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Abstract. Duality relations are deduced for tails of multiple zeta values using elementary methods.

These formulas extend the classical duality formulas for multiple zeta values.
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1. Introduction

There are countless formulae relating in�nite sums of harmonic numbers

Hn :=
n∑

k=1

1

k
(1.1)

to values of the Riemann zeta-function, from the well-known expression for ζ(2):

ζ(2) =
∞∑

n=1

Hn

n(n + 1)
, (1.2)

to more involved results involving powers of Hn such as

ζ(4) =
4

11

∞∑
n=1

H2
n

(n + 1)2
=

4

17

∞∑
n=1

H2
n

n2
, (1.3)

which can arise from a number of di�erent ways (see, for example, De Doelder [6] or
Borwein and Borwein [2], as well as [3, p. 173, Problem 9]), to the in�nite classes of
identities discovered by W. Chu [5] using evaluations of hypergeometric series.
These formulae are, as one might expect due to the appearance of the harmonic

numbers, also related to Euler-Zagier sums, or multiple zeta-values (MZVs), given by

ζ(a1, . . . , ak) :=
∑

n1>···>nk>0

k∏
i=1

1

nai
i

, (1.4)

which converge when a1 > 1. In what follows, we use the standard convention of
abbreviating a repeating sequence S in the argument of an MZV that repeats k times
by replacing it with {S}k in the argument. For example, ζ(2, 1, 1, 2, 1) = ζ(2, {1}2, 2, 1)
and ζ(2, 1, 2, 1, 3) = ζ({2, 1}2, 3).
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MZVs are known to satisfy what is known as MZV duality, the simplest case of which
is the famous identity of Euler:

∞∑
n=1

Hn

(n + 1)2
= ζ(2, 1) = ζ(3) =

∞∑
n=1

1

n3
. (1.5)

The �rst author and D. Bradley [4] have collected 32 di�erent proofs of (1.5), covering
many diverse ideas which can be used to attack sums of this type.
Our present study stems from the following intriguing generalization of (1.2), which

we learned from Problem 854 in the May 2007 issue of the College Mathematics Journal
[8, p. 228]. A slightly rephrased version of it is:

Theorem 1. For each positive integer m we have

ζ(2)−
m−1∑
n=1

1

n2
= m!

∞∑
n=1

Hn

n(n + 1)m

, (1.6)

where

(n + 1)m := (n + 1) · · · (n + m)

is the Pochhammer symbol.

Equation (1.2) follows from the case m = 1. Theorem 1 may be interpreted as an
expression for the �tail� (that is, the error) in the m−1st partial sum of ζ(2). Note that
the right-hand side of (1.6) is much more computationally e�cient for the evaluation
of ζ(2) even for small m, as it converges like O(n−(m+1)) while the classical de�nition
of ζ(2) converges like O(n−2).
In the next section, we give an elementary proof of Theorem 1. Then in Section

3 we consider extensions to tails of MZVs, and we are led to a duality relation that
generalizes the classical duality formula for MZVs. In Section 4 we apply our ideas to
alternating zeta functions and more general types of multiple zeta-functions.

2. The ζ(2) case

In this section we give an inductive proof of Theorem 1. We require the following
lemma.

Lemma 2. For any positive integer m, we have∑
n≥0

1(
n+m+1

m+1

) =
m + 1

m
. (2.1)

Proof. In this proof, as well as the rest of the paper, we will make heavy use of the
following partial fraction identity, often without mention.

1

n(n + m)
=

1

m

(
1

n
− 1

n + m

)
. (2.2)

Applying (2.2) we �nd that

N∑
n=0

1(
n+m+1

m+1

) =
N∑

n=0

(m + 1)!n!

(n + m + 1)!



3

=
N∑

n=0

(m + 1)!(n + 1)!

(n + m)!

1

(n + 1)(n + m + 1)

=
m + 1

m

N∑
n=0

m!(n + 1)!

(n + m)!

(
1

n + 1
− 1

n + m + 1

)

=
m + 1

m

N∑
n=0

(
1(

n+m
m

) − 1(
n+1+m

m

)) ,

which is a telescoping sum. Letting N tend to in�nity gives the desired result. �

Remark 3. We remark that (2.1) goes back at least to Euler, and can be found in [7,
p. 44]. In comparison, modern computer algebra systems can easily provide a machine-
proof. For example, the following line of code works in Maple 10 or 11 and many other
versions.

S:=Sum(1/(binomial(n+m+1,m+1)),n=0..infinity):S=value(S);

We now give our proof of Theorem 1.

Proof of Theorem 1. Let f(m) denote the right-hand side of (1.6), then Theorem 1
follows if we show that f(1) = ζ(2) and f(m) − f(m + 1) = 1/m2 for m ≥ 1. As we
mentioned, the fact that f(1) = ζ(2) is exactly (1.2), but for completeness we supply
a proof: ∑

n≥1

Hn

n(n + 1)
=
∑
n≥1

(
Hn

n
− Hn

n + 1

)
=
∑
n≥1

(
1

n2
+

Hn−1

n
− Hn

n + 1

)
= ζ(2),

where we use the convention H0 = 0.
Now it remains to show that for all m ≥ 1,

m!
∞∑

n=1

Hn

n(n + 1) · · · (n + m)
− (m + 1)!

∞∑
n=1

Hn

n(n + 1) · · · (n + m + 1)
=

1

m2
. (2.3)

Using (2.2), we �nd that

f(m) = (m− 1)!
∑
n≥1

Hn

(n + 1)m−1

(
1

n
− 1

n + m

)
= f(m− 1)− (m− 1)!

∑
n≥1

Hn+1 − 1/(n + 1)

(n + 1)(n + 2)m−1

= f(m− 1)−

(
f(m− 1)− (m− 1)!

∑
n≥1

1

n2(n + 1)m−1

)
(2.4)



4

since H1 = 1. Therefore,

f(m)− f(m + 1) = (m− 1)!
∑
n≥1

1

n2(n + 1)m−1

−m!
∑
n≥1

1

n2(n + 1)m

= (m− 1)!
∑
n≥1

1

n2(n + 1)m−1

(
1− m

n + m

)
= (m− 1)!

∑
n≥1

1

n(n + 1) · · · (n + m)
=

1

m(m + 1)

∑
n≥1

1(
n+m
m+1

)
=

1

m(m + 1)
· m + 1

m
=

1

m2
(2.5)

as required. �

Let us at this point de�ne the hypergeometric series pFq

(
a1, . . . , ap

b1, . . . , bq
; x

)
by

pFq

(
a1, . . . , ap

b1, . . . , bq
; x

)
:=
∑
n≥0

(a1)n(a2)n · · · (ap)n

(b1)n · · · (bq)nn!
xn, (2.6)

as well as the k-th polylogarithm, Lik(x), given by

Lik(x) :=
∑
n≥1

xn

nk
, (2.7)

see [1]. We may combine (2.4) with Theorem 1 and rewrite it in hypergeometric form.

Corollary 4. For any positive integer m we have

3F2

(
m, m, 1

m + 1, m + 1
; 1

)
= m 3F2

(
1, 1, 1

m + 1, 2
; 1

)
. (2.8)

Proof. Begin by noting that we have the power series identity

Lik(x)−
m−1∑
n=1

xn

nk
= xm

∑
n≥0

xn

(n + m)k
= xm

∑
n≥0

(m)k
n

mk(m + 1)k
n

xn

=
xm

mk k+1Fk

(
m, . . . , m, 1

m + 1, . . . ,m + 1
; x

)
. (2.9)

By Theorem 1,

f(m) = Li2(1)−
m−1∑
n=1

1

n2
=

1

m2 3F2

(
m, m, 1

m + 1, m + 1
; 1

)
.

But by (2.4),

f(m) =
∑
n≥0

(m− 1)!

(n + 1)(n + 1)m

=
1

m
3F2

(
1, 1, 1

m + 1, 2
; 1

)
.

�



5

Remark 5. Corollary 4 is a special case of a result of Kummer [1, p. 142, Cor. 3.3.5],
which states

3F2

(
a, b, c
d, e

; 1

)
=

Γ(e)Γ(d + e− a− b− c)

Γ(e− a)Γ(d + e− b− c)
3F2

(
a, d− b, d− c

d, d + e− b− c
; 1

)
,

and is itself a limiting case of a result of Whipple [1, p. 140, Thm. 3.3.3]. Corollary 4
can also be thought of as a 3F2 analogue of Euler's Transformation:

2F1

(
a, b
c

; x

)
= (1− x)c−a−b

2F1

(
c− a, c− b

c
; x

)
. (2.10)

3. Extensions to Multiple Zeta Values

In this section we prove some MZV analogues to Theorem 1. For convenience we
introduce some notation. For any �nite sequence S = {a1, . . . , ak} of positive integers
denote by ζm(S) the mth outer-partial sum of ζ(S) and by ιm(S) the mth inner-partial

sum. That is,

ζm(S) :=
∑

m≥n1>···>nk>0

k∏
i=1

1

nai
i

, ιm(S) :=
m∑

nk=1

∑
n1>···>nk

k∏
i=1

1

nai
i

. (3.1)

Note that ζm(S) is �nite and therefore converges for any choice of S whereas ιm(S) is
in�nite and converges if and only if a1 > 1. Also, for any function g : N → C, with
values gn, we de�ne the function F by

F(k,m; gn) := m!
∑
n≥1

gn

nk(n + 1)m

. (3.2)

All of our results in this section depend on the following properties of F(k, m; gn).

Proposition 6. For any positive integers k and m, we have

F(k,m; gn) = F(k, 0; gn)−
m∑

j=1

1

j
F(k − 1, j; gn), (3.3)

provided both sides converge. In particular, if there exists an ε > 0 such that gn =
O(n1−ε) as n →∞, then for every positive integer k we have

F(k, 0; gn) =
∞∑

j=1

1

j
F(k − 1, j; gn), (3.4)

provided that both sides converge.

Proof. First note that for each k and m ≥ 1 we have

F(k, m− 1; gn)−F(k, m; gn)

= (m− 1)!
∑
n≥1

gn

nk(n + 1)m−1

− (m− 1)!
∑
n≥1

gn

nk−1(n + 1)m−1

(
1

n
− 1

n + m

)
= (m− 1)!

∑
n≥1

gn

nk−1(n + 1)m
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=
1

m
F(k − 1, m; gn), (3.5)

provided the far right-hand side converges. (3.3) follows from summing on m. To prove
(3.4), it su�ces to show that if gn = O(n1−ε) then lim

m→∞
F(k,m; gn) = 0 for each k ≥ 1.

Since F(k,m; |gn|) < F(1, m; |gn|), we need only to prove the case k = 1. Now, since
gn = O(n1−ε), we know that

∞∑
n=1

|gn|
n2

< ∞,

and so

F(1, m; |gn|) =
∑
n≥1

m!|gn|
n(n + 1)m

≤
∑
n≥1

|gn|
n(n + m)

=
∑

1≤n≤
√

m

|gn|
n(n + m)

+
∑

n>
√

m

|gn|
n(n + m)

≤ 1√
m

∑
1≤n≤

√
m

|gn|
n2

+
∑

n>
√

m

|gn|
n2

= O(m−1/2) + o(1)

as m →∞, as required. �

Remark 7. The growth condition gn = O(n1−ε) in Proposition 6 is nowhere near best
possible, since we used very loose bounds on the factorial and Pochhammer symbols.
However, it more than su�ces for the sequences that we consider in the remainder of
this paper.

In this notation, we may rewrite (2.4) as

F(1, m; Hn) = F(2, m− 1; 1),

where we write 1 for 1n.

Theorem 8. Let k and m be non-negative integers with k ≥ 2. Then we have

F(k, m; 1) =
∑

n1>···>nk−1>m

1

n2
1n2 · · ·nk−1

= ζ(2, {1}k−2)− ιm(2, {1}k−2). (3.6)

Proof. We induct on k. The case k = 2 is Theorem 1. Suppose (3.6) holds for some
k ≥ 2. Then by the recurrence relation (3.3) we �nd that

F(k + 1, m; 1) = ζ(k + 1)−
m∑

j=1

1

j

∑
n1>n2>···>nk−1>j

1

n2
1n2 · · ·nk−1

.
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Let m tend to ∞. Since lim
m→∞

F(k + 1, m; 1) = 0, we �nd that ζ(k + 1) = ζ(2, {1}k−1),

and so we have

F(k + 1, m; 1) =
∑

nk>m

1

nk

∑
n1>n2>···>nk

1

n2
1n2 · · ·nk−1

=
∑

n1>n2>···>nk>m

1

n2
1n2 · · ·nk

as required. �

Theorem 9. For each integer k ≥ 2 and m ≥ 0 we have

F(k,m; Hn−1) = ζ(3, {1}k−2)− ιm(3, {1}k−2) =
∑

n1>···>nk−1>m

1

n3
1n2 · · ·nk−1

. (3.7)

Proof. We begin by considering F(k,m; Hn) and showing that

F(k,m; Hn) = ζ(2, {1}k−1)− ιm(2, {1}k−1) + ζ(3, {1}k−2)− ιm(3, {1}k−2)

for each k ≥ 2. By (3.3) and Theorem 1 we have

F(2, m; Hn) = F(2, 0; Hn)−
m∑

j=1

1

j
F(1, j; Hn)

= ζ(2, 1) + ζ(3)−
m∑

j=1

1

j

∞∑
n=j

1

n2

= ζ(2, 1) + ζ(3)− ιm(2, 1)− ιm(3).

Thus, for k > 2 we �nd inductively that

F(k,m; Hn) = F(k, 0; Hn)−
m∑

j=1

1

j
F(k − 1, j; Hn)

= ζ(2, {1}k−1) + ζ(3, {1}k−2)−
m∑

j=1

1

j

∑
n1>···>nk−1>j

1

n2
1n2 · · ·nk−1

−
m∑

j=1

1

j

∑
n1>···>nk−2>j

1

n3
1n2 · · ·nk−2

= ζ(2, {1}k−1) + ζ(3, {1}k−2)− ιm(2, {1}k−1)− ιm(3, {1}k−2).

Finally, w2e note that F(k,m; Hn−1) = F(k, m; Hn) − F(k + 1, m; 1) and then apply
Theorem 8. �

Before we continue, we record two appealing special cases of Theorem 9.

Corollary 10. ∑
n≥1

m! Hn−1

n2(n + 1)m

=
∑
n>m

1

n3
, (3.8)



8 ∑
n≥1

m! Hn−1

n3(n + 1)m

=
∑
n>m

Hn−1

n3
. (3.9)

Equation (3.8) is an expression for the tail of ζ(3), but can also be interpreted as an
extension of Euler's identity ζ(2.1) = ζ(3), which can be recovered by setting m = 0.
Equation (3.9) is the �rst case where we do not get a connection formula between
MZVs by setting m = 0 (indeed, one obtains ζ(3, 1) = ζ(3, 1) in this case). Such MZVs
are self-dual (the reason for this is evident from the duality formula for MZVs below).
However, a reduction formula (an MZV connection formula that relates ζ(S) to an
MZV whose argument is a string of shorter length than S) for ζ(3, 1) exists in the form
of Zagier's identity ζ({3, 1}n) = 4−nζ({4}n), see [3, p. 160, Cor. 3.13].
The proofs of Theorems 8 and 9 suggest that the recursive nature of F should allow

us to inductively build up more general tail formulas. Indeed, Theorem 9 is the base
case of the following generalization.

Theorem 11. For any positive integers k,m, N with k ≥ 2 we have

F(k, m; ζn({1}N)) = ζ(N + 1, {1}k−1)− ιm(N + 1, {1}k−1)

+ ζ(N + 2, {1}k−2)− ιm(N + 2, {1}k−2)

=
∑

n1>···>nk>m

1

nN+1
1 n2 · · ·nk

+
∑

n1>···nk−1>m

1

nN+2
1 n2 · · ·nk−1

, (3.10)

and

F(k,m; ζn−1({1}N) = ζ(N + 2, {1}k−2)− ιm(N + 2, {1}k−2)

=
∑

n1>···>nk−1>m

1

nN+2
1 n2 · · ·nk−1

. (3.11)

Proof. Our proof is by double induction on N and k. The base case is Theorem 9, which
corresponds to N = 1 and is true for all k ≥ 2. We begin by deriving a generalization
of (2.4). For each positive integer n and N we have the relation

F(1, m; ζn({1}N) = m!
∑
n≥1

ζn({1}N)

n(n + 1)m

= (m− 1)!

(∑
n≥1

ζn({1}N)

n(n + 1)m−1

−
∑
n≥1

ζn+1({1}N)− ζn({1}N−1)/(n + 1)

(n + 1)m

)
= F(2, m− 1; ζn−1({1}N−1)),

since ζ1({1}N) = 0 for N ≥ 2. Now, suppose both (3.10) and (3.11) are true for all
k ≥ 2 if N < N ′. Then, by (3.3) we have

F(2, m; ζn({1}N ′
)) = F(2, 0; ζn({1}N ′

))−
m∑

j=1

1

j
F(1, j; ζn({1}N ′

))
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= F(2, 0; ζn({1}N ′
))−

m∑
j=1

1

j
F(2, j − 1; ζn−1({1}N ′−1))

= ζ(2, {1}N ′
) + ζ(3, {1}N ′−1)−

m∑
j=1

1

j

∑
n1≥j

1

nN ′+1
1

= ζ(2, {1}N ′
)−

m∑
n1=1

1

nN ′+2
1

+ ζ(3, {1}N ′−1)−
m∑

j=1

1

j

∑
n1>j

1

nN ′+1
1

= ζ(N ′ + 2)− ιm(N ′ + 2) + ζ(N ′ + 1, 1)− ιm(N ′ + 1, 1)

by Theorems 8 and 9 at m = 0. Suppose further that (3.10) is true for N = N ′ and
for 2 ≤ k < k′. Then we have for each m ≥ 1,

m∑
j=1

1

j
F(k′ − 1, j, ζn({1}N ′

))

=
m∑

j=1

1

j

∑
n1>···>nk′−1>j

1

nN ′+1
1 n2 · · ·nk′−1

+
m∑

j=1

1

j

∑
n1>···>nk′−2>j

1

nN ′+2
1 n2 · · ·nk′−2

= ιm(N ′ + 1, {1}k′−1) + ιm(N ′ + 2, {1}k′−2).

Since ζn({1}N) = O(log(n)N) for every N ≥ 0, we may apply (3.4) to �nd that

F(k′, 0; ζn({1}N ′
)) = ζ(k′ + 1, {1}N ′−1) + ζ(k′, {1}N ′

)

= ζ(N ′ + 1, {1}k′−1) + ζ(N ′ + 2, {1}k′−2),

and combining this with (3.3) we obtain

F(k′, m; ζn({1}N ′
)) = F(k′, 0; ζn({1}N ′

))−
m∑

j=1

1

j
F(k′ − 1, j, ζn({1}N ′

))

= ζ(N ′ + 1, {1}k′−1) + ζ(N ′ + 2, {1}k′−2)

− ιm(N ′ + 1, {1}k′−1)− ιm(N ′ + 2, {1}k′−2)

as required. To prove (3.11), we simply apply (3.10), the inductive hypothesis, and the
identity

F(k,m; ζn−1({1}N)) = m!
∑
n≥1

ζn−1({1}N)

nk(n + 1)m

= m!
∑
n≥1

ζn({1}N)− ζn−1({1}N−1)/n

nk(n + 1)m

= F(k,m; ζn({1}N))−F(k + 1, m; ζn−1({1}N−1))

which holds for every positive integer k and N . �

Remark 12. We remark that (3.11) can be proved without �rst proving (3.10), using
the fact that

F(1, m; ζn−1({1}N) = F(1, m; ζn({1}N)−F(2, m; ζn−1({1}N−1)

= F(2, m− 1; ζn−1({1}N))−F(2, m; ζn−1({1}N−1))
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and then proceeding inductively as in the proof of (3.10). We choose, however, to
include both formulas because (3.10) is a more direct generalization of Theorem 1 and
also because both the formulas and their proofs are very closely intertwined.

As a consequence of (3.11) at m = 0 we obtain a special case of the famous duality
result for MZVs.

Corollary 13 (Special MZV duality). For any non-negative integers k and N we have

ζ(k + 2, {1}N) = ζ(N + 2, {1}k). (3.12)

Theorem 11 can be thought of as a connection formula between the MZV ζ(k, {1}N)
and the inner-partial sums of its dual ιm(N + 2, {1}k−2). Speci�cally, that the tail of
the dual is obtained by dividing the outermost summands by a Pochhammer symbol.
This naturally leads us to the following elementary development of the formula for
general MZV duality [3, Thm. 3.6.1].

Theorem 14 (General MZV duality). Let a1, . . . , aN , b1, . . . , bN , and m be non-

negative integers. If we let S be the sequence

{1}b1 , a2 + 2, {1}b2 , a3 + 2, . . . , aN + 2, {1}bN

and S ′ be its dual sequence

bN + 2, {1}aN , bN−1 + 2, {1}aN−1 , . . . , b1 + 2,

then we have

F(a1 + 2, m; ζn−1(S)) = ζ(S ′, {1}a1)− ιm(S ′, {1}a1). (3.13)

In particular, upon setting m = 0 we recover the general duality formula

ζ(a1 + 2, S) = ζ(S ′, {1}a1). (3.14)

Proof. We induct on the length of S, counting each 1 in {1}bi as a single term in the
sequence. So the length of S is b1 + b2 + · · ·+ bN +N−1. We also adopt the convention
that ζn(∅) ≡ 1 for all n. The base case (when S = ∅, so N = 1 and b1 = 0) is the
identity

F(a1 + 2, m; 1) = ζ(2, {1}a1)− ιm(2, {1}a1),

which is a restatement of Theorem 8.
For the inductive step, let the sequence T be given by

T :=

{
{1}b1−1, a2 + 2, . . . , {1}bN , if b1 ≥ 1,

{1}b2 , a3 + 2, . . . , {1}bN , if b1 = 0.

Then since

F(1, m; ζn−1(S)) =

{
F(1, m; ζn(S))−F(2, m; ζn−1(T )), if b1 ≥ 1,

F(1, m; ζn(S))−F(a2 + 3, m; ζn−1(T )), if b1 = 0,

we have that

F(1, m; ζn−1(S)) =

{
F(2, m− 1; ζn−1(T ))−F(2, m; ζn−1(T )), if b1 ≥ 1,

F(a2 + 3, m− 1; ζn−1(T ))−F(a2 + 3, m; ζn−1(T )), if b1 = 0.
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Applying (3.3) and inducting on a1 for �xed S (separating the two cases above) as in
the proof of Theorem 11 yields the result. �

4. Alternating Zetas and κ-Duality

In the previous section we considered evaluations of F(k,m; gn) where gn = ζn(S) is
an outer-partial sum of a multiple zeta value. It is natural to ask whether similar eval-
uations exist for alternating zeta values, such as − ln 2 =

∑∞
n=1(−1)n/n. Considering

F(1, m; (−1)n) leads us to the pair of equations

1

2m
F(1, m; (−1)n) =

∑
n>m

1

n2n
= − ln 2 +

m∑
n=1

1

n2n
, (4.1)

and

(−1)mF(1, m; (1/2)n) = −
∑
n>m

(−1)n

n
= − ln(1/2) +

m∑
n=1

(−1)n

n
. (4.2)

The pair (−1, 1/2) is reminiscent of the so-called kappa-to-unit-Euler duality formula
[3, p. 154, Thm. 3.8]. To work with these more general functions, it is convenient to
de�ne the multivariate ζ-function

ζ(x; a1, . . . , ak) :=
∑

n1>···>nk>0

k∏
i=1

xni
j

n
aj

i

, (4.3)

where x = (x1, · · · , xk), as well as the multivariate analogues of (3.1):

ζm(x; S) :=
∑

m≥n1>···>nk>0

k∏
i=1

xni
i

nai
i

, ιm(x; S) :=
m∑

nk=1

∑
n1>···>nk

k∏
i=1

xni
i

nai
i

. (4.4)

Continuing to follow convention, we may drop the vector x if all the xi's are ±1, and in-
dicate the positions of the −1s by placing a bar over the corresponding aj. For example,
ζ((−1, 1, 1); {3}2, 1) = ζ(3̄, 3, 1). We also denote by κ(S) the MZV ζ((1

2
, 1, 1, . . . , 1); S).

In this notation, the kappa-to-unit-Euler duality formula states

κ(a1, . . . , ak) = (−1)kζ((τ1, τ2/τ1, . . . , τs/τs−1); {1}s), (4.5)

where s = a1 + · · ·+ak and (τ1, . . . , τs) = (−1, {1}ak−1,−1, {1}ak−1−1, . . . ,−1, {1}a1−1).
In particular, we have the following analogue of (3.14).

κ(a1 + 2, {1}b1 , . . . , ak + 2, {1}bk) =

(−1)b1+···+bk+kζ(1̄, {1}bk , 1̄, {1}ak , . . . , 1̄, {1}b1 , 1̄, {1}a1). (4.6)

It is not surprising, then, that we can derive a κ-analogue of Theorem 14.

Theorem 15 (κ duality). Let a1, . . . , aN , and m be non-negative integers, s =
a1 + · · · + aN , (τ1, . . . , τs) = (−1, {1}aN−1,−1, {1}aN−1−1, . . . ,−1, {1}a1−1), and x =
(τ1, τ2/τ1, . . . , τs/τs−1). Then we have

(−1)NF(a1, m; 2−nζn−1(a2, . . . , aN))
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=

{
(−1)m (ζ(x; {1}s)− ιm(x; {1}s)) , if a1 = 1,

ζ(x; {1}s)− ιm(x; {1}s), if a1 > 1.
(4.7)

Proof. We induct on N . The base cases

(−1)m+1F(1, m; 2−n) = ζ(1̄)− ιm(1̄),

and

−F(a1, m; 2−n) = ζ(1̄, 1̄, {1}a1−2)− ιm(1̄, 1̄, {1}a1−2)

follow from (4.2) and (3.3). Suppose now that (4.7) holds for all 1 ≤ N < N ′. We �rst
consider the case a1 = 1. In this case, (τ1, . . . , τs) = (−1, {1}aN′−1, . . . ,−1, {1}a2−1,−1).
Set x = (τ1, τ2/τ1, . . . , τs/τs−1) and x′ = (τ1, τ2/τ1, . . . , τs−1/τs−2). Note that we have
the identity

F(1, m; 2−nζn−1(a2, . . . , aN ′)) =

−F(1, m− 1; 2−nζn−1(a2, . . . , aN ′)) +
1

m
F(a2, m; 2−nζn−1(a3, . . . , aN ′)).

If a2 = 1, then τs = τs−1 = −1 so x = (x′, 1). Thus,

(−1)mF(1, m; 2−nζn−1(a2, . . . , aN ′))

= −F(1, 0; 2−nζn−1(1, a3, . . . , aN ′)) +
m∑

j=1

(−1)j

j
F(1, j; 2−nζn−1(a3, . . . , aN ′))

= −F(1, 0; 2−nζn−1(1, a3, . . . , aN ′))

+
m∑

j=1

(−1)N ′−1

j

(
ζ(x′, {1}s−1)− Zj(x

′, {1}s−1)
)

= −F(1, 0; 2−nζn−1(1, a3, . . . , aN ′))− (−1)N ′
ιm(x, {1}s),

where we used the inductive hypothesis in the penultimate step. Letting m tend to
in�nity and rearranging yields

(−1)N ′+mF(1, m; 2−nζn−1(a2, . . . , aN ′)) = ζ(x, {1}s)− ιm(x, {1}s)

as desired. If a2 > 1, then τs−1 = 1 so x = (x′,−1). In this case the (−1)j does not
cancel, so that

(−1)mF(1, m; 2−nζn−1(a2, . . . , aN ′))

= −F(1, 0; 2−nζn−1(1, a3, . . . , aN ′))

+
m∑

j=1

(−1)N ′−1(−1)j

j

(
ζ(x′, {1}s−1)− Zj(x

′, {1}s−1)
)

= −F(1, 0; 2−nζn−1(1, a3, . . . , aN ′))− (−1)N ′
ιm(x, {1}s),

which again is what we want. To deduce the general case when a1 > 1 one simply
applies the recurrence (3.3) as in the proof of the base case. �
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One may deduce formulas for the general multivariate ζ-function ζ(x; a1, . . . , ak)
using the inductive procedure as we have done above and the identity

F(1, m; xnζn−1(y; a2, . . . , aN)) =

(
x− 1

x

)
F(1, m− 1; xnζn−1(y; a2, . . . , aN))

− 1

m
F(a2, m; (xy)nζn−1(y

′; a3, . . . , aN)), (4.8)

with y = (y, y2, . . . , yN−1) and y′ = (y2, . . . , yN−1) for values of the parameters such
that both sides converge. As the general formulas obtained from this procedure are
not as elegant, we do not work them out here. We remark, however, that the simplest
case (where N = 1) is a special case of Pfa�'s Transformation

2F1

(
a, b
c

; x

)
= (1− x)−a

2F1

(
a, c− b

c
;

x

x− 1

)
, (4.9)

with a = b = 1 and c = m + 2. This is not surprising, since both Pfa�'s Transfor-
mation and MZV Duality can be deduced from the same type of change-of-variable
transformation applied to an appropriate integral representation. See [1, p. 68] and [3,
p. 153].
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