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Abstract

The justly celebrated von Neumann minimax theorem has
many proofs. I will briefly discuss four or five of these
approaches.

Then I shall reproduce the most complex one I am aware of.

This provides a fine didactic example for many courses in
convex analysis or functional analysis.

This will also allow me to discuss some lovely basic tools in
convex and nonlinear analysis.

Companion paper to appear in new journal of Minimax
Theory and its Applications and is available at http:
//www.carma.newcastle.edu.au/jon/minimax.pdf.
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We work in a real Banach space with norm dual X∗ or indeed in
Euclidean space, and adhere to notation in [1, 2]. We also
mention general Hausdorff topological vector spaces [10].

The classical von Neumann minimax theorem is:

Theorem (Concrete von Neumann minimax theorem (1928))

Let A be a linear mapping between Euclidean spaces E and F.
Let C ⊂ E and D⊂ F be nonempty compact and convex. Then

d := max
y∈D

min
x∈C
〈Ax,y〉= min

x∈C
max
y∈D
〈Ax,y〉=: p. (1)

In particular, this holds in the economically meaningful case
where both C and D are mixed strategies – simplices of the form

Σ := {z : ∑
i∈I

zi = 1,zi ≥ 0, ∀ i ∈ I}

for finite sets of indices I.
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More generally we have:

Theorem (Von Neumann-Fan minimax theorem)

Let X and Y be Banach spaces. Let C ⊂ X be nonempty and
convex, and let D ⊂ Y be nonempty, weakly compact and con-
vex. Let g : X × Y → R be convex with respect to x ∈ C and
concave and upper-semicontinuous with respect to y ∈ D, and
weakly continuous in y when restricted to D. Then

d := max
y∈D

inf
x∈C

g(x,y) = inf
x∈C

max
y∈D

g(x,y) =: p. (2)

To deduce the concrete Theorem from this theorem we simply
consider

g(x,y) := 〈Ax,y〉.
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Various proof techniques

In my books and papers I have reproduced a variety of proofs
of the general and concrete Theorems. All have their benefits
and additional features:

The original proof via Brouwer’s fixed point theorem [1,
§8.3] and more refined subsequent algebraic-topological
treatments such as the KKM principle [1, §8.1, Exer. 15].

Tucker’s proof of the concrete (simplex) Theorem via
schema and linear programming [12].
From a compactness and Hahn Banach separation—or
subgradient—argument [4], [2, §4.2, Exer. 14], [3, Thm
3.6.4].

– This approach also yields Sion’s convex- concave-like
minimax theorem, see [2, Thm 2.3.7] and [11] which
contains a nice early history of the minimax theorem.
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From Fenchel’s duality theorem applied to indicator
functions and their conjugate support functions see [1,
§4.3, Exer. 16], [2, Exer. 2.4.25] in Euclidean space, and in
generality [1, 2, 3]. Bauschke and Combettes discuss this
in Hilbert space.

– In J.M. Borwein and C. Hamilton, “Symbolic Convex
Analysis: Algorithms and Examples,” Math
Programming, 116 (2009), 17–35, we show that much
of this theory can be implemented in a computer
algebra system.
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SCAT illustrated http://carma.newcastle.edu.au/ConvexFunctions/links.html

eex
has conjugate y(logW(y)−W(y)−1/W(y)) (Lambert W)
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In the reflexive setting the role of C and D is entirely
symmetric. More generally, we should need to introduce
the weak∗ topology and choose not to do so here.

About 35 years ago while first teaching convex analysis and
conjugate duality theory, I derived the proof in Section 3, that
seems still to be the most abstract and sophisticated I know.

I derived it in order to illustrate the power of functional-
analytic convex analysis as a mode of argument.
I really do not now know if it was original at that time . But I
did discover it in Giaquinto’s [6, p. 50] attractive
encapsulation:

In short, discovering a truth is coming to believe it
in an independent, reliable, and rational way.
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Once a result is discovered, one may then look for a more
direct proof.

When first hunting for certainty it is reasonable to use
whatever tools one possess.

– For example, I have often used the Pontryagin
maximum principle [7] of optimal control theory to
discover an inequality for which I subsequently find a
direct proof, say from Jensen-like inequalities [2].

So it seemed fitting to write the proof down for the first issue of
the new journal Minimax Theory and its Applications dedicated
to all matters minimax.
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Needed Tools

I enumerate the prerequisite tools, sketching only the final two
as they are less universally treated.
1. Hahn-Banach separation If C ⊂ X is closed and convex in a
Banach space and x ∈ X \C there exists ϕ 6= 0 in X∗ such that

ϕ(x)> supx∈C ϕ(x)
as I learned from multiple sources including [7, 8].

Support and separation

We need only the Euclidean case which
follows from existence and characterisation
of the best approximation of a point to a
closed convex set [1, §2.1, Exer. 8].

2. Lagrangian duality for the abstract convex programme, see
[1, 2, 3], and [5, 8] for the standard formulation, that I learned
first from Luenberger [7].
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Theorem (Lagrange Multipliers)

Suppose that C⊂ X is convex, f : X→ R, is convex and G : X→ Y
ordered by a closed convex cone S with nonempty norm interior
is S-convex. Suppose that Slater’s condition holds:

∃ x̂ ∈ X with G(x̂) ∈ −intS.

Then, the programme

p := inf{f (x) : G(x)≤S 0,x ∈ C} (3)

has a Lagrange multiplier λ ∈ S+ := {µ : µ(s)≥ 0, ∀s ∈ S} so that

p := inf
x∈C

f (x)+λ (G(x)). (4)

If, moreover, p = G(x0) for a feasible x0 then complementary
slackness obtains: λ (G(x0)) = 0, while G(x0)≤S 0 and λ ≥S+ 0.
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In Luenberger this result is derived directly from the
Separation theorem.

In [1, 2] it is derived from the nonemptyness of of the
subdifferential of a continuous convex function, from
Fenchel duality, and otherwise (all being equivalent).

convex-concave Fenchel duality

To handle equality constraints, one
needs to use cones with empty
interior and to relax Slater’s condition,
via Fenchel duality as in [1, §4.3], [2,
§4.4] or [3, Thm. 4.4.3].
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Riesz-Markov-Kakutani representation theorem

3. (1909-1938-41) For a (locally) compact Hausdorff space Ω

the continuous function space, also Banach algebra and
Banach lattice:

C(Ω), in the maximum norm, has dual M(Ω)
consisting of all signed regular Borel measures on Ω.

as I learned from Jameson, Luenberger [7] for Ω := [a,b] ,
Rudin [10] and Royden [9].

Moreover, the positive dual functionals correspond to
positive measures, as follows from the lattice structure.
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Vector integration

4. The concept of a weak vector integral, as I learned from
Rudin [10, Ch. 3]. Given a measure space (Q,µ) and a
Hausdorff topological vector space Y, and a weakly integrable
function1 F : Q→ Y the integral y :=

∫
Q F(x)µ(dx) is said to exist

weakly if for each ϕ ∈ Y∗ we have

ϕ(y) =
∫

Q
ϕ(F(x))µ(dx), (5)

and the necessarily unique value of y =
∫

Q F(x)µ(dx) defines
the weak integral of F.

1That is, for each dual functional ϕ, the function x 7→ ϕ(F(x)) is integrable
with respect to µ.
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In [10, Thm. 3.27], Rudin establishes existence of the weak
integral for a Borel measure on a compact Hausdorff space Q,
when F is continuous and D := convF(Q) is compact. Moreover,
when µ is a probability measure

∫
Q F(x)µ(dx) ∈ convF(Q).

Proof
To show existence of y it is sufficient, since D is compact, to show
that, for a probability measure µ, (5) can be solved simultane-
ously in D for any finite set of linear functionals {ϕ1,ϕ2, . . . ,ϕn}.

We do this by considering T := (ϕ1,ϕ2, . . . ,ϕn) as a linear map-
ping from Y into Rn. Consider

m :=
(∫

Q
ϕ1(F(x))µ(dx), . . . ,

∫
Q

ϕn(F(x))µ(dx)
)

and use the Euclidean space version of the Separation the-
orem to deduce a contradiction if m 6∈ convT(F(Q)). Since
convT(F(Q)) = T(D) we are done. �
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ously in D for any finite set of linear functionals {ϕ1,ϕ2, . . . ,ϕn}.
We do this by considering T := (ϕ1,ϕ2, . . . ,ϕn) as a linear map-
ping from Y into Rn. Consider

m :=
(∫

Q
ϕ1(F(x))µ(dx), . . . ,

∫
Q

ϕn(F(x))µ(dx)
)

and use the Euclidean space version of the Separation the-
orem to deduce a contradiction if m 6∈ convT(F(Q)). Since
convT(F(Q)) = T(D) we are done. �
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Existence and properties of a barycentre

5. We need also the concept of the barycentre of a non-empty
weakly compact convex set D in a Banach space, with respect
to a Borel probability measure µ. As I learned from Choquet
and Rudin [10, Ch. 3]), the barycentre (centre of mass)

bD(µ) :=
∫

D
y µ(dy)

exists and lies in D.
This is a special case of the discussion in part 4.

Barycentre and Voronoi regions

For a polyhedron P with equal
masses of 1/n at each of the n
extreme points {ei}n

i=1 this is just

bP =
1
n

n

∑
i=1

ei.
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Proof of the minimax theorem

We now provide the promised complicated proof.

Proof. We first note that always p≥ d, this is weak duality. We
proceed to show d ≥ p.
1. We observe that, on adding a dummy variable,

p = infx∈C{r : g(x,y)≤ r, for all y ∈ D,r ∈ R}.

2. Define a vector function G : X×R→ C(D) by

G(x,r)(y) := g(x,y)− r.

This is legitimate because g is continuous in the y variable.
We take the cone S to be the non-negative continuous
functions on D and check that G is S-convex because g is
convex in x for each y ∈ D.
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An abstract convex programme

We now have an abstract convex programme

p = inf{r : G(x,r)≤S 0,x ∈ C}, (6)

where the objective is the linear function f (x,r) = r.

Fix 0 < ε < 1. Then there is some x̂ ∈ C with g(x̂,y)≤ p+ ε for all
y ∈ D. We deduce that

G(x̂,p−2)≤−1 ∈ −intS

where 1 is the constant function in C(D). Thence Slater’s
condition (1953) holds.
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3. The Lagrange multiplier theorem assures a multiplier λ ∈ S+.
By the Riesz representation of C(D)∗, given above, we may
treat λ as a measure and write

r+
∫

D
(g(x,y)− r)λ (dy)≥ p

for all x ∈ C and all r ∈ R. Since C is nonempty and r is arbitrary
we deduce that λ (D) =

∫
D λ (dy) = 1 and so λ is a probability

measure on D.
4. Consequently, we derive that for all x ∈ C∫

D
g(x,y)λ (dy)≥ p.

5. We now consider the barycentre b̂ := bD(λ ) guaranteed in
the prior section.
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Since λ is a probability measure and g is continuous in y we
deduce, using the integral form of Jensen’s inequality2 for the
concave function g(x, ·) , that for each x ∈ C

g(x,
∫

D
yλ (dy))≥

∫
D

g(x,y)λ (dy)≥ p.

But this says that

d = sup
y∈D

inf
x∈C

g(x,y)≥ inf
x∈C

g(x, b̂)≥ p.

This show the left-hand supremum is attained at the barycentre
of the Lagrange multiplier. This completes the proof. �

2Fix k := y→ g(x,y) and observe that for any affine majorant a of of k we
have k(b̂) = infa≥k a(b̂) = infa≥k

∫
D a(y)λ (dy)≥

∫
D k(y)λ (dy), where the

leftmost equality is a consequence of upper semicontinuity of k, and the
second since λ is a probability and we have a weak integral.

Jonathan Borwein (University of Newcastle, Australia) Minimax theorem



Abstract Introduction Various proof techniques Five Prerequisite Tools Proof of minimax Conclusions

Extensions

At the expense of some more juggling with the formulation, this
proof can be adapted to allow for g(x,y) only to be
upper-semicontinuous in y, as is assumed in Fan’s theorem.

One looks at continuous perturbations maximizing G.

I will be glad if I have succeeded in impressing the
idea that it is not only pleasant to read at times the
works of the old mathematical authors, but this may
occasionally be of use for the actual advancement of
science. (Constantin Carathéodory in 1936 speaking to the
MAA)
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Conclusions

Too often we teach the principles of functional analysis and of
convex analysis with only the most obvious applications in the
subject we know the most about—be it operator theory, partial
differential equations, or optimization and control.

But important mathematical results do not arrive in such
prepackaged form. In my books, [1, 2, 3], my coauthors
and I have tried in part to redress this imbalance. It is in
this spirit that I offer this modest article.

Acknowledgements. Thanks are due to many but especially
to Heinz Bauschke, Adrian Lewis, Jon Vanderwerff, Jim Zhu,
and Brailey Sims who have been close collaborators on matters
relating to this work over many years.
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