Structure theory for maximally monotone operators with points of continuity

Liangjin Yao

University of Newcastle

April 19, 2012

The University of Newcastle liangjin.yao@newcastle.edu.au Joint work with Jon Borwein

Motivation

Notation and auxiliary results
 Notation

Structure of maximally monotone operators

Final examples and applications

5 References

Motivation

Bauschke, Borwein and Combettes provided a new explicit construction for the subdifferential operator ∂f as follows:

For every $x \in X$,

$$\partial f(x) = \overline{N_{\text{dom } f}(x) + \overline{\text{conv}\left[(\partial f)_{\text{int}}(x)\right]}^{W^*}}^{W^*},$$

where

- dom *f* is the *domain of f*;
- *N*_{dom f} is the normal cone operator of dom f;
- (∂f)_{int} is the operator whose graph is the norm-weak* closure of gra ∂f ∩ (int dom f × X*).

We now extend it into every maximally monotone operator.

Throughout this talk,

- X is a general real Banach space, with continuous dual X^{*}, with the pairing ⟨·, ·⟩ and norm || · ||.
- Let $A : X \Rightarrow X^*$. The *graph* of A, gra $A := \{(x, x^*) \mid x^* \in Ax\}$.
- dom $A := \{x \in X \mid Ax \neq \emptyset\}$ and ran A := A(X).
- We say a net (a_α)_{α∈Γ} in X is *eventually bounded* if there exist α₀ ∈ Γ and M ≥ 0 such that

$$\|\mathbf{a}_{\alpha}\| \leq \mathbf{M}, \quad \forall \alpha \succeq_{\mathsf{\Gamma}} \alpha_{\mathsf{O}}.$$

• The closed unit ball in X is $B_X := \{x \in X \mid ||x|| \le 1\}$, and $B_{\delta}(x) := x + \delta B_X$.

- $A: X \Rightarrow X^*$ is *monotone* $\Leftrightarrow \langle x^* y^*, x y \rangle \ge 0$, whenever $(x, x^*), (y, y^*) \in \text{gra } A$.
- We say $(x, x^*) \in X \times X^*$ is monotonically related to gra A if

$$\langle \boldsymbol{x}-\boldsymbol{y}, \boldsymbol{x}^*-\boldsymbol{y}^* \rangle \geq 0, \quad \forall (\boldsymbol{y}, \boldsymbol{y}^*) \in \operatorname{gra} \boldsymbol{A}.$$

 A monotone mapping A : X ⇒ X* is maximally monotone if no proper enlargement of A is monotone.

Figure: The graph of a monotone operator

Figure: The graph of a maximally monotone operator

Notation and definitions

- f is convex $\Leftrightarrow f((1 \lambda)x + \lambda y) \le (1 \lambda)f(x) + \lambda f(y), \quad \lambda \in]0, 1[.$
- Let C ⊆ X. The *interior* of C is int C and C is the *norm closure* of C.
- The *convex hull* of *C* is conv *C*.
- For the set $D \subseteq X^*$, \overline{D}^{w^*} is the *weak*^{*} *closure* of *D*, and the *norm* \times *weak*^{*} *closure* of $C \times D$ is $\overline{C \times D}^{\|\cdot\| \times w^*}$.
- The indicator function ι_C is defined by

$$\iota_{\mathsf{C}}({\pmb{x}}) := egin{cases} \mathsf{0}, & ext{if } {\pmb{x}} \in {\pmb{C}}; \ +\infty, & ext{otherwise}. \end{cases}$$

• Subdifferential operator $\partial f \colon X \rightrightarrows X^*$ via

$$\mathbf{x}^* \in \partial f(\mathbf{x}) \iff (\forall \mathbf{y} \in \mathbf{X}) \ f(\mathbf{x}) + \langle \mathbf{y} - \mathbf{x}, \mathbf{x}^* \rangle \leq f(\mathbf{y}).$$

- The normal cone operator of C , N_C := ∂ι_C, The tangent cone operator of C is T_C.
- The duality map on X, $J := \partial \frac{1}{2} \| \cdot \|^2$.
- Let A be such that dom A ≠ Ø and consider a set S ⊆ dom A. We define A_S : X ⇒ X* by

$$\begin{aligned} \operatorname{gra} A_{\mathsf{S}} &:= \overline{\operatorname{gra} A \cap (\mathsf{S} \times X^*)}^{\|\cdot\| \times \mathsf{w}^*} \\ &= \big\{ (x, x^*) \mid \exists \operatorname{a} \operatorname{net} (x_\alpha, x_\alpha^*)_{\alpha \in \Gamma} \operatorname{in} \operatorname{gra} A \cap (\mathsf{S} \times X^*) \\ &\quad \operatorname{such} \operatorname{that} x_\alpha \longrightarrow x, x_\alpha^* \rightharpoondown_{\mathsf{w}^*} x^* \big\}. \end{aligned}$$

Set $A_{\text{int}} := A_{\text{int dom }A}$. We note that

$$\operatorname{gra} A_{\operatorname{dom} A} = \overline{\operatorname{gra} A}^{\|\cdot\| \times w^*} \supseteq \operatorname{gra} A.$$

Fact 1. (Banach–Alaoglu, 1932)

The closed unit ball B_{X^*} in X^* is weak* compact.

Fact 2. (Rockafellar, 1970)

Let $f : X \to]-\infty, +\infty]$ be a proper lower semicontinuous convex function. Then ∂f is maximally monotone.

Fact 3. (Rockafellar, 1969)

Let $A : X \rightrightarrows X^*$ be monotone with int dom $A \neq \emptyset$. Then A is locally bounded at $x \in \text{int dom } A$, i.e., there exist $\delta > 0$ and K > 0 such that

$$\sup_{y^*\in Ay} \|y^*\| \leq K, \quad \forall y \in (x + \delta B_X) \cap \operatorname{dom} A.$$

Fact 4. (Rockafellar, 1969)

Let $A : X \rightrightarrows X^*$ be maximal monotone with int dom $A \neq \emptyset$. Then int dom $A = \text{int } \overline{\text{dom } A}$ and $\overline{\text{dom } A}$ is convex.

Fact 5.

Let $A : X \Rightarrow X^*$ be monotone and $x \in \text{int dom } A$. Then there exist $\delta > 0$ and M > 0 such that $x + \delta B_X \subseteq \text{dom } A$ and $\sup_{a \in x + \delta B_X} ||Aa|| \le M$. Assume that (z, z^*) is monotonically related to gra A. Then

$$\langle \boldsymbol{z} - \boldsymbol{x}, \boldsymbol{z}^* \rangle \geq \delta \| \boldsymbol{z}^* \| - (\| \boldsymbol{z} - \boldsymbol{x} \| + \delta) \boldsymbol{M}.$$

Lemma 1. [Strong directional boundedness]

Let $A : X \Rightarrow X^*$ be monotone and $x \in \text{int dom } A$. Then there exist $\delta > 0$ and M > 0 such that $x + 2\delta B_X \subseteq \text{dom } A$ and $\sup_{a \in x + 2\delta B_X} ||Aa|| \le M$. Assume also that (x_0, x_0^*) is monotonically related to gra A. Then

$$\sup_{a \in [x+\delta B_X, \, x_0[, \, a^* \in Aa} \|a^*\| \leq \frac{1}{\delta} \left(\|x_0 - x\| + 1 \right) \left(\|x_0^*\| + 2M \right),$$

where $[x + \delta B_X, x_0] := \{(1 - t)y + tx_0 \mid 0 \le t < 1, y \in x + \delta B_X\}.$

Figure: Strong directional boundedness

Theorem 1. [Voisei] Let $A : X \Rightarrow X^*$ be monotone such that int dom $A \neq \emptyset$. Then every norm \times weak^{*} convergent net in gra *A* is eventually bounded.

Proof. We can and do suppose that $0 \in \text{int dom } A$. Let $(a_{\alpha}, a_{\alpha}^*)_{\alpha \in \Gamma}$ in gra A be such that

 $(a_{\alpha}, a_{\alpha}^*)$ norm \times weak^{*} converges to (x, x^*) .

Clearly, it suffices to show that

 $(a_{\alpha}^*)_{\alpha\in\Gamma}$ is eventually bounded.

Suppose to the contrary that $(a^*_{\alpha})_{\alpha \in \Gamma}$ is not eventually bounded. We can and do suppose that

$$\lim_{\alpha} \|\boldsymbol{a}_{\alpha}^*\| = +\infty.$$

By Fact 5, there exist $\delta > 0$ and M > 0 such that

 $\langle \boldsymbol{a}_{\alpha}, \boldsymbol{a}_{\alpha}^* \rangle \geq \delta \| \boldsymbol{a}_{\alpha}^* \| - (\| \boldsymbol{a}_{\alpha} \| + \delta) \boldsymbol{M}, \quad \forall \alpha \in \Gamma.$

Proof of Theorem 1

Then we have

$$\langle \boldsymbol{a}_{\alpha}, \frac{\boldsymbol{a}_{\alpha}^{*}}{\|\boldsymbol{a}_{\alpha}^{*}\|} \rangle \geq \delta - \frac{(\|\boldsymbol{a}_{\alpha}\| + \delta)\boldsymbol{M}}{\|\boldsymbol{a}_{\alpha}^{*}\|}, \quad \forall \alpha \in \mathsf{\Gamma}.$$
 (*)

By Fact 1 (Banach-Alaoglu theorem), there exists a weak* convergent subnet $(a_{\beta}^*)_{\beta \in I}$ of $(a_{\alpha}^*)_{\alpha \in \Gamma}$, say

$$rac{oldsymbol{a}_{eta}^{*}}{\|oldsymbol{a}_{\infty}^{*}}\| extsf{-}_{\mathrm{W}^{*}} oldsymbol{a}_{\infty}^{*} \in X^{*}.$$
 (**)

Then taking the limit along the subnet in (*), we have

$$\langle \boldsymbol{x}, \boldsymbol{a}_{\infty}^* \rangle \geq \delta.$$
 ($riangle$)

On the other hand, since $a^*_{\alpha} \rightarrow_{w^*} x^*$, we have

$$\langle \boldsymbol{x}, \boldsymbol{a}^*_{\alpha} \rangle \longrightarrow \langle \boldsymbol{x}, \boldsymbol{x}^* \rangle.$$

Dividing by $||a_{\alpha}^*||$ in both sides of above equation, then by (**) we take the limit along the subnet again to get

 $\langle x, a_{\infty}^* \rangle = 0$, which contradicts (\triangle).

Corollary 1.

Let $A : X \rightrightarrows X^*$ be maximally monotone such that int dom $A \neq \emptyset$. Then gra A is norm \times weak* closed, i.e., gra $A = \overline{\operatorname{gra} A}^{\|\cdot\| \times w^*}$.

Example 1. [Failure of graph to be norm-weak* closed]

Borwein, Fitzpatrick, and Girgensohn showed statement of Corollary 1 cannot hold without the assumption of the nonempty interior domain: The following example is as simplified by Bauschke and Combettes.

Let $f:\ell^2(\mathbb{N})
ightarrow]{-}\infty,+\infty]$ be defined by

$$x \mapsto \max \{1 + \langle x, e_1 \rangle, \sup_{2 \le n \in \mathbb{N}} \langle x, \sqrt{n} e_n \rangle \},$$

where $e_n := (0, ..., 0, 1, 0, ..., 0)$: the *n*th entry is 1 and the others are 0. Then *f* is proper lower semicontinuous and convex, but

 ∂f is not norm \times weak^{*} closed.

Corollary 2

Let $A : X \rightrightarrows X^*$ be maximally monotone with int dom $A \neq \emptyset$. Assume that $S \subseteq \text{dom } A$. Then

9 gra
$$A_S \subseteq$$
 gra A .

$$onv [A_{\mathcal{S}}(x)]^{w^+} \subseteq Ax, \forall x \in \text{dom } A.$$

· · · · · ·

3 $Ax = A_S(x), \forall x \in S$ and hence $Ax = A_{int}(x), \forall x \in int \text{ dom } A$.

Technical parts

Proposition 1

Let D, F be nonempty subsets of X^* , and C be a convex set of X with int $C \neq \emptyset$. Assume that $x \in C$ and that for every $v \in \text{int } T_C(x)$,

 $\sup \langle D, v \rangle \leq \sup \langle F, v \rangle < +\infty.$

Then

$$D \subseteq \overline{\operatorname{conv} F + N_C(x)}^{w^*}.$$

Next is our key technical part.

Proposition 2

Let $A : X \Rightarrow X^*$ be maximally monotone with $S \subseteq \text{int dom } A \neq \emptyset$ such that S is dense in int dom A. Assume that $x \in \text{dom } A$ and $v \in \text{int } T_{\overline{\text{dom } A}}(x)$. Then there exists $x_0^* \in A_S(x)$ such that

$$\sup \langle A_{\mathcal{S}}(x), v \rangle = \langle x_0^*, v \rangle = \sup \langle Ax, v \rangle.$$

In particular, dom $A_S = \text{dom } A$.

Proof. By Corollary 2, gra $A_S \subseteq$ gra A and hence

$$\sup \langle A_{\mathcal{S}}(x), v \rangle \leq \sup \langle Ax, v \rangle.$$
 (*

Appealing now to $v \in \operatorname{int} T_{\overline{\operatorname{dom} A}}(x)$, we can and do suppose that $v = x_0 - x$, where $x_0 \in \operatorname{int} \operatorname{dom} A = \operatorname{int} \operatorname{dom} A$ by Fact 4.

Using Lemma 1 select $M, \delta > 0$ such that $x_0 + 2\delta B_X \subseteq \text{dom } A$ and

$$\sup_{a\in [x_0+\delta B_X,\,x[,\,a^*\in Aa}\|a^*\|\leq M<+\infty.$$

(**)

Let $t \in]0, 1[$. Then,

 $x + tB_{\delta}(v) = (1 - t)x + tx_0 + t\delta B_X \subseteq \operatorname{int} \operatorname{\overline{dom}} A = \operatorname{int} \operatorname{dom} A.$

Then by the monotonicity of A,

$$egin{array}{ll} t\langle \pmb{a}^*-\pmb{x}^*,\pmb{w}
angle\ =\langle \pmb{a}^*-\pmb{x}^*,\pmb{x}+t\pmb{w}-\pmb{x}
angle\geq 0, & orall \pmb{a}^*\in \pmb{A}(\pmb{x}+t\pmb{w}),\,\pmb{x}^*\in \pmb{A}\pmb{x},\pmb{w}\in \pmb{B}_{\delta}(\pmb{v}). \end{array}$$

There exists a sequence $(x_n^*)_{n \in \mathbb{N}}$ in Ax such that

$$\langle \boldsymbol{x}_n^*, \boldsymbol{v} \rangle \longrightarrow \sup \langle \boldsymbol{A} \boldsymbol{x}, \boldsymbol{v} \rangle.$$

(△)

(***)

Combining above two equations, we have

$$\langle a^* - x^*_n, v + w - v \rangle \geq 0, \quad \forall a^* \in A(x + tw), \ w \in B_{\delta}(v), \ n \in \mathbb{N}.$$

Fix $1 < n \in \mathbb{N}$. Thus, appealing to (**) and the above equation yields,

$$egin{array}{lll} \langle a^*,v
angle \geq \langle x^*_n,v
angle - \langle a^*-x^*_n,w-v
angle \ \geq \langle x^*_n,v
angle - (M+\|x^*_n\|)\cdot\|w-v\| & orall a^*\in A(x+tw),\ w\in B_\delta(v). \end{array}$$

Take $\varepsilon_n := \min\{\frac{1}{n(M+||x_n^*||)}, \delta\}$ and $t_n := \frac{1}{n}$.

Since *S* is dense in int dom *A* and $x + t_n B_{\varepsilon_n}(v) \subseteq \text{int dom } A$ by (***), $S \cap [x + t_n B_{\varepsilon_n}(v)] \neq \emptyset$. Then there exists $w_n \in X$ such that

 $w_n \in B_{\varepsilon_n}(v), \quad x + t_n w_n \in S \text{ and then } x + t_n w_n \longrightarrow x.$ ($\triangle \triangle$)

Thus,

$$\langle a^*, v \rangle \geq \langle x_n^*, v \rangle - \frac{1}{n}, \quad \forall a^* \in A(x + t_n w_n).$$

Let $a_n^* \in A(x + t_n w_n)$. Then by the previous equation,

$$\langle a_n^*, v \rangle \geq \langle x_n^*, v \rangle - \frac{1}{n}.$$

By (**) and (***), $(a_n^*)_{n \in \mathbb{N}}$ is bounded. Then by the Banach-Alaoglu theorem, there exists a weak* convergent subnet of $(a_{\alpha}^*)_{\alpha \in I}$ of $(a_n^*)_{n \in \mathbb{N}}$ such that

$$a^*_{\alpha}
ightarrow_{w^*} x^*_0 \in X^*.$$

Then by ($\triangle \triangle$), $x_0^* \in A_S(x)$ and thus by ($\triangle \triangle \triangle$)& (\triangle)

$$\sup \big\langle \mathsf{A}_{\mathcal{S}}(x), v \big\rangle \geq \big\langle x_0^*, v \big\rangle \geq \sup \big\langle \mathsf{A} x, v \big\rangle.$$

Hence by (*), we obtain $\sup \langle A_{\mathcal{S}}(x), \nu \rangle = \langle x_0^*, \nu \rangle = \sup \langle Ax, \nu \rangle$.

Reconstruction of A, I

We next recall an alternate *recession cone* description of $N_{\text{dom }A}$. Consider

$$\operatorname{rec} A(x) := \{ x^* \in X^* \mid \exists t_n \to 0^+, (a_n, a_n^*) \in \operatorname{gra} A \operatorname{such} \operatorname{that} \\ a_n \longrightarrow x, \ t_n a_n^* \rightarrowtail_{w^*} x^* \}.$$

Remark

When A is maximally monotone,

$$(N_{\overline{\text{dom }A}} =) N_{\text{dom }A} = \operatorname{rec} A$$
 on dom A.

Theorem 2. [Reconstruction of *A*, **1]** Let $A : X \rightrightarrows X^*$ be maximally monotone with $S \subseteq \text{int dom } A \neq \emptyset$ and with *S* dense in int dom *A*. Then for every $x \in X$,

$$Ax = N_{\overline{\operatorname{dom} A}}(x) + \overline{\operatorname{conv} [A_S(x)]}^{w^*} = \operatorname{rec} A(x) + \overline{\operatorname{conv} [A_S(x)]}^{w^*}.$$

Outline proof of Theorem 2

Proof. By Remark ($N_{\overline{\text{dom }A}} = \text{rec }A$ on dom A), we only need show

$$Ax = N_{\overline{\operatorname{\mathsf{dom}} A}}(x) + \overline{\operatorname{\mathsf{conv}} [A_{\mathbb{S}}(x)]}^{\mathsf{w}^*}$$

Applying Propositions 1&2,

$$Ax = \overline{N_{\operatorname{dom} A}(x) + \operatorname{conv} [A_S(x)]}^{w^*}, \quad \forall x \in X.$$

We must still show

$$Ax = N_{\overline{\operatorname{\mathsf{dom}} A}}(x) + \overline{\operatorname{\mathsf{conv}} \left[A_{\mathcal{S}}(x)
ight]}^{\mathsf{w}^*}, \quad \forall x \in X$$

Now, for every two sets $C, D \subseteq X^*$, we have $C + \overline{D}^{w^*} \subseteq \overline{C + D}^{w^*}$. Thus, it suffices to show that for every $x \in \text{dom } A$,

$$\overline{N_{\operatorname{dom} A}(x) + \operatorname{conv} \left[A_{\mathcal{S}}(x)\right]}^{\mathsf{w}^*} \subseteq N_{\operatorname{dom} A}(x) + \overline{\operatorname{conv} \left[A_{\mathcal{S}}(x)\right]}^{\mathsf{w}^*}.$$

We again can and do suppose that $0 \in \operatorname{int} \operatorname{dom} A$ and $(0,0) \in \operatorname{gra} A$. Let $x \in \operatorname{dom} A$ and $x^* \in \overline{N_{\operatorname{dom} A}(x) + \operatorname{conv} [A_S(x)]}^{w^*}$. Now we show that $x^* \in \overline{N_{\operatorname{dom} A}(x) + \operatorname{conv} [A_S(x)]}^{w^*}$.

Then there exists nets $(x_{\alpha}^*)_{\alpha \in I}$ in $N_{\text{dom }A}(x)$ and $(y_{\alpha}^*)_{\alpha \in I}$ in conv $[A_{S}(x)]$ such that

$$\boldsymbol{x}_{\alpha}^{*} + \boldsymbol{y}_{\alpha}^{*} \rightarrow_{\mathrm{w}^{*}} \boldsymbol{x}^{*}.$$

Now we claim that

 $(\mathbf{x}^*_{\alpha})_{\alpha \in I}$ is eventually bounded.

Suppose to the contrary that $(x_{\alpha}^*)_{\alpha \in I}$ is not eventually bounded. We can and do suppose that

$$\lim_{\alpha} \|\boldsymbol{x}_{\alpha}^*\| = +\infty.$$

By $0 \in \text{int dom } A$ and $x_{\alpha}^* \in N_{\overline{\text{dom } A}}(x)$ (for every $\alpha \in I$), there exists $\delta > 0$ such that $\delta B_X \subseteq \overline{\text{dom } A}$ and hence we have

$$\langle \boldsymbol{x}, \boldsymbol{x}_{\alpha}^* \rangle \geq \sup_{\boldsymbol{b} \in \boldsymbol{B}_{\boldsymbol{X}}} \langle \boldsymbol{x}_{\alpha}^*, \delta \boldsymbol{b} \rangle = \delta \| \boldsymbol{x}_{\alpha}^* \|.$$

Thence, we have

$$\langle \mathbf{x}, \frac{\mathbf{x}_{\alpha}^{*}}{\|\mathbf{x}_{\alpha}^{*}\|} \rangle \geq \delta.$$
 (**)

By Fact 1, there exists a weak* convergent subnet $(x_{\beta}^*)_{\beta \in \Gamma}$ of $(x_{\alpha}^*)_{\alpha \in I}$, say

$$rac{oldsymbol{x}_eta^*}{\|oldsymbol{x}_eta^*\|} extsf{--}_{\mathrm{w}^*}oldsymbol{x}_\infty^* \in oldsymbol{X}^*.$$

Taking the limit along the subnet in (**), we have

$$\langle \boldsymbol{x}, \boldsymbol{x}^*_{\infty} \rangle \geq \delta.$$
 ($riangle$)

Since $x_{\alpha}^* + y_{\alpha}^* \rightarrow_{w^*} x^*$, we have

$$\frac{\boldsymbol{x}_{\alpha}^{*}}{\|\boldsymbol{x}_{\alpha}^{*}\|}+\frac{\boldsymbol{y}_{\alpha}^{*}}{\|\boldsymbol{x}_{\alpha}^{*}\|} \rightarrow_{w^{*}} \mathbf{0}.$$

And so by
$$\frac{\boldsymbol{x}_{\beta}^{*}}{\|\boldsymbol{x}_{\beta}^{*}\|} \sim_{\mathrm{w}^{*}} \boldsymbol{x}_{\infty}^{*},$$

 $\frac{\boldsymbol{y}_{\beta}^{*}}{\|\boldsymbol{x}_{\beta}^{*}\|} \sim_{\mathrm{w}^{*}} -\boldsymbol{x}_{\infty}^{*}.$

By Corollary 2, conv $[A_S(x)] \subseteq Ax$, and hence $(y^*_{\alpha})_{\alpha \in I}$ is in Ax. Since $(0,0) \in \text{gra } A$, we have $\langle y^*_{\alpha}, x \rangle \geq 0$ and so

$$ig\langle rac{oldsymbol{y}_eta^*}{\|oldsymbol{x}_eta^*\|},oldsymbol{x}ig
angle \geq oldsymbol{0}.$$

Using the equation $\frac{y_{\beta}^*}{\|x_{\beta}^*\|} \to w^* - x_{\infty}^*$ and taking the limit along the subnet in above equation we get

 $\langle -\mathbf{x}_{\infty}^{*}, \mathbf{x} \rangle \geq 0$, which contradicts that $\langle \mathbf{x}_{\infty}^{*}, \mathbf{x} \rangle \geq \delta$.

Hence, $(x_{\alpha}^*)_{\alpha \in I}$ is eventually bounded.

Then by Fact 1 (Banach- Alaoglu theorem) again, there exists a weak^{*} convergent subset of $(x_{\alpha}^*)_{\alpha \in I}$, for convenience, still denoted by $(x_{\alpha}^*)_{\alpha \in I}$ which lies in the normal cone, such that $x_{\alpha}^* - w^* w^* \in X^*$. Hence $w^* \in N_{\overline{\text{dom }A}}(x)$ and $y_{\alpha}^* - w^* x^* - w^* \in \overline{\text{conv} [A_S(x)]}^{w^*}$. Hence

$$x^* \in N_{\overline{\operatorname{dom} A}}(x) + \overline{\operatorname{conv} [A_S(x)]}^{w^*}.$$

Corollary 2. [Convex subgradients]

Let $f : X \to]-\infty, +\infty]$ be proper lower semicontinuous and convex with int dom $f \neq \emptyset$. Let $S \subseteq$ int dom f be given with S dense in dom f. Then

$$\partial f(x) = N_{\text{dom } f}(x) + \overline{\operatorname{conv}\left[(\partial f)_{\mathcal{S}}(x)\right]}^{W^*}, \quad \forall x \in X.$$

In various classes of Banach space we can choose useful structure for $\mathcal{S} \in \mathcal{S}_{\mathcal{A}},$ where

 $S_A := \{S \subseteq \text{int dom } A \mid S \text{ is dense in int dom } A\}.$

Corollary 3. [Specification of S_A]

Let $A : X \rightrightarrows X^*$ be maximally monotone with int dom $A \neq \emptyset$. We may choose the dense set $S \in S_A$ to be as follows:

- In a Gâteaux smooth space, entirely within the residual set of non-σ porous points of dom A,
- In an Asplund space, to include only a subset of the generic set points of single-valuedness and norm to norm continuity of A,
- In a separable Asplund space, to hold only countably many angle-bounded points of A,

- In a weak Asplund space, to include only a subset of the generic set of points of single-valuedness (and norm to weak* continuity) of A,
- In a separable space, to include only points of single-valuedness (and norm to weak* continuity) of A whose complement is covered by a countable union of Lipschitz surfaces.
- In finite dimensions, to include only points of differentiability of A which are of full measure.

A notation and a definition

Let
$$A : X \rightrightarrows X^*$$
. We define $\widehat{A} : X \rightrightarrows X^*$ by

$$\operatorname{gra}\widehat{A} := \Big\{ (x, x^*) \in X \times X^* \mid x^* \in \bigcap_{\varepsilon > 0} \overline{\operatorname{conv}\left[A(x + \varepsilon B_X)\right]}^{\mathsf{w}^*} \Big\}.$$

Clearly, we have $\overline{\operatorname{gra} A}^{\|\cdot\| \times w^*} \subseteq \operatorname{gra} \widehat{A}$.

We say *A* has the upper-semicontinuity property *property* (*Q*) if for every net $(x_{\alpha})_{\alpha \in J}$ in *X* such that $x_{\alpha} \longrightarrow x$, we have

$$\bigcap_{\alpha \in J} \overline{\operatorname{conv}} \left[\bigcup_{\beta \succeq J^{\alpha}} A(x_{\beta}) \right]^{\mathsf{w}^*} \subseteq Ax.$$

The following directly follows from above:

$$\widehat{A} = A \Rightarrow (A \text{ has property } (Q)) \Rightarrow (\operatorname{gra} A = \overline{\operatorname{gra} A}^{\|\cdot\| \times w^*}).$$

Theorem 3. [Reconstruction of A, 2]

Let $A : X \Rightarrow X^*$ be maximally monotone with int dom $A \neq \emptyset$. Then $\widehat{A} = A$. In particular, A has property (Q); and so has a norm × weak* closed graph.

Recall that

$$\operatorname{gra} \widehat{A} := \Big\{ (x, x^*) \in X \times X^* \mid x^* \in \bigcap_{\varepsilon > 0} \overline{\operatorname{conv} \left[A(x + \varepsilon B_X) \right]}^{w^*} \Big\}.$$

In general, we do not have

$$Ax = \overline{\operatorname{conv} [A_{\mathcal{S}}(x)]}^{w^*}, \quad \forall x \in \operatorname{dom} A.$$

Example 2

Let C be a closed convex subset of X with $S \subseteq \text{int } C \neq \emptyset$ such that S is dense in C. Then

• N_C is maximally monotone and $gra(N_C)_S = C \times \{0\}$.

There always exists an operator A even with no interior point such that $\widehat{A} = A$ and hence A has property (Q). More generally:

Example 3

Suppose that X is reflexive. Let $A : X \rightrightarrows X^*$ be such that gra A is nonempty closed and convex. Then

 $\widehat{A} = A$ and hence A has property (Q).

Applications

Example 4

Let p > 1 and $f : X \rightarrow]-\infty, +\infty]$ be defined by

$$x\mapsto \iota_{B_X}(x)+rac{1}{
ho}\|x\|^{
ho}.$$

Then for every $x \in \text{dom } f$, we have

$$N_{\text{dom}\,f}(x) = \begin{cases} \mathbb{R}_+ \cdot Jx, & \text{if } \|x\| = 1; \\ \{0\}, & \text{if } \|x\| < 1 \end{cases}$$
$$(\partial f)_{\text{int}}(x) = \begin{cases} \|x\|^{p-2} \cdot Jx, & \text{if } \|x\| \neq 0; \\ \{0\}, & \text{otherwise.} \end{cases}$$

Moreover,

- H.H. Bauschke, J.M. Borwein, and P.L. Combettes, "Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces", *Communications in Contemporary Mathematics*, vol. 3, pp. 615–647, 2001.
- H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, 2011.
- J.M. Borwein, "Fifty years of maximal monotonicity", *Optimization Letters*, vol. 4, pp. 473–490, 2010.
- J.M. Borwein and J.D. Vanderwerff, *Convex Functions*, Cambridge University Press, 2010.
- J.M. Borwein and L. Yao, "Structure theory for maximally monotone operators with points of continuity", submitted; http://arxiv.org/abs/1203.1101v1, March 2012.

- R.T. Rockafellar and R.J-B Wets, *Variational Analysis*, 3rd Printing, Springer-Verlag, 2009.
- S. Simons, *From Hahn-Banach to Monotonicity*, Springer-Verlag, 2008.

Thanks for your attention.

April 19, 2012 39 / 39