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Abstract

Motivated by questions of algorithm analysis, we provide several
distinct approaches to determining convergence and limit values for
a class of linear iterations.

Problem I. Determine the behaviour of the sequence:

xn :=
xn−1 + xn−2 + · · ·+ xn−m

m
for n ≥ m+ 1 (1)

and satisfying the initial conditions

xk = ak, for k = 1, 2, · · · ,m, (2)

where a1, a2, · · · , am are given real numbers.
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Outline of Lecture

1 Introduction and Spectral solution
Our equation analysed
Identifying the limit
Weighted means

2 Mean iteration solution
Convergence of mean iterations
Determining the limit
Carlson’s mean iteration

3 Nonnegative matrix solution and Conclusion
Perron-Frobenius theory
Irreducibility
Conclusion (and a Gaussian bonus)
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Identifying the limit
Weighted means

First attempts

Problem I. Determine the behaviour of the sequence:

xn :=
xn−1 + xn−2 + · · ·+ xn−m

m
for n ≥ m+ 1

(3)
and satisfying the initial conditions

xk = ak, for k = 1, 2, · · · ,m, (4)

where a1, a2, · · · , am are given real numbers.

In light of questions posed in [1]—which encountered Problem I
while computing zeroes of maximal monotone operators—we
consider various approaches to addressing it.
We suspect that, like us, the first thing most readers do when
shown an iteration is to try to find the limit, call it L, by taking
the limit in (3).
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Supposing the limit to exist we deduce

L =

m︷ ︸︸ ︷
L+ L+ · · ·+ L

m
= L, (5)

and learn nothing—at least not about the limit.
There is a clue in that the result is vacuous in large part because it
involves an average, or mean.

• In the next 3 sections, we present three distinct approaches.

• While at least one will be familiar to many, we suspect not all
three will be.

• Each has its advantages, both as an example of more general
techniques and since each opens up a beautiful corpus of
mathematics.
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Spectral solution

We start with the best known approach which turns up in most
linear algebra courses along with the Fibonacci numbers:

Fn = Fn−1 + Fn−2 with F0 = 0, F1 = 1. (6)

Equations (6) and (3) are examples of a linear homogeneous
recurrence relation of order m with constant coefficients.

• Typically, elementary books only consider simple roots as
suffices for (6). In Maple

solve({F (n) = F (n− 1) + F (n− 2), F (0) = 0, F (1) = 1}, F (n))

returns −1/5
√
5
(
1/2− 1/2

√
5
)n

+1/5
√
5
(
1/2 + 1/2

√
5
)n

.
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Theorem (General solution of a linear recurrence)

Standard theory [5, 9] runs as follows:

xn =

m∑

k=1

αkxn−k

with constant coefficients, has the form

xn =

l∑

k=1

qk(n) r
n
k (7)

where rk are the l distinct roots of the characteristic polynomial

p(r) := rm −
m∑

k=1

αkr
k−1, (8)

with multiplicity mk and polynomials qk of degree less than mk.
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Our equation analysed, I

Equation 3 has characteristic polynomial:

p(r) := rm − 1

m
(rm−1 + rm−2 + · · ·+ r + 1)

=
mrm+1 − (m+ 1)rm + 1

m(r − 1)
(9)

with roots r1 = 1, r2, r3, . . . , rm. Since

p′(1) = m− 1

m

m−1∑

n=1

n = m− m− 1

2
=
m+ 1

2

the root at one is simple.
We next show that if p(r) = 0 and r 6= 1, then |r| < 1. We argue
as follows. From (9) we know p(r) = 0 if and only if

r +
1

mrm
= 1 +

1

m
. (10)
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Our equation analysed, II
If |r| > 1, then

∣∣∣∣r +
1

mrm

∣∣∣∣ ≤ |r|+
1

m|r|m < 1 +
1

m
,

since the function f(x) := x+ 1
mxm is strictly increasing for real

x > 1 and f(1) = 1 + 1
m . Thus p(r) 6= 0 when |r| > 1.

Suppose now that p(r) = 0 with r = eiθ, 0 ≤ θ < 2π. By (10)

cos(θ) +
cos(−mθ)

m
= 1 +

1

m
,

which means θ = 0. By (7) we have

xn = c1 +

r∑

k=2

qk(n) r
n
k (11)

where rk lies in the open unit disc for 2 ≤ k ≤ m. Thus, the limit
in (11) exists and equals the coefficient c1. E
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Identifying the limit, I

Remark (The roots are simple)

In fact we may use (9) to see all roots are simple as follows:
It follows from (9) that

((1− r)p(r))′ = (m+ 1)rm−1(1− r),

and hence that the only possible multiple root of p is r1 = 1.
But we have already shown r1 = 1 to be simple, and so the
solution is actually of the form

xn = c1 +

m∑

k=2

ck r
n
k , (12)

as asserted (all the polynomials are constant). J
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Identifying the limit, II

Observe now that if r is any of the roots r2, r3, . . . , rm, then
m∑

n=1

nrn =
mrm+2 − (m+ 1)rm+1 + r

(r − 1)2
=
mrp(r)

r − 1
= 0, (13)

and summing (12) gives

c1 =
2

m(m+ 1)

m∑

n=1

nan. (14)

Thence, we have convergence and a limit L = c1 given by (14).

The same analysis, works if in (3) we replace the arithmetic average by
any weighted arithmetic mean

W(α)(x1, x2, · · · , xm) := α1x1 + α2x2 + · · ·+ αmxm

for strictly positive weights αk > 0 summing to one. ( W(1/m) = A is the
arithmetic mean of Problem I.)

• As often the analysis becomes easier when we generalize.

Borwein, Borwein & Sims Linear Mean Recurrences



Introduction and Spectral solution
Mean iteration solution

Nonnegative matrix solution and Conclusion

Our equation analysed
Identifying the limit
Weighted means

Identifying the limit, II

Observe now that if r is any of the roots r2, r3, . . . , rm, then
m∑

n=1

nrn =
mrm+2 − (m+ 1)rm+1 + r

(r − 1)2
=
mrp(r)

r − 1
= 0, (13)

and summing (12) gives

c1 =
2

m(m+ 1)

m∑

n=1

nan. (14)

Thence, we have convergence and a limit L = c1 given by (14).

The same analysis, works if in (3) we replace the arithmetic average by
any weighted arithmetic mean

W(α)(x1, x2, · · · , xm) := α1x1 + α2x2 + · · ·+ αmxm

for strictly positive weights αk > 0 summing to one. ( W(1/m) = A is the
arithmetic mean of Problem I.)

• As often the analysis becomes easier when we generalize.

Borwein, Borwein & Sims Linear Mean Recurrences



Introduction and Spectral solution
Mean iteration solution

Nonnegative matrix solution and Conclusion

Our equation analysed
Identifying the limit
Weighted means

Identifying the limit, II

Observe now that if r is any of the roots r2, r3, . . . , rm, then
m∑

n=1

nrn =
mrm+2 − (m+ 1)rm+1 + r

(r − 1)2
=
mrp(r)

r − 1
= 0, (13)

and summing (12) gives

c1 =
2

m(m+ 1)

m∑

n=1

nan. (14)

Thence, we have convergence and a limit L = c1 given by (14).

The same analysis, works if in (3) we replace the arithmetic average by
any weighted arithmetic mean

W(α)(x1, x2, · · · , xm) := α1x1 + α2x2 + · · ·+ αmxm

for strictly positive weights αk > 0 summing to one. ( W(1/m) = A is the
arithmetic mean of Problem I.)

• As often the analysis becomes easier when we generalize.

Borwein, Borwein & Sims Linear Mean Recurrences



Introduction and Spectral solution
Mean iteration solution

Nonnegative matrix solution and Conclusion

Our equation analysed
Identifying the limit
Weighted means

Example (The weighted mean)

The recurrence relation in this case is

xn = αmxn−1 + αm−1xn−2 + · · ·+ α1xn−m

for n ≥ m+ 1, with companion matrix

Am :=




am am−1 · · · a2 a1

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · 1 0 0

0 0 · · · 1 0




. (15)

The corresponding characteristic polynomial of the recurrence is

p(r) := rm −
(
αmr

m−1 + αm−1r
m−2 + · · ·+ α2r

1 + α1

)

is also the characteristic polynomial of the matrix.
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Example (Root behaviour for a weighted mean, I)

Clearly p(1) = 0. Now suppose r is a root of p and set ρ := |r|.
The triangle inequality and the mean property of W(α) imply that

ρm ≤
m∑

k=1

αkρ
k−1 ≤ max

1≤k≤m
ρk−1, (16)

and so 0 ≤ ρ ≤ 1. If ρ = 1 but r 6= 1 then r = eiθ for 0 < θ < 2π.
Since r−mp(r) = 0, on equating real parts, we get

1 =

m∑

k=1

αke
i(k−m−1)θ =

m−1∑

k=1

αk cos((m+ 1− k)θ) + αm cos(θ)

whence cos(θ) = 1 which is a contradiction.
Thence, roots other than 1 have modulus strictly less than one. J
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Example (Root behaviour for a weighted mean, I)

Finally, since p′(1) = m−∑m
k=1(k − 1)αk ≥ 1 the root at 1 is still

simple. Moreover, if σk := α1 + α2 + · · ·+ αk, then

p(r) = (r − 1)

m∑

k=1

σkr
k−1. (17)

Hence, p has no other positive real root (σk > 0).
In particular, from (7) we again have

xn = L+

r∑

k=2

qk(n) r
n
k = L+ εn

where εn → 0 since the root at one is simple while all other roots
are strictly inside the unit disc—but need not be simple as
illustrated in the next Example. J
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are strictly inside the unit disc—but need not be simple as
illustrated in the next Example. J
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Example (A weighted mean with multiple roots)

• p below has a root at 1 and a repeated pair of roots at ± i
3 :

p(r)= r6 − r5 + r4 + 16 r3 + 18 r2 + 45 r + 81

162
(18)

=
1

162
(2 r + 1) (r − 1)

(
1 + 9 r2

)2
. (19)

Nonetheless, the weighted mean iteration

xn =
81xn−6 + 45xn−5 + 18xn−4 + 16xn−3 + xn−2 + xn−1

162

is covered by the weighted mean Example. And

L : =
162 a6 + 161 a5 + 160 a4 + 144 a3 + 126 a2 + 81 a1

834
. (20)

is the limit. J
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Remark (How this recursion was found)

We examined how to place repeated roots on the imaginary axis
while preserving increasing coefficients as required in (17).
One general potential form is then

p(σ, τ) := (r − 1)(r + σ)(r2 + τ2)2

and we selected p(12 ,
1
3). In the same fashion

p

(
1

2
,
1

2

)
= r6 − 16 r5 + 8 r3 + 6 r2 + r + 1

32
.

This has a zero coefficient of r4, but the corresponding iteration
remains well behaved, see below. J

• L was found by computing A1000 to 14 places and rationalizing!
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Further comments

• The graphs are of p(1/2, 1/3) and p(1/2, 1/2). Is any such
example of degree six or more?

• An analysis of the weighted mean Example shows it holds for
non-negative weights if the highest-order term αm > 0.

- We will see that the invariance principle below deals most
efficiently with identifying limits for weighted linear means.

- In fact, we shall discover that the numerator coefficients in
(20) are the partial sums of those in (18).

- The same method also provides a quick way to check the
assertions about limits in the next Example.
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Example (Limiting examples I)

Consider first

A3 :=




1
2 0 1

2

1 0 0

0 1 0


 .

The corresponding iteration is xn = (xn−1 + xn−3)/2 with limit
a1/4 + a2/4 + a3/2.
By comparison, for

A3 :=




1
2

1
2 0

1 0 0

0 1 0


,

the corresponding iteration is xn = (xn−1 + xn−2)/2 with limit
(a1 + 2a2)/3.
This is in Problem I with m = 2 on ignoring row and column 3. J
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Example (Limiting examples I)

The third permutation

A3 :=




0 1
2

1
2

1 0 0

0 1 0


,

corresponding to the iteration xn = (xn−2 + xn−3)/2 has limit
(a1 + 2a2 + 2a3)/5.
Finally,

A3 :=




0 0 1

1 0 0

0 1 0




has A3
3 = I and so is Ak3 is periodic of period three as is obvious

from the iteration xn = xn−3. J
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Another irrelevant cartoon
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Mean iteration solution

The second approach, based on [3, Section 8.7], deals very
efficiently with equation 3.

• As a bonus, our convergence proof holds for nonlinear means
given positive starting values.

Definition (Strict mean)

We say M is a strict m-variable mean if always

min(x1, x2, · · · , xm) ≤M(x1, x2, · · · , xm) ≤ max(x1, x2, · · · , xm)

with equality if and only if all variables are equal.

• While nonlinear means —such as G := (x1x2 · · ·xm)1/m—are
defined only for positive input, linear means are defined for all
variables.
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Convergence of mean iterations

In the language of [3, Section 8.7], we have the following:

Theorem (Convergence of a mean iteration)

Let M be any strict mean in m variables and consider the iteration

xn :=M(xn−m, xn−m+1, · · · , xn−1) (21)

so that with M = A we recover the iteration in (3). Then xn
converges to a finite limit L(x1, x2, . . . , xm).

• Specialization of [3, Exercise 7 of Section 8.7] showa convergence
for an arbitrary strict mean. We shall make this explicit below.

• For general means we need to restrict the variables to non-negative
values, but for linear means no such restriction is needed.
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Proof.

Let xn := (xn, xn−1, · · · , xn−m+1) and let

an := maxxn, bn := minxn.

For all n, the mean property shows

an−1 ≥ an ≥ bn ≥ bn−1. (22)

Thus, a := limn an and b := limn bn exist with a ≥ b. In particular
xn remains bounded. Select a subsequence xnk

→ x. Thence

b ≤ minx ≤ maxx ≤ a (23)

while

b = minM(x) and maxM(x) = a. (24)

Since M is a strict mean, we have a = b and convergence.
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Determining the limit

Both the Limit theorem above and the Invariance principle below
show the power of identifying (3) as a mean iteration.

Theorem (Invariance principle, see ref. 3.)

For any convergent mean iteration M , the limit L is necessarily a
mean and is the unique diagonal mapping satisfying the Invariance
principle:

L (xn−m, xn−m+1, . . . , xn−1)

= L (xn−m+1, . . . , xn−1,M(xn−m, xn−m+1, . . . , xn−1)). (25)

Moreover, L is linear as soon as M is.
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Determining the limit

We sketch the important direction leaving the other to the reader.
Details are again in [3, Section 8.7].

Proof.

One first checks that the limit is a mean (as a point-wise limit of
means) and so is continuous on the diagonal. The principle says

L(xm) = · · · = L(xn) = L(xn+1) = L(lim
n
xn) = lim

n
(xn),

as required.

• The proof just quantifies the shift invariance of the limit.

• We can mix-and-match arguments—if we have used the ideas
of the previous section to convince ourselves the limit exists,
the invariance principle is ready to finish the job.
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Example (A general strict linear mean)

Suppose that M(y1, . . . , ym) =
∑m

i=1 αiyi, with all αi > 0, and
L(y1, . . . , ym) =

∑m
i=1 λiyi are both linear. We may solve (25) to

determine that for k = 1, 2, . . .m− 1 we have

λk+1 = λk + λmαk+1. (26)

Whence, on denoting σk := α1 + · · ·+ αk, we obtain

λk/λm = σk. (27)

Since L is a mean we have L(1, 1, . . . , 1) = 1 and so

λk =
σk∑m
k=1 σk

. (28)

In particular, setting αk ≡ 1
m we compute that σk =

k
m and so

λk =
2k

m(m+1) as was already determined in (14). J
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Example (A nonlinear mean)

We may replace A by the Hölder mean

Hp(x1, x2, . . . , xm) :=

(
1

m

m∑

i=1

xpi

)1/p

for −∞ < p <∞. The limit is
(∑m

k=1 λka
p
k

)1/p
with λk from (28).

In particular, with p = 0 (taken as a limit) we obtain in the limit
the weighted geometric mean G(a1, a2, · · · , am) =

∏m
k=1 a

λk
k .

We may also consider weighted Hölder means. J

• We end this section with an especially neat application of the
Invariance principle to an example of Carlson [3, Section 8.7].

• One can similarly analyse Archimedes’s method for π.
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Hp(x1, x2, . . . , xm) :=

(
1

m

m∑

i=1

xpi

)1/p

for −∞ < p <∞. The limit is
(∑m

k=1 λka
p
k

)1/p
with λk from (28).

In particular, with p = 0 (taken as a limit) we obtain in the limit
the weighted geometric mean G(a1, a2, · · · , am) =

∏m
k=1 a

λk
k .

We may also consider weighted Hölder means. J
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Example (Carlson’s logarithmic mean)

Consider the iteration with a0 := a > 0, b0 := b > a and

an+1 =
an +

√
anbn

2
, bn+1 =

bn +
√
anbn

2
,

for n ≥ 0. In this case convergence is immediate since

|an+1 − bn+1| =
1

2
|an − bn|.

If asked for the limit, you might make little progress.
But suppose you are told the answer is

L(a, b) := a− b
log a− log b

,

for a 6= b and a (the limit as a→ b) when a = b > 0.
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Example (Carlson’s logarithmic mean)

We check that

L(an+1, bn+1) =
an − bn

2 log an+
√
bnan

bn+
√
bnan

= L(an, bn),

since

2 log

√
an√
bn

= log
an
bn
.

The Invariance principle then confirms that L(a, b) is the limit.
In particular, for a > 1,

L
(

a

a− 1
,

1

a− 1

)
=

1

log a
,

which quite neatly computes the logarithm (slowly) using only
arithmetic operations and square roots. J
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Another irrelevant cartoon
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Nonnegative matrix solution

A third approach directly exploits non-negativity of the entries of
the matrix Am. This is best organized as a case of the Perron-
Frobenius theorem [2], [6, Theorem 8.8.1] or [8].

• A is row stochastic if all entries are non-negative and each
row sums to one.

• A is irreducible if for every pair of indices i, j, there is a
natural number k with (Ak)ij 6= 0.

• The spectral radius [6, p. 177] is

ρ(A) := sup{|λ| : λ is an eigenvalue of A}.

• Since A is not assumed symmetric, we may have distinct
eigenvectors for A and its transpose with the same non-zero
eigenvalue. We call the later left eigenvectors.

Below we view l as a column with highest order entry at the top.
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Theorem (Perron Frobenius, Utility grade)

Let A be a row-stochastic irreducible square matrix. Then the
spectral radius ρ(A) = 1 and 1 is a simple eigenvalue. Moreover,
the right eigenvector e := [1, 1, · · · , 1m] and the left eigenvector
l = [lm, lm−1, . . . , l1] are necessarily both strictly positive and
hence one-dimensional.
In consequence

lim
k→∞

Ak =




lm lm−1 · · · l2 l1

lm lm−1 · · · l2 l1

· · · · · · · · · · · · · · ·
lm lm−1 · · · l2 l1

lm lm−1 · · · l2 l1




. (29)
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Perron (1907) and Frobenius (1912)

Oskar Perron (1880-1975) and Georg Frobenius (1849-1917)
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Perron-Frobenius theory

The full version of the Perron-Frobenius theorem treats arbitrary
irreducible matrices with non-negative entries.

• Even in our setting, not all eigenvalues are simple: this is
equivalent to A being similar to a diagonal matrix D, with
entries are the eigenvalues in decreasing order, say. Then

An = U−1DnU → U−1D∞U

where the diagonal of D∞ is [1, 0, · · · , 0m].
• The Jordan normal form [7] shows (29) still follows.

• See [11] for a very nice reprise of general Perron-Frobenius
theory and its multi-fold applications (and indeed Wikipedia).
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• In particular [11, §4] gives Karlin’s resolvent-based proof of
Perron-Frobenius.

Remark (Collatz and Wielandt (ref. 10.))

An attractive proof of the Perron-Frobenius theorem, originating
with Collatz [4] and before him Perron, is to consider

g(x1, x2, · · · , xm) := min
1≤k≤m

{∑m
j=1 aj,kxj

xk

}
.

Then the maximum,

max∑
xj=1,xj≥0

g(x) = g(v) = 1

exists and yields uniquely the Perron-Frobenius vector v (which in
our case is the constant vector e). J
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The same Collatz

Lothar Collatz (1910-1990)
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Example (The closed form for l)

The recursion we study is expressible as

xn+1 = Axn

where A has k-th row Ak for m strict arithmetic means Ak. Hence
A is row stochastic and strictly positive; so its Perron eigenvalue is
1, while A∗l = l shows the limit l is the adjoint eigenvector.

• Equivalently, this is a so called compound iteration

L :=
⊗

Ak

as in [3, Section 8.7] and mean arguments much as in the
previous section also establish convergence.

• Here we identify the eigenvector l with the corresponding
linear function L since L(x) = 〈l, x〉 J.
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Remark (The closed form for l)

Again we can solve for the right eigenvector l = A∗l—either
numerically (using a linear algebra package or direct iteration) or
symbolically. Note that this closed form is simultaneously a
generalisation of Invariance principle we gave and a specialization
of the general Invariance principle in [3, Section 8.7]. J

The case used in (3) again has A being the companion matrix

Am :=




am am−1 · · · a2 a1

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · 1 0 0

0 0 · · · 1 0




with ak > 0 and
∑m
k=1 ak = 1.
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Proposition (Weighted means revisited)

Suppose for 1 ≤ k ≤ m we have ak > 0 then the matrix Amm has
all entries strictly positive.

Proof.

We induct on k. If the first k < m rows of Akm are strictly positive:

A
k+1
m =



am am−1 · · · a2 a1

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · 1 0 0

0 0 · · · 1 0


A

k
m.

It follows that (Ak+1
m )1j =

∑m
r=1(Am)1r(A

k
m)rj > 0, and that, for

2 ≤ i ≤ k + 1 ≤ m, (Ak+1
m )ij =

∑m
r=1(Am)ir(A

k
m)rj = (Akm)i−1,j > 0.

Thus, the first k + 1 rows of Ak+1
m have strictly positive entries, and we

are done.
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Irreducibility of matrices

Both the irreducibility of Am and the stronger condition obtained
above may be observed in the following alternative way. There are
many equivalent conditions for the irreducibility of A. One fairly
obvious condition is that:

An m×m matrix A with non-negative entries is
irreducible if (and only if) A′ is irreducible, where A′ is A
with each of its non-zero entries replaced by 1.

Remark (A picture is often worth a thousand words)

Now, A′ may be interpreted as the adjacency matrix, see [6,
Chapter 8], for the directed graph G with vertices labeled
1, 2, · · · , m and an edge from i to j precisely when (A′)ij = 1.
Also, the ij entry in the k’th power of A′ equals the number of
paths of length k from i to j in G. Thus, irreducibility of A
corresponds to G being strongly connected. J
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Remark (A picture is often worth a thousand words)

For our particular matrix Am, as given in (15), the associated
graph Gm is depicted in the Figure below. The presence of the
cycle m→ m− 1→ m− 2→ · · · → 1→ m shows that Gm is
connected and hence that Am is irreducible.
A moment’s checking also reveals that in Gm any vertex i is
connected to any other j by a path of length m (when forming
such paths, the loop at 1 may be traced as many times as
necessary), thus, also establishing the strict positivity of Amm. J

Figure: The graph Gm with adjacency matrix A
′

m.
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Example (Limiting examples, II)

We return to the matrices of Limiting Examples I. First

A3 :=




1
2 0 1

2

1 0 0

0 1 0


.

Then A4
3 is coordinate-wise strictly positive (but A3

3 is not).
Thus, A3 is irreducible despite the first row not being strictly
positive. The limit eigenvector is [1/2, 1/4, 1/4] and the
corresponding iteration is xn = (xn−1 + xn−3)/2 with limit
a1/4 + a2/4 + a3/2, where the ai are the given initial values.
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Example (Limiting examples, II)

Next we consider

A3 :=




1
2

1
2 0

1 0 0

0 1 0


.

Now A3 is reducible and the limit eigenvector [2/3, 1/3, 0] exists
but is not strictly positive. The corresponding iteration is
xn = (xn−1 + xn−2)/2 with limit (a1 + 2a2)/3. (Consider our
starting case in with m = 2 and ignore the third row and column.)
The third case

A3 :=




0 1
2

1
2

1 0 0

0 1 0




corresponds to the iteration xn = (xn−2 + xn−3)/2.
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Example (Limiting examples, II)

It, like the first, is irreducible with limit (a1 + 2a2 + 2a3)/5.
Finally,

A3 :=




0 0 1

1 0 0

0 1 0




has A3
3 = I and so Ak3 is periodic of period three—and does not

converge—as is obvious from the iteration xn = xn−3. J
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Conclusion (and a Gaussian bonus)

• All three approaches have their delights and advantages.
• For the original problem, analysis as a mean iteration—while

least well known—is by far the most efficient and also most
elementary.

• Moreover, each approach provides lovely examples for any
linear algebra class, or any introduction to computer algebra.

• Indeed, they offer different flavours of algorithmics, analysis,
combinatorics, algebra and graph theory.

Carl Friedrich Gauss (1777-1855)
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Example (Gauss’s arithmetic-geometric mean, see ref. 3)

Consider the iteration with a0 := a > 0, b0 := b > 0 and for n ≥ 0

an+1 =
an + bn

2
, bn+1 =

√
anbn.

Convergence is easy and quadratic. If asked the limit, you might
again make little progress. For a, b > 0 let

I(a, b) :=
∫ π/2

0

dθ√
a2 cos2(θ) + b2 sin2(θ)

.

A young Gauss discovered—and proved as Maple now can—that
the elliptic integral I satisfies

I(an+1, bn+1) = I(an, bn).

The Invariance principle then confirms that π/2
I(a,b) is the limit. J
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Example (Archimedes method, see ref. 3)

Take the slightly different iteration with a0 := a > 0, b0 := b > 0
and for n ≥ 0

an+1 =
an + bn

2
, bn+1 =

√
an+1bn.

Convergence is easy and linear. The Invariance principle
establishes that the limit is:

A(a, b) :=





√
b2−a2

arccos(a/b) , 0 ≤ a < b;

a, a = b;√
a2−b2

arccosh(a/b) , 0 < b < a.

.

Updating 1/an and 1/bn tracks
circumscribed and inscribed
perimeters as number of sides
doubles.
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Figure 5: Archimedes’ method of computing π with 6- and 12-gons

Archimedes’ Method. The first rigorous mathematical calculation of π was due to Archimedes, who used a
brilliant scheme based on doubling inscribed and circumscribed polygons

6 7→ 12 7→ 24 7→ 48 7→ 96

and computing the perimeters to obtain the bounds 310
71 < π < 3 1

7 , that we have recaptured above. The case of
6-gons and 12-gons is shown in Figure 5; for n = 48 one already ‘sees’ near-circles. Arguably no mathematics
approached this level of rigour again until the 19th century.

Archimedes’ scheme constitutes the first true algorithm for π, in that it is capable of producing an arbitrarily
accurate value for π. It also represents the birth of numerical and error analysis — all without positional notation
or modern trigonometry. As discovered severally in the 19th century, this scheme can be stated as a simple,
numerically stable, recursion, as follows [13].

Archimedean Mean Iteration (Pfaff-Borchardt-Schwab) . Set a0 = 2
√

3 and b0 = 3 — the values for
circumscribed and inscribed 6-gons. Then define

an+1 =
2anbn

an + bn
(H) bn+1 =

√
an+1bn (G).(2)

This converges to π, with the error decreasing by a factor of four with each iteration. In this case the error is
easy to estimate, the limit somewhat less accessible but still reasonably easy [12, 13].

Variations of Archimedes’ geometrical scheme were the basis for all high-accuracy calculations of π for the
next 1800 years — well beyond its ‘best before’ date. For example, in fifth century CE China, Tsu Chung-Chih
used a variation of this method to get π correct to seven digits. A millennium later, Al-Kashi in Samarkand
who could calculate as eagles can fly obtained 2π in sexagecimal:

2π ≈ 6 +
16

601
+

59

602
+

28

603
+

01

604
+

34

605
+

51

606
+

46

607
+

14

608
+

50

609
,

good to 16 decimal places (using 3·228-gons). This is a personal favourite, reentering it in my computer centuries
later and getting the predicted answer gave me goose-bumps.

5
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Example (Archimedes method, see ref. 3)

Take the slightly different iteration with a0 := a > 0, b0 := b > 0
and for n ≥ 0

an+1 =
an + bn

2
, bn+1 =

√
an+1bn.

Convergence is easy and linear. The Invariance principle
establishes that the limit is:

A(a, b) :=





√
b2−a2

arccos(a/b) , 0 ≤ a < b;

a, a = b;√
a2−b2

arccosh(a/b) , 0 < b < a.

.

Updating 1/an and 1/bn tracks
circumscribed and inscribed
perimeters as number of sides
doubles.
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Figure 5: Archimedes’ method of computing π with 6- and 12-gons

Archimedes’ Method. The first rigorous mathematical calculation of π was due to Archimedes, who used a
brilliant scheme based on doubling inscribed and circumscribed polygons

6 7→ 12 7→ 24 7→ 48 7→ 96

and computing the perimeters to obtain the bounds 310
71 < π < 3 1

7 , that we have recaptured above. The case of
6-gons and 12-gons is shown in Figure 5; for n = 48 one already ‘sees’ near-circles. Arguably no mathematics
approached this level of rigour again until the 19th century.

Archimedes’ scheme constitutes the first true algorithm for π, in that it is capable of producing an arbitrarily
accurate value for π. It also represents the birth of numerical and error analysis — all without positional notation
or modern trigonometry. As discovered severally in the 19th century, this scheme can be stated as a simple,
numerically stable, recursion, as follows [13].

Archimedean Mean Iteration (Pfaff-Borchardt-Schwab) . Set a0 = 2
√

3 and b0 = 3 — the values for
circumscribed and inscribed 6-gons. Then define

an+1 =
2anbn

an + bn
(H) bn+1 =

√
an+1bn (G).(2)

This converges to π, with the error decreasing by a factor of four with each iteration. In this case the error is
easy to estimate, the limit somewhat less accessible but still reasonably easy [12, 13].

Variations of Archimedes’ geometrical scheme were the basis for all high-accuracy calculations of π for the
next 1800 years — well beyond its ‘best before’ date. For example, in fifth century CE China, Tsu Chung-Chih
used a variation of this method to get π correct to seven digits. A millennium later, Al-Kashi in Samarkand
who could calculate as eagles can fly obtained 2π in sexagecimal:

2π ≈ 6 +
16
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+
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608
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609
,

good to 16 decimal places (using 3·228-gons). This is a personal favourite, reentering it in my computer centuries
later and getting the predicted answer gave me goose-bumps.
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