law of the small num-
bers’?

• Who cares for certainty? What is the role
of proof?

F How is mathematics actually done? How
should it be?
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SOME SELF PROMOTION

• Experimental Mathematics is being discussed
widely

From Scientific American, May 2003
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From Science News April 2004
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ZEROES of 0− 1 POLYNOMIALS

Data mining in polynomials

• The striations are unexplained!
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WHAT YOU DRAW is WHAT YOU SEE

The price of metaphor is eternal vig-

ilance

(Arturo Rosenblueth & Norbert Wiener)
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A NEW PROOF
√

2 is IRRATIONAL

One can find new insights in the oldest areas:

• Here is Tom Apostol’s lovely new graphical
proof∗ of the irrationality of

√
2. I like very

much that this was published in the present
millennium.

Root two is irrational (static and

self-similar pictures)

∗MAA Monthly, November 2000, 241–242.
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PROOF. To say
√

2 is rational is to draw a

right-angled isoceles triangle with integer sides.

Consider the smallest right-angled isoceles tri-

angle with integer sides —that is with shortest

hypotenuse.

Circumscribe a circle of radius the vertical side

and construct the tangent on the hypotenuse,

as in the picture.

Repeating the process once more produces

an even smaller such triangle in the same

orientation as the initial one.

The smaller right-angled isoceles triangle again

has integer sides · · · . QED

... AND more CINDERELLA
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Rationality
√

2 also makes things rational:
(√

2
√

2
)√2

=
√

2
(√

2·√2
)
=

√
22 = 2.

Hence by the principle of the excluded middle:

Either
√

2
√

2 ∈ Q or
√

2
√

2 6∈ Q.

In either case we can deduce that there are
irrational numbers α and β with αβ rational.
But how do we know which ones? Compare
the assertion that

α :=
√

2 and β := 2 ln2(3) yield αβ = 3

as Mathematica confirms.

• Again, verification is easier than discovery
Similarly multiplication is easier than fac-
torization, as in secure encryption schemes
for e-commerce.

There are eight possible (ir)rational triples:

αβ = γ.

Can you find them?
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DICTIONARIES ARE LIKE TIMEPIECES

I Samuel Johnson observed of watches that
“the best do not run true, and the worst
are better than none.” The same is true
of tables and databases. Michael Berry
“would give up Shakespeare in favor of Prud-
nikov, Brychkov and Marichev.”

• That excellent compendium contains

∞∑

k=1

∞∑

l=1

1

k2
(
k2 − kl + l2

) =
π∝√3

30
,(1)

where the “∝” is probably “4” [volume 1,
entry 9, page 750].

F Integer relation methods suggest that no
reasonable value of ∝ works.

What is intended in (1)?
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SELF-SIMILARITY

The Sierpinski

Gasket or Tri-

angle in a 13th

Century Anagni

Church
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Pascal’s Triangle modulo two

1,11,121,1331,14641,15101051 · · ·
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FRACTAL CARDS

Not all impressive discoveries require a com-
puter.

Elaine Simmt and Brent Davis describe lovely
constructions made by repeated regular paper
folding and cutting—but no removal of pa-
per—that result in beautiful fractal, self-similar,
“pop-up” cards∗.

The 7th iterates of a Sierpinski triangle
∗Fractal Cards: A Space for Exploration in Geometry
and Discrete Maths, Math Teacher, 91 (1998), 102-8
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• Nonetheless, we show various iterates of a

pop-up Sierpinski triangle built in software,

on turning those paper cutting and folding

rules into an algorithm. This should let you

start folding.

The 1st, 2nd and 3rd iterates
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• Note the similarity to the Pascal triangle.

• And art can be an additional source of
mathematical inspiration and stimulation

Self similarity at Chartres

and in
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POLYA and HEURISTICS

“[I]ntuition comes to us much earlier

and with much less outside influence

than formal arguments which we can-

not really understand unless we have

reached a relatively high level of logical

experience and sophistication.” (George

Polya)∗

∗In Mathematical Discovery: On Understanding, Learn-
ing and Teaching Problem Solving, 1968.
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Polya on Picture-writing

Polya’s illustration of the change solution

Polya, in his 1956 American Mathematical Monthly

article provided three provoking examples of

converting pictorial representations of problems

into generating function solutions. We discuss

the first one.

1. In how many ways can you make change

for a dollar?
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This leads to the (US currency) generating

function
∑

k≥0 Pkxk =

1

(1− x)(1− x5)(1− x10)(1− x25)(1− x50)

which one can easily expand using a Mathe-

matica command,

Series[

1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50))

,{x,0,100}]

to obtain P100 = 292 (243 for Canadian cur-

rency, which lacks a 50 cent piece but has a

dollar coin).

• Polya’s diagram is shown in the Figure.∗

∗Illustration courtesy the Mathematical Association of
America
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• To see why, we use geometric series and

consider the so called ordinary generating

function

1

1− x10
= 1 + x10 + x20 + x30 + · · ·

for dimes and

1

1− x25
= 1 + x25 + x50 + x75 + · · ·

for quarters etc.

• We multiply these two together and com-

pare coefficients

1

1− x10

1

1− x25
= 1 + x10 + x20 + x25

+ x30 + x35 + x40 + x45

+ 2x50 + x55 + 2x60 + · · ·

We argue that the coefficient of x60 on the

right is precisely the number of ways of making

60 cents out of identical dimes and quarters.
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• This is easy to check with a handful of
change or a calculator, The general ques-
tion with more denominations is handled
similarly.

• I leave it open whether it is easier to de-
code the generating function from the pic-
ture or vice versa. In any event, symbolic
and graphic experiment provide abundant
and mutual reinforcement and assistance
in concept formation.

“In the first place, the beginner must
be convinced that proofs deserve to be
studied, that they have a purpose, that
they are interesting.” (George Polya)

While by ‘beginner’ George Polya intended young
school students, I suggest this is equally true
of anyone engaging for the first time with an
unfamiliar topic in mathematics.
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ENIAC: Integrator and Calculator

SIZE/WEIGHT: ENIAC had 18,000 vacuum
tubes, 6,000 switches, 10,000 capacitors, 70,000
resistors, 1,500 relays, was 10 feet tall, occu-
pied 1,800 square feet and weighed 30 tons.

SPEED/MEMORY: A 1.5GHz Pentium does
3 million adds/sec. ENIAC did 5,000 — 1,000
times faster than any earlier machine. The first
stored-memory computer, ENIAC could store
200 digits.
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ARCHITECTURE: Data flowed from one

accumulator to the next, and after each ac-

cumulator finished a calculation, it communi-

cated its results to the next in line.

The accumulators were connected to each other

manually.

• The 1949 computation of π to 2,037 places

took 70 hours.

• It would have taken roughly 100,000 ENI-

ACs to store the Smithsonian’s picture!

... AND now we have
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MOORE’S LAW

The complexity for minimum compo-
nent costs has increased at a rate of
roughly a factor of two per year. . . .
Certainly over the short term this rate
can be expected to continue, if not to
increase. Over the longer term, the
rate of increase is a bit more uncertain,
although there is no reason to believe
it will not remain nearly constant for at
least 10 years.
(Gordon Moore, Intel co-founder, 1965)

I “Moore’s Law” asserts that semiconductor
technology approximately doubles in capacity
and performance roughly every 18 to 24 months
(not quite every year as Moore predicted).

This trend has continued unabated for 40 years,
and, according to Moore and others, there is
still no end in sight—at least another ten years
is assured.
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I An astounding record of sustained exponen-

tial progress, unique in history of technology.

What’s more, mathematical computing tools

are now being implemented on parallel com-

puter platforms, which will provide even greater

power to the research mathematician.

I Amassing huge amounts of processing power

will not solve all mathematical problems, even

those amenable to computational analysis.
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VISUAL DYNAMICS

• In recent continued fraction work, we needed
to study the dynamical system t0 := t1 := 1:

tn ←↩
1

n
tn−1 + ωn−1

(
1− 1

n

)
tn−2,

where ωn = a2, b2 for n even, odd respectively.
X Think of this as a black box.

¤ Numerically all one sees is tn → 0 slowly.
¤ Pictorially we learn significantly more∗:

∗. . . “Then felt I like a watcher of the skies, when a new
planet swims into his ken.” (Chapman’s Homer)
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• Scaling by
√

n, and coloring odd and even

iterates, fine structure appears.

The attractors for various |a| = |b| = 1.
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GAUSS and HADAMARD

Carl Friedrich Gauss, who drew (carefully) and
computed a great deal, once noted, I have the
result, but I do not yet know how to get it.∗

Pauca sed Matura

The object of mathematical rigor is to
sanction and legitimize the conquests
of intuition, and there was never any
other object for it.

¦ J. Hadamard quoted at length in E. Borel,
Lecons sur la theorie des fonctions, 1928.

∗Likewise the quote!
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Novus in analysi campus se nobis aperuit

An excited young Gauss writes: “A new field

of analysis has appeared to us, evidently in the

study of functions etc.” (October 1798)
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A BRIEF HISTORY OF RIGOUR

• Greeks: trisection, circle squaring, cube
doubling and

√
2.

• Newton and Leibniz: fluxions and infinites-
imals.

• Cauchy and Fourier: limits and continuity.

• Frege and Russell, Gödel and Turing.
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Fourier series need not converge
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THE PHILOSOPHIES OF RIGOUR

• Everyman: Platonism—stuff exists (1936)

• Hilbert: Formalism—math is invented; for-

mal symbolic games without meaning

• Brouwer: Intuitionism-—many variants; (em-

bodied cognition)

• Bishop: Constructivism—tell me how big;

(social constructivism)

† Last two deny the excluded middle: A ∨ Ã
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HALES and KEPLER

• Kepler’s conjecture: the densest way to
stack spheres is in a pyramid is the oldest
problem in discrete geometry.

• The most interesting recent example of com-
puter assisted proof. Published in Annals
of Math with an “only 99% checked” dis-
claimer.

• This has triggered very varied reactions.
(In Math, Computers Don’t Lie. Or Do
They? NYT 6/4/04)

• Famous earlier examples: The Four Color
Theorem and The non existence of a pro-
jective plane of order 10.

• The three raise and answer quite distinct
questions—both real and specious.

41



Grocers the world over know the most efficient way to stack spheres — but a mathematical proof for the method has brought reviewers to their knees.

J
ust under five years ago, Thomas Hales
made a startling claim. In an e-mail he
sent to dozens of mathematicians,

Hales declared that he had used a series of
computers to prove an idea that has evaded
certain confirmation for 400 years. The sub-
ject of his message was Kepler’s conjecture,
proposed by the German astronomer
Johannes Kepler, which states that the dens-
est arrangement of spheres is one in which
they are stacked in a pyramid — much the
same way as grocers arrange oranges.

Soon after Hales made his announce-
ment, reports of the breakthrough appeared
on the front pages of newspapers around the
world. But today, Hales’s proof remains in
limbo. It has been submitted to the presti-
gious Annals of Mathematics, but is yet to
appear in print. Those charged with check-
ing it say that they believe the proof is correct,
but are so exhausted with the verification
process that they cannot definitively rule out
any errors. So when Hales’s manuscript
finally does appear in the Annals, probably
during the next year, it will carry an unusual
editorial note — a statement that parts of the
paper have proved impossible to check.

At the heart of this bizarre tale is the use 
of computers in mathematics, an issue that
has split the field. Sometimes described as a
‘brute force’ approach, computer-aided

proofs often involve calculating thousands of
possible outcomes to a problem in order to
produce the final solution.Many mathemati-
cians dislike this method, arguing that it is
inelegant. Others criticize it for not offering
any insight into the problem under consider-
ation.In 1977,for example,a computer-aided
proof was published for the four-colour 
theorem,which states that no more than four
colours are needed to fill in a map so that any
two adjacent regions have different colours1,2.
No errors have been found in the proof, but
some mathematicians continue to seek a
solution using conventional methods.

Pile-driver

Hales, who started his proof at the University
of Michigan in Ann Arbor before moving to
the University of Pittsburgh, Pennsylvania,
began by reducing the infinite number of
possible stacking arrangements to 5,000 con-
tenders. He then used computers to calculate
the density of each arrangement. Doing so
was more difficult than it sounds. The proof
involved checking a series of mathematical
inequalities using specially written computer
code. In all, more than 100,000 inequalities
were verified over a ten-year period.

Robert MacPherson, a mathematician at
the Institute for Advanced Study in Prince-
ton, New Jersey, and an editor of the Annals,

was intrigued when he heard about the
proof.He wanted to ask Hales and his gradu-
ate student Sam Ferguson, who had assisted
with the proof, to submit their finding for
publication,but he was also uneasy about the
computer-based nature of the work.

TheAnnalshad,however,already accepted
a shorter computer-aided proof — the paper,
on a problem in topology, was published this
March3. After sounding out his colleagues on
the journal’s editorial board, MacPherson
asked Hales to submit his paper. Unusually,
MacPherson assigned a dozen mathemati-
cians to referee the proof — most journals
tend to employ between one and three. The
effort was led by Gábor Fejes Tóth of the
Alfréd Rényi Institute of Mathematics in
Budapest, Hungary, whose father, the math-
ematician László Fejes Tóth, had predicted in
1965 that computers would one day make a
proofofKepler’s conjecture possible.

It was not enough for the referees to rerun
Hales’s code — they had to check whether
the programs did the job that they were 
supposed to do. Inspecting all of the code
and its inputs and outputs, which together
take up three gigabytes of memory space,
would have been impossible. So the referees
limited themselves to consistency checks, a
reconstruction of the thought processes
behind each step of the proof, and then a

news feature

Does the proof stack up?
Think peer review  takes too long? One m athem atician has w aited four

years to have his paper refereed, only to hear that the exhausted review ers

can’t be certain w hether his proof is correct. George Szpiro investigates.

12 NATURE |VOL 424 |3 JULY 2003 |www.nature.com/nature
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Pyramid power:

Thomas Hales

believes that

computers will

succeed where

humans have failed

in verifying 

his proof.

study ofall of the assumptions and logic used
to design the code. A series of seminars,
which ran for full academic years, was orga-
nized to aid the effort.

But success remained elusive. Last July,
Fejes Tóth reported that he and the other 
referees were 99% certain that the proof is
sound. They found no errors or omissions,
but felt that without checking every line of
the code,they could not be absolutely certain
that the proof is correct.

For a mathematical proof, this was not
enough. After all, most mathematicians
believe in the conjecture already — the proof
is supposed to turn that belief into certainty.
The history of Kepler’s conjecture also gives
reason for caution. In 1993, Wu-Yi Hsiang,
then at the University ofCalifornia,Berkeley,
published a 100-page proofof the conjecture
in the International Journal of Mathematics4.
But shortly after publication, errors were
found in parts of the proof.Although Hsiang
stands by his paper,most mathematicians do
not believe it is valid.

After the referees’ reports had been con-
sidered, Hales says that he received the 
following letter from MacPherson: “The
news from the referees is bad, from my per-
spective. They have not been able to certify
the correctness of the proof, and will not be
able to certify it in the future, because they
have run out of energy … One can speculate
whether their process would have converged
to a definitive answer had they had a more
clear manuscript from the beginning, but
this does not matter now.”

The last sentence lets some irritation shine
through. The proof that Hales delivered was
by no means a polished piece. The 250-page
manuscript consisted of five separate papers,
each a sort of lab report that Hales and Fer-
guson filled out whenever the computer 
finished part of the proof. This unusual 
format made for difficult reading. To make
matters worse, the notation and definitions
also varied slightly between the papers.

Rough but ready
MacPherson had asked the authors to edit
their manuscript. But Hales and Ferguson
did not want to spend another year rework-
ing their paper. “Tom could spend the rest
of his career simplifying the proof,” Fergu-
son said when they completed their paper.
“That doesn’t seem like an appropriate use
of his time.” Hales turned to other chal-
lenges, using traditional methods to solve
the 2,000-year-old honeycomb conjecture,
which states that of all conceivable tiles of
equal area that can be used to cover a floor
without leaving any gaps, hexagonal tiles
have the shortest perimeter5. Ferguson left
academia to take a job with the US Depart-
ment of Defense.

Faced with exhausted referees, the editor-
ial board of the Annalsdecided to publish the
paper — but with a cautionary note. The
paper will appear with an introduction by
the editors stating that proofs of this type,
which involve the use of computers to check
a large number of mathematical statements,
may be impossible to review in full. The 
matter might have ended there, but for
Hales, having a note attached to his proof

was not satisfactory.
This January, he launched the 

Flyspeck project, also known as the
Formal Proof of Kepler.Rather than
rely on human referees, Hales
intends to use computers to verify

news feature

every step of his proof.The effort will require
the collaboration ofa core group ofabout ten
volunteers, who will need to be qualified
mathematicians and willing to donate the
computer time on their machines. The team
will write programs to deconstruct each step
of the proof, line by line, into a set of axioms
that are known to be correct. If every part of
the code can be broken down into these
axioms, the proof will finally be verified.

Those involved see the project as doing
more than just validating Hales’s proof.Sean
McLaughlin, a graduate student at New York
University, who studied under Hales and 
has used computer methods to solve other
mathematical problems, has already volun-
teered. “It seems that checking computer-
assisted proofs is almost impossible for
humans,”he says.“With luck, we will be able
to show that problems of this size can be 
subjected to rigorous verification without
the need for a referee process.”

But not everyone shares McLaughlin’s
enthusiasm. Pierre Deligne, an algebraic
geometer at the Institute for Advanced Study,
is one of the many mathematicians who do
not approve of computer-aided proofs.
“I believe in a proof if I understand it,”he says.
For those who side with Deligne, using com-
puters to remove human reviewers from the
refereeing process is another step in the
wrong direction.

Despite his reservations about the proof,
MacPherson does not believe that math-
ematicians should cut themselves off from
computers.Others go further.Freek Wiedijk,
of the Catholic University ofNijmegen in the
Netherlands, is a pioneer of the use of com-
puters to verify proofs. He thinks that the
process could become standard practice in
mathematics. “People will look back at the
turn of the twentieth century and say ‘that is
when it happened’,”Wiedijk says.

Whether or not computer-checking takes
off, it is likely to be several years before 
Flyspeck produces a result. Hales and
McLaughlin are the only confirmed partici-
pants, although others have expressed an
interest. Hales estimates that the whole
process, from crafting the code to running 
it, is likely to take 20 person-years of work.
Only then will Kepler’s conjecture become
Kepler’s theorem, and we will know for sure
whether we have been stacking oranges 
correctly all these years. n

George Szpiro writes for the Swiss newspapers NZZ

and NZZ am Sonntag from Jerusalem, Israel. His book

Kepler’s Conjecture (Wiley, New York) was published 

in February. 
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Star player:Johannes Kepler’s conjecture has

kept mathematicians guessing for 400 years.
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A PI INTEGRAL

A. Why π 6= 22
7 :

0 <
∫ 1

0

(1− x)4x4

1 + x2
dx =

22

7
− π.

[
∫ t

0
· = 1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t) .]

The Colour Calculator
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TWO INFINITE PRODUCTS

A. A rational evaluation:

∞∏

n=2

n3 − 1

n3 + 1
=

2

3
.

· · ·
B. And a transcendent one:

∞∏

n=2

n2 − 1

n2 + 1
=

π

sinh(π)
.

• The Inverse Symbolic Calculator can iden-

tify this product, as can Maple.

• ∫
,
∑

,
∏

are now largely algorithmic not black

arts.

45



COINCIDENCE OR FRAUD

• Coincidences do occur

The approximations

π ≈ 3√
163

log(640320)

and

π ≈
√

2
9801

4412
occur for deep number theoretic reasons—the

first good to 15 places, the second to eight.

By contrast

eπ − π = 19.999099979189475768 . . .

most probably for no good reason.

X This seemed more bizarre on an eight digit

calculator.

46



Likewise, as spotted by Pierre Lanchon recently,

e = 10.10110111111000010101000101100 . . .

while

π = 11.0010010000111111011010101000 . . .

have 19 bits agreeing in base two—with one

read right to left.

• More extended coincidences are almost al-

ways contrived . . .
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HIGH PRECISION FRAUD

∞∑

n=1

[n tanh(π)]

10n

?
=

1

81

is valid to 268 places; while
∞∑

n=1

[n tanh(π
2)]

10n

?
=

1

81

is valid to just 12 places.

• Both are actually transcendental numbers.

Correspondingly the simple continued fractions
for tanh(π) and tanh(π

2) are respectively

[0,1, 267,4,14,1,2,1,2,2,1,2,3,8,3,1]

and

[0,1, 11,14,4,1,1,1,3,1,295,4,4,1,5,17,7]

• Bill Gosper describes how continued frac-
tions let you “see” what a number is. “[I]t’s
completely astounding ... it looks like you
are cheating God somehow.”
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SEEING PATTERNS in PARTITIONS

The number of additive partitions of n, p(n),

is generated by

1 +
∑

n≥1

p(n)qn =
1

∏
n≥1(1− qn)

.(2)

Thus, p(5) = 7 since

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1

= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

Developing (2) is an introduction to enumer-

ation via generating functions as discussed in

Polya’s change example.

Additive partitions are harder to handle than

multiplicative factorizations, but they may be

introduced in the elementary school curriculum

with questions like: How many ‘trains‘ of a

given length can be built with Cuisenaire rods?
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Ramanujan used MacMahon’s table of p(n) to
intuit remarkable deep congruences like

p(5n+4) ≡ 0 mod 5, p(7n+5) ≡ 0 mod 7

p(11n+6) ≡ 0 mod 11,

from relatively limited data like P (q) =

1 + q + 2 q2 + 3 q3 + 5 q4 + 7 q5 + 11 q6 + 15 q7

+ 22 q8 + 30 q9 + 42 q10 + 56 q11 + 77 q12

+ 101 q13 + 135 q14 + 176 q15 + 231 q16

+ 297 q17 + 385 q18 + 490 q19

+ 627 q20b + 792 q21 + 1002 q22

+ · · ·+ p(200)q200 + · · ·
(3)

• Cases 5n+4 and 7n+5 are flagged in (3).

• Of course, it is easier to (heuristically) con-
firm than find these fine examples of Math-
ematics: the science of patterns∗

∗Keith Devlin’s 1997 book.
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IS HARD or EASY BETTER?

A modern computationally driven question is
How hard is p(n) to compute?

• In 1900, it took the father of combina-
torics, Major Percy MacMahon (1854–1929),
months to compute p(200) using recur-
sions developed from (2).

• By 2000, Maple would produce p(200) in
seconds if one simply demands the 200’th
term of the Taylor series. A few years ear-
lier it required being careful to compute the
series for

∏
n≥1(1 − qn) first and then the

series for the reciprocal of that series!

• This baroque event is occasioned by Euler’s
pentagonal number theorem

∏

n≥1

(1− qn) =
∞∑

n=−∞
(−1)nq(3n+1)n/2.
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• The reason is that, if one takes the series

for (2), the software has to deal with 200

terms on the bottom. But the series for∏
n≥1(1 − qn), has only to handle the 23

non-zero terms in series in the pentagonal

number theorem.

• If introspection fails, we can find the pen-

tagonal numbers occurring above in Sloane

and Plouffe’s on-line ‘Encyclopedia of In-

teger Sequences’: www.research.att.com/

personal/njas/sequences/eisonline.html.

• This ex post facto algorithmic analysis can

be used to facilitate independent student

discovery of the pentagonal number theo-

rem, and like results.
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• The difficulty of estimating the size of p(n)
analytically—so as to avoid enormous or
unattainable computational effort—led to
some marvellous mathematical advances∗.

• The corresponding ease of computation may
now act as a retardant to insight.

• New mathematics is discovered only when
prevailing tools run totally out of steam.

• This raises a caveat against mindless com-
puting:

Will a student or researcher discover
structure when it is easy to compute
without needing to think about it?
Today, she may thoughtlessly com-
pute p(500) which a generation ago
took much, much pain and insight.

∗By researchers including Hardy and Ramanujan, and
Rademacher
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BERLINSKI

The computer has in turn changed the
very nature of mathematical experience,
suggesting for the first time that math-
ematics, like physics, may yet become
an empirical discipline, a place where
things are discovered because they are
seen.

David Berlinski, “Ground Zero: A Re-
view of The Pleasures of Counting, by
T. W. Koerner,” 1997.

• As all sciences rely more on ‘dry experi-
ments’, via computer simulation, the bound-
ary between physics (e.g., string theory)
and mathematics (e.g., by experiment) is
delightfully blurred.

• An early exciting example is provided by
gravitational boosting.
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GRAVITATIONAL BOOSTING

“The Voyager Neptune Planetary Guide” (JPL
Publication 89–24) has an excellent descrip-
tion of Michael Minovitch’ computational and
unexpected discovery of gravitational boost-
ing (also known as slingshot magic) at the Jet
Propulsion Laboratory in 1961.

The article starts by quoting Arthur C. Clarke

“Any sufficiently advanced technology is indis-
tinguishable from magic.”

Sedna And Friends in 2004
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Until he showed Hohmann transfer ellipses were
not least energy paths to the outer planets:

“most planetary mission designers consid-
ered the gravity field of a target planet
to be somewhat of a nuisance, to be can-
celled out, usually by onboard Rocket thrust.”

• Without a boost from the orbits of Saturn,
Jupiter and Uranus, the Earth-to-Neptune
Voyager mission (achieved in 1989 in around
a decade) would have taken over 30 years!

• We would still be waiting; longer to see
Sedna confirmed (8 billion miles away—3
times further than Pluto).
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LIGO: MATH and the COSMOS

Einstein’s theory of general relativity de-

scribes how massive bodies curve space and

time; it realizes gravity as movement of masses

along shortest paths in curved space-time.

• A subtle mathematical inference is that rel-

atively accelerating bodies will produce rip-

ples on the curved space-time surface, prop-

agating at the speed of light: gravita-

tional waves.

These extraordinarily weak cosmic signals hold

the key to a new era of astronomy if only we

can build detectors and untangle the mathe-

matics to interpret them. The signal to noise

ratio is tiny!
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LIGO, the Laser Interferometer Gravitational-

Wave Observatory, is such a developing US

gravitational wave detector.

One of the first 3D simulations of

the gravitational waves arising

when two black holes collide

• Only recently has the computational power

existed to realise such simulations, on com-

puters such as at WestGrid.
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COME and VISIT in D-DRIVE

www.cs.dal.ca/ddrive

WHERE MATHEMATICS GOES LIVE

• We are following in a great tradition of

Mathematical Models as illustrated in the

APPENDIX below · · ·
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19th C. MATHEMATICAL MODELS

Felix Klein’s heritage

Considerable obstacles generally present
themselves to the beginner, in study-
ing the elements of Solid Geometry,
from the practice which has hitherto
uniformly prevailed in this country, of
never submitting to the eye of the stu-
dent, the figures on whose properties
he is reasoning, but of drawing per-
spective representations of them upon
a plane. . . .

60



I hope that I shall never be obliged to

have recourse to a perspective drawing

of any figure whose parts are not in the

same plane.

Augustus de Morgan (1806–71).

• de Morgan, first President of the London

Mathematical Society, was equally influen-

tial as an educator and a researcher.

• There is evidence that young children see

more naturally in three than two dimen-

sions.

(See discussion at www.colab.sfu.ca/ICIAM03/)
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Coxeter’s octahedral kaleidoscope

(circa 1925)

Modern science is often driven by fads

and fashion, and mathematics is no ex-

ception. Coxeter’s style, I would say, is

singularly unfashionable. He is guided, I

think, almost completely by a profound

sense of what is beautiful.

(Robert Moody)
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A four dimensional polytope with 120
dodecahedral faces

• In a 1997 paper, Coxeter showed his friend
Escher, knowing no math, had achieved
“mathematical perfection” in etching Cir-
cle Limit III. “Escher did it by instinct,”
Coxeter wrote, “I did it by trigonometry.”

• Fields medalist David Mumford recently noted
that Donald Coxeter (1907-2003) placed
great value on working out details of com-
plicated explicit examples.
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In my book, Coxeter has been one of

the most important 20th century math-

ematicians —not because he started a

new perspective, but because he deep-

ened and extended so beautifully an

older esthetic. The classical goal of

geometry is the exploration and enu-

meration of geometric configurations

of all kinds, their symmetries and the

constructions relating them to each other.

The goal is not especially to prove

theorems but to discover these perfect

objects and, in doing this,theorems are

only a tool that imperfect humans need

to reassure themselves that they have

seen them correctly.

(David Mumford, 2003)
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20th C. MATHEMATICAL MODELS

Ferguson’s “Eight-Fold Way” sculpture
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The Fergusons won the 2002 Communications

Award, of the Joint Policy Board of Mathemat-

ics. The citation runs:

They have dazzled the

mathematical community

and a far wider public

with exquisite sculptures

embodying mathematical

ideas, along with artful

and accessible essays and

lectures elucidating the

mathematical concepts.

It has been known for some time that the hy-

perbolic volume V of the figure-eight knot

complement is

V = 2
√

3
∞∑

n=1

1

n
(
2n
n

)
2n−1∑

k=n

1

k

= 2.029883212819307250042405108549 . . .
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Ferguson’s “Figure-Eight Knot

Complement” sculpture
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In 1998, British physicist David Broadhurst con-
jectured V/

√
3 is a rational linear combination

of

Cj =
∞∑

n=0

(−1)n

27n(6n + j)2
.(4)

Ferguson’s

subtractive

image

of the

BBP Pi

formula

Indeed, as Broadhurst found, using Ferguson’s
PSLQ:

V =

√
3

9

∞∑

n=0

(−1)n

27n
×

{
18

(6n + 1)2
− 18

(6n + 2)2
− 24

(6n + 3)2

− 6

(6n + 4)2
+

2

(6n + 5)2

}
.
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• Entering the following code in the Mathe-

matician’s Toolkit, at www.expmath.info:

v = 2 * sqrt[3] * sum[1/(n * binomial[2*n,n])

* sum[1/k,{k, n,2*n-1}], {n, 1, infinity}]

pslq[v/sqrt[3],

table[sum[(-1)^n/(27^n*(6*n+j)^2),

{n, 0, infinity}], {j, 1, 6}]]

recovers the solution vector

(9, -18, 18, 24, 6, -2, 0).

• The first proof that this formula holds is

given in our new book.

• The formula is inscribed on each cast of

the sculpture—marrying both sides of Hela-

man!
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21st C. MATHEMATICAL MODELS

Knots 10161 (L) and 10162 (C) agree (R)∗.

In NewMIC’s Cave or Plato’s?
∗KnotPlot: from Little (1899) to Perko (1974) and on.
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