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1 Introduction

Monotone operators have frequently proven to be a key class of objects in both

modern Optimization and Analysis; see, e.g., [1–3], the books [4–14] and the

references given therein.

In this paper, we consider the structure of maximally monotone operators

in Banach space whose domains have nonempty interior—which as we shall

see implies the existence of points with various continuity properties—and we

present new and explicit structure formulas for such operators. Along the way,

we give new proofs of several of Voisei’s recent results: norm-to-weak∗ closedness

and property (Q) for these operators. We also revisit one more-classical result

due to Auslender. Various applications and limiting examples are given.

The remainder of this paper is organized as follows. In Section 2, we intro-

duce some basic notations and background in Monotone Operator Theory. In

Section 3, we collect preliminary results for future reference and the reader’s

convenience. In Section 4, we study local boundedness properties of monotone

operators and also give a somewhat simpler proof of a recent result of Voisei [15].

The main result (Theorem 5.2) is proved in Section 5, and we also present a new

proof of a result of Auslender (Theorem 5.1). A second structure theorem —

which yields a strong version of property (Q) for maximally monotone operators
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(Theorem 5.3) — is also provided. In Section 6 we present a few extra illustra-

tive examples. Finally, we list some open questions raised from our paper and

the two most central open problems in Monotone Operator Theory in Section 7.

2 Preliminaries

We assume throughout that X is a real Banach space with norm ‖ · ‖, that X∗

is the continuous dual of X, and that X and X∗ are paired by 〈·, ·〉. The closed

unit ball in X is denoted by BX :=
{
x ∈ X | ‖x‖ ≤ 1

}
, Bδ(x) := x + δBX

(where δ > 0 and x ∈ X) and N = {1, 2, 3, . . .}.

Let A : X ⇒ X∗ be a set-valued operator (also known as a relation, point-to-

set mapping or multifunction) from X to X∗, i.e., for every x ∈ X, Ax ⊆ X∗,

and let graA :=
{

(x, x∗) ∈ X ×X∗ | x∗ ∈ Ax
}

be the graph of A. The domain

of A is domA :=
{
x ∈ X | Ax 6= ∅

}
and ranA := A(X) is the range of A.

Recall that A is monotone iff

〈x− y, x∗ − y∗〉 ≥ 0, ∀(x, x∗) ∈ graA ∀(y, y∗) ∈ graA, (1)

and maximally monotone iff A is monotone and A has no proper monotone

extension (in the sense of graph inclusion). Let A : X ⇒ X∗ be monotone and

(x, x∗) ∈ X ×X∗. We say (x, x∗) is monotonically related to graA iff

〈x− y, x∗ − y∗〉 ≥ 0, ∀(y, y∗) ∈ graA.

As much as possible we adopt standard convex analysis notation. Given a

subset C of X, intC is the interior of C and C is the norm closure of C. For
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the set D ⊆ X∗, Dw*
is the weak∗ closure of D, and the norm × weak∗ closure

of C ×D is C ×D‖·‖×w*
. The indicator function of C, written as ιC , is defined

at x ∈ X by

ιC(x) :=


0, if x ∈ C;

+∞, otherwise.

(2)

For every x ∈ X, the normal cone operator of C at x is defined by

NC(x) :=
{
x∗ ∈ X∗ | supc∈C〈c− x, x∗〉 ≤ 0

}
, if x ∈ C; and NC(x) := ∅, if

x /∈ C; the tangent cone operator of C at x is defined by

TC(x) :=
{
y ∈ X | supx∗∈NC(x)〈y, x∗〉 ≤ 0

}
, if x ∈ C; and TC(x) := ∅, if x /∈ C.

The hypertangent cone of C at x, HC(x), coincides with the interior of TC(x)

(see [16,17]).

Let f : X → ]−∞,+∞]. Then dom f := f−1(R) is the domain of f . We say

f is proper iff dom f 6= ∅. Let f be proper. The subdifferential of f is defined

by

∂f : X ⇒ X∗ : x 7→ {x∗ ∈ X∗ | (∀y ∈ X) 〈y − x, x∗〉+ f(x) ≤ f(y)}.

Let g : X → ]−∞,+∞]. Then the inf-convolution f�g is the function defined

on X by

f�g : x 7→ inf
y∈X

[f(y) + g(x− y))] .

We say a net (aα)α∈Γ in X is eventually bounded iff there exist α0 ∈ Γ and

M ≥ 0 such that

‖aα‖ ≤M, ∀α �Γ α0.
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We denote by −→ and ⇁w* respectively, the norm convergence and weak∗

convergence of nets.

Let A : X ⇒ X∗ be monotone with domA 6= ∅ and consider a set

S ⊆ domA. We define AS : X ⇒ X∗ by

graAS = graA ∩ (S ×X∗)
‖·‖×w*

=
{

(x, x∗) | ∃ a net (xα, x
∗
α)α∈Γ in graA ∩ (S ×X∗) such thatxα −→ x,

x∗α⇁w* x
∗}. (3)

If int domA 6= ∅, we denote by Aint := Aint domA. We note that

graAdomA = graA
‖·‖×w* ⊇ graA while graAS ⊆ graAT for S ⊆ T .

Let A : X ⇒ X∗. Following [18], we say A has the upper-semicontinuity

property property (Q) iff for every net (xα)α∈J in X such that xα −→ x, we

have

⋂
α∈J

conv

 ⋃
β�Jα

A(xβ)

w*

⊆ Ax. (4)

3 Preliminary Results

We start with a classic compactness theorem.

Fact 3.1 [Banach–Alaoglu](See [19, Theorem 2.6.18] or [20, Theorem 3.15].)

The closed unit ball BX∗ in X∗ is weak∗ compact.

Fact 3.2 [Rockafellar](See [21, Theorem A], [12, Theorem 3.2.8], [11, The-

orem 18.7] or [5, Theorem 9.2.1].) Let f : X → ]−∞,+∞] be a proper lower

semicontinuous convex function. Then ∂f is maximally monotone.
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The prior result can fail in both incomplete normed spaces and in complete

metrizable locally convex spaces [5]. The next two important central results

now has many proofs (see also [5, Ch. 8]).

Fact 3.3 [Rockafellar](See [22, Theorem 1] or [7, Theorem 2.28].) Let

A : X ⇒ X∗ be monotone with int domA 6= ∅. Then A is locally bounded at

x ∈ int domA, i.e., there exist δ > 0 and K > 0 such that

sup
y∗∈Ay

‖y∗‖ ≤ K, ∀y ∈ (x+ δBX) ∩ domA.

Fact 3.4 [Rockafellar] (See [22, Theorem 1] or [11, Theorem 27.1 and Theo-

rem 27.3].) Let A : X ⇒ X∗ be maximal monotone with int domA 6= ∅. Then

int domA = int domA and domA is convex.

The final two results we give are elementary.

Fact 3.5 ( [23, Section 2, page 539].) Let A : X ⇒ X∗ be maximally

monotone and a net (aα, a
∗
α)α∈Γ in graA. Assume that (aα, a

∗
α)α∈Γ

norm × weak∗ converges to (x, x∗) and (a∗α)α∈Γ is eventually bounded. Then

(x, x∗) ∈ graA.

Fact 3.6 (See [24, Proposition 4.1.7].) Let C be a convex subset of X with

intC 6= ∅. Then for every x ∈ C, intTC(x) =
⋃
λ>0 λ [intC − x].

4 Local Boundedness Properties

The following result is extracted from part of the proof of [25, Proposition 3.1].

For the reader’s convenience, we repeat the proof here.
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Fact 4.1 [Boundedness below] Let A : X ⇒ X∗ be monotone and

x ∈ int domA. Then there exist δ > 0 and M > 0 such that x+ δBX ⊆ domA

and supa∈x+δBX ‖Aa‖ ≤ M . Assume that (z, z∗) is monotonically related to

graA. Then

〈z − x, z∗〉 ≥ δ‖z∗‖ − (‖z − x‖+ δ)M. (5)

Proof. Since x ∈ int domA, using Fact 3.3, there exist δ > 0 and M > 0 such

that

Aa 6= ∅ and sup
a∗∈Aa

‖a∗‖ ≤M, ∀a ∈ (x+ δBX). (6)

Then we have

〈z − x− b, z∗ − b∗〉 ≥ 0, ∀b ∈ δBX , b∗ ∈ A(x+ b)

⇒ 〈z − x, z∗〉 − 〈b, z∗〉+ 〈z − x− b,−b∗〉 ≥ 0, ∀b ∈ δBX , b∗ ∈ A(x+ b)

⇒ 〈z − x, z∗〉 − 〈b, z∗〉 ≥ 〈z − x− b, b∗〉, ∀b ∈ δBX , b∗ ∈ A(x+ b)

⇒ 〈z − x, z∗〉 − 〈b, z∗〉 ≥ −(‖z − x‖+ δ)M, ∀b ∈ δBX (by (6))

⇒ 〈z − x, z∗〉 ≥ 〈b, z∗〉 − (‖z − x‖+ δ)M, ∀b ∈ δBX . (7)

Hence we have 〈z − x, z∗〉 ≥ δ‖z∗‖ − (‖z − x‖+ δ)M . �

Fact 4.1 leads naturally to the following result which has many precursors

[11,15].

Lemma 4.1 [Strong directional boundedness] Let A : X ⇒ X∗ be monotone

and x ∈ int domA. Then there exist δ > 0 and M > 0 such that

x + 2δBX ⊆ domA and supa∈x+2δBX ‖Aa‖ ≤ M . Assume also that (x0, x
∗
0) is
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monotonically related to graA. Then

sup
a∈[x+δBX , x0[, a∗∈Aa

‖a∗‖ ≤ 1

δ
(‖x0 − x‖+ 1) (‖x∗0‖+ 2M) ,

where [x+ δBX , x0[ :=
{

(1− t)y + tx0 | 0 ≤ t < 1, y ∈ x+ δBX
}

.

Proof. Since x ∈ int domA, by Fact 3.3, there exist δ > 0 and M > 0 such

that

x+ 2δBX ⊆ domA and sup
a∗∈Aa

‖a∗‖ ≤M, ∀a ∈ (x+ 2δBX). (8)

Let y ∈ x+ δBX . Then by (8),

y + δBX ⊆ domA and sup
a∗∈Aa

‖a∗‖ ≤M, ∀a ∈ (y + δBX). (9)

Let t ∈ [0, 1[ and a∗ ∈ A((1 − t)y + tx0). By the assumption that (x0, x
∗
0) is

monotonically related to graA, we have

〈
a∗ − x∗0, (1− t)(y − x0)

〉
=
〈
a∗ − x∗0, (1− t)y + tx0 − x0

〉
≥ 0.

Thus

〈a∗, x0 − y〉 ≤ 〈x0 − y, x∗0〉. (10)

By Fact 4.1 and (9),

δ‖a∗‖ ≤
〈
(1− t)y + tx0 − y, a∗

〉
+
(
‖(1− t)y + tx0 − y‖+ δ

)
M

≤
〈
t(x0 − y), a∗

〉
+
(
‖x0 − y‖+ δ

)
M

≤
〈
t(x0 − y), a∗

〉
+
(
‖x0 − x‖+ 2δ

)
M (since y ∈ x+ δBX). (11)
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Then by (11) and (10),

‖a∗‖ ≤ 1

δ
t〈x0 − y, x∗0〉+

M

δ
‖x0 − x‖+ 2M ≤ 1

δ
‖x0 − y‖ · ‖x∗0‖+

M

δ
‖x0 − x‖+ 2M

≤ 1

δ

(
‖x0 − x‖+ δ)‖x∗0‖+

M

δ
‖x0 − x‖+ 2M (since y ∈ x+ δBX)

≤ 1

δ
‖x0 − x‖ · ‖x∗0‖+ ‖x∗0‖+

M

δ
‖x0 − x‖+ 2M

=
1

δ
‖x0 − x‖

(
‖x∗0‖+M

)
+ ‖x∗0‖+ 2M

≤ 1

δ

(
‖x0 − x‖+ 1

)(
‖x∗0‖+ 2M

)
.

Hence

sup
a∈[x+δBX , x0[, a∗∈Aa

‖a∗‖ ≤ 1

δ
(‖x0 − x‖+ 1) (‖x∗0‖+ 2M) .

We now have the required estimate. �

The following result — originally conjectured by the first author in [26] —

was established by Voisei in [15, Theorem 37] as part of a more complex set of

results (See [15] for more general results.). We next give a somewhat simpler

proof by applying a similar technique to that used in the proof of [25, Prop 3.1,

subcase 2].

Theorem 4.1 [Eventual boundedness] Let A : X ⇒ X∗ be monotone such

that int domA 6= ∅. Then every norm × weak∗ convergent net in graA is

eventually bounded.

Proof. As the result and hypotheses are again invariant under translation, we

can and do suppose that 0 ∈ int domA. Let (aα, a
∗
α)α∈Γ in graA be such that

(aα, a
∗
α) norm × weak∗ converges to (x, x∗). (12)
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Clearly, it suffices to show that (a∗α)α∈Γ is eventually bounded. Suppose to the

contrary that (a∗α)α∈Γ is not eventually bounded. Then there exists a subnet of

(a∗α)α∈Γ, for convenience, still denoted by (a∗α)α∈Γ, such that

lim
α
‖a∗α‖ = +∞. (13)

We can and do suppose that a∗α 6= 0,∀α ∈ Γ. By Fact 4.1, there exist δ > 0 and

M > 0 such that

〈aα, a∗α〉 ≥ δ‖a∗α‖ − (‖aα‖+ δ)M, ∀α ∈ Γ. (14)

Then we have

〈aα,
a∗α
‖a∗α‖

〉 ≥ δ − (‖aα‖+ δ)M

‖a∗α‖
, ∀α ∈ Γ. (15)

By Fact 3.1, there exists a weak* convergent subnet (a∗β)β∈I of (a∗α)α∈Γ, say

a∗β
‖a∗β‖

⇁w* a
∗
∞ ∈ X∗. (16)

Then taking the limit along the subnet in (15), by (12) and (13), we have

〈x, a∗∞〉 ≥ δ. (17)

On the other hand, by (12), we have

〈x, a∗α〉 −→ 〈x, x∗〉. (18)

Dividing by ‖a∗α‖ in both sides of (18), then by (13) and (16) we take the limit

along the subnet again to get

〈x, a∗∞〉 = 0. (19)
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The above inequality contradicts (17). Hence we have (aα, a
∗
α)α∈Γ is eventually

bounded. �

Corollary 4.1 [Norm-weak∗ closed graph] Let A : X ⇒ X∗ be maximally

monotone such that int domA 6= ∅. Then graA is norm × weak∗ closed.

Proof. Apply Fact 3.5 and Theorem 4.1. �

Example 4.1 [Failure of graph to be norm-weak∗ closed] In [23], the authors

showed that the statement of Corollary 4.1 cannot hold without the assumption

of the nonempty interior domain even for the subdifferential operators — actu-

ally it fails in the bw∗ topology. More precisely (see [23] or [4, Example 21.5]):

Let f : `2(N)→ ]−∞,+∞] be defined by

x 7→ max
{

1 + 〈x, e1〉, sup
2≤n∈N

〈x,
√
nen〉

}
, (20)

where en := (0, . . . , 0, 1, 0, · · · , 0) : the nth entry is 1 and the others are 0. Then

f is proper lower semicontinuous and convex, but ∂f is not norm × weak∗

closed. A more general construction in an infinite-dimensional Banach space E

is also given in [23, Section 3]. It is as follows:

Let Y be an infinite dimensional separable subspace of E, and (vn)n∈N be

a normalized Markushevich basis of Y with the dual coefficients (v∗n)n∈N. We

defined vp,m and v∗p,m by

vp,m :=
1

p
(vp + vpm) and v∗p,m := v∗p + (p− 1)v∗pm , m ∈ N, p is prime.

Let f : E → ]−∞,+∞] be defined by

x 7→ ιY (x) + max
{

1 + 〈x, v∗1〉, sup
2≤m∈N, p is prime

〈x, v∗p,m〉
}
. (21)
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Then f is proper lower semicontinuous and convex. We have that ∂f is not

norm × bw∗ closed and hence ∂f is not norm × weak∗ closed. ♦

Corollary 4.2 Let A : X ⇒ X∗ be maximally monotone with

int domA 6= ∅. Assume that S ⊆ domA. Then graAS ⊆ graA and in conse-

quence conv [AS(x)]
w*
⊆ Ax, ∀x ∈ domA. Moreover, Ax = AS(x),∀x ∈ S and

hence Ax = Aint(x),∀x ∈ int domA.

Proof. By (3) and Corollary 4.1, graAS ⊆ graA. Since A is maximally

monotone, (for every x ∈ domA), Ax is convex and weak∗ closed. Thus

conv [AS(x)]
w*
⊆ Ax, ∀x ∈ domA. Let x ∈ S. Then by (3) again, Ax ⊆ AS(x)

and hence Ax = AS(x). Thus we have A = Aint on int domA. �

We now turn to consequences of these boundedness results.

5 Structure of Maximally Monotone Operators

A useful consequence of the Hahn-Banach separation principle [5] is:

Proposition 5.1 Let D,F be nonempty subsets of X∗, and C be a convex

set of X with intC 6= ∅. Assume that x ∈ C and that for every v ∈ intTC(x),

sup〈D, v〉 ≤ sup〈F, v〉 < +∞.

Then

D ⊆ convF +NC(x)
w*
. (22)

Proof. The separation principle ensures that suffices to show

sup
〈
D,h

〉
≤ sup

〈
NC(x) + F, h

〉
, ∀h ∈ X. (23)
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We consider two cases.

Case 1 : h /∈ TC(x). We have sup
〈
NC(x) + F, h

〉
= +∞ since

sup
〈
NC(x), h

〉
= +∞. Hence (23) holds.

Case 2 : h ∈ TC(x). Let v ∈ intTC(x). Then (for every t > 0)

h + tv ∈ intTC(x) by [27, Fact 2.2(ii)]. Now z 7→ sup
〈
D, z

〉
is lower semicon-

tinuous, and so by the assumption, we have

sup
〈
D,h

〉
≤ lim inf

t→0+
sup

〈
D,h+ tv

〉
≤ lim inf

t→0+
sup

〈
F, h+ tv

〉
≤ sup

〈
F, h

〉
+ lim inf

t→0+
t sup

〈
F, v

〉
= sup

〈
F, h

〉
( since sup

〈
F, v

〉
is finite)

≤ sup
〈
NC(x) + F, h

〉
.

Hence (23) holds and we have (22) holds. �

The proof of Proposition 5.1 was inspired partially by that of [27, Theo-

rem 4.5].

Remark 5.1 Dr. Robert Csetnek kindly communicated to us the following

alternative proof of Proposition 5.1:

Let σD be the support function of the set D, i.e., σD(z) := supd∗∈D〈z, d∗〉,

∀z ∈ X. The hypotheses imply σD ≤ σF +ιintTC(x), hence taking the conjugates

we have ι
convD

w* ≥
(
σF + ιintTC(x)

)∗
; since intTC(x) ⊆ domσF , we can apply

[12, Theorem 2.8.7 (iii)] and obtain

ι
convD

w* ≥ σ∗F�ι∗intTC(x) = ι
convF

w*�σTC(x) = ι
convF

w*�ιNC(x) = ι
convF

w*
+NC(x)

.
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Thus,

convD
w* ⊆ convF

w*
+NC(x) ⊆ convF +NC(x)

w*
. (24)

We can now provide our final technical proposition.

Proposition 5.2 Let A : X ⇒ X∗ be maximally monotone with

S ⊆ int domA 6= ∅ such that S is dense in int domA. Assume that x ∈ domA

and v ∈ HdomA(x) = intTdomA(x). Then there exists x∗0 ∈ AS(x) such that

sup
〈
AS(x), v

〉
=
〈
x∗0, v

〉
= sup

〈
Ax, v

〉
. (25)

In particular, domAS = domA.

Proof. By Corollary 4.2, graAS ⊆ graA and hence

sup
〈
AS(x), v

〉
≤ sup

〈
Ax, v

〉
. (26)

Now we show that

sup
〈
AS(x), v

〉
≥ sup

〈
Ax, v

〉
. (27)

Appealing now to Fact 3.6, we can and do suppose that v = x0 − x, where

x0 ∈ int domA = int domA by Fact 3.4. Using Lemma 4.1 select M, δ > 0 such

that x0 + 2δBX ⊆ domA and

sup
a∈[x0+δBX , x[, a∗∈Aa

‖a∗‖ ≤M < +∞. (28)

Let t ∈ ]0, 1[. Then by Fact 3.4 again,

x+ tBδ(v) = (1− t)x+ tx0 + tδBX ⊆ int domA = int domA. (29)
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Then by the monotonicity of A (for every a∗ ∈ A(x+ tw), x∗ ∈ Ax,w ∈ Bδ(v))

t〈a∗ − x∗, w〉 = 〈a∗ − x∗, x+ tw − x〉 ≥ 0. (30)

There exists a sequence (x∗n)n∈N in Ax such that

〈x∗n, v〉 −→ sup〈Ax, v〉. (31)

Combining (31) and (30), we have

〈a∗ − x∗n, v + w − v〉 ≥ 0, ∀a∗ ∈ A(x+ tw), w ∈ Bδ(v), n ∈ N. (32)

Fix 1 < n ∈ N. Thus, appealing to (28) and (32) yields,

〈a∗, v〉 ≥ 〈x∗n, v〉 − 〈a∗ − x∗n, w − v〉

≥ 〈x∗n, v〉 − (M + ‖x∗n‖) · ‖w − v‖ ∀a∗ ∈ A(x+ tw), w ∈ Bδ(v), n ∈ N. (33)

Take εn := min{ 1
n(M+‖x∗

n‖)
, δ} and tn := 1

n .

Since S is dense in int domA and x+ tnBεn(v) ⊆ int domA by (29),

S ∩ [x+ tnBεn(v)] 6= ∅. Then there exists wn ∈ X such that

wn ∈ Bεn(v), x+ tnwn ∈ S and then x+ tnwn −→ x. (34)

Hence, by (33),

〈a∗, v〉 ≥ 〈x∗n, v〉 −
1

n
, ∀a∗ ∈ A(x+ tnwn). (35)

Let a∗n ∈ A(x+ tnwn). Then by (35),

〈a∗n, v〉 ≥ 〈x∗n, v〉 −
1

n
. (36)
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By (28) and (29), (a∗n)n∈N is bounded. Then by Fact 3.1, there exists a weak*

convergent subnet of (a∗α)α∈I of (a∗n)n∈N such that

a∗α⇁w* x
∗
0 ∈ X∗. (37)

Then by (34), x∗0 ∈ AS(x) and thus by (36), (37) and (31)

sup
〈
AS(x), v

〉
≥
〈
x∗0, v

〉
≥ sup

〈
Ax, v

〉
.

Hence (27) holds and so does (25) by (26). The last conclusion then follows

from Corollary 4.2 directly. �

An easy consequence is the reconstruction of A on the interior of its domain.

In the language of [5,7,28–30] this is asserting the minimality of A as a w∗-cusco.

Corollary 5.1 Let A : X ⇒ X∗ be maximally monotone with

S ⊆ int domA 6= ∅. For any S dense in int domA, we have

conv [AS(x)]
w*

= Ax = Aint(x),∀x ∈ int domA.

Proof. Corollary 4.2 shows graAS ⊆ graA. Thus AS is monotone. By Proposi-

tion 5.2, AS(x) 6= ∅ on domA. Then apply [7, Theorem 7.13 and Corollary 7.8]

and Corollary 4.2 to obtain

conv [AS(x)]
w*

= Ax = Aint(x), ∀x ∈ int domA,

as required. �

There are many possible extensions of this sort of result along the lines

studied in [28]. Applying Proposition 5.2 and Lemma 4.1, we can also quickly

recapture [31, Theorem 2.1].

Theorem 5.1 [Directional boundedness in Euclidean space] Suppose that X

is finite-dimensional. Let A : X ⇒ X∗ be maximally monotone and x ∈ domA.
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Assume that there exist d ∈ X and ε0 > 0 such that x+ ε0d ∈ int domA. Then

[Ax]d :=
{
x∗ ∈ Ax | 〈x∗, d〉 = sup〈Ax, d〉

}
is nonempty and compact. Moreover, if a sequence (xn)n∈N in domA is such

that xn −→ x and

lim
xn − x
‖xn − x‖

= d, (38)

then for every ε > 0, there exists N ∈ N such that

A(xn) ⊆ [Ax]d + εBX∗ , ∀n ≥ N. (39)

Proof. By Fact 3.6, we have

d = 1
ε0

(x + ε0d − x) ∈ 1
ε0

[int domA− x] ⊆ intTdomA(x). Then by Proposi-

tion 5.2 and Corollary 4.2, there exists v∗ ∈ Ax such that

sup〈Ax, d〉 = 〈v∗, d〉. (40)

Hence v∗ ∈ [Ax]d and thus [Ax]d 6= ∅.

We next show that [Ax]d is compact. Let x∗ ∈ [Ax]d. By Fact 4.1, there

exist δ > 0 and M > 0 such that

−ε0〈d, x∗〉 = 〈x − (x + ε0d), x∗〉 ≥ δ‖x∗‖ − (‖ε0d‖ + δ)M . Then by (40),

δ‖x∗‖ ≤ (‖ε0d‖ + δ)M − ε0〈d, x∗〉 = (‖ε0d‖ + δ)M − ε0〈d, v∗〉 < +∞. Hence

[Ax]d is bounded. Clearly, [Ax]d is closed and so [Ax]d is compact.

Finally, we show that (39) holds. By Lemma 4.1 and x + ε0d ∈ int domA,

there exists δ1 > 0 such that

sup
a∈[x+ε0d+δ1BX , x[, a∗∈Aa

‖a∗‖ < +∞. (41)
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By (38), we have ‖d‖ = 1 and there exists N ∈ N such that for every n ≥ N ,

0 < ‖xn−x‖ < ε0 and xn ∈ x+‖xn−x‖d+‖xn−x‖ δ1ε0BX ⊆ [x+ ε0d+ δ1BX , x[.

Then by (41),

sup
a∗∈A(xn), n≥N

‖a∗‖ < +∞. (42)

Suppose to the contrary that (39) does not holds. Then there exists ε1 > 0 and

a subsequence (xn,k)k∈N of (xn)n∈N and x∗n,k ∈ A(xn,k) such that

x∗n,k /∈ [Ax]d + ε1BX∗ , ∀k ∈ N. (43)

By (42), there exists a convergent subsequence of (x∗n,k)k∈N, for convenience,

still denoted by (x∗n,k)k∈N such that

x∗n,k −→ x∗∞. (44)

Since xn,k −→ x, by (44),

(x, x∗∞) ∈ graA. (45)

We claim that

x∗∞ ∈ [Ax]d . (46)

By the monotonicity of A, recalling (40), we have 〈x∗n,k − v∗, xn,k − x〉 ≥ 0,

∀k ∈ N. Hence

〈x∗n,k − v∗,
xn,k − x
‖xn,k − x‖

〉 ≥ 0, ∀k ∈ N. (47)

Combining (44), (38) and (47),

〈x∗∞ − v∗, d〉 ≥ 0. (48)
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By (40), (48) and (45), x∗∞ ∈ [Ax]d and hence (46) holds. Then

x∗∞ + ε1BX ⊆ [Ax]d + ε1BX and x∗∞ + ε1BX contains infinitely many terms of

(x∗n,k)k∈N, which contradicts (43). Hence, (39) holds as asserted. �

Remark 5.2 In the statement of [31, Theorem 2.1], the “x−xn” in Eq (2.0)

should be read as “xn − x”. In his proof, the author considered it as “xn − x”.

♦

We next recall an alternate and well-known recession cone description of

NdomA. (We give the proof for completeness and because it is often done in

restricted settings.) Consider

recA(x)

:=
{
x∗ ∈ X∗ | ∃tn → 0+, (an, a

∗
n) ∈ graA such that an −→ x, tna

∗
n⇁w* x

∗}.
(49)

Proposition 5.3 [Recession cone] Let A : X ⇒ X∗ be maximally monotone.

Then for every x ∈ domA one has

NdomA(x) = recA(x).

Proof. Let x ∈ domA. We first show that

recA(x) ⊆ NdomA(x). (50)

Let x∗ ∈ recA(x). There are (tn)n∈N in R and (an, a
∗
n)n∈N in graA such that

tn −→ 0+, an −→ x and tna
∗
n⇁w* x

∗. (51)

By [19, Corollary 2.6.10], (tna
∗
n)n∈N is bounded. By the monotonicity of A,

〈an − a, a∗n〉 ≥ 〈an − a, a∗〉, ∀(a, a∗) ∈ graA.
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Therefore,

〈an − a, tna∗n〉 ≥ tn〈an − a, a∗〉, ∀(a, a∗) ∈ graA. (52)

Taking the limit in (52), by (51), we have 〈x− a, x∗〉 ≥ 0, ∀a ∈ domA. Thus,

x∗ ∈ NdomA(x). Hence (50) holds.

It remains to show that

NdomA(x) ⊆ recA(x). (53)

Let y∗ ∈ NdomA(x) and n ∈ N. Take v∗ ∈ Ax. Since A = NdomA +A, we have

ny∗ + v∗ ∈ Ax. Set an := x, a∗n := ny∗ + v∗ and tn := 1
n . Then we have

an −→ x, tn −→ 0+ and tna
∗
n = y∗ +

1

n
v∗ −→ y∗.

Hence y∗ ∈ recA(x) and then (53) holds. Combining (50) and (53), we have

NdomA(x) = recA(x). �

We are now ready for our main result, Theorem 5.2, the proof of which was

inspired partially by that of [32, Theorem 3.1].

Theorem 5.2 [Reconstruction of A, I] Let A : X ⇒ X∗ be maximally

monotone with S ⊆ int domA 6= ∅ and with S dense in int domA. Then

Ax = NdomA(x) + conv [AS(x)]
w*

= recA(x) + conv [AS(x)]
w*
, ∀x ∈ X,

(54)

where recA(x) is as in (49).

Proof. We first show that

Ax = NdomA(x) + conv [AS(x)]
w*
, ∀x ∈ X. (55)

20



By Corollary 4.2, we have conv [AS(x)] ⊆ Ax, ∀x ∈ X. Since likewise

A = A+NdomA,

NdomA(x) + conv [AS(x)]
w*
⊆ Ax, ∀x ∈ X. (56)

It remains show that

Ax ⊆ NdomA(x) + conv [AS(x)]
w*
, ∀x ∈ domA. (57)

Let x ∈ domA. By the maximal monotonicity of A and Proposition 5.2, both

Ax and AS(x) are nonempty sets. Then applying Proposition 5.1 and Proposi-

tion 5.2 directly, we have (57) holds and hence (55) holds.

We must still show

Ax = NdomA(x) + conv [AS(x)]
w*
, ∀x ∈ X. (58)

Now, for every two sets C,D ⊆ X∗, we have C + D
w* ⊆ C +D

w*
. Then by

(55), it suffices to show that

NdomA(x) + conv [AS(x)]
w*
⊆ NdomA(x) + conv [AS(x)]

w*
, ∀x ∈ domA.

(59)

We again can and do suppose that 0 ∈ int domA and (0, 0) ∈ graA. Let

x ∈ domA and x∗ ∈ NdomA(x) + conv [AS(x)]
w*

. Then there exists nets

(x∗α)α∈I in NdomA(x) and (y∗α)α∈I in conv [AS(x)] such that

x∗α + y∗α⇁w* x
∗. (60)

Now we claim that

(x∗α)α∈I is eventually bounded. (61)
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Suppose to the contrary that (x∗α)α∈I is not eventually bounded. Then there

exists a subnet of (x∗α)α∈I , for convenience, still denoted by (x∗α)α∈I , such that

lim
α
‖x∗α‖ = +∞. (62)

We can and do suppose that x∗α 6= 0,∀α ∈ I. By 0 ∈ int domA and

x∗α ∈ NdomA(x) (for every α ∈ I), there exists δ > 0 such that δBX ⊆ domA

and hence we have

〈x, x∗α〉 ≥ sup
b∈BX

〈x∗α, δb〉 = δ‖x∗α‖. (63)

Thence, we have

〈x, x∗α
‖x∗α‖

〉 ≥ δ. (64)

By Fact 3.1, there exists a weak* convergent subnet (x∗β)β∈Γ of (x∗α)α∈I , say

x∗β
‖x∗β‖

⇁w* x
∗
∞ ∈ X∗. (65)

Taking the limit along the subnet in (64), by (65), we have

〈x, x∗∞〉 ≥ δ. (66)

By (60) and (62), we have

x∗α
‖x∗α‖

+
y∗α
‖x∗α‖

⇁w* 0. (67)

And so by (65),

y∗β
‖x∗β‖

⇁w*−x∗∞. (68)
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By Corollary 4.2, conv [AS(x)] ⊆ Ax, and hence (y∗α)α∈I is in Ax. Since

(0, 0) ∈ graA, we have 〈y∗α, x〉 ≥ 0 and so

〈 y∗β
‖x∗β‖

, x
〉
≥ 0. (69)

Using (68) and taking the limit along the subnet in (69) we get

〈
− x∗∞, x

〉
≥ 0, (70)

which contradicts (66). Hence, (x∗α)α∈I is eventually bounded and thus (61)

holds.

Then by Fact 3.1 again, there exists a weak∗ convergent subset of (x∗α)α∈I ,

for convenience, still denoted by (x∗α)α∈I which lies in the normal cone, such that

x∗α⇁w* w
∗ ∈ X∗. Hence w∗ ∈ NdomA(x) and y∗α⇁w* x

∗−w∗ ∈ conv [AS(x)]
w*

by (60). Hence x∗ ∈ NdomA(x) + conv [AS(x)]
w*

so that (59) holds. Then we

apply Proposition 5.3 to get (54) directly. �

Remark 5.3 Using (24), Dr. Robert Csetnek kindly showed us an elegant

proof of Theorem 5.2:

Indeed, (by Proposition 5.2) we have now

Ax ⊆ NdomA(x) + conv [AS(x)]
w*
⊆ NdomA(x) + conv [AS(x)]

w*
⊆ Ax,

where the last inclusion follows from (56); hence (58) holds.

Remark 5.4 If X is a weak Asplund space (as holds if X has a Gâteaux

smooth equivalent norm, see [7,28,30]), the nets defined in AS in Proposition 5.2

and Theorem 5.2 can be replaced by sequences. By [33, Chap. XIII, Notes and

Remarks, page 239], BX∗ is weak∗ sequentially compact. In fact, see [5, Chpt.

9], this holds somewhat more generally.
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Hence, throughout the proof of Proposition 5.2, we can obtain weak∗ con-

vergent subsequences instead of subnets. The rest of each subsequent argument

is unchanged. ♦

In various classes of Banach space we can choose useful structure for S ∈ SA,

where

SA :=
{
S ⊆ int domA | S is dense in int domA

}
.

Corollary 5.2 [Specification of SA] Let A : X ⇒ X∗ be maximally mono-

tone with int domA 6= ∅. We may choose the dense set S ∈ SA to be as follows:

1. In a Gâteaux smooth space, entirely within the residual set of non-σ porous

points of domA,

2. In an Asplund space, to include only a subset of the generic set points of

single-valuedness and norm to norm continuity of A,

3. In a separable Asplund space, to hold only countably many angle-bounded

points of A,

4. In a weak Asplund space, to include only a subset of the generic set of

points of single-valuedness (and norm to weak∗ continuity) of A,

5. In a separable space, to include only points of single-valuedness (and norm

to weak∗ continuity) of A whose complement is covered by a countable

union of Lipschitz surfaces.

6. In finite dimensions, to include only points of differentiability of A which

are of full measure.
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Proof. It suffices to determine in each case that the points of the given kind

are dense. 1: See [34, Theorem 5.1]. 2: See [7, Lemma 2.18 and Theorem 2.30].

3: See [7, Theorem 2.19 and Theorem 2.11]. 4: See [30, Proposition 1.1(iii)

and Theorem 1.6] or [7, Theorem 4.31 and Example 7.2]. 5: See [35, 36]. 6:

See [9, Corollary 12.66(a)] or [5, Exercise 9.1.1(2), page 412]. �

These classes are sufficient but not necessary: for example, there are Asplund

spaces with no equivalent Gâteaux smooth renorm [5]. Note also that in 5 and

6 we also know that A�S is a null set in the senses discussed [37].

We now restrict attention to convex functions.

Corollary 5.3 [Convex subgradients] Let f : X → ]−∞,+∞] be proper

lower semicontinuous and convex with int dom f 6= ∅. Let S ⊆ int dom f be

given with S dense in dom f . Then (for every x ∈ X)

∂f(x) = Ndom f (x) + conv [(∂f)S(x)]
w*

= Ndom f (x) + conv [(∂f)S(x)]
w*
.

Proof. By [7, Proposition 3.3 and Proposition 1.11], int dom ∂f 6= ∅. By the

Brøndsted-Rockafellar Theorem (see [7, Theorem 3.17] or [12, Theorem 3.1.2]),

dom ∂f = dom f . Then we may apply Fact 3.2 and Theorem 5.2 to get (for

every x ∈ X) ∂f(x) = Ndom f (x) + conv [(∂f)S(x)]
w*

. We have

Ndom f (x) = Ndom f (x),∀x ∈ dom ∂f . Hence we have

∂f(x) = Ndom f (x) + conv [(∂f)S(x)]
w*
,∀x ∈ X. �

In this case Corollary 5.2 specifies settings in which only points of differen-

tiability need be used (in 6 we recover Alexandroff’s theorem on twice differen-

tiability of convex functions), see [5] for more details.

Remark 5.5 Results closely related to Corollary 5.3 have been obtained
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in [8,27,38,39] and elsewhere. Interestingly, in the convex case we have obtained

as much information more easily than by the direct convex analysis approach

of [27]. ♦

We finish this section by refining Corollary 5.1 and Theorem 5.2.

Let A : X ⇒ X∗. We define Â : X ⇒ X∗ by

gra Â :=
{

(x, x∗) ∈ X ×X∗ | x∗ ∈
⋂
ε>0

conv [A(x+ εBX)]
w*}

. (71)

Clearly, we have graA
‖·‖×w* ⊆ gra Â.

Theorem 5.3 [Reconstruction of A, II] Let A : X ⇒ X∗ be maximally

monotone with int domA 6= ∅.

1. Then Â = A.

In particular, A has property (Q); and so has a norm × weak∗ closed

graph.

2. Moreover, if S ⊆ int domA is dense in int domA then (for every x ∈ X)

ÂS(x) : =
⋂
ε>0

conv [A(S ∩ (x+ εBX))]
w*
⊇ conv [AS(x)]

w*
. (72)

Thence

Ax = ÂS(x) + recA(x), ∀x ∈ X. (73)

Proof. Part 1. We first show that gra Â ⊆ graA. Let (x, x∗) ∈ gra Â. Now we

show that x ∈ domA. We suppose that 0 ∈ int domA. Since
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x∗ ∈ conv
[
A(x+ 1

nBX)
]w*

(for all n ∈ N),

inf
〈
A(x+ 1

nBX), x
〉

= inf
〈

conv
[
A(x+ 1

nBX)
]
, x
〉

= inf
〈
conv

[
A(x+ 1

nBX)
]w*

, x
〉
<
〈
x, x∗

〉
+ 1.

Then there exists z∗n ∈ A(zn) such that

〈z∗n, x〉 ≤ 〈x∗, x〉+ 1, (74)

where zn ∈ x+ 1
nBX . By Fact 4.1, there exist δ0 > 0 and M0 > 0 such that

δ0‖z∗n‖ ≤ 〈zn, z∗n〉+ (‖zn‖+ δ)M0 = 〈zn − x, z∗n〉+ 〈x, z∗n〉+ (‖zn‖+ δ)M0

≤ 1

n
‖z∗n‖+ 〈x∗, x〉+ 1 + (‖x‖+ 1 + δ)M0, ∀n ∈ N (by (74)).

Hence (z∗n)n∈N is bounded. By Fact 3.1, there exists a weak∗ convergent limit

z∗∞ of a subnet of (z∗n)n∈N. Then zn −→ x and the maximal monotonicity of A,

imply that (x, z∗∞) ∈ graA and so x ∈ domA.

Now let v ∈ intTdomA(x). We claim that

sup
〈
Â(x), v

〉
≤ sup

〈
Ax, v

〉
. (75)

By Fact 3.6, we can and do suppose that v = x0 − x,

where x0 ∈ int domA = int domA by Fact 3.4. There exists a sequence (y∗n)n∈N

in Âx such that

〈y∗n, v〉 −→ sup〈Âx, v〉. (76)

Using Lemma 4.1 select M, δ > 0 such that x0 + 2δBX ⊆ domA and

sup
a∈[x0+δBX , x[, a∗∈Aa

‖a∗‖ ≤M < +∞. (77)
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Then by Fact 3.4 again,

[x0 + δBX , x[ ⊆ int domA = int domA. (78)

Fix 1
δ < n ∈ N. Since y∗n ∈ conv

[
A(x+ 1

nBX)
]w*

, then〈
y∗n, v

〉
≤ sup

〈
A(x+ 1

nBX), v
〉
. Then there exist xn ∈ (x+ 1

nBX) and

x∗n ∈ A(xn) such that

〈x∗n, v〉 ≥ 〈y∗n, v〉 −
1

n
. (79)

Set tn := 1
δ n . Then,

an : = xn + tnv = xn − x+ x+ tn(x0 − x) = tn

(
x0 +

xn − x
tn

)
+ (1− tn)x

∈ tn(x0 + δBX) + (1− tn)x. (80)

Select a∗n ∈ A(an) by (78). Then by the monotonicity of A,

tn〈a∗n − x∗n, v〉 = 〈a∗n − x∗n, an − xn〉 ≥ 0. Hence 〈a∗n, v〉 ≥ 〈x∗n, v〉. Using (79),

we have

〈a∗n, v〉 ≥ 〈y∗n, v〉 −
1

n
, ∀ 1

δ < n ∈ N. (81)

Thus, appealing to (77) and (80) shows that (a∗n)n∈N is bounded. Fact 3.1, now

yields a weak* convergent subnet of (a∗α)α∈I of (a∗n)n∈N such that

a∗α⇁w* x
∗
0 ∈ X∗. (82)

By Corollary 4.1 and an −→ x, we have x∗0 ∈ Ax. Combining (81), (82) and

(76), we obtain

sup
〈
Ax, v

〉
≥
〈
x∗0, v

〉
≥ sup

〈
Âx, v

〉
.
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Hence (75) holds. Now applying Proposition 5.1 and Proposition 5.2, we have

Âx ⊆ Ax+NdomA(x)
w*

= Ax. Hence gra Â ⊆ graA.

Since graA ⊆ gra Â, we have Â = A. It is immediate A has property (Q) so

has a norm × weak∗ closed graph.

Part 2. It only remains to prove (72). We first show that

AS(x) ⊆ ÂS(x), ∀x ∈ X. (83)

By Proposition 5.2, domAS = domA. Let w ∈ X. If w /∈ domA, then clearly,

AS(w) ⊆ ÂS(w). Assume that w ∈ domA and w∗ ∈ AS(w). Then by (3), there

exist a net (wα, w
∗
α)α∈I in graA∩(S×X∗) such that wα −→ w and w∗α⇁w* w

∗.

The for every ε > 0, there exists α0 ∈ I such that wα ∈ w + εBX , ∀α �I α0.

Thus

wα ∈ S ∩ (w + εBX) and then w∗α ∈ A
(
S ∩ (w + εBX)

)
, ∀α �I α0.

Hence w∗ ∈ A
(
S ∩ (w + εBX)

)w*
⊆ conv

[
A
(
S ∩ (w + εBX)

)]w*
and thus (83)

holds.

By (83), we have

conv [AS(x)]
w*
⊆ ÂS(x), ∀x ∈ X. (84)

Then by Proposition 5.3,

conv [AS(x)]
w*

+ recA(x) ⊆ ÂS(x) + recA(x) ⊆ Ax+ recA(x) = Ax, ∀x ∈ X.

Thus, on appealing to Theorem 5.2, we obtain (73). �

Remark 5.6 Property (Q) first introduced by Cesari in Euclidean space, was

recently established for maximally monotone operators with nonempty domain
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interior in a barreled normed space by Voisei in [15, Theorem 42] (See also [15,

Theorem 43] for the result under more general hypotheses.). Several interesting

characterizations of maximally monotone operators in finite dimensional spaces,

including the property (Q) were studied by Löne [40]. ♦

6 Further Examples and Applications

In general, we do not have Ax = conv [AS(x)]
w*
,∀x ∈ domA, for a maximally

monotone operator A : X ⇒ X∗ with S ⊆ int domA 6= ∅ such that S is dense

in domA.

We give a simple example to demonstrate this.

Example 6.1 Let C be a closed convex subset of X with S ⊆ intC 6= ∅ such

that S is dense in C. Then NC is maximally monotone and gra(NC)S = C×{0},

but NC(x) 6= conv [(NC)S(x)]
w*
,∀x ∈ bdryC. We have⋂

ε>0 conv [NC(x+ εBX)]
w*

= NC(x), ∀x ∈ X.

Proof. The maximal monotonicity of NC is directly from Fact 3.2. Since, for

every x ∈ intC, NC(x) = {0}, gra(NC)S = C ×{0} by (3) and Proposition 5.2.

Hence conv [(NC)S(x)]
w*

= {0},∀x ∈ C. However, NC(x) is unbounded,

∀x ∈ bdryC. Hence NC(x) 6= conv [(NC)S(x)]
w*
,∀x ∈ bdryC.

By contrast, on applying Theorem 5.3, we have⋂
ε>0 conv [NC(x+ εBX)]

w*
= NC(x), ∀x ∈ X. �

While the subdifferential operators in Example 4.1 necessarily fail to have

property (Q), it is possible for operators with no points of continuity to possess
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the property. Considering any closed linear mapping A from a reflexive space

X to its dual, we have Â = A and hence A has property (Q). More generally:

Example 6.2 Suppose that X is reflexive. Let A : X ⇒ X∗ be such that

graA is nonempty closed and convex. Then Â = A and hence A has property

(Q).

Proof. It suffices to show that gra Â ⊆ graA. Let (x, x∗) ∈ gra Â. Then we

have

x∗ ∈
⋂
n∈N

conv

[
A(x+

1

n
BX)

]w*

=
⋂
n∈N

conv

[
A(x+

1

n
BX)

]
=
⋂
n∈N

A(x+
1

n
BX).

Then there exists a sequence (an, a
∗
n)n∈N in graA such that an −→ x, a∗n −→ x∗.

The closedness of graA implies that (x, x∗) ∈ graA. Then gra Â ⊆ graA. �

It would be interesting to know whether Â and A can differ for a maximal

operator with norm × weak∗ closed graph.

Finally, we illustrate what Corollary 5.3 says in the case of

x 7→ ιBX (x) + 1
p‖x‖

p.

Example 6.3 Let p > 1 and f : X → ]−∞,+∞] be defined by

x 7→ ιBX (x) +
1

p
‖x‖p.

Then for every x ∈ dom f , we have

Ndom f (x) =


R+ · Jx, if ‖x‖ = 1;

{0}, if ‖x‖ < 1

(85)

(∂f)int(x) =


‖x‖p−2 · Jx, if ‖x‖ 6= 0;

{0}, otherwise

(86)
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where J := ∂ 1
2‖ · ‖

2 and R+ := [0,+∞[. Moreover,

∂f = Ndom f + (∂f)int = Ndom f + ∂ 1
p‖ · ‖

p, and then

∂f(x) 6= (∂f)int(x) = conv [(∂f)int(x)]
w*
,∀x ∈ bdry dom f . We also have⋂

ε>0 conv [∂f(x+ εBX)]
w*

= ∂f(x), ∀x ∈ X.

Proof. By Fact 3.2, ∂f is maximally monotone. We have

∂f = ∂
1

p
‖ · ‖p, ∀x ∈ int dom ∂f. (87)

By [27, Lemma 6.2],

∂
1

p
‖ · ‖p(x) =


‖x‖p−2 · Jx, if ‖x‖ 6= 0;

{0}, otherwise.

(88)

Now we show that

(∂f)int(x) = ∂
1

p
‖ · ‖p(x), ∀x ∈ dom f. (89)

Let x ∈ dom f . By Corollary 4.1 and (87), we have

(∂f)int(x) ⊆ ∂ 1

p
‖ · ‖p(x). (90)

Let x∗ ∈ ∂ 1
p‖ · ‖

p(x). We first show that (x, x∗) ∈ gra(∂f)int. If ‖x‖ < 1, then

x ∈ int dom f and hence by (87) and Corollary 4.2, x∗ ∈ ∂f(x) = (∂f)int(x).

Now we suppose that ‖x‖ = 1. By (88), x∗ ∈ Jx. Then n−1
n x∗ ∈ J(n−1

n x) and

hence (n−1
n )p−1x∗ ∈ ∂ 1

p‖ · ‖
p(n−1

n x) by (88), ∀n ∈ N. By (87),

(n−1
n )p−1x∗ ∈ ∂f(n−1

n x), ∀n ∈ N. (91)

Since 0 ∈ int dom f , n−1
n x ∈ int dom f = int dom ∂f,∀n ∈ N. Since

n−1
n x −→ x, (n−1

n )p−1x∗ −→ x∗, by (91), x∗ ∈ (∂f)int(x). Hence
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∂ 1
p‖ · ‖

p(x) ⊆ (∂f)int(x). Thus by (90), we have (89) holds and then we obtain

(86) by (88).

By (89),

(∂f)int(x) = conv [(∂f)int(x)]
w*
, ∀x ∈ dom f. (92)

On the other hand, since Ndom f = NBX , we can immediately get (85).

Then by Corollary 5.3, (92) and (89), we have

∂f(x) = Ndom f (x) + (∂f)int(x) = Ndom f (x) + ∂
1

p
‖ · ‖p(x), ∀x ∈ X. (93)

Let x ∈ bdry dom f . Then ‖x‖ = 1. On combining (93), (85) and (86),

∂f(x) = [1,+∞[ · Jx 6= Jx = (∂f)int(x) = conv [(∂f)int(x)]
w*
.

Theorem 5.3 again implies that⋂
ε>0 conv [∂f(x+ εBX)]

w*
= ∂f(x), ∀x ∈ X. �

7 Concluding Remarks

We have provided explicit structure formulas for maximally monotone operators

in Banach space whose domains have nonempty interior (see Theorem 5.2 and

Theorem 5.3). In the process, we also gave new proofs of some results of Voisei

and one due to Auslender.

The results herein reinforces the need for answers to the three questions

listed below.

• How does one give characterizations of the structure of maximally mono-

tone operators with no interior point. The article [28]) treats various
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cases—for both subgradients and monotone operators—where the domain

while having empty interior is large in category. It might be possible to

extend and make more uniform the results therein.

• How does one refine the recession cone component in our main results so

as to better generalize the use of horizon subgradients used in nonsmooth

analysis (see, for example, [9])? That is, to represent any member of the

recession cone as a limit of scaled multiples of nearby elements of the range

of the operator.

• In [41], Veselý shows among other results that: The domain of the sub-

differential operator for a closed convex function is arcwise and locally

arcwise connected. When the space has a Fréchet renorm, and the func-

tion is not affine, then the range of the subdifferential is locally pathwise

connected.

This naturally raises this question: Can such results be extended to the

domain of some or all maximally monotone operators? The difficulty here

would appear to be in determining how to exploit some variant of the

Fitzpatrick function—to replace the use of the sum of the function and

its conjugate. More generally, what can be said topologically about the

domain of a maximally monotone operator?

As discussed in [1–3, 5], the two most central open questions in monotone

operator theory in a general real Banach space are almost certainly the following:

(i) Assume that two maximally monotone operators S, T satisfy Rockafellar’s
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constraint qualification, i.e., the domain of one operator meets the interior

domain of another operator [42]. Is the sum operator S + T necessarily

maximally monotone?

(ii) Is the closure of every maximally monotone operator necessarily convex?

Rockafellar showed that the answer is ‘yes’ for every operator that has

nonempty interior domain [22] and it is now known to hold for most classes

of maximally monotone operators.

A positive answer to various restricted versions of (i) implies a positive answer

to (ii) [5, 11]. See Simons’ monograph [11] and [1–3, 5, 25, 32, 43] for recent

developments of (i). Recent progress regarding (ii) can be found in [44].
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