On the Solution of Linear Mean Recurrences

D. \& J. Borwein and B. Sims

CARMA
University of Newcastle
http://carma.newcastle.edu.au/jon/meantalk.pdf
CARMA Colloquium

July 5, 2012
Revised 23-06-12

An obligatory irrelevant cartoon

Abstract

Motivated by questions of algorithm analysis, we provide several distinct approaches to determining convergence and limit values for a class of linear iterations.

where $a_{1}, a_{2}, \cdots, a_{m}$ are given real numbers.

Abstract

Motivated by questions of algorithm analysis, we provide several distinct approaches to determining convergence and limit values for a class of linear iterations.

Problem I. Determine the behaviour of the sequence:

$$
\begin{equation*}
x_{n}:=\frac{x_{n-1}+x_{n-2}+\cdots+x_{n-m}}{m} \quad \text { for } n \geq m+1 \tag{1}
\end{equation*}
$$

and satisfying the initial conditions

$$
\begin{equation*}
x_{k}=a_{k}, \quad \text { for } k=1,2, \cdots, m \tag{2}
\end{equation*}
$$

where $a_{1}, a_{2}, \cdots, a_{m}$ are given real numbers.

My Coauthors

David Borwein and Bessie Borwein

Brailey Sims

Outline of Lecture

(1) Introduction and Spectral solution

Our equation analysed Identifying the limit
Weighted means
(2) Mean iteration solution

Convergence of mean iterations
Determining the limit
Carlson's mean iteration
(3) Nonnegative matrix solution and Conclusion

Perron-Frobenius theory
Irreducibility
Conclusion (and a Gaussian bonus)

First attempts

Problem I. Determine the behaviour of the sequence:

$$
\begin{equation*}
x_{n}:=\frac{x_{n-1}+x_{n-2}+\cdots+x_{n-m}}{m} \quad \text { for } n \geq m+1 \tag{3}
\end{equation*}
$$

and satisfying the initial conditions

$$
\begin{equation*}
x_{k}=a_{k}, \quad \text { for } k=1,2, \cdots, m \tag{4}
\end{equation*}
$$

where $a_{1}, a_{2}, \cdots, a_{m}$ are given real numbers.
In light of questions posed in [1]-which encountered Problem I while computing zeroes of maximal monotone operators-we consider various approaches to addressing it.
We suspect that, like us, the first thing most readers do when shown an iteration is to try to find the limit, call it L, by taking the limit in (3).

First attempts

Problem I. Determine the behaviour of the sequence:

$$
\begin{equation*}
x_{n}:=\frac{x_{n-1}+x_{n-2}+\cdots+x_{n-m}}{m} \quad \text { for } n \geq m+1 \tag{3}
\end{equation*}
$$

and satisfying the initial conditions

$$
\begin{equation*}
x_{k}=a_{k}, \quad \text { for } k=1,2, \cdots, m \tag{4}
\end{equation*}
$$

where $a_{1}, a_{2}, \cdots, a_{m}$ are given real numbers.
In light of questions posed in [1]-which encountered Problem I while computing zeroes of maximal monotone operators-we consider various approaches to addressing it.
We suspect that, like us, the first thing most readers do when shown an iteration is to try to find the limit, call it L, by taking the limit in (3).

First attempts

Supposing the limit to exist we deduce

$$
\begin{equation*}
L=\frac{\overbrace{L+L+\cdots+L}^{m}}{m}=L, \tag{5}
\end{equation*}
$$

and learn nothing-at least not about the limit.

> There is a clue in that the result is vacuous in large part because it involves an average, or mean.
> - In the next 3 sections, we present three distinct approaches.
> - While at least one will be familiar to many, we suspect not all three will be.
> - Each has its advantages, both as an example of more general techniques and since each opens up a beautiful corpus of mathematics.

First attempts

Supposing the limit to exist we deduce

$$
\begin{equation*}
L=\frac{\overbrace{L+L+\cdots+L}^{m}}{m}=L \tag{5}
\end{equation*}
$$

and learn nothing-at least not about the limit. There is a clue in that the result is vacuous in large part because it involves an average, or mean.

- In the next 3 sections, we present three distinct approaches.
- While at least one will be familiar to many, we suspect not all three will be.
- Each has its advantages, both as an example of more general
techniques and since each opens up a beautiful corpus of mathematics.

First attempts

Supposing the limit to exist we deduce

$$
\begin{equation*}
L=\frac{\overbrace{L+L+\cdots+L}^{m}}{m}=L \tag{5}
\end{equation*}
$$

and learn nothing-at least not about the limit. There is a clue in that the result is vacuous in large part because it involves an average, or mean.

- In the next 3 sections, we present three distinct approaches.
- While at least one will be familiar to many, we suspect not all three will be.
- Each has its advantages, both as an example of more general
techniques and since each opens up a beautiful corpus of
mathematics.

First attempts

Supposing the limit to exist we deduce

$$
\begin{equation*}
L=\frac{\overbrace{L+L+\cdots+L}^{m}}{m}=L, \tag{5}
\end{equation*}
$$

and learn nothing-at least not about the limit.
There is a clue in that the result is vacuous in large part because it involves an average, or mean.

- In the next 3 sections, we present three distinct approaches.
- While at least one will be familiar to many, we suspect not all three will be.
- Each has its advantages, both as an example of more general techniques and since each opens up a beautiful corpus of mathematics.

First attempts

Supposing the limit to exist we deduce

$$
\begin{equation*}
L=\frac{\overbrace{L+L+\cdots+L}^{m}}{m}=L \tag{5}
\end{equation*}
$$

and learn nothing-at least not about the limit.
There is a clue in that the result is vacuous in large part because it involves an average, or mean.

- In the next 3 sections, we present three distinct approaches.
- While at least one will be familiar to many, we suspect not all three will be.
- Each has its advantages, both as an example of more general techniques and since each opens up a beautiful corpus of mathematics.

Spectral solution

We start with the best known approach which turns up in most linear algebra courses along with the Fibonacci numbers:

$$
\begin{equation*}
F_{n}=F_{n-1}+F_{n-2} \quad \text { with } \quad F_{0}=0, F_{1}=1 \tag{6}
\end{equation*}
$$

Equations (6) and (3) are examples of a linear homogeneous recurrence relation of order m with constant coefficients.

- Typically, elementary books only consider simple roots as suffices for (6). In Maple

Spectral solution

We start with the best known approach which turns up in most linear algebra courses along with the Fibonacci numbers:

$$
\begin{equation*}
F_{n}=F_{n-1}+F_{n-2} \quad \text { with } \quad F_{0}=0, F_{1}=1 \tag{6}
\end{equation*}
$$

Equations (6) and (3) are examples of a linear homogeneous recurrence relation of order m with constant coefficients.

- Typically, elementary books only consider simple roots as suffices for (6). In Maple

$$
\text { solve }(\{F(n)=F(n-1)+F(n-2), F(0)=0, F(1)=1\}, F(n))
$$

returns

Spectral solution

We start with the best known approach which turns up in most linear algebra courses along with the Fibonacci numbers:

$$
\begin{equation*}
F_{n}=F_{n-1}+F_{n-2} \quad \text { with } \quad F_{0}=0, F_{1}=1 \tag{6}
\end{equation*}
$$

Equations (6) and (3) are examples of a linear homogeneous recurrence relation of order m with constant coefficients.

- Typically, elementary books only consider simple roots as suffices for (6). In Maple

$$
\begin{aligned}
& \text { solve }(\{F(n)=F(n-1)+F(n-2), F(0)=0, F(1)=1\}, F(n)) \\
& \text { returns }-1 / 5 \sqrt{5}(1 / 2-1 / 2 \sqrt{5})^{n}+1 / 5 \sqrt{5}(1 / 2+1 / 2 \sqrt{5})^{n}
\end{aligned}
$$

Theorem (General solution of a linear recurrence)

Standard theory [5, 9] runs as follows:

$$
x_{n}=\sum_{k=1}^{m} \alpha_{k} x_{n-k}
$$

with constant coefficients, has the form

$$
\begin{equation*}
x_{n}=\sum_{k=1}^{l} q_{k}(n) r_{k}^{n} \tag{7}
\end{equation*}
$$

where r_{k} are the l distinct roots of the characteristic polynomial

$$
\begin{equation*}
p(r):=r^{m}-\sum_{k=1}^{m} \alpha_{k} r^{k-1} \tag{8}
\end{equation*}
$$

with multiplicity m_{k} and polynomials q_{k} of degree less than m_{k}.

Our equation analysed, I

Equation 3 has characteristic polynomial:

$$
\begin{align*}
p(r) & :=r^{m}-\frac{1}{m}\left(r^{m-1}+r^{m-2}+\cdots+r+1\right) \\
& =\frac{m r^{m+1}-(m+1) r^{m}+1}{m(r-1)} \tag{9}
\end{align*}
$$

with roots $r_{1}=1, r_{2}, r_{3}, \ldots, r_{m}$.

the root at one is simple.
We next show that if $p(r)=0$ and $r \neq 1$, then $|r|<1$. We argue as follows. From (9) we know $p(r)=0$ if and only if

Our equation analysed, I

Equation 3 has characteristic polynomial:

$$
\begin{align*}
p(r) & :=r^{m}-\frac{1}{m}\left(r^{m-1}+r^{m-2}+\cdots+r+1\right) \\
& =\frac{m r^{m+1}-(m+1) r^{m}+1}{m(r-1)} \tag{9}
\end{align*}
$$

with roots $r_{1}=1, r_{2}, r_{3}, \ldots, r_{m}$. Since

$$
p^{\prime}(1)=m-\frac{1}{m} \sum_{n=1}^{m-1} n=m-\frac{m-1}{2}=\frac{m+1}{2}
$$

the root at one is simple.
We next show that if $p(r)=0$ and $r \neq 1$, then $|r|<1$. We argue as follows. From (9) we know $p(r)=0$ if and only if

Our equation analysed, I

Equation 3 has characteristic polynomial:

$$
\begin{align*}
p(r) & :=r^{m}-\frac{1}{m}\left(r^{m-1}+r^{m-2}+\cdots+r+1\right) \\
& =\frac{m r^{m+1}-(m+1) r^{m}+1}{m(r-1)} \tag{9}
\end{align*}
$$

with roots $r_{1}=1, r_{2}, r_{3}, \ldots, r_{m}$. Since

$$
p^{\prime}(1)=m-\frac{1}{m} \sum_{n=1}^{m-1} n=m-\frac{m-1}{2}=\frac{m+1}{2}
$$

the root at one is simple.
We next show that if $p(r)=0$ and $r \neq 1$, then $|r|<1$. We argue as follows. From (9) we know $p(r)=0$ if and only if

$$
\begin{equation*}
r+\frac{1}{m r^{m}}=1+\frac{1}{m} . \tag{10}
\end{equation*}
$$

Our equation analysed, II

If $|r|>1$, then

$$
\left|r+\frac{1}{m r^{m}}\right| \leq|r|+\frac{1}{m|r|^{m}}<1+\frac{1}{m},
$$

since the function $f(x):=x+\frac{1}{m x^{m}}$ is strictly increasing for real $x>1$ and $f(1)=1+\frac{1}{m}$. Thus $p(r) \neq 0$ when $|r|>1$.
Suppose now that $p(r)=0$ with $r=e^{i \theta}, 0 \leq \theta<2 \pi$. By (10)
which means $\theta=0$. By (7) we have

where r_{k} lies in the open unit disc for $2 \leq k \leq m$. Thus, the limit

Our equation analysed, II

If $|r|>1$, then

$$
\left|r+\frac{1}{m r^{m}}\right| \leq|r|+\frac{1}{m|r|^{m}}<1+\frac{1}{m},
$$

since the function $f(x):=x+\frac{1}{m x^{m}}$ is strictly increasing for real $x>1$ and $f(1)=1+\frac{1}{m}$. Thus $p(r) \neq 0$ when $|r|>1$.
Suppose now that $p(r)=0$ with $r=e^{i \theta}, 0 \leq \theta<2 \pi$. By (10)

$$
\cos (\theta)+\frac{\cos (-m \theta)}{m}=1+\frac{1}{m}
$$

which means $\theta=0$. By (7) we have
where r_{k} lies in the open unit disc for $2 \leq k \leq m$. Thus, the limit in (11) exists and equals the coefficient c_{1}.

Our equation analysed, II

If $|r|>1$, then

$$
\left|r+\frac{1}{m r^{m}}\right| \leq|r|+\frac{1}{m|r|^{m}}<1+\frac{1}{m},
$$

since the function $f(x):=x+\frac{1}{m x^{m}}$ is strictly increasing for real $x>1$ and $f(1)=1+\frac{1}{m}$. Thus $p(r) \neq 0$ when $|r|>1$.
Suppose now that $p(r)=0$ with $r=e^{i \theta}, 0 \leq \theta<2 \pi$. By (10)

$$
\cos (\theta)+\frac{\cos (-m \theta)}{m}=1+\frac{1}{m},
$$

which means $\theta=0$. By (7) we have

$$
\begin{equation*}
x_{n}=c_{1}+\sum_{k=2}^{r} q_{k}(n) r_{k}^{n} \tag{11}
\end{equation*}
$$

where r_{k} lies in the open unit disc for $2 \leq k \leq m$. Thus, the limit in (11) exists and equals the coefficient c_{1}.

Identifying the limit, I

Remark (The roots are simple)

In fact we may use (9) to see all roots are simple as follows:
It follows from (9) that

$$
((1-r) p(r))^{\prime}=(m+1) r^{m-1}(1-r)
$$

and hence that the only possible multiple root of p is $r_{1}=1$.
But we have already shown $r_{1}=1$ to be simple, and so the solution is actually of the form
as asserted (all the polynomials are constant).

Identifying the limit, I

Remark (The roots are simple)

In fact we may use (9) to see all roots are simple as follows: It follows from (9) that

$$
((1-r) p(r))^{\prime}=(m+1) r^{m-1}(1-r)
$$

and hence that the only possible multiple root of p is $r_{1}=1$. But we have already shown $r_{1}=1$ to be simple, and so the solution is actually of the form

$$
\begin{equation*}
x_{n}=c_{1}+\sum_{k=2}^{m} c_{k} r_{k}^{n} \tag{12}
\end{equation*}
$$

as asserted (all the polynomials are constant).

Identifying the limit, II

Observe now that if r is any of the roots $r_{2}, r_{3}, \ldots, r_{m}$, then

$$
\begin{equation*}
\sum_{n=1}^{m} n r^{n}=\frac{m r^{m+2}-(m+1) r^{m+1}+r}{(r-1)^{2}}=\frac{m r p(r)}{r-1}=0 \tag{13}
\end{equation*}
$$

and summing (12) gives

$$
\begin{equation*}
c_{1}=\frac{2}{m(m+1)} \sum_{n=1}^{m} n a_{n} . \tag{14}
\end{equation*}
$$

Thence, we have convergence and a limit $L=c_{1}$ given by (14). \square
The same analysis, works if in (3) we replace the arithmetic average by
any weighted arithmetic mean
for strictly positive weights $\alpha_{k}>0$ summing to one. $\left(W_{(1 / m)}=A\right.$ is the arithmetic mean of Problem I.)

Identifying the limit, II

Observe now that if r is any of the roots $r_{2}, r_{3}, \ldots, r_{m}$, then

$$
\begin{equation*}
\sum_{n=1}^{m} n r^{n}=\frac{m r^{m+2}-(m+1) r^{m+1}+r}{(r-1)^{2}}=\frac{m r p(r)}{r-1}=0 \tag{13}
\end{equation*}
$$

and summing (12) gives

$$
\begin{equation*}
c_{1}=\frac{2}{m(m+1)} \sum_{n=1}^{m} n a_{n} \tag{14}
\end{equation*}
$$

Thence, we have convergence and a limit $L=c_{1}$ given by (14). \square
The same analysis, works if in (3) we replace the arithmetic average by any weighted arithmetic mean

$$
W_{(\alpha)}\left(x_{1}, x_{2}, \cdots, x_{m}\right):=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{m} x_{m}
$$

for strictly positive weights $\alpha_{k}>0$ summing to one. ($W_{(1 / m)}=A$ is the arithmetic mean of Problem I.)

Identifying the limit, II

Observe now that if r is any of the roots $r_{2}, r_{3}, \ldots, r_{m}$, then

$$
\begin{equation*}
\sum_{n=1}^{m} n r^{n}=\frac{m r^{m+2}-(m+1) r^{m+1}+r}{(r-1)^{2}}=\frac{m r p(r)}{r-1}=0 \tag{13}
\end{equation*}
$$

and summing (12) gives

$$
\begin{equation*}
c_{1}=\frac{2}{m(m+1)} \sum_{n=1}^{m} n a_{n} . \tag{14}
\end{equation*}
$$

Thence, we have convergence and a limit $L=c_{1}$ given by (14). \square
The same analysis, works if in (3) we replace the arithmetic average by any weighted arithmetic mean

$$
W_{(\alpha)}\left(x_{1}, x_{2}, \cdots, x_{m}\right):=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{m} x_{m}
$$

for strictly positive weights $\alpha_{k}>0$ summing to one. ($W_{(1 / m)}=A$ is the arithmetic mean of Problem I.)

- As often the analysis becomes easier when we generalize.

Example (The weighted mean)

The recurrence relation in this case is

$$
x_{n}=\alpha_{m} x_{n-1}+\alpha_{m-1} x_{n-2}+\cdots+\alpha_{1} x_{n-m}
$$

for $n \geq m+1$, with companion matrix

$$
A_{m}:=\left[\begin{array}{ccccc}
a_{m} & a_{m-1} & \cdots & a_{2} & a_{1} \tag{15}\\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & 1 & 0 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

The corresponding characteristic polynomial of the recurrence is $p(r):=r^{m}-\left(\alpha_{m} r^{m-1}+\alpha_{m-1} r^{m-2}+\right.$
is also the characteristic polynomial of the matrix.

Example (The weighted mean)

The recurrence relation in this case is

$$
x_{n}=\alpha_{m} x_{n-1}+\alpha_{m-1} x_{n-2}+\cdots+\alpha_{1} x_{n-m}
$$

for $n \geq m+1$, with companion matrix

$$
A_{m}:=\left[\begin{array}{ccccc}
a_{m} & a_{m-1} & \cdots & a_{2} & a_{1} \tag{15}\\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & 1 & 0 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

The corresponding characteristic polynomial of the recurrence is

$$
p(r):=r^{m}-\left(\alpha_{m} r^{m-1}+\alpha_{m-1} r^{m-2}+\cdots+\alpha_{2} r^{1}+\alpha_{1}\right)
$$

is also the characteristic polynomial of the matrix.

Example (Root behaviour for a weighted mean, I)

Clearly $p(1)=0$. Now suppose r is a root of p and set $\rho:=|r|$. The triangle inequality and the mean property of $W_{(\alpha)}$ imply that

$$
\begin{equation*}
\rho^{m} \leq \sum_{k=1}^{m} \alpha_{k} \rho^{k-1} \leq \max _{1 \leq k \leq m} \rho^{k-1} \tag{16}
\end{equation*}
$$

and so $0 \leq \rho \leq 1$. If $\rho=1$ but $r \neq 1$ then $r=e^{i \theta}$ for $0<\theta<2 \pi$. Since $r^{-m} p(r)=0$, on equating real parts, we get
whence $\cos (\theta)=1$ which is a contradiction.
Thence, roots other than 1 have modulus strictly less than one. \&

Example (Root behaviour for a weighted mean, I)

Clearly $p(1)=0$. Now suppose r is a root of p and set $\rho:=|r|$. The triangle inequality and the mean property of $W_{(\alpha)}$ imply that

$$
\begin{equation*}
\rho^{m} \leq \sum_{k=1}^{m} \alpha_{k} \rho^{k-1} \leq \max _{1 \leq k \leq m} \rho^{k-1} \tag{16}
\end{equation*}
$$

and so $0 \leq \rho \leq 1$. If $\rho=1$ but $r \neq 1$ then $r=e^{i \theta}$ for $0<\theta<2 \pi$. Since $r^{-m} p(r)=0$, on equating real parts, we get

$$
1=\sum_{k=1}^{m} \alpha_{k} e^{i(k-m-1) \theta}=\sum_{k=1}^{m-1} \alpha_{k} \cos ((m+1-k) \theta)+\alpha_{m} \cos (\theta)
$$

whence $\cos (\theta)=1$ which is a contradiction.
hence, roots other than 1 have modulus strictly less than one.

Example (Root behaviour for a weighted mean, I)

Clearly $p(1)=0$. Now suppose r is a root of p and set $\rho:=|r|$. The triangle inequality and the mean property of $W_{(\alpha)}$ imply that

$$
\begin{equation*}
\rho^{m} \leq \sum_{k=1}^{m} \alpha_{k} \rho^{k-1} \leq \max _{1 \leq k \leq m} \rho^{k-1} \tag{16}
\end{equation*}
$$

and so $0 \leq \rho \leq 1$. If $\rho=1$ but $r \neq 1$ then $r=e^{i \theta}$ for $0<\theta<2 \pi$. Since $r^{-m} p(r)=0$, on equating real parts, we get

$$
1=\sum_{k=1}^{m} \alpha_{k} e^{i(k-m-1) \theta}=\sum_{k=1}^{m-1} \alpha_{k} \cos ((m+1-k) \theta)+\alpha_{m} \cos (\theta)
$$

whence $\cos (\theta)=1$ which is a contradiction.
Thence, roots other than 1 have modulus strictly less than one.

Example (Root behaviour for a weighted mean, I)

Finally, since $p^{\prime}(1)=m-\sum_{k=1}^{m}(k-1) \alpha_{k} \geq 1$ the root at 1 is still simple.

Hence, p has no other positive real root $\left(\sigma_{k}>0\right)$.

 In particular, from (7) we again have
where $\varepsilon_{n} \rightarrow 0$ since the root at one is simple while all other roots are strictly inside the unit disc-but need not be simple as illustrated in the next Example.

Example (Root behaviour for a weighted mean, I)

Finally, since $p^{\prime}(1)=m-\sum_{k=1}^{m}(k-1) \alpha_{k} \geq 1$ the root at 1 is still simple. Moreover, if $\sigma_{k}:=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$, then

$$
\begin{equation*}
p(r)=(r-1) \sum_{k=1}^{m} \sigma_{k} r^{k-1} . \tag{17}
\end{equation*}
$$

Hence, p has no other positive real root $\left(\sigma_{k}>0\right)$.
In particular, from (7) we again have
where $\varepsilon_{n} \rightarrow 0$ since the root at one is simple while all other roots are strictly inside the unit disc-but need not be simple as illustrated in the next Example.

Example (Root behaviour for a weighted mean, I)

Finally, since $p^{\prime}(1)=m-\sum_{k=1}^{m}(k-1) \alpha_{k} \geq 1$ the root at 1 is still simple. Moreover, if $\sigma_{k}:=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$, then

$$
\begin{equation*}
p(r)=(r-1) \sum_{k=1}^{m} \sigma_{k} r^{k-1} . \tag{17}
\end{equation*}
$$

Hence, p has no other positive real root $\left(\sigma_{k}>0\right)$. In particular, from (7) we again have

$$
x_{n}=L+\sum_{k=2}^{r} q_{k}(n) r_{k}^{n}=L+\varepsilon_{n}
$$

where $\varepsilon_{n} \rightarrow 0$ since the root at one is simple while all other roots are strictly inside the unit disc-but need not be simple as illustrated in the next Example.

Example (A weighted mean with multiple roots)

- p below has a root at 1 and a repeated pair of roots at $\pm \frac{i}{3}$:

$$
\begin{align*}
& \qquad \begin{array}{l}
p(r)=r^{6}-\frac{r^{5}+r^{4}+16 r^{3}+18 r^{2}+45 r+81}{162} \\
=\frac{1}{162}(2 r+1)(r-1)\left(1+9 r^{2}\right)^{2}
\end{array} \tag{18}\\
& \text { Nonetheless, the weighted mean iteration } \tag{19}\\
& x_{n}=\frac{81 x_{n-6}+45 x_{n-5}+18 x_{n-4}+16 x_{n-3}+x_{n-2}+x_{n-1}}{162} \\
& \text { is covered by the weighted mean Example. And } \\
& L:=\frac{162 a_{6}+161 a_{5}+160 a_{4}+144 a_{3}+126 a_{2}+81 a_{1}}{}
\end{align*}
$$

Example (A weighted mean with multiple roots)

- p below has a root at 1 and a repeated pair of roots at $\pm \frac{i}{3}$:

$$
\begin{align*}
p(r) & =r^{6}-\frac{r^{5}+r^{4}+16 r^{3}+18 r^{2}+45 r+81}{162} \tag{18}\\
& =\frac{1}{162}(2 r+1)(r-1)\left(1+9 r^{2}\right)^{2} . \tag{19}
\end{align*}
$$

Nonetheless, the weighted mean iteration

$$
x_{n}=\frac{81 x_{n-6}+45 x_{n-5}+18 x_{n-4}+16 x_{n-3}+x_{n-2}+x_{n-1}}{162}
$$

is covered by the weighted mean Example.

Example (A weighted mean with multiple roots)

- p below has a root at 1 and a repeated pair of roots at $\pm \frac{i}{3}$:

$$
\begin{align*}
p(r) & =r^{6}-\frac{r^{5}+r^{4}+16 r^{3}+18 r^{2}+45 r+81}{162} \tag{18}\\
& =\frac{1}{162}(2 r+1)(r-1)\left(1+9 r^{2}\right)^{2} . \tag{19}
\end{align*}
$$

Nonetheless, the weighted mean iteration

$$
x_{n}=\frac{81 x_{n-6}+45 x_{n-5}+18 x_{n-4}+16 x_{n-3}+x_{n-2}+x_{n-1}}{162}
$$

is covered by the weighted mean Example. And

$$
\begin{equation*}
L:=\frac{162 a_{6}+161 a_{5}+160 a_{4}+144 a_{3}+126 a_{2}+81 a_{1}}{834} . \tag{20}
\end{equation*}
$$

is the limit.

Remark (How this recursion was found)

We examined how to place repeated roots on the imaginary axis while preserving increasing coefficients as required in (17).
One general potential form is then

$$
p(\sigma, \tau):=(r-1)(r+\sigma)\left(r^{2}+\tau^{2}\right)^{2}
$$

and we selected $p\left(\frac{1}{2}, \frac{1}{3}\right)$. In the same fashion

This has a zero coefficient of r^{4}, but the corresponding iteration remains well behaved, see below.

- L was found by computing A^{1000} to 14 places and rationalizing!

Remark (How this recursion was found)

We examined how to place repeated roots on the imaginary axis while preserving increasing coefficients as required in (17).
One general potential form is then

$$
p(\sigma, \tau):=(r-1)(r+\sigma)\left(r^{2}+\tau^{2}\right)^{2}
$$

and we selected $p\left(\frac{1}{2}, \frac{1}{3}\right)$. In the same fashion

$$
p\left(\frac{1}{2}, \frac{1}{2}\right)=r^{6}-\frac{16 r^{5}+8 r^{3}+6 r^{2}+r+1}{32} .
$$

This has a zero coefficient of r^{4}, but the corresponding iteration remains well behaved, see below.

- L was found by computing A^{1000} to 14 places and rationalizing!

Remark (How this recursion was found)

We examined how to place repeated roots on the imaginary axis while preserving increasing coefficients as required in (17).
One general potential form is then

$$
p(\sigma, \tau):=(r-1)(r+\sigma)\left(r^{2}+\tau^{2}\right)^{2}
$$

and we selected $p\left(\frac{1}{2}, \frac{1}{3}\right)$. In the same fashion

$$
p\left(\frac{1}{2}, \frac{1}{2}\right)=r^{6}-\frac{16 r^{5}+8 r^{3}+6 r^{2}+r+1}{32}
$$

This has a zero coefficient of r^{4}, but the corresponding iteration remains well behaved, see below.

- L was found by computing A^{1000} to 14 places and rationalizing!

Further comments

- The graphs are of $p(1 / 2,1 / 3)$ and $p(1 / 2,1 / 2)$. Is any such example of degree six or more?
- An analysis of the weighted mean Example shows it holds for non-negative weights if the highest-order term $\alpha_{m}>0$.

We will see that the invariance principle below deals most
efficiently with identifying limits for weighted linear means.
In fact, we shall discover that the numerator coefficients in
(20) are the partial sums of those in (18).

The same method also provides a quick way to check the
assertions about limits in the next Example.

Further comments

- The graphs are of $p(1 / 2,1 / 3)$ and $p(1 / 2,1 / 2)$. Is any such example of degree six or more?
- An analysis of the weighted mean Example shows it holds for non-negative weights if the highest-order term $\alpha_{m}>0$.

$$
\begin{aligned}
& \text { We will see that the invariance principle below deals most } \\
& \text { efficiently with identifying limits for weighted linear means. } \\
& \text { In fact, we shall discover that the numerator coefficients in } \\
& (20) \text { are the partial sums of those in }(18) \text {. } \\
& \text { The same method also provides a quick way to check the } \\
& \text { assertions about limits in the next Example. }
\end{aligned}
$$

Further comments

- The graphs are of $p(1 / 2,1 / 3)$ and $p(1 / 2,1 / 2)$. Is any such example of degree six or more?
- An analysis of the weighted mean Example shows it holds for non-negative weights if the highest-order term $\alpha_{m}>0$.

$$
\begin{aligned}
& \text { We will see that the invariance principle below deals most } \\
& \text { efficiently with identifying limits for weighted linear means. } \\
& \text { In fact, we shall discover that the numerator coefficients in } \\
& (20) \text { are the partial sums of those in }(18) \text {. } \\
& \text { The same method also provides a quick way to check the } \\
& \text { assertions about limits in the next Example. }
\end{aligned}
$$

Further comments

- The graphs are of $p(1 / 2,1 / 3)$ and $p(1 / 2,1 / 2)$. Is any such example of degree six or more?
- An analysis of the weighted mean Example shows it holds for non-negative weights if the highest-order term $\alpha_{m}>0$.
- We will see that the invariance principle below deals most efficiently with identifying limits for weighted linear means.

Further comments

- The graphs are of $p(1 / 2,1 / 3)$ and $p(1 / 2,1 / 2)$. Is any such example of degree six or more?
- An analysis of the weighted mean Example shows it holds for non-negative weights if the highest-order term $\alpha_{m}>0$.
- We will see that the invariance principle below deals most efficiently with identifying limits for weighted linear means.
- In fact, we shall discover that the numerator coefficients in (20) are the partial sums of those in (18).

The same method also provides a quick way to check the assertions about limits in the next Example.

Further comments

- The graphs are of $p(1 / 2,1 / 3)$ and $p(1 / 2,1 / 2)$. Is any such example of degree six or more?
- An analysis of the weighted mean Example shows it holds for non-negative weights if the highest-order term $\alpha_{m}>0$.
- We will see that the invariance principle below deals most efficiently with identifying limits for weighted linear means.
- In fact, we shall discover that the numerator coefficients in (20) are the partial sums of those in (18).
- The same method also provides a quick way to check the assertions about limits in the next Example.

Example (Limiting examples I)

Consider first

$$
A_{3}:=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

The corresponding iteration is $x_{n}=\left(x_{n-1}+x_{n-3}\right) / 2$ with limit $a_{1} / 4+a_{2} / 4+a_{3} / 2$.
By comparison, for

the corresponding iteration is $x_{n}=\left(x_{n-1}+x_{n-2}\right) / 2$ with limit $\left(a_{1}+2 a_{2}\right) / 3$.

Example (Limiting examples I)

Consider first

$$
A_{3}:=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

The corresponding iteration is $x_{n}=\left(x_{n-1}+x_{n-3}\right) / 2$ with limit $a_{1} / 4+a_{2} / 4+a_{3} / 2$.
By comparison, for

$$
A_{3}:=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],
$$

the corresponding iteration is $x_{n}=\left(x_{n-1}+x_{n-2}\right) / 2$ with limit $\left(a_{1}+2 a_{2}\right) / 3$.

Example (Limiting examples I)

Consider first

$$
A_{3}:=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

The corresponding iteration is $x_{n}=\left(x_{n-1}+x_{n-3}\right) / 2$ with limit $a_{1} / 4+a_{2} / 4+a_{3} / 2$.
By comparison, for

$$
A_{3}:=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],
$$

the corresponding iteration is $x_{n}=\left(x_{n-1}+x_{n-2}\right) / 2$ with limit $\left(a_{1}+2 a_{2}\right) / 3$.
This is in Problem I with $m=2$ on ignoring row and column 3.

Example (Limiting examples I)

The third permutation

$$
A_{3}:=\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

corresponding to the iteration $x_{n}=\left(x_{n-2}+x_{n-3}\right) / 2$ has limit $\left(a_{1}+2 a_{2}+2 a_{3}\right) / 5$.
Finally,
has $A_{3}^{3}=I$ and so is A_{3}^{k} is periodic of period three as is obvious
from the iteration $x_{n}=x_{n-3}$.

Example (Limiting examples I)

The third permutation

$$
A_{3}:=\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

corresponding to the iteration $x_{n}=\left(x_{n-2}+x_{n-3}\right) / 2$ has limit $\left(a_{1}+2 a_{2}+2 a_{3}\right) / 5$.
Finally,

$$
A_{3}:=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

has $A_{3}^{3}=I$ and so is A_{3}^{k} is periodic of period three as is obvious from the iteration $x_{n}=x_{n-3}$.

Another irrelevant cartoon

Introduction and Spectral solution
Mean iteration solution Nonnegative matrix solution and Conclusion

Mean iteration solution

The second approach, based on [3, Section 8.7], deals very efficiently with equation 3.

As a bonus, our convergence proof holds for nonlinear means given positive starting values.

Definition (Strict mean)

We say M is a strict m-variable mean if always
with equality if and only if all variables are equal

- While nonlinear means —such as $G:=\left(x_{1} x_{2} \cdots x_{m}\right)^{1 / m}$ —are defined only for positive input, linear means are defined for all variables.

Mean iteration solution

The second approach, based on [3, Section 8.7], deals very efficiently with equation 3.

- As a bonus, our convergence proof holds for nonlinear means given positive starting values.

Definition (Strict mean)
Me say M is a strict m-variable mean if always
with equality if and only if all variables are equal.

- While nonlinear means —such as $G:=\left(x_{1} x_{2} \cdots x_{m}\right)^{1 / m}$ —are defined only for positive input, linear means are defined for all variables.

Mean iteration solution

The second approach, based on [3, Section 8.7], deals very efficiently with equation 3.

- As a bonus, our convergence proof holds for nonlinear means given positive starting values.

Definition (Strict mean)

We say M is a strict m-variable mean if always
$\min \left(x_{1}, x_{2}, \cdots, x_{m}\right) \leq M\left(x_{1}, x_{2}, \cdots, x_{m}\right) \leq \max \left(x_{1}, x_{2}, \cdots, x_{m}\right)$
with equality if and only if all variables are equal.

- While nonlinear means —such as $G:=\left(x_{1} x_{2} \cdots x_{m}\right)^{1 / m}$ —are
defined only for positive input, linear means are defined for all variables.

Mean iteration solution

The second approach, based on [3, Section 8.7], deals very efficiently with equation 3.

- As a bonus, our convergence proof holds for nonlinear means given positive starting values.

Definition (Strict mean)

We say M is a strict m-variable mean if always
$\min \left(x_{1}, x_{2}, \cdots, x_{m}\right) \leq M\left(x_{1}, x_{2}, \cdots, x_{m}\right) \leq \max \left(x_{1}, x_{2}, \cdots, x_{m}\right)$
with equality if and only if all variables are equal.

- While nonlinear means —such as $G:=\left(x_{1} x_{2} \cdots x_{m}\right)^{1 / m}$ —are defined only for positive input, linear means are defined for all variables.

Convergence of mean iterations

In the language of [3, Section 8.7], we have the following:

Theorem (Convergence of a mean iteration)

Let M be any strict mean in m variables and consider the iteration

$$
\begin{equation*}
x_{n}:=M\left(x_{n-m}, x_{n-m+1}, \cdots, x_{n-1}\right) \tag{21}
\end{equation*}
$$

so that with $M=A$ we recover the iteration in (3). Then x_{n} converges to a finite limit $L\left(x_{1}, x_{2}, \ldots, x_{m}\right)$.

- Specialization of [3, Exercise 7 of Section 8.7] showa convergence for an arbitrary strict mean. We shall make this explicit below.
- For general means we need to restrict the variables to non-negative values, but for linear means no such restriction is needed.

Convergence of mean iterations

In the language of [3, Section 8.7], we have the following:

Theorem (Convergence of a mean iteration)

Let M be any strict mean in m variables and consider the iteration

$$
\begin{equation*}
x_{n}:=M\left(x_{n-m}, x_{n-m+1}, \cdots, x_{n-1}\right) \tag{21}
\end{equation*}
$$

so that with $M=A$ we recover the iteration in (3). Then x_{n} converges to a finite limit $L\left(x_{1}, x_{2}, \ldots, x_{m}\right)$.

- Specialization of [3, Exercise 7 of Section 8.7] showa convergence for an arbitrary strict mean. We shall make this explicit below.
- For general means we need to restrict the variables to non-negative values, but for linear means no such restriction is needed.

Convergence of mean iterations

In the language of [3, Section 8.7], we have the following:

Theorem (Convergence of a mean iteration)

Let M be any strict mean in m variables and consider the iteration

$$
\begin{equation*}
x_{n}:=M\left(x_{n-m}, x_{n-m+1}, \cdots, x_{n-1}\right) \tag{21}
\end{equation*}
$$

so that with $M=A$ we recover the iteration in (3). Then x_{n} converges to a finite limit $L\left(x_{1}, x_{2}, \ldots, x_{m}\right)$.

- Specialization of [3, Exercise 7 of Section 8.7] showa convergence for an arbitrary strict mean. We shall make this explicit below.
- For general means we need to restrict the variables to non-negative values, but for linear means no such restriction is needed.

Introduction and Spectral solution
Mean iteration solution Nonnegative matrix solution and Conclusion

Convergence of mean iterations

Determining the limit
Carlson's mean iteration

Proof.

Let $\bar{x}_{n}:=\left(x_{n}, x_{n-1}, \cdots, x_{n-m+1}\right)$ and let

$$
a_{n}:=\max \bar{x}_{n}, \quad b_{n}:=\min \bar{x}_{n} .
$$

For all n, the mean property shows

$$
a_{n-1} \geq a_{n} \geq b_{n} \geq b_{n-1}
$$

Thus, $a:=\lim _{n} a_{n}$ and $b:=\lim _{n} b_{n}$ exist with $a \geq b$. In particular \bar{x}_{n} remains bounded. Select a subsequence $\bar{x}_{n_{k}} \rightarrow \bar{x}$. Thence

$$
b \leq \min \bar{x} \leq \max \bar{x} \leq a
$$

while

$$
b=\min M(\bar{x}) \quad \text { and } \quad \max M(\bar{x})=a .
$$

Since M is a strict mean, we have $a=b$ and convergence.

Proof.

Let $\bar{x}_{n}:=\left(x_{n}, x_{n-1}, \cdots, x_{n-m+1}\right)$ and let

$$
a_{n}:=\max \bar{x}_{n}, \quad b_{n}:=\min \bar{x}_{n} .
$$

For all n, the mean property shows

$$
\begin{equation*}
a_{n-1} \geq a_{n} \geq b_{n} \geq b_{n-1} \tag{22}
\end{equation*}
$$

Thus, $a:=\lim _{n} a_{n}$ and $b:=\lim _{n} b_{n}$ exist with $a \geq b$.
while

Proof.

Let $\bar{x}_{n}:=\left(x_{n}, x_{n-1}, \cdots, x_{n-m+1}\right)$ and let

$$
a_{n}:=\max \bar{x}_{n}, \quad b_{n}:=\min \bar{x}_{n} .
$$

For all n, the mean property shows

$$
\begin{equation*}
a_{n-1} \geq a_{n} \geq b_{n} \geq b_{n-1} \tag{22}
\end{equation*}
$$

Thus, $a:=\lim _{n} a_{n}$ and $b:=\lim _{n} b_{n}$ exist with $a \geq b$. In particular \bar{x}_{n} remains bounded. Select a subsequence $\bar{x}_{n_{k}} \rightarrow \bar{x}$.

$$
b \leq \min \bar{x} \leq \max \bar{x} \leq a
$$

while

$$
b=\min M(\bar{x}) \quad \text { and } \quad \max M(\bar{x})=a
$$

Proof.

Let $\bar{x}_{n}:=\left(x_{n}, x_{n-1}, \cdots, x_{n-m+1}\right)$ and let

$$
a_{n}:=\max \bar{x}_{n}, \quad b_{n}:=\min \bar{x}_{n} .
$$

For all n, the mean property shows

$$
\begin{equation*}
a_{n-1} \geq a_{n} \geq b_{n} \geq b_{n-1} \tag{22}
\end{equation*}
$$

Thus, $a:=\lim _{n} a_{n}$ and $b:=\lim _{n} b_{n}$ exist with $a \geq b$. In particular \bar{x}_{n} remains bounded. Select a subsequence $\bar{x}_{n_{k}} \rightarrow \bar{x}$. Thence

$$
\begin{equation*}
b \leq \min \bar{x} \leq \max \bar{x} \leq a \tag{23}
\end{equation*}
$$

while

$$
\begin{equation*}
b=\min M(\bar{x}) \quad \text { and } \quad \max M(\bar{x})=a \tag{24}
\end{equation*}
$$

Proof.

Let $\bar{x}_{n}:=\left(x_{n}, x_{n-1}, \cdots, x_{n-m+1}\right)$ and let

$$
a_{n}:=\max \bar{x}_{n}, \quad b_{n}:=\min \bar{x}_{n} .
$$

For all n, the mean property shows

$$
\begin{equation*}
a_{n-1} \geq a_{n} \geq b_{n} \geq b_{n-1} \tag{22}
\end{equation*}
$$

Thus, $a:=\lim _{n} a_{n}$ and $b:=\lim _{n} b_{n}$ exist with $a \geq b$. In particular \bar{x}_{n} remains bounded. Select a subsequence $\bar{x}_{n_{k}} \rightarrow \bar{x}$. Thence

$$
\begin{equation*}
b \leq \min \bar{x} \leq \max \bar{x} \leq a \tag{23}
\end{equation*}
$$

while

$$
\begin{equation*}
b=\min M(\bar{x}) \quad \text { and } \quad \max M(\bar{x})=a \tag{24}
\end{equation*}
$$

Since M is a strict mean, we have $a=b$ and convergence.

Determining the limit

Both the Limit theorem above and the Invariance principle below show the power of identifying (3) as a mean iteration.

Theorem (Invariance principle, see ref. 3.)

For any convergent mean iteration \mathbb{M}, the limit L is necessarily a mean and is the unique diagonal mapping satisfying the Invariance principle:

Moreover, L is linear as soon as M is.

Determining the limit

Both the Limit theorem above and the Invariance principle below show the power of identifying (3) as a mean iteration.

Theorem (Invariance principle, see ref. 3.)

For any convergent mean iteration M, the limit L is necessarily a mean and is the unique diagonal mapping satisfying the Invariance principle:

$$
\begin{align*}
& L\left(x_{n-m}, x_{n-m+1}, \ldots, x_{n-1}\right) \\
= & L\left(x_{n-m+1}, \ldots, x_{n-1}, M\left(x_{n-m}, x_{n-m+1}, \ldots, x_{n-1}\right)\right) . \tag{25}
\end{align*}
$$

Moreover, L is linear as soon as M is.

Determining the limit

We sketch the important direction leaving the other to the reader. Details are again in [3, Section 8.7].

Proof.

One first checks that the limit is a mean (as a point-wise limit of means) and so is continuous on the diagonal. The principle says

$$
L\left(\bar{x}_{m}\right)=\cdots=L\left(\bar{x}_{n}\right)=L\left(\bar{x}_{n+1}\right)=L\left(\lim _{n} \bar{x}_{n}\right)=\lim _{n}\left(x_{n}\right)
$$

as required.

- The proof just quantifies the shift invariance of the limit.
- We can mix-and-match arguments-if we have used the ideas
of the previous section to convince ourselves the limit exists,
the invariance principle is ready to finish the job.

Determining the limit

We sketch the important direction leaving the other to the reader. Details are again in [3, Section 8.7].

Proof.

One first checks that the limit is a mean (as a point-wise limit of means) and so is continuous on the diagonal. The principle says

$$
L\left(\bar{x}_{m}\right)=\cdots=L\left(\bar{x}_{n}\right)=L\left(\bar{x}_{n+1}\right)=L\left(\lim _{n} \bar{x}_{n}\right)=\lim _{n}\left(x_{n}\right)
$$

as required.

- The proof just quantifies the shift invariance of the limit.
- We can mix-and-match arguments-if we have used the ideas
of the previous section to convince ourselves the limit exists,
the invariance principle is ready to finish the job.

Determining the limit

We sketch the important direction leaving the other to the reader. Details are again in [3, Section 8.7].

Proof.

One first checks that the limit is a mean (as a point-wise limit of means) and so is continuous on the diagonal. The principle says

$$
L\left(\bar{x}_{m}\right)=\cdots=L\left(\bar{x}_{n}\right)=L\left(\bar{x}_{n+1}\right)=L\left(\lim _{n} \bar{x}_{n}\right)=\lim _{n}\left(x_{n}\right)
$$

as required.

- The proof just quantifies the shift invariance of the limit.
- We can mix-and-match arguments-if we have used the ideas of the previous section to convince ourselves the limit exists, the invariance principle is ready to finish the job.

Example (A general strict linear mean)

Suppose that $M\left(y_{1}, \ldots, y_{m}\right)=\sum_{i=1}^{m} \alpha_{i} y_{i}$, with all $\alpha_{i}>0$, and $L\left(y_{1}, \ldots, y_{m}\right)=\sum_{i=1}^{m} \lambda_{i} y_{i}$ are both linear. We may solve (25) to determine that for $k=1,2, \ldots m-1$ we have

Whence, on denoting $\sigma_{k}:=\alpha_{1}+\cdots+\alpha_{k}$, we obtain

Since L is a mean we have $L(1,1, \ldots, 1)=1$ and so

Example (A general strict linear mean)

Suppose that $M\left(y_{1}, \ldots, y_{m}\right)=\sum_{i=1}^{m} \alpha_{i} y_{i}$, with all $\alpha_{i}>0$, and $L\left(y_{1}, \ldots, y_{m}\right)=\sum_{i=1}^{m} \lambda_{i} y_{i}$ are both linear. We may solve (25) to determine that for $k=1,2, \ldots m-1$ we have

$$
\begin{equation*}
\lambda_{k+1}=\lambda_{k}+\lambda_{m} \alpha_{k+1} . \tag{26}
\end{equation*}
$$

Whence, on denoting $\sigma_{k}:=\alpha_{1}+\cdots+\alpha_{k}$, we obtain

Example (A general strict linear mean)

Suppose that $M\left(y_{1}, \ldots, y_{m}\right)=\sum_{i=1}^{m} \alpha_{i} y_{i}$, with all $\alpha_{i}>0$, and $L\left(y_{1}, \ldots, y_{m}\right)=\sum_{i=1}^{m} \lambda_{i} y_{i}$ are both linear. We may solve (25) to determine that for $k=1,2, \ldots m-1$ we have

$$
\begin{equation*}
\lambda_{k+1}=\lambda_{k}+\lambda_{m} \alpha_{k+1} . \tag{26}
\end{equation*}
$$

Whence, on denoting $\sigma_{k}:=\alpha_{1}+\cdots+\alpha_{k}$, we obtain

$$
\begin{equation*}
\lambda_{k} / \lambda_{m}=\sigma_{k} \tag{27}
\end{equation*}
$$

Since L is a mean we have $L(1,1, \ldots, 1)=1$ and so

$$
\begin{equation*}
\lambda_{k}=\frac{\sigma_{k}}{\sum_{k=1}^{m} \sigma_{k}} . \tag{28}
\end{equation*}
$$

In particular, setting $\alpha_{k} \equiv \frac{1}{m}$ we compute that $\sigma_{k}=\frac{k}{m}$ and so as was already determined in (14).

Example (A general strict linear mean)

Suppose that $M\left(y_{1}, \ldots, y_{m}\right)=\sum_{i=1}^{m} \alpha_{i} y_{i}$, with all $\alpha_{i}>0$, and $L\left(y_{1}, \ldots, y_{m}\right)=\sum_{i=1}^{m} \lambda_{i} y_{i}$ are both linear. We may solve (25) to determine that for $k=1,2, \ldots m-1$ we have

$$
\begin{equation*}
\lambda_{k+1}=\lambda_{k}+\lambda_{m} \alpha_{k+1} . \tag{26}
\end{equation*}
$$

Whence, on denoting $\sigma_{k}:=\alpha_{1}+\cdots+\alpha_{k}$, we obtain

$$
\begin{equation*}
\lambda_{k} / \lambda_{m}=\sigma_{k} \tag{27}
\end{equation*}
$$

Since L is a mean we have $L(1,1, \ldots, 1)=1$ and so

$$
\begin{equation*}
\lambda_{k}=\frac{\sigma_{k}}{\sum_{k=1}^{m} \sigma_{k}} . \tag{28}
\end{equation*}
$$

In particular, setting $\alpha_{k} \equiv \frac{1}{m}$ we compute that $\sigma_{k}=\frac{k}{m}$ and so $\lambda_{k}=\frac{2 k}{m(m+1)}$ as was already determined in (14).

Example (A nonlinear mean)

We may replace A by the Hölder mean

$$
H_{p}\left(x_{1}, x_{2}, \ldots, x_{m}\right):=\left(\frac{1}{m} \sum_{i=1}^{m} x_{i}^{p}\right)^{1 / p}
$$

for $-\infty<p<\infty$. The limit is $\left(\sum_{k=1}^{m} \lambda_{k} a_{k}^{p}\right)^{1 / p}$ with λ_{k} from (28). In particular, with $p=0$ (taken as a limit) we obtain in the limit the weighted geometric mean $G\left(a_{1}, a_{2}, \cdots, a_{m}\right)=\prod_{k=1}^{m} a_{k}^{\lambda_{k}}$ We mav also consider weighted Hölder means.

- We end this section with an especially neat application of the Invariance principle to an example of Carlson [3, Section 8.7].
- One can similarly analyse Archimedes's method for π.

Example (A nonlinear mean)

We may replace A by the Hölder mean

$$
H_{p}\left(x_{1}, x_{2}, \ldots, x_{m}\right):=\left(\frac{1}{m} \sum_{i=1}^{m} x_{i}^{p}\right)^{1 / p}
$$

for $-\infty<p<\infty$. The limit is $\left(\sum_{k=1}^{m} \lambda_{k} a_{k}^{p}\right)^{1 / p}$ with λ_{k} from (28). In particular, with $p=0$ (taken as a limit) we obtain in the limit the weighted geometric mean $G\left(a_{1}, a_{2}, \cdots, a_{m}\right)=\prod_{k=1}^{m} a_{k}^{\lambda_{k}}$.
We may also consider weighted Hölder means.

- We end this section with an especially neat application of the Invariance principle to an example of Carlson [3, Section 8.7]
- One can similarly analyse Archimedes's method for π.

Example (A nonlinear mean)

We may replace A by the Hölder mean

$$
H_{p}\left(x_{1}, x_{2}, \ldots, x_{m}\right):=\left(\frac{1}{m} \sum_{i=1}^{m} x_{i}^{p}\right)^{1 / p}
$$

for $-\infty<p<\infty$. The limit is $\left(\sum_{k=1}^{m} \lambda_{k} a_{k}^{p}\right)^{1 / p}$ with λ_{k} from (28). In particular, with $p=0$ (taken as a limit) we obtain in the limit the weighted geometric mean $G\left(a_{1}, a_{2}, \cdots, a_{m}\right)=\prod_{k=1}^{m} a_{k}^{\lambda_{k}}$.
We may also consider weighted Hölder means.

- We end this section with an especially neat application of the Invariance principle to an example of Carlson [3, Section 8.7].
- One can similarly analyse Archimedes's method for π.

Example (A nonlinear mean)

We may replace A by the Hölder mean

$$
H_{p}\left(x_{1}, x_{2}, \ldots, x_{m}\right):=\left(\frac{1}{m} \sum_{i=1}^{m} x_{i}^{p}\right)^{1 / p}
$$

for $-\infty<p<\infty$. The limit is $\left(\sum_{k=1}^{m} \lambda_{k} a_{k}^{p}\right)^{1 / p}$ with λ_{k} from (28). In particular, with $p=0$ (taken as a limit) we obtain in the limit the weighted geometric mean $G\left(a_{1}, a_{2}, \cdots, a_{m}\right)=\prod_{k=1}^{m} a_{k}^{\lambda_{k}}$.
We may also consider weighted Hölder means.

- We end this section with an especially neat application of the Invariance principle to an example of Carlson [3, Section 8.7].
- One can similarly analyse Archimedes's method for π.

Example (A nonlinear mean)

We may replace A by the Hölder mean

$$
H_{p}\left(x_{1}, x_{2}, \ldots, x_{m}\right):=\left(\frac{1}{m} \sum_{i=1}^{m} x_{i}^{p}\right)^{1 / p}
$$

for $-\infty<p<\infty$. The limit is $\left(\sum_{k=1}^{m} \lambda_{k} a_{k}^{p}\right)^{1 / p}$ with λ_{k} from (28). In particular, with $p=0$ (taken as a limit) we obtain in the limit the weighted geometric mean $G\left(a_{1}, a_{2}, \cdots, a_{m}\right)=\prod_{k=1}^{m} a_{k}^{\lambda_{k}}$.
We may also consider weighted Hölder means.

- We end this section with an especially neat application of the Invariance principle to an example of Carlson [3, Section 8.7].
- One can similarly analyse Archimedes's method for π.

Example (Carlson's logarithmic mean)

Consider the iteration with $a_{0}:=a>0, b_{0}:=b>a$ and

$$
a_{n+1}=\frac{a_{n}+\sqrt{a_{n} b_{n}}}{2}, \quad b_{n+1}=\frac{b_{n}+\sqrt{a_{n} b_{n}}}{2}
$$

for $n \geq 0$. In this case convergence is immediate since

$$
\left|a_{n+1}-b_{n+1}\right|=\frac{1}{2}\left|a_{n}-b_{n}\right|
$$

If asked for the limit, you might make little progress. But suppose you are told the answer is

for $a \neq b$ and a (the limit as $a \rightarrow b$) when $a=b>0$.

Example (Carlson's logarithmic mean)

Consider the iteration with $a_{0}:=a>0, b_{0}:=b>a$ and

$$
a_{n+1}=\frac{a_{n}+\sqrt{a_{n} b_{n}}}{2}, \quad b_{n+1}=\frac{b_{n}+\sqrt{a_{n} b_{n}}}{2}
$$

for $n \geq 0$. In this case convergence is immediate since

$$
\left|a_{n+1}-b_{n+1}\right|=\frac{1}{2}\left|a_{n}-b_{n}\right|
$$

If asked for the limit, you might make little progress.
But suppose you are told the answer is

for $a \neq b$ and a (the limit as $a \rightarrow b$) when $a=b>0$.

Example (Carlson's logarithmic mean)

Consider the iteration with $a_{0}:=a>0, b_{0}:=b>a$ and

$$
a_{n+1}=\frac{a_{n}+\sqrt{a_{n} b_{n}}}{2}, \quad b_{n+1}=\frac{b_{n}+\sqrt{a_{n} b_{n}}}{2}
$$

for $n \geq 0$. In this case convergence is immediate since

$$
\left|a_{n+1}-b_{n+1}\right|=\frac{1}{2}\left|a_{n}-b_{n}\right| .
$$

If asked for the limit, you might make little progress.
But suppose you are told the answer is

$$
\mathcal{L}(a, b):=\frac{a-b}{\log a-\log b},
$$

for $a \neq b$ and a (the limit as $a \rightarrow b$) when $a=b>0$.

Example (Carlson's logarithmic mean)

We check that

$$
\mathcal{L}\left(a_{n+1}, b_{n+1}\right)=\frac{a_{n}-b_{n}}{2 \log \frac{a_{n}+\sqrt{b_{n} a_{n}}}{b_{n}+\sqrt{b_{n} a_{n}}}}=\mathcal{L}\left(a_{n}, b_{n}\right)
$$

since

$$
2 \log \frac{\sqrt{a_{n}}}{\sqrt{b_{n}}}=\log \frac{a_{n}}{b_{n}}
$$

The Invariance principle then confirms that $\mathcal{L}(a, b)$ is the limit. In particular, for $a>1$,

which quite neatly computes the logarithm (slowly) using only arithmetic operations and square roots.

Example (Carlson's logarithmic mean)

We check that

$$
\mathcal{L}\left(a_{n+1}, b_{n+1}\right)=\frac{a_{n}-b_{n}}{2 \log \frac{a_{n}+\sqrt{b_{n} a_{n}}}{b_{n}+\sqrt{b_{n} a_{n}}}}=\mathcal{L}\left(a_{n}, b_{n}\right)
$$

since

$$
2 \log \frac{\sqrt{a_{n}}}{\sqrt{b_{n}}}=\log \frac{a_{n}}{b_{n}}
$$

The Invariance principle then confirms that $\mathcal{L}(a, b)$ is the limit.
In particular, for $a>1$,

which quite neatly computes the logarithm (slowly) using only arithmetic operations and square roots.

Example (Carlson's logarithmic mean)

We check that

$$
\mathcal{L}\left(a_{n+1}, b_{n+1}\right)=\frac{a_{n}-b_{n}}{2 \log \frac{a_{n}+\sqrt{b_{n} a_{n}}}{b_{n}+\sqrt{b_{n} a_{n}}}}=\mathcal{L}\left(a_{n}, b_{n}\right)
$$

since

$$
2 \log \frac{\sqrt{a_{n}}}{\sqrt{b_{n}}}=\log \frac{a_{n}}{b_{n}}
$$

The Invariance principle then confirms that $\mathcal{L}(a, b)$ is the limit. In particular, for $a>1$,

$$
\mathcal{L}\left(\frac{a}{a-1}, \frac{1}{a-1}\right)=\frac{1}{\log a}
$$

which quite neatly computes the logarithm (slowly) using only arithmetic operations and square roots.

Introduction and Spectral solution
Mean iteration solution Nonnegative matrix solution and Conclusion

Another irrelevant cartoon

Introduction and Spectral solution

Nonnegative matrix solution

A third approach directly exploits non-negativity of the entries of the matrix A_{m}. This is best organized as a case of the PerronFrobenius theorem [2], [6, Theorem 8.8.1] or [8].

- A is row stochastic if all entries are non-negative and each
row sums to one
- A is irreducible if for every pair of indices i, j, there is a natural number k with $\left(A^{k}\right)_{i j} \neq 0$.
- The spectral radius [6, p. 177] is $\rho(A):=\sup \{|\lambda|: \lambda$ is an eigenvalue of $A\}$
- Since A is not assumed symmetric, we may have distinct eigenvectors for A and its transpose with the same non-zero eigenvalue. We call the later left eigenvectors.

Nonnegative matrix solution

A third approach directly exploits non-negativity of the entries of the matrix A_{m}. This is best organized as a case of the PerronFrobenius theorem [2], [6, Theorem 8.8.1] or [8].

- A is row stochastic if all entries are non-negative and each row sums to one.
- A is irreducible if for every pair of indices i, j, there is a natural number k with $\left(A^{k}\right)_{i j} \neq 0$.
- The spectral radius [6, p. 177] is $\rho(A):=\sup \{|\lambda|: \lambda$ is an eigenvalue of $A\}$
- Since A is not assumed symmetric, we may have distinct eigenvectors for A and its transpose with the same non-zero eigenvalue. We call the later left eigenvectors.

Nonnegative matrix solution

A third approach directly exploits non-negativity of the entries of the matrix A_{m}. This is best organized as a case of the PerronFrobenius theorem [2], [6, Theorem 8.8.1] or [8].

- A is row stochastic if all entries are non-negative and each row sums to one.
- A is irreducible if for every pair of indices i, j, there is a natural number k with $\left(A^{k}\right)_{i j} \neq 0$.
- The spectral radius [6, p. 177] is

$$
\rho(A):=\sup \{|\lambda|: \lambda \text { is an eigenvalue of } A\} .
$$

- Since A is not assumed symmetric, we may have distinct eigenvectors for A and its transpose with the same non-zero eigenvalue. We call the later left eigenvectors.

Nonnegative matrix solution

A third approach directly exploits non-negativity of the entries of the matrix A_{m}. This is best organized as a case of the PerronFrobenius theorem [2], [6, Theorem 8.8.1] or [8].

- A is row stochastic if all entries are non-negative and each row sums to one.
- A is irreducible if for every pair of indices i, j, there is a natural number k with $\left(A^{k}\right)_{i j} \neq 0$.
- The spectral radius [6, p. 177] is

$$
\rho(A):=\sup \{|\lambda|: \lambda \text { is an eigenvalue of } A\} .
$$

- Since A is not assumed symmetric, we may have distinct eigenvectors for A and its transpose with the same non-zero eigenvalue. We call the later left eigenvectors.

Below we view l as a column with highest order entry at the top

Theorem (Perron Frobenius, Utility grade)

Let A be a row-stochastic irreducible square matrix. Then the spectral radius $\rho(A)=1$ and 1 is a simple eigenvalue. Moreover, the right eigenvector $e:=\left[1,1, \cdots, 1_{m}\right]$ and the left eigenvector $l=\left[l_{m}, l_{m-1}, \ldots, l_{1}\right]$ are necessarily both strictly positive and hence one-dimensional.
In consequence

Theorem (Perron Frobenius, Utility grade)

Let A be a row-stochastic irreducible square matrix. Then the spectral radius $\rho(A)=1$ and 1 is a simple eigenvalue. Moreover, the right eigenvector $e:=\left[1,1, \cdots, 1_{m}\right]$ and the left eigenvector $l=\left[l_{m}, l_{m-1}, \ldots, l_{1}\right]$ are necessarily both strictly positive and hence one-dimensional.
In consequence

$$
\lim _{k \rightarrow \infty} A^{k}=\left[\begin{array}{ccccc}
l_{m} & l_{m-1} & \cdots & l_{2} & l_{1} \tag{29}\\
l_{m} & l_{m-1} & \cdots & l_{2} & l_{1} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
l_{m} & l_{m-1} & \cdots & l_{2} & l_{1} \\
l_{m} & l_{m-1} & \cdots & l_{2} & l_{1}
\end{array}\right]
$$

Introduction and Spectral solution
Mean iteration solution Nonnegative matrix solution and Conclusion

Perron (1907) and Frobenius (1912)

Oskar Perron (1880-1975) and Georg Frobenius (1849-1917)

Perron-Frobenius theory

The full version of the Perron-Frobenius theorem treats arbitrary irreducible matrices with non-negative entries.

- Even in our setting, not all eigenvalues are simple: this is equivalent to A being similar to a diagonal matrix D, with entries are the eigenvalues in decreasing order, say. Then

$$
A^{n}=U^{-1} D^{n} U \rightarrow U^{-1} D^{\infty} U
$$

where the diagonal of D^{∞} is $\left[1,0, \cdots, 0_{m}\right]$.

- The Jordan normal form [7] shows (29) still follows.
- See [11] for a very nice reprise of general Perron-Frobenius theory and its multi-fold applications (and indeed Wikipedia)

Perron-Frobenius theory

The full version of the Perron-Frobenius theorem treats arbitrary irreducible matrices with non-negative entries.

- Even in our setting, not all eigenvalues are simple: this is equivalent to A being similar to a diagonal matrix D, with entries are the eigenvalues in decreasing order, say. Then

$$
A^{n}=U^{-1} D^{n} U \rightarrow U^{-1} D^{\infty} U
$$

where the diagonal of D^{∞} is $\left[1,0, \cdots, 0_{m}\right]$.

- The Jordan normal form [7] shows (29) still follows.
- See [11] for a very nice reprise of general Perron-Frobenius theory and its multi-fold applications (and indeed Wikipedia)

Perron-Frobenius theory

The full version of the Perron-Frobenius theorem treats arbitrary irreducible matrices with non-negative entries.

- Even in our setting, not all eigenvalues are simple: this is equivalent to A being similar to a diagonal matrix D, with entries are the eigenvalues in decreasing order, say. Then

$$
A^{n}=U^{-1} D^{n} U \rightarrow U^{-1} D^{\infty} U
$$

where the diagonal of D^{∞} is $\left[1,0, \cdots, 0_{m}\right]$.

- The Jordan normal form [7] shows (29) still follows.
- See [11] for a very nice reprise of general Perron-Frobenius theory and its multi-fold applications (and indeed Wikipedia).
- In particular [11, §4] gives Karlin's resolvent-based proof of Perron-Frobenius.

Remark (Collatz and Wielandt (ref. 10.))

An attractive proof of the Perron-Frobenius theorem, originating with Collatz [4] and before him Perron, is to consider

$$
g\left(x_{1}, x_{2}, \cdots, x_{m}\right):=\min _{1 \leq k \leq m}\left\{\frac{\sum_{j=1}^{m} a_{j, k} x_{j}}{x_{k}}\right\}
$$

Then the maximum,

$$
\max _{\sum x_{j}=1, x_{j} \geq 0} g(x)=g(v)=1
$$

exists and yields uniquely the Perron-Frobenius vector v (which in our case is the constant vector e).

Introduction and Spectral solution
Nonnegative matrix solution and Conclusion

The same Collatz

THE COLLATZ CONJECTURE STATES THAT IF YOU PICK A NUMBER, AND IF ITSEVEN DIVIDE ITBY Two AND IF IT'S ODD MULTIPLY IT BY THREE AND ADD ONE, AND YOU REPEAT THIS PROCEOURE LONG ENOUGH, EVENTUALLY YOUR FRIENDS WILL STOP CAUING TO SEE IF YOU WANT TO HANG OUT.

Lothar Collatz (1910-1990)

Example (The closed form for l)

The recursion we study is expressible as

$$
\bar{x}_{n+1}=A \bar{x}_{n}
$$

where A has k-th row A_{k} for m strict arithmetic means A_{k}. Hence A is row stochastic and strictly positive; so its Perron eigenvalue is 1 , while $A^{*} l=l$ shows the limit l is the adjoint eigenvector.

- Equivalently, this is a so called compound iteration
as in [3, Section 8.7] and mean arguments much as in the previous section also establish convergence.
- Here we identify the eigenvector l with the corresponding linear function L since $L(x)=\langle l, x\rangle$

Example (The closed form for l)

The recursion we study is expressible as

$$
\bar{x}_{n+1}=A \bar{x}_{n}
$$

where A has k-th row A_{k} for m strict arithmetic means A_{k}. Hence A is row stochastic and strictly positive; so its Perron eigenvalue is 1 , while $A^{*} l=l$ shows the limit l is the adjoint eigenvector.

- Equivalently, this is a so called compound iteration

$$
L:=\bigotimes A_{k}
$$

as in [3, Section 8.7] and mean arguments much as in the previous section also establish convergence.

- Here we identify the eigenvector l with the corresponding linear function L since $L(x)=\langle l, x\rangle$

Remark (The closed form for l)

Again we can solve for the right eigenvector $l=A^{*} l$-either numerically (using a linear algebra package or direct iteration) or symbolically. Note that this closed form is simultaneously a generalisation of Invariance principle we gave and a specialization of the general Invariance principle in [3, Section 8.7].

The case used in (3) again has A being the companion matrix

Remark (The closed form for l)

Again we can solve for the right eigenvector $l=A^{*} l$-either numerically (using a linear algebra package or direct iteration) or symbolically. Note that this closed form is simultaneously a generalisation of Invariance principle we gave and a specialization of the general Invariance principle in [3, Section 8.7].

The case used in (3) again has A being the companion matrix

$$
A_{m}:=\left[\begin{array}{ccccc}
a_{m} & a_{m-1} & \cdots & a_{2} & a_{1} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & 1 & 0 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

with $a_{k}>0$ and $\sum_{k=1}^{m} a_{k}=1$.

Introduction and Spectral solution

Proposition (Weighted means revisited)

Suppose for $1 \leq k \leq m$ we have $a_{k}>0$ then the matrix A_{m}^{m} has all entries strictly positive.

Proof

We induct on k. If the first $k<m$ rows of A_{m}^{k} are strictly positive

Thus, the first $k+1$ rows of A_{m}^{k+1} have strictly positive entries, and we are done.

Introduction and Spectral solution

Proposition (Weighted means revisited)

Suppose for $1 \leq k \leq m$ we have $a_{k}>0$ then the matrix A_{m}^{m} has all entries strictly positive.

Proof.

We induct on k. If the first $k<m$ rows of A_{m}^{k} are strictly positive:

$$
A_{m}^{k+1}=\left[\begin{array}{ccccc}
a_{m} & a_{m-1} & \cdots & a_{2} & a_{1} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & 1 & 0 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] A_{m}^{k}
$$

Thus, the first $k+1$ rows of A_{m}^{k+1} have strictly positive entries, and we

are done

Proposition (Weighted means revisited)

Suppose for $1 \leq k \leq m$ we have $a_{k}>0$ then the matrix A_{m}^{m} has all entries strictly positive.

Proof.

We induct on k. If the first $k<m$ rows of A_{m}^{k} are strictly positive:

$$
A_{m}^{k+1}=\left[\begin{array}{ccccc}
a_{m} & a_{m-1} & \cdots & a_{2} & a_{1} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & 1 & 0 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] A_{m}^{k}
$$

It follows that $\left(A_{m}^{k+1}\right)_{1 j}=\sum_{r=1}^{m}\left(A_{m}\right)_{1 r}\left(A_{m}^{k}\right)_{r j}>0$, and that, for $2 \leq i \leq k+1 \leq m,\left(A_{m}^{k+1}\right)_{i j}=\sum_{r=1}^{m}\left(A_{m}\right)_{i r}\left(A_{m}^{k}\right)_{r j}=\left(A_{m}^{k}\right)_{i-1, j}>0$. Thus, the first $k+1$ rows of A_{m}^{k+1} have strictly positive entries, and we are done.

Proposition (Weighted means revisited)

Suppose for $1 \leq k \leq m$ we have $a_{k}>0$ then the matrix A_{m}^{m} has all entries strictly positive.

Proof.

We induct on k. If the first $k<m$ rows of A_{m}^{k} are strictly positive:

$$
A_{m}^{k+1}=\left[\begin{array}{ccccc}
a_{m} & a_{m-1} & \cdots & a_{2} & a_{1} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & 1 & 0 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] A_{m}^{k}
$$

It follows that $\left(A_{m}^{k+1}\right)_{1 j}=\sum_{r=1}^{m}\left(A_{m}\right)_{1 r}\left(A_{m}^{k}\right)_{r j}>0$, and that, for $2 \leq i \leq k+1 \leq m,\left(A_{m}^{k+1}\right)_{i j}=\sum_{r=1}^{m}\left(A_{m}\right)_{i r}\left(A_{m}^{k}\right)_{r j}=\left(A_{m}^{k}\right)_{i-1, j}>0$. Thus, the first $k+1$ rows of A_{m}^{k+1} have strictly positive entries, and we are done.

Irreducibility of matrices

Both the irreducibility of A_{m} and the stronger condition obtained above may be observed in the following alternative way. There are many equivalent conditions for the irreducibility of A.
obvious condition is that:

Irreducibility of matrices

Both the irreducibility of A_{m} and the stronger condition obtained above may be observed in the following alternative way. There are many equivalent conditions for the irreducibility of A. One fairly obvious condition is that:

An $m \times m$ matrix A with non-negative entries is irreducible if (and only if) A^{\prime} is irreducible, where A^{\prime} is A with each of its non-zero entries replaced by 1.

Irreducibility of matrices

Both the irreducibility of A_{m} and the stronger condition obtained above may be observed in the following alternative way. There are many equivalent conditions for the irreducibility of A. One fairly obvious condition is that:

An $m \times m$ matrix A with non-negative entries is irreducible if (and only if) A^{\prime} is irreducible, where A^{\prime} is A with each of its non-zero entries replaced by 1.

Remark (A picture is often worth a thousand words)

Now, A^{\prime} may be interpreted as the adjacency matrix, see [6, Chapter 8], for the directed graph G with vertices labeled $1,2, \cdots, m$ and an edge from i to j precisely when $\left(A^{\prime}\right)_{i j}=1$.
Also, the $i j$ entry in the k^{\prime} th power of A^{\prime} equals the number of
paths of length k from i to j in G. Thus, irreducibility of A
corresponds to G being strongly connected.

Irreducibility of matrices

Both the irreducibility of A_{m} and the stronger condition obtained above may be observed in the following alternative way. There are many equivalent conditions for the irreducibility of A. One fairly obvious condition is that:

An $m \times m$ matrix A with non-negative entries is irreducible if (and only if) A^{\prime} is irreducible, where A^{\prime} is A with each of its non-zero entries replaced by 1.

Remark (A picture is often worth a thousand words)

Now, A^{\prime} may be interpreted as the adjacency matrix, see [6, Chapter 8], for the directed graph G with vertices labeled $1,2, \cdots, m$ and an edge from i to j precisely when $\left(A^{\prime}\right)_{i j}=1$. Also, the $i j$ entry in the k^{\prime} th power of A^{\prime} equals the number of paths of length k from i to j in G. Thus, irreducibility of A corresponds to G being strongly connected.

Remark (A picture is often worth a thousand words)

For our particular matrix A_{m}, as given in (15), the associated graph G_{m} is depicted in the Figure below. The presence of the cycle $m \rightarrow m-1 \rightarrow m-2 \rightarrow \cdots \rightarrow 1 \rightarrow m$ shows that G_{m} is connected and hence that A_{m} is irreducible.
A moment's checking also reveals that in G_{m} any vertex i is
connected to any other j by a path of length m (when forming
such paths, the loop at 1 may be traced as many times as
necessary), thus, also establishing the strict positivity of A_{m}^{m}

Remark (A picture is often worth a thousand words)

For our particular matrix A_{m}, as given in (15), the associated graph G_{m} is depicted in the Figure below. The presence of the cycle $m \rightarrow m-1 \rightarrow m-2 \rightarrow \cdots \rightarrow 1 \rightarrow m$ shows that G_{m} is connected and hence that A_{m} is irreducible.
A moment's checking also reveals that in G_{m} any vertex i is connected to any other j by a path of length m (when forming such paths, the loop at 1 may be traced as many times as necessary), thus, also establishing the strict positivity of A_{m}^{m}.

Figure: The graph G_{m} with adjacency matrix A_{m}^{\prime}. $\bar{\equiv}$.

Introduction and Spectral solution

Example (Limiting examples, II)

We return to the matrices of Limiting Examples I. First

$$
A_{3}:=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Then A_{3}^{4} is coordinate-wise strictly positive (but A_{3}^{3} is not).
Thus, A_{3} is irreducible despite the first row not being strictly positive. The limit eigenvector is $[1 / 2,1 / 4,1 / 4]$ and the corresponding iteration is $x_{n}=\left(x_{n-1}+x_{n-3}\right) / 2$ with limit $a_{1} / 4+a_{2} / 4+a_{3} / 2$, where the a_{i} are the given initial values.

Example (Limiting examples, II)

We return to the matrices of Limiting Examples I. First

$$
A_{3}:=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Then A_{3}^{4} is coordinate-wise strictly positive (but A_{3}^{3} is not). Thus, A_{3} is irreducible despite the first row not being strictly positive. The limit eigenvector is $[1 / 2,1 / 4,1 / 4]$ and the corresponding iteration is $x_{n}=\left(x_{n-1}+x_{n-3}\right) / 2$ with limit $a_{1} / 4+a_{2} / 4+a_{3} / 2$, where the a_{i} are the given initial values.

Example (Limiting examples, II)

Next we consider

$$
A_{3}:=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Now A_{3} is reducible and the limit eigenvector $[2 / 3,1 / 3,0]$ exists but is not strictly positive. The corresponding iteration is $x_{n}=\left(x_{n-1}+x_{n-2}\right) / 2$ with limit $\left(a_{1}+2 a_{2}\right) / 3$. (Consider our starting case in with $m=2$ and ignore the third row and column.) The third case

$$
A_{3}:=\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

corresponds to the iteration $x_{n}=\left(x_{n-2}+x_{n-3}\right) / 2$.

Introduction and Spectral solution
Mean iteration solution
Nonnegative matrix solution and Conclusion

Perron-Frobenius theory Irreducibility

Example (Limiting examples, II)

It, like the first, is irreducible with limit $\left(a_{1}+2 a_{2}+2 a_{3}\right) / 5$. Finally,
has $A_{3}^{3}=I$ and so A_{3}^{k} is periodic of period three-and does not
converge-as is obvious from the iteration

Borwein, Borwein \& Sims Linear Mean Recurrences

Example (Limiting examples, II)

It, like the first, is irreducible with limit $\left(a_{1}+2 a_{2}+2 a_{3}\right) / 5$. Finally,

$$
A_{3}:=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

has $A_{3}^{3}=I$ and so A_{3}^{k} is periodic of period three-and does not converge-as is obvious from the iteration $x_{n}=x_{n-3}$.

Introduction and Spectral solution
Mean iteration solution
Nonnegative matrix solution and Conclusion

Perron-Frobenius theory Irreducibility
Conclusion (and a Gaussian bonus)

Conclusion (and a Gaussian bonus)

- All three approaches have their delights and advantages.
- For the original problem, analysis as a mean iteration-while least well known-is by far the most efficient and also most elementary.
- Moreover, each approach provides lovely examples for any linear algebra class, or any introduction to computer algebra - Indeed, they offer different flavours of algorithmics, analysis, combinatorics, algebra and graph theory.

Carl Friedrich Gauss (1777-1855)

Introduction and Spectral solution
Mean iteration solution
Nonnegative matrix solution and Conclusion

Perron-Frobenius theory

Conclusion (and a Gaussian bonus)

- All three approaches have their delights and advantages.
- For the original problem, analysis as a mean iteration-while least well known-is by far the most efficient and also most elementary.
- Moreover, each approach provides lovely examples for any linear algebra class, or any introduction to computer algebra - Indeed, they offer different flavours of algorithmics, analysis, combinatorics, algebra and graph theory.

Carl Friedrich Gauss (1777-1855)

Conclusion (and a Gaussian bonus)

- All three approaches have their delights and advantages.
- For the original problem, analysis as a mean iteration-while least well known-is by far the most efficient and also most elementary.
- Moreover, each approach provides lovely examples for any linear algebra class, or any introduction to computer algebra - Indeed, they offer different flavours of algorithmics, analysis, combinatorics, algebra and graph theory.

Carl Friedrich Gauss (1777-1855)

Conclusion (and a Gaussian bonus)

- All three approaches have their delights and advantages.
- For the original problem, analysis as a mean iteration-while least well known-is by far the most efficient and also most elementary.
- Moreover, each approach provides lovely examples for any linear algebra class, or any introduction to computer algebra.
Indeed, they offer different flavours of algorithmics, analysis, combinatorics, algebra and graph theory.

Carl Friedrich Gauss (1777-1855)

Conclusion (and a Gaussian bonus)

- All three approaches have their delights and advantages.
- For the original problem, analysis as a mean iteration-while least well known-is by far the most efficient and also most elementary.
- Moreover, each approach provides lovely examples for any linear algebra class, or any introduction to computer algebra.
- Indeed, they offer different flavours of algorithmics, analysis, combinatorics, algebra and graph theory.

Carl Friedrich Gauss (1777-1855)

Example (Gauss's arithmetic-geometric mean, see ref. 3)

Consider the iteration with $a_{0}:=a>0, b_{0}:=b>0$ and for $n \geq 0$

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}} .
$$

Convergence is easy and quadratic.

again make little progress. For $a, b>0$ let

A young Gauss discovered-and proved as Maple now can-that the elliptic integral I satisfies

Example (Gauss's arithmetic-geometric mean, see ref. 3)

Consider the iteration with $a_{0}:=a>0, b_{0}:=b>0$ and for $n \geq 0$

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}} .
$$

Convergence is easy and quadratic. If asked the limit, you might again make little progress.

A young Gauss discovered-and proved as Maple now can-that the elliptic integral I satisfies

Example (Gauss's arithmetic-geometric mean, see ref. 3)

Consider the iteration with $a_{0}:=a>0, b_{0}:=b>0$ and for $n \geq 0$

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}} .
$$

Convergence is easy and quadratic. If asked the limit, you might again make little progress. For $a, b>0$ let

$$
\mathcal{I}(a, b):=\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{a^{2} \cos ^{2}(\theta)+b^{2} \sin ^{2}(\theta)}} .
$$

A young Gauss discovered-and proved as Maple now can-that the elliptic integral I satisfies

Example (Gauss's arithmetic-geometric mean, see ref. 3)

Consider the iteration with $a_{0}:=a>0, b_{0}:=b>0$ and for $n \geq 0$

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}} .
$$

Convergence is easy and quadratic. If asked the limit, you might again make little progress. For $a, b>0$ let

$$
\mathcal{I}(a, b):=\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{a^{2} \cos ^{2}(\theta)+b^{2} \sin ^{2}(\theta)}} .
$$

A young Gauss discovered-and proved as Maple now can-that the elliptic integral \mathcal{I} satisfies

$$
\mathcal{I}\left(a_{n+1}, b_{n+1}\right)=\mathcal{I}\left(a_{n}, b_{n}\right) .
$$

Example (Gauss's arithmetic-geometric mean, see ref. 3)

Consider the iteration with $a_{0}:=a>0, b_{0}:=b>0$ and for $n \geq 0$

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}} .
$$

Convergence is easy and quadratic. If asked the limit, you might again make little progress. For $a, b>0$ let

$$
\mathcal{I}(a, b):=\int_{0}^{\pi / 2} \frac{\mathrm{~d} \theta}{\sqrt{a^{2} \cos ^{2}(\theta)+b^{2} \sin ^{2}(\theta)}} .
$$

A young Gauss discovered-and proved as Maple now can-that the elliptic integral \mathcal{I} satisfies

$$
\mathcal{I}\left(a_{n+1}, b_{n+1}\right)=\mathcal{I}\left(a_{n}, b_{n}\right) .
$$

The Invariance principle then confirms that $\frac{\pi / 2}{\mathcal{I}(a, b)}$ is the limit.

Introduction and Spectral solution Mean iteration solution Nonnegative matrix solution and Conclusion

Figure 1.1. Ganges on the lemniscate.
Here is anothor example of Gaue's promon at "tnental experimental tratbermatiox" One day in 1790, while examining tables of iniegrals previded originally by James Stirling, he notiond that the reciproed of the integra!

$$
\frac{2}{3} \int_{0}^{1} \frac{d t}{\sqrt{t}-t^{t}}
$$

agrend numerieally with the limit of the rapidly converemat aritimstioupomario mean iteration: $\mathrm{Ba}_{\mathrm{a}}=1$, 有 $=\sqrt{2}$:

$$
\begin{equation*}
a_{m i t}-\frac{\omega_{b}+b_{a}}{2}, \quad b_{a y i}-\sqrt{\sigma_{a} b_{n}} \tag{6.1}
\end{equation*}
$$

The sequanos $\left(\sigma_{n}\right)$ and $\left(\theta_{n}\right)$ have the limih 1.19814 ne34735s922074 . . in common. Based on this purely compuiational obervation, Gauss was able to conjocture and ablerequently prove that the intecral if indeed equal to this conmens limit. It was a remarkable result, of which he wrote in his diary (ewn [74, pe. 5) and below) "(the resalt] will aurely upwn up a whate new field of analygis" He was right. It leal to the outire yista of 19th century elliptic and modular function theory.

Perron-Frobenius theory
Irreducibility

Conclusion (and a Gaussian bonus)

Example (Archimedes method, see ref. 3)

Take the slightly different iteration with $a_{0}:=a>0, b_{0}:=b>0$ and for $n \geq 0$

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n+1} b_{n}}
$$

Convergence is easy and linear. The Invariance principle
establishes that the limit is:

Updating $1 / a_{n}$ and $1 / b_{n}$ tracks

Example (Archimedes method, see ref. 3)

Take the slightly different iteration with $a_{0}:=a>0, b_{0}:=b>0$ and for $n \geq 0$

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n+1} b_{n}}
$$

Convergence is easy and linear. The Invariance principle establishes that the limit is:

$$
\mathcal{A}(a, b):= \begin{cases}\frac{\sqrt{b^{2}-a^{2}}}{\arccos (a / b)}, & 0 \leq a<b \\ a, & a=b \\ \frac{\sqrt{a^{2}-b^{2}}}{\operatorname{arccosh}(a / b)}, & 0<b<a\end{cases}
$$

Updating $1 / a_{n}$ and $1 / b_{n}$ tracks

Example (Archimedes method, see ref. 3)

Take the slightly different iteration with $a_{0}:=a>0, b_{0}:=b>0$ and for $n \geq 0$

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n+1} b_{n}}
$$

Convergence is easy and linear. The Invariance principle establishes that the limit is:

$$
\mathcal{A}(a, b):= \begin{cases}\frac{\sqrt{b^{2}-a^{2}}}{\arccos (a / b)}, & 0 \leq a<b \\ a, & a=b \\ \frac{\sqrt{a^{2}-b^{2}}}{\operatorname{arccosh}(a / b)}, & 0<b<a\end{cases}
$$

Updating $1 / a_{n}$ and $1 / b_{n}$ tracks circumscribed and inscribed perimeters as number of sides doubles.

References

(1) H. Bauschke, J. Sarada \& S. Wang, "On moving averages." Preprint.
(2) A. Berman and R. J. Plemmons, Nonnegative Matrices in the Math Sciences, SIAM, 1994.
(3) J.M. and P. B. Borwein, Pi and the AGM, John Wiley, 1987.
(4) Lothar Collatz, "Einschlieungssatz für die charakteristischen Zahlen von Matrize," Math Zeit. 48 (1) (1942), 221-226.
(5) C.-E. Froberg, Introduction to Numerical Analysis, 2nd ed., Addison-Wesley, 1969.
(6) C. Godsil and G.F. Royle, Algebraic Graph Theory Springer, 2001.
(7) G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins, 1996.
(8) C. R. MacCluer, "The Many Proofs and Applications of Perron's Theorem," SIAM Review, 42, (2000), 487-498.
(9) A.M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces.Academic Press 1973

