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The object of mathematical rigor is to sanction and legitimize the conquests of
intuition, and there was never any other object for it. Jacques Hadamard1

If mathematics describes an objective world just like physics, there is no reason
why inductive methods should not be applied in mathematics just the same as
in physics. Kurt Gödel2

1 Introduction

Recent years have seen the flowering of “experimental” mathematics, namely the utiliza-
tion of modern computer technology as an active tool in mathematical research. This
development is not limited to a handful of researchers, nor to a handful of universities,
nor is it limited to one particular field of mathematics. Instead, it involves hundreds of
individuals, at many different institutions, who have turned to the remarkable new com-
putational tools now available to assist in their research, whether it be in number theory,
algebra, analysis, geometry or even topology. These tools are being used to work out spe-
cific examples, generate plots, perform various algebraic and calculus manipulations, test
conjectures, and explore routes to formal proof. Using computer tools to test conjectures
is by itself a major time saver for mathematicians, as it permits them to quickly rule out
false notions.

Clearly one of the major factors here is the development of robust symbolic mathemat-
ics software. Leading the way are the Maple and Mathematica products, which in the latest
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editions are far more expansive, robust and user-friendly than when they first appeared
20 to 25 years ago. But numerous other tools, some of which only emerged in the past few
years, are also playing key roles. These include: (1) the Magma computational algebra
package, developed at the University of Sydney in Australia; (2) Neil Sloane’s online inte-
ger sequence recognition tool, available at http://www.research.att.com/~njas/sequences;
(3) the inverse symbolic calculator (an online numeric constant recognition facility), avail-
able at http://www.cecm.sfu.ca/projects/ISC; the electronic geometry site at
http://www.eg-models.de; and numerous others. See http://www.experimentalmath.info
for a more complete list, with links to their respective websites.

We must of course also give credit to the computer industry. In 1965, Gordon Moore,
before he served as CEO of Intel, observed

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. . . . Certainly over the short term this rate
can be expected to continue, if not to increase. Over the longer term, the rate
of increase is a bit more uncertain, although there is no reason to believe it
will not remain nearly constant for at least 10 years. [29]

Nearly 40 years later, we observe a record of sustained exponential progress that has no
peer in the history of technology. Hardware progress alone has transformed mathematical
computations that were once impossible into simple operations that can be done on any
laptop.

Many papers have now been published in the experimental mathematics arena, and a
full-fledged journal, appropriately titled Experimental Mathematics, has been in operation
for 12 years. Even older is the AMS journal Mathematics of Computation, which has
been publishing articles in the general area of computational mathematics since 1960
(since 1943 if you count its predecessor). Just as significant are the hundreds of other
recent articles that mention computations, but which otherwise are considered entirely
mainstream work. All of this represents a major shift from when the present authors
began their research careers, when the view that “real mathematicians don’t compute”
was widely held in the field.

In this article, we will summarize some of the discoveries and research results of recent
years, by ourselves and others, together with a brief description of some of the key methods
employed. We will then attempt to ascertain, at a more fundamental level, what these
developments mean for the larger world of mathematical research.

2 Integer Relation Detection

One of the key techniques used in experimental mathematics is integer relation detection,
which in effect searches for linear relationships satisfied by a set of numerical values. To
be precise, given a real or complex vector (x1, x2, · · · , xn), an integer relation algorithm
is a computational scheme that either finds the n integers (ai), not all zero, such that
a1x1+a2x2+· · · anxn = 0 (to within available numerical accuracy), or else establishes that
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there is no such integer vector within a ball of radius A about the origin, where the metric
is the Euclidean norm: A = (a2

1 + a2
2 + · · ·+ a2

n)1/2. Integer relation computations require
very high precision in the input vector x to obtain numerically meaningful results—at
least dn-digit precision, where d = log10 A. This is the principal reason for the interest in
very high-precision arithmetic in experimental mathematics. In one recent integer relation
detection computation, 50,000-digit arithmetic was required to obtain the result [9].

At the present time, the best known integer relation algorithm is the PSLQ algorithm
[26] of mathematician-sculptor Helaman Ferguson, who, together with his wife Claire,
received the 2002 Communications Award of the Joint Policy Board for Mathematics
(AMS-MAA-SIAM). Simple formulations of the PSLQ algorithm and several variants are
given in [10]. The PSLQ algorithm, together with related lattice reduction schemes such
as LLL, was recently named one of ten “algorithms of the century” by the publication
Computing in Science and Engineering [4]. PSLQ or a variant is implemented in current
releases of most computer algebra systems.

3 Arbitrary Digit Calculation Formulas

The best-known application of PSLQ in experimental mathematics is the 1995 discovery,
by means of a PSLQ computation, of the “BBP” formula for π:

π =
∞∑

k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (1)

This formula permits one to directly calculate binary or hexadecimal digits beginning at
the n-th digit, without needing to calculate any of the first n− 1 digits [8], using a simple
scheme that requires very little memory and no multiple-precision arithmetic software.

It is easiest to see how this individual digit-calculating scheme works by illustrating it
for a similar formula, known at least since Euler, for log 2:

log 2 =
∞∑

n=1

1

n2n

Note that the binary expansion of log 2 beginning after the first d binary digits is simply
{2d log 2}, where by {·} we mean fractional part. We can write

{2d log 2} =

{ ∞∑
n=1

2d−n

n

}
=

{
d∑

n=1

2d−n

n

}
+

{ ∞∑

n=d+1

2d−n

n

}

=

{
d∑

n=1

2d−n mod n

n

}
+

{ ∞∑

n=d+1

2d−n

n

}
, (2)

where we insert “mod n” in the numerator of the first term of (2) since we are only
interested in the fractional part after division by n. Now the expression 2d−n mod n may
be evaluated very rapidly by means of the binary algorithm for exponentiation, where each
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multiplication is reduced modulo n. The entire scheme indicated by formula (2) can be
implemented on a computer using ordinary 64-bit or 128-bit arithmetic—high-precision
arithmetic software is not required. The resulting floating-point value, when expressed
in binary format, gives the first few digits of the binary expansion of log 2 beginning at
position d + 1. Similar calculations applied to each of the four terms in formula (1) yield
a similar result for π. The largest computation of this type to date is binary digits of
π beginning at the quadrillionth (1015-th) binary digit, performed by an international
network of computers organized by Colin Percival.

The BBP formula for π has even found a practical application—it is now employed in
the g95 Fortran compiler as part of transcendental function evaluation software.

Since 1995, numerous other formulas of this type have been found and proven, using
a similar experimental approach. Several examples include:

π
√

3 =
9
32

∞∑

k=0

1
64k

(
16

6k + 1
− 8

6k + 2
− 2

6k + 4
− 1

6k + 5

)
(3)

π2 =
1
8

∞∑

k=0

1
64k

[
144

(6k + 1)2
− 216

(6k + 2)2
− 72

(6k + 3)2
− 54

(6k + 4)2
+

9
(6k + 5)2

]
(4)

π2 =
2
27

∞∑

k=0

1
729k

[
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2
− 27

(12k + 5)2

− 72
(12k + 6)2

− 9
(12k + 7)2

− 9
(12k + 8)2

− 5
(12k + 10)2

+
1

(12k + 11)2

]
(5)

√
3 arctan

(√
3

7

)
=

∞∑

k=0

1
27k

(
3

3k + 1
+

1
3k + 2

)
(6)

25
2

log


781

256

(
57− 5

√
5

57 + 5
√

5

)√
5

 =

∞∑

k=0

1
55k

(
5

5k + 2
+

1
5k + 3

)
(7)

Formulas (3) and (4) permit arbitrary-position binary digits to be calculated for π
√

3
and π2. Formulas (5) and (6) permit the same for ternary (base-3) expansions of π2

and
√

3 arctan(
√

3/7). Formula (7) permits the same for the base-5 expansion of the
curious constant shown. A compendium of known BBP-type formulas, with references, is
available at [5].

One interesting twist here is that the hyperbolic volume of one of Ferguson’s sculptures
(the “Figure-Eight Knot Complement”3—see Figure 1), which is given by

V = 2
√

3
∞∑

n=1

1

n
(
2n
n

)
2n−1∑

k=n

1

k
= 2.029883212819307250042405108549 . . . ,

has been identified in terms of a BBP-type formula, by application of Ferguson’s own
PSLQ algorithm. In particular, British physicist David Broadhurst found in 1998, using

3Reproduced by permission of the sculptor.
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Figure 1: Ferguson’s “Figure Eight Knot Complement” sculpture
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a PSLQ program, that

V =

√
3

9

∞∑
n=0

(−1)n

27n

[
18

(6n + 1)2
− 18

(6n + 2)2
− 24

(6n + 3)2
− 6

(6n + 4)2
+

2

(6n + 5)2

]
.

This result is proven in [15, Chap. 2, Prob. 34].

4 Does Pi Have a Nonbinary BBP Formula?

Since the discovery of the BBP formula for π in 1995, numerous researchers have in-
vestigated, by means of computational searches, whether there is a similar formula for
calculating arbitrary digits of π in other number bases (such as base 10). Alas, these
searches have not been fruitful.

Recently one of the present authors (JMB), together with David Borwein (Jon’s father)
and William Galway, established that there is no degree-1 BBP-type formula for π for
bases other than powers of two (although this does not rule out some other scheme for
calculating individual digits). We will sketch this result here. Full details and some related
results can be found in [20].

In the following, <(z) and =(z) denote the real and imaginary parts of z, respectively.
The integer b > 1 is not a proper power if it cannot be written as cm for any integers c
and m > 1. We will use the notation ordp(z) to denote the p-adic order of the rational
z ∈ Q. In particular, ordp(p) = 1 for prime p, while ordp(q) = 0 for primes q 6= p, and
ordp(wz) = ordp(w) + ordp(z). The notation νb(p) will mean the order of the integer b
in the multiplicative group of the integers modulo p. We will say that p is a primitive
prime factor of bm− 1 if m is the least integer such that p|(bm− 1). Thus p is a primitive
prime factor of bm − 1 provided νb(p) = m. Given the Gaussian integer z ∈ Q[i] and
the rational prime p ≡ 1 (mod 4), let θp(z) denote ordp(z) − ordp(z), where p and p are
the two conjugate Gaussian primes dividing p, and where we require 0 < =(p) < <(p) to
make the definition of θp unambiguous. Note that

θp(wz) = θp(w) + θp(z). (8)

Given κ ∈ R, with 2 ≤ b ∈ Z and b not a proper power, we say that κ has a Z-linear
or Q-linear Machin-type BBP arctangent formula to the base b if and only if κ can be
written as a Z-linear or Q-linear combination (respectively) of generators of the form

arctan

(
1

bm

)
= = log

(
1 +

i

bm

)
= bm

∞∑

k=0

(−1)k

b2mk(2k + 1)
. (9)

We shall also use the following result, first proved by Bang in 1886:

Theorem 1 The only cases where bm − 1 has no primitive prime factor(s) are when
b = 2,m = 6, bm− 1 = 32 · 7 or when b = 2N − 1, N ∈ Z, m = 2, bm− 1 = 2N+1(2N−1− 1).

We can now state the main result:
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Theorem 2 Given b > 2 and not a proper power, then there is no Q-linear Machin-type
BBP arctangent formula for π.

Proof: It follows immediately from the definition of a Q-linear Machin-type BBP arct-
angent formula that any such formula has the form

π =
1

n

M∑
m=1

nm= log(bm − i), (10)

where n > 0 ∈ Z, nm ∈ Z, and M ≥ 1, nM 6= 0. This implies that

M∏
m=1

(bm − i)nm ∈ eniπQ× = Q×. (11)

For any b > 2 and not a proper power we have Mb ≤ 2, so it follows from Bang’s
Theorem that b4M − 1 has a primitive prime factor, say p. Furthermore, p must be odd,
since p = 2 can only be a primitive prime factor of bm − 1 when b is odd and m = 1.
Since p is a primitive prime factor, it does not divide b2M − 1, and so p must divide
b2M + 1 = (bM + i)(bM − i). We cannot have both p|bM + i and p|bM − i, since this would
give the contradiction that p|(bM + i)− (bM − i) = 2i. It follows that p ≡ 1 (mod 4), and
that p factors as p = pp over Z[i], with exactly one of p, p dividing bM − i. Referring
to the definition of θ, we see that we must have θp(b

M − i) 6= 0. Furthermore, for any
m < M , neither p nor p can divide bm − i since this would imply p | b4m − 1, 4m < 4M ,
contradicting the fact that p is a primitive prime factor of b4M − 1. So for m < M , we
have θp(b

m − i) = 0. Referring to equation (10), using Equation (8) and the fact that
nM 6= 0, we get the contradiction

0 6= nMθp(b
M − i) =

M∑
m=1

nmθp(b
m − i) = θp(Q

×) = 0. (12)

Thus our assumption that there was a b-ary Machin-type BBP arctangent formula for π
must be false.

5 Normality Implications of the BBP Formulas

One interesting (and unanticipated) discovery is that the existence of these computer-
discovered BBP-type formulas has implications for the age-old question of normality for
several basic mathematical constants, including π and log 2. What’s more, this line of
research has recently led to a full-fledged proof of normality for an uncountably infinite
class of explicit real numbers.

Given a positive integer b, we will define a real number α to be b-normal if every m-
long string of base-b digits appears in the base-b expansion of α with limiting frequency
b−m. In spite of the apparently stringent nature of this requirement, it is well known from
measure theory that almost all real numbers are b-normal, for all bases b. Nonetheless,
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there are very few explicit examples of b-normal numbers, other than the likes of Cham-
pernowne’s constant 0.123456789101112131415 . . . In particular, although computations
suggest that virtually all of the well-known irrational constants of mathematics (such as
π, e, γ, log 2,

√
2, etc.) are normal to various number bases, there is not a single proof—not

for any of these constants, not for any number base.
Recently one of the present authors (DHB) and Richard Crandall established the

following result.
Let p(x) and q(x) be integer-coefficient polynomials, with deg p < deg q, and q(x)

having no zeroes for positive integer arguments. By an equidistributed sequence in the
unit interval we mean a sequence (xn) such that for every subinterval (a, b), the fraction
#[xn ∈ (a, b)]/n tends to b− a in the limit. The result is as follows:

Theorem 3 A constant α satisfying the BBP-type formula

α =
∞∑

n=1

p(n)

bnq(n)

is b-normal if and only if the associated sequence defined by x0 = 0 and, for n ≥ 1,
xn = {bxn−1 + p(n)/q(n)} (where {·} denotes fractional part as before), is equidistributed
in the unit interval.

For example, log 2 is 2-normal if and only if the simple sequence defined by x0 = 0 and
{xn = 2xn−1 +1/n} is equidistributed in the unit interval. For π, the associated sequence
is x0 = 0 and

xn =

{
16xn−1 +

120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

}
.

Full details of this result are given in [11] [15, Section 3.8].
It is difficult to know at the present time whether this result will lead to a full-fledged

proof of normality for, say, π or log 2. However, this approach has yielded a solid normality
proof for another class of reals: Given r ∈ [0, 1), let rn be the n-th binary digit of r. Then
for each r in the unit interval, the constant

αr =
∞∑

n=1

1

3n23n+rn
(13)

is 2-normal and transcendental [12]. What’s more, it can be shown that whenever r 6= s,
then αr 6= αs. Thus (13) defines an uncountably infinite class of distinct 2-normal,
transcendental real numbers. A similar conclusion applies when 2 and 3 in (13) are
replaced by any pair of relatively prime integers greater than 1.

Here we will sketch a proof of normality for one particular instance of these constants,
namely α0 =

∑
n≥1 1/(3n23n

). Its associated sequence can be seen to be x0 = 0 and
xn = {2xn−1 + cn}, where cn = 1/n if n is a power of 3, and zero otherwise. This
associated sequence is a very good approximation to the sequence ({2nα0}) of shifted
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binary fractions of α0. In fact, |{2nα0} − xn| < 1/(2n). The first few terms of the
associated sequence are

0, 0, 0,
1
3
,

2
3
,

1
3
,

2
3
,

1
3
,

2
3
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
,

13
27

,
26
27

,
25
27

,
23
27

,
19
27

,
11
27

,
22
27

,
17
27

,
7
27

,
14
27

,
1
27

,
2
27

,
4
27

,
8
27

,
16
27

,
5
27

,
10
27

,
20
27

,

13
27

,
26
27

,
25
27

,
23
27

,
19
27

,
11
27

,
22
27

,
17
27

,
7
27

,
14
27

,
1
27

,
2
27

,
4
27

,
8
27

,
16
27

,
5
27

,
10
27

,
20
27

,

13
27

,
26
27

,
25
27

,
23
27

,
19
27

,
11
27

,
22
27

,
17
27

,
7
27

,
14
27

,
1
27

,
2
27

,
4
27

,
8
27

,
16
27

,
5
27

,
10
27

,
20
27

,

and so forth. The clear pattern is that of triply repeated segments, each of length 2 · 3m,
where the numerators range over all integers relatively prime to and less than 3m+1.

Note the very even manner in which this sequence fills the unit interval. Given any
subinterval (c, d) of the unit interval, it can be seen that this sequence visits this subin-
terval no more than 3n(d − c) + 3 times, among the first n elements, provided that
n > 1/(d − c). It can then be shown that the sequence ({2jα}) visits (c, d) no more
than 8n(d− c) times, among the first n elements of this sequence, so long as n is at least
1/(d− c)2. The 2-normality of α0 then follows from a result given in [28, pg. 77]. Further
details on these results are given in [15, Sec. 4.3], [6], [12].

6 Euler’s Multi-Zeta Sums

In April 1993, Enrico Au-Yeung, an undergraduate at the University of Waterloo, brought
to the attention of one of us (JMB) the curious result

∞∑

k=1

(
1 +

1

2
+ · · ·+ 1

k

)2

k−2 = 4.59987 . . . ≈ 17

4
ζ(4) =

17π4

360
(14)

where ζ(s) =
∑

n≥1 n−s is the Riemann zeta function. Au-Yeung had computed the sum
in (14) to 500,000 terms, giving an accuracy of five or six decimal digits. Suspecting that
his discovery was merely a modest numerical coincidence, Borwein sought to compute
the sum to a higher level of precision. Using Fourier analysis and Parseval’s equation, he
wrote

1

2π

∫ π

0

(π − t)2 log2(2 sin
t

2
) dt =

∞∑
n=1

(
∑n

k=1
1
k
)2

(n + 1)2
. (15)

The series on the right of (15) permits one to evaluate (14), while the integral on the left
can be computed using the numerical quadrature facility of Mathematica or Maple. When
he did this, he was surprised to find that the conjectured identity (14) holds to more than
30 digits. We should add here that by good fortune, 17/360 = 0.047222 . . . has period
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one and thus can plausibly be recognized from its first six digits, so that Au-Yeung’s
numerical discovery was not entirely far-fetched.

Borwein was not aware at the time that (14) follows directly from a 1991 result due
to De Doelder, and had even arisen in 1952 as a problem in the American Mathematical
Monthly. What’s more, it turns out that Euler considered some related summations.
Perhaps it was just as well that Borwein was not aware of these earlier results—and
indeed of a large, quite deep and varied literature [21]—because pursuit of this and similar
questions had led to a line of research that continues to the present day.

First define the multi-zeta constant

ζ(s1, s2, · · · , sk) :=
∑

n1>n2>···>nk>0

k∏
j=1

n
−|sj |
j σ

−nj

j ,

where the s1, s2, . . . , sk are non-zero integers, and the σj := signum(sj). Such constants
can be considered as generalizations of the Riemann zeta function at integer arguments,
in higher dimensions.

The analytic evaluation of such sums has relied on fast methods for computing their nu-
merical values. One scheme, based on Hölder Convolution, is discussed in [22] and imple-
mented in EZFace+, an online tool available at http://www.cecm.sfu.ca/projects/ezface+.
We will illustrate its application to one specific case, namely the analytic identification of
the sum

S2,3 =
∞∑

k=1

(
1− 1

2
+ · · ·+ (−1)k+1 1

k

)2

(k + 1)−3. (16)

Expanding the squared term in (16), we have

∑
0<i,j<k

k>0

(−1)i+j+1

ijk3 = −2 ζ(3,−1,−1) + ζ(3, 2). (17)

Evaluating this in EZFace+ we quickly obtain

S2,3 = 0.156166933381176915881035909687988193685776709840303872957529354

497075037440295791455205653709358147578 . . . .

Given this numerical value, PSLQ or some other integer-relation-finding tool can be used
to see if this constant satisfies a rational linear relation of certain constants. Our experi-
ence with these evaluations has suggested that likely terms would include: π5, π4 log(2),
π3 log2(2), π2 log3(2), π log4(2), log5(2), π2ζ(3), π log(2)ζ(3), log2(2)ζ(3), ζ(5), Li5(1/2).
The result is quickly found to be:

S2,3 = 4 Li5

(
1

2

)
− 1

30
log5(2)− 17

32
ζ(5)− 11

720
π4 log(2) +

7

4
ζ(3) log2(2)

+
1

18
π2 log3(2)− 1

8
π2ζ(3).
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This result has been proven in various ways, both analytic and algebraic. Indeed, all
evaluations of sums of the form ζ(±a1,±a2, · · · ,±am) with weight w :=

∑
k am, for k < 8,

as in (17) are established.
One general result that is reasonably easily obtained is the following, true for all n:

ζ({3}n) = ζ({2, 1}n). (18)

On the other hand, a general proof of

ζ({2, 1}n)
?
= 23n ζ({−2, 1}n) (19)

remains elusive. There has been abundant evidence amassed to support the conjectured
identity (19) since it was discovered experimentally in 1996. The first 85 instances of (19)
were recently affirmed in calculations by Petr Lisonek to 1000 decimal place accuracy.
Lisonek also checked the case n = 163, a calculation that required ten hours run time on
a 2004-era computer. The only proof known of (18) is a change of variables in a multiple
integral representation which sheds no light on (19) (see [21]).

7 Evaluation of Integrals

This same general strategy of obtaining a high-precision numerical value, then attempting,
by means of PSLQ or other numeric-constant recognition facilities, to identify the result
as an analytic expression, has recently been applied with significant success to the age-
old problem of evaluating definite integrals. Obviously Maple and Mathematica have
some rather effective integration facilities, not only for obtaining analytic results directly,
but also for obtaining high-precision numeric values. However, these products do have
limitations, and their numeric integration facilities are typically limited to 100 digits or
so, beyond which they tend to require an unreasonable amount of run time.

Fortunately, some new methods for numerical integration have been developed that
appear to be effective for a broad range of one-dimensional integrals, typically producing
up to 1000 digit accuracy in just a few seconds (or at most a few minutes) run time on a
2004-era personal computer, and which are also well-suited for parallel processing [13, 14]
[16, pg. 312]. These schemes are based on the Euler-Maclaurin summation formula [3,
pg. 180], which can be stated as follows: Let m ≥ 0 and n ≥ 1 be integers, and define
h = (b − a)/n and xj = a + jh for 0 ≤ j ≤ n. Further assume that the function f(x) is
at least (2m + 2)-times continuously differentiable on [a, b]. Then

∫ b

a

f(x) dx = h

n∑
j=0

f(xj)− h

2
(f(a) + f(b))

−
m∑

i=1

h2iB2i

(2i)!

(
f (2i−1)(b)− f (2i−1)(a)

)− E(h) (20)

where B2i denote the Bernoulli numbers, and

E(h) =
h2m+2(b− a)B2m+2f

2m+2(ξ)

(2m + 2)!

11



for some ξ ∈ (a, b). In the circumstance where the function f(x) and all of its derivatives
are zero at the endpoints a and b (as in a smooth, bell-shaped function), the second and
third terms of the Euler-Maclaurin formula (20) are zero, and we conclude that the error
E(h) goes to zero more rapidly than any power of h.

This principle is utilized by transforming the integral of some C∞ function f(x) on
the interval [−1, 1] to an integral on (−∞,∞) using the change of variable x = g(t). Here
g(x) is some monotonic, infinitely differentiable function with the property that g(x) → 1
as x → ∞ and g(x) → −1 as x → −∞, and also with the property that g′(x) and all
higher derivatives rapidly approach zero for large positive and negative arguments. In
this case we can write, for h > 0,

∫ 1

−1

f(x) dx =

∫ ∞

−∞
f(g(t))g′(t) dt = h

∞∑
j=−∞

wjf(xj) + E(h)

where xj = g(hj) and wj = g′(hj) are abscissas and weights that can be pre-computed. If
g′(t) and its derivatives tend to zero sufficiently rapidly for large t, positive and negative,
then even in cases where f(x) has a vertical derivative or an integrable singularity at
one or both endpoints, the resulting integrand f(g(t))g′(t) is, in many cases, a smooth
bell-shaped function for which the Euler-Maclaurin formula applies. In these cases, the
error E(h) in this approximation decreases faster than any power of h.

Three suitable g functions are g1(t) = tanh t, g2(t) = erf t, and g3(t) = tanh(π/2 ·
sinh t). Among these three, g3(t) appears to be the most effective for typical experimental
math applications. For many integrals, “tanh-sinh” quadrature, as the resulting scheme
is known, achieves quadratic convergence: reducing the interval h in half roughly doubles
the number of correct digits in the quadrature result. This is another case where we have
more heuristic than proven knowledge.

As one example, recently the present authors, together with Greg Fee of Simon Fraser
University in Canada, were inspired by a recent problem in the American Mathematical
Monthly [2]. They found by using a tanh-sinh quadrature program, together with a PSLQ
integer relation detection program, that if C(a) is defined by

C(a) =

∫ 1

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

,

then

C(0) = π log 2/8 + G/2, C(1) = π/4− π
√

2/2 + 3 arctan(
√

2)/
√

2

C(
√

2) = 5π2/96.

Here G =
∑

k≥0(−1)k/(2k + 1)2 is Catalan’s constant—the simplest number whose ir-
rationality is not established but for which abundant numerical evidence exists. These
experimental results then led to the following general result, rigorously established, among
others:∫ ∞

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

=
π

2
√

a2 − 1

[
2 arctan(

√
a2 − 1)− arctan(

√
a4 − 1)

]
.

12



As a second example, recently the present authors empirically determined that

2√
3

∫ 1

0

log6(x) arctan[x
√

3/(x− 2)]

x + 1
dx =

1

81648
[−229635L3(8)

+29852550L3(7) log 3− 1632960L3(6)π2 + 27760320L3(5)ζ(3)

−275184L3(4)π4 + 36288000L3(3)ζ(5)− 30008L3(2)π6

−57030120L3(1)ζ(7)] ,

where L3(s) =
∑∞

n=1 [1/(3n− 2)s − 1/(3n− 1)s]. Based on these experimental results,
general results of this type have been conjectured but not yet rigorously established.

A third example is the following:

24

7
√

7

∫ π/2

π/3

log

∣∣∣∣∣
tan t +

√
7

tan t−√7

∣∣∣∣∣ dt
?
= L−7(2) (21)

where

L−7(s) =
∞∑

n=0

[
1

(7n + 1)s
+

1

(7n + 2)s
− 1

(7n + 3)s
+

1

(7n + 4)s
− 1

(7n + 5)s
− 1

(7n + 6)s

]
.

The “identity” (21) has been verified to over 2000 decimal digit accuracy, but a proof is
not yet known. It arises from the volume of an ideal tetrahedron in hyperbolic space, [15,
pp. 90–91]. For algebraic topology reasons, it is known that the ratio of the left hand to
the right hand side of (21) is rational.

A related experimental result, verified to 1000 digit accuracy, is

0
?
= −2J2 − 2J3 − 2J4 + 2J10 + 2J11 + 3J12 + 3J13 + J14 − J15

−J16 − J17 − J18 − J19 + J20 + J21 − J22 − J23 + 2J25

where Jn is the integral in (21), with limits nπ/60 and (n + 1)π/60.
The above examples are ordinary one-dimensional integrals. Two-dimensional inte-

grals are also of interest. Along this line we present a more recreational example discov-
ered experimentally by James Klein—and confirmed by Monte Carlo simulation. It is
that the expected distance between two random points on different sides of a unit square
is

2

3

∫ 1

0

∫ 1

0

√
x2 + y2 dx dy +

1

3

∫ 1

0

∫ 1

0

√
1 + (u− v)2 du dv

=
1

9

√
2 +

5

9
log(

√
2 + 1) +

2

9
,

and the expected distance between two random points on different sides of a unit cube is

4

5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
x2 + y2 + (z − w)2 dw dx dy dz

+
1

5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
1 + (y − u)2 + (z − w)2 du dw dy dz

=
4

75
+

17

75

√
2− 2

25

√
3− 7

75
π +

7

25
log

(
1 +

√
2
)

+
7

25
log

(
7 + 4

√
3
)

.
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See [7] for details and some additional examples. It is not known whether similar closed
forms exist for higher-dimensional cubes.

8 Ramanujan’s AGM Continued Fraction

Given a, b, η > 0, define

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...

.

This continued fraction arises in Ramanujan’s Notebooks. He discovered the beautiful
fact that

Rη (a, b) + Rη (b, a)

2
= Rη

(
a + b

2
,
√

ab

)
.

The authors wished to record this in [15], and wished to computationally check the iden-
tity. A first attempt to numerically compute R1 (1, 1) directly failed miserably, and with
some effort only three reliable digits were obtained: 0.693 · · · . With hindsight, the slow-
est convergence of the fraction occurs in the mathematically simplest case, namely when
a = b. Indeed R1 (1, 1) = log 2 as the first primitive numerics had tantalizingly suggested.

Attempting a direct computation of R1(2, 2) using a depth of 20000 gives us two digits.
Thus we must seek more sophisticated methods. From formula (1.11.70) of [16] we see
that for 0 < b < a,

R1(a, b) =
π

2

∑
n∈Z

aK(k)

K2(k) + a2n2π2 sech

(
nπ

K(k′)
K(k)

)
, (22)

where k = b/a = θ2
2/θ

2
3, k

′ =
√

1− k2. Here θ2, θ3 are Jacobian theta functions and K is a
complete elliptic integral of the first kind.

Writing the previous equation as a Riemann sum, we have

R(a) := R1(a, a) =

∫ ∞

0

sech(πx/(2a))

1 + x2
dx = 2a

∞∑

k=1

(−1)k+1

1 + (2k − 1)a
, (23)

where the final equality follows from the Cauchy-Lindelof Theorem. This sum may also
be written as R(a) = 2a

1+a
F

(
1
2a

+ 1
2
, 1; 1

2a
+ 3

2
;−1

)
. The latter form can be used in Maple

or Mathematica to determine

R(2) = 0.974990988798722096719900334529 . . . .

This constant, as written, is a bit difficult to recognize, but if one first divides by
√

2,
one can obtain, using the Inverse Symbolic Calculator, an online tool available at the URL

14



http://www.cecm.sfu.ca/projects/ISC/ISCmain.html, that the quotient is π/2− log(1 +√
2). Thus we conclude, experimentally, that

R(2) =
√

2[π/2− log(1 +
√

2)].

Indeed, it follows, see [19], that

R(a) = 2

∫ 1

0

t1/a

1 + t2
dt.

Note that R(1) = log 2. No non-trivial closed form is known for R(a, b) with a 6= b,
although

R1

(
1

4π
β

(
1

4
,
1

4

)
,

√
2

8π
β

(
1

4
,
1

4

))
=

1

2

∑
n∈Z

sech(nπ)

1 + n2
,

is close to closed. Here β denotes the classical Beta function. It would be pleasant to find
a direct proof of (23). Further details are to be found in [19, 17, 16].

Study of these Ramanujan continued fractions has been facilitated by examining the
closely related dynamical system t0 = 1, t1 = 1 and

tn := tn(a, b) =
1

n
+ ωn−1

(
1− 1

n

)
tn−2 (24)

where ωn = a2 or b2 (from the Ramanujan continued fraction definition), depending on
whether n is even or odd.

If one studies this only based on numerical values, nothing is evident—one only sees
that tn → 0 fairly slowly. However, if we look at this iteration pictorially, we learn
significantly more. In particular, if we plot these iterates in the complex plane, and
then scale by

√
n, and color the iterations blue or red depending on odd or even n, then

some remarkable fine structure appears—see Figure 2. With assistance of such plots, the
behavior of these iterates (and the Ramanujan continued fractions) are now quite well
understood. These studies have ventured into matrix theory, real analysis and even the
theory of martingales from probability theory [19, 17, 18, 23].

There are some exceptional cases. Jacobsen-Masson theory [17, 18] shows that the
even/odd fractions for R1(i, i) behave “chaotically,” neither converge. Indeed, when a =
b = i, (tn(i, i)) exhibit a fourfold quasi-oscillation, as n runs through values mod 4. Plotted
versus n, the (real) sequence tn(i) exhibits the serpentine oscillation of four separate
“necklaces.” The detailed asymptotic is

tn(i, i) =

√
2

π
cosh

π

2

1√
n

(
1 + O

(
1

n

))
×

{
(−1)n/2 cos(θ − log(2n)/2) n is even

(−1)(n+1)/2 sin(θ − log(2n)/2) n odd

where θ := arg Γ((1 + i)/2).
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Figure 2: Dynamics and attractors of various iterations
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Figure 3: The subtle four fold serpent

Analysis is easy given the following striking hypergeometric parametrization of (24)
when a = b 6= 0, see [18], which was both experimentally discovered and is computer
provable:

tn(a, a) =
1

2
Fn(a) +

1

2
Fn(−a), (25)

where

Fn(a) := − an21−ω

ω β(n + ω,−ω)
2F1

(
ω, ω; n + 1 + ω;

1

2

)
.

Here

β(n + 1 + ω,−ω) :=
Γ (n + 1)

Γ (n + 1 + ω) Γ (−ω)
, and ω :=

1− 1/a

2
.

Indeed, once (25) was discovered by a combination of insight and methodical computer
experiment, its proof is highly representative of the changing paradigm: both sides satisfy
the same recursion and the same initial conditions. This can be checked in Maple and
if one looks inside the computation, one learns which confluent hypergeometric identities
are needed for an explicit human proof.

As noted, study of R devolved to hard but compelling conjectures on complex dynam-
ics, with many interesting proven and unproven generalizations. In [23] consideration is
made of continued fractions like

S1(a) =
12a2

1

1 +
22a2

2

1 +
32a2

3

1 +
. . .
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Figure 4: A period three dynamical system
(odd and even iterates)

for any sequence a ≡ (an)∞n=1 and convergence properties obtained for deterministic and
random sequences (an). For the deterministic case the best results obtained are for pe-
riodic sequences, satisfying aj = aj+c for all j and some finite c. The dynamics are
considerably more varied, as illustrated in Figure 4.

9 Coincidence and Fraud

Coincidences do occur, and such examples drive home the need for reasonable caution in
this enterprise. For example, the approximations

π ≈ 3√
163

log(640320), π ≈
√

2
9801

4412

occur for deep number theoretic reasons—the first good to 15 places, the second to eight.
By contrast

eπ − π = 19.999099979189475768 . . .

most probably for no good reason. This seemed more bizarre on an eight digit calculator.
Likewise, as spotted by Pierre Lanchon recently,

e = 10.10110111111000010101000101100 . . .

while

π = 11.0010010000111111011010101000 . . .

18
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Figure 5: First few terms of
∏

n≥1 cos(x/k)

have 19 bits agreeing in base two—with one read right to left. More extended coincidences
are almost always contrived, as illustrated by the following:

∞∑
n=1

[n tanh(π/2)]

10n
≈ 1

81
,

∞∑
n=1

[n tanh(π)]

10n
≈ 1

81
.

The first holds to 12 decimal places, while the second holds to 268 places. This phenom-
enon can be understood by examining the continued fraction expansion of the constants
tanh(π/2) and tanh(π): the integer 11 appears as the third entry of the first, while 267
appears as the third entry of the second.

Bill Gosper, commenting on the extraordinary effectiveness of continued-fraction ex-
pansions to “see” what is happening in such problems, declared “It looks like you are
cheating God somehow.”

A fine illustration is the unremarkable decimal α = 1.4331274267223117583 . . . whose
continued fraction begins [1, 2, 3, 4, 5, 6, 7, 8, 9 . . .] and so most probably is a ratio of Bessel
functions. Indeed I0(2)/I1(2) was what generated the decimal. Similarly, π and e are quite
different as continued fractions, less so as decimals.

A more sobering example of high-precision “fraud” is the integral

π2 :=

∫ ∞

0

cos(2x)
∞∏

n=1

cos
(x

n

)
dx. (26)
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The computation of a high-precision numerical value for this integral is rather challenging,
due in part to the oscillatory behavior of

∏
n≥1 cos(x/n) (see Figure 2), but mostly due to

the difficulty of computing high-precision evaluations of the integrand function. Note that
evaluating thousands of terms of the infinite product would produce only a few correct
digits. Thus it is necessary to rewrite the integrand function in a form more suitable for
computation. This can be done by writing

f(x) = cos(2x)

[
m∏
1

cos(x/k)

]
exp(fm(x)), (27)

where we choose m > x, and where

fm(x) =
∞∑

k=m+1

log cos
(x

k

)
. (28)

The log cos evaluation can be expanded in a Taylor series [1, pg 75], as follows:

log cos
(x

k

)
=

∞∑
j=1

(−1)j22j−1(22j − 1)B2j

j(2j)!

(x

k

)2j

,

where B2j are Bernoulli numbers. Note that since k > m > x in (28), this series converges.
We can now write

fm(x) =
∞∑

k=m+1

∞∑
j=1

(−1)j22j−1(22j − 1)B2j

j(2j)!

(x

k

)2j

= −
∞∑

j=1

(22j − 1)ζ(2j)

jπ2j

[ ∞∑

k=m+1

1

k2j

]
x2j

= −
∞∑

j=1

(22j − 1)ζ(2j)

jπ2j

[
ζ(2j)−

m∑

k=1

1

k2j

]
x2j.

This can now be written in a compact form for computation as

fm(x) = −
∞∑

j=1

ajbj,mx2j, (29)

where

aj =
(22j − 1)ζ(2j)

jπ2j
bj,m = ζ(2j)−

m∑

k=1

1/k2j. (30)

Computation of these b coefficients must be done to a much higher precision than that
desired for the quadrature result, since two very nearly equal quantities are subtracted
here.
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The integral can now be computed using, for example, the tanh-sinh quadrature
scheme. The first 60 digits of the result are the following:

0.392699081698724154807830422909937860524645434187231595926812 . . .

At first glance, this appears to be π/8. But a careful comparison with a high-precision
value of π/8, namely

0.392699081698724154807830422909937860524646174921888227621868 . . .

reveals that they are not equal—the two values differ by approximately 7.407 × 10−43.
Indeed, these two values are provably distinct. The reason is governed by the fact that∑55

n=1 1/(2n + 1) > 2 >
∑54

n=1 1/(2n + 1). See [16, Chap. 2] for additional details.
A related example is the following. Recall the sinc function

sinc(x) :=
sin x

x
.

Consider, the seven highly oscillatory integrals below.

I1 :=

∫ ∞

0

sinc(x) dx =
π

2
,

I2 :=

∫ ∞

0

sinc(x)sinc
(x

3

)
dx =

π

2
,

I3 :=

∫ ∞

0

sinc(x)sinc
(x

3

)
sinc

(x

5

)
dx =

π

2
,

. . .

I6 :=

∫ ∞

0

sinc(x)sinc
(x

3

)
· · · sinc

( x

11

)
dx =

π

2
,

I7 :=

∫ ∞

0

sinc(x)sinc
(x

3

)
· · · sinc

( x

13

)
dx =

π

2
.

However,

I8 :=

∫ ∞

0

sinc(x)sinc
(x

3

)
· · · sinc

( x

15

)
dx

=
467807924713440738696537864469

935615849440640907310521750000
π ≈ 0.499999999992646π.

When this was first found by a researcher, using a well-known computer algebra package,
both he and the software vendor concluded there was a “bug” in the software. Not so! It
is easy to see that the limit of these integrals is 2 π1, where

π1 :=

∫ ∞

0

cos(x)
∞∏

n=1

cos
(x

n

)
dx. (31)
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This can be seen via Parseval’s theorem, which links the integral

IN :=

∫ ∞

0

sinc(a1x)sinc (a2x) · · · sinc (aNx) dx

with the volume of the polyhedron PN given by

PN := {x : |
N∑

k=2

akxk| ≤ a1, |xk| ≤ 1, 2 ≤ k ≤ N},

where x := (x2, x3, · · · , xN). If we let

CN := {(x2, x3, · · · , xN) : −1 ≤ xk ≤ 1, 2 ≤ k ≤ N},
then

IN =
π

2a1

Vol(PN)

Vol(CN)
.

Thus, the value drops precisely when the constraint
∑N

k=2 akxk ≤ a1 becomes active

and bites the hypercube CN . That occurs when
∑N

k=2 ak > a1. In the above, 1
3
+ 1

5
+ · · ·+

1
13

< 1, but on addition of the term 1
15

, the sum exceeds 1, the volume drops, and IN = π
2

no longer holds. A similar analysis applies to π2. Moreover, it is fortunate that we began
with π1 or the falsehood of the identity analogous to that displayed above would have
been much harder to see.

10 Further Directions and Implications

In spite of the examples of the previous section, it must be acknowledged that compu-
tations can in many cases provide very compelling evidence for mathematical assertions.
As a single example, recently Yasumasa Kanada of Japan calculated π to over one trillion
decimal digits (and also to over one trillion hexadecimal digits). Given that such com-
putations, which take many hours on large, state-of-the-art supercomputers, are prone to
many types of error, including hardware failures, system software problems, and especially
programming bugs, how can one be confident in such results?

In Kanada’s case, he first used two different arctangent-based formulas to evaluate π
to over one trillion hexadecimal digits. Both calculations agreed that the hex expansion
beginning at position 1,000,000,000,001 is B4466E8D21 5388C4E014. He then applied a
variant of the BBP formula for π, mentioned in Section 3, to calculate these hex digits
directly. The result agreed exactly. Needless to say, it is exceedingly unlikely that three
different computations, each using a completely distinct computational approach, would
all perfectly agree on these digits, unless all three are correct.

Another, much more common example is the usage of probabilistic primality testing
schemes. Damgard, Landrock and Pomerance showed in 1993 that if an integer n has k
bits, then the probability that it is prime, provided it passes the most commonly used
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probabilistic test, is greater than 1 − k242−
√

k, and for certain k is even higher [25]. For
instance, if n has 500 bits, then this probability is greater than 1−1/428m. Thus a 500-bit
integer that passes this test even once is prime with prohibitively safe odds—the chance
of a false declaration of primality is less than one part in Avogadro’s number (6× 1023).
If it passes the test for four pseudo-randomly chosen integers a, then the chance of false
declaration of primality is less than one part in a googol (10100). Such probabilities are
many orders of magnitude more remote than the chance that an undetected hardware or
software error has occurred in the computation. Such methods thus draw into question
the distinction between a probabilistic test and a “provable” test.

Another interesting question is whether these experimental methods may be capable
of discovering facts that are fundamentally beyond the reach of formal proof methods,
which, due to Gödel’s result, we know must exist; see also [24].

One interesting example, which has arisen in our work, is the following. We mentioned
in Section 3 the fact that the question of the 2-normality of π reduces to the question of
whether the chaotic iteration x0 = 0 and

xn =

{
16xn−1 +

120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

}
,

where {·} denotes fractional part, is equidistributed in the unit interval.
It turns out that if one defines the sequence yn = b16xnc (in other words, one records

which of the 16 subintervals of (0, 1), numbered 0 through 15, that xn lies in), that the
sequence (yn), when interpreted as a hexadecimal string, appears to precisely generate
the hexadecimal digit expansion of π. We have checked this to 1,000,000 hex digits and
have found no discrepancies. It is known that (yn) is a very good approximation to the
hex digits of π, in the sense that the expected value of the number of errors is finite [15,
Section 4.3] [11]. Thus one can argue, by the second Borel-Cantelli lemma, that in a
heuristic sense the probability that there is any error among the remaining digits after
the first million is less than 1.465×10−8 [15, Section 4.3]. Additional computations could
be used to lower this probability even more.

Although few would bet against such odds, these computations do not constitute a
rigorous proof that the sequence (yn) is identical to the hexadecimal expansion of π.
Perhaps some day someone will be able to prove this observation rigorously. On the other
hand, maybe not—maybe this observation is in some sense an “accident” of mathematics,
for which no proof will ever be found. Perhaps numerical validation is all we can ever
achieve here.

11 Conclusion

We are only now beginning to digest some very old ideas:

Leibniz’s idea is very simple and very profound. It’s in section VI of the Dis-
cours [de métaphysique]. It’s the observation that the concept of law becomes
vacuous if arbitrarily high mathematical complexity is permitted, for then there
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Figure 6: Advanced Collaborative Environment in Vancouver

Figure 7: Polyhedra in an Immersive Environment
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is always a law. Conversely, if the law has to be extremely complicated, then
the data is irregular, lawless, random, unstructured, patternless, and also in-
compressible and irreducible. A theory has to be simpler than the data that it
explains, otherwise it doesn’t explain anything. Gregory Chaitin [24]

Chaitin argues convincingly that there are many mathematical truths which are log-
ically and computationally irreducible—they have no good reason in the traditional ra-
tionalist sense. This in turn adds force to the desire for evidence even when proof may
not be possible. Computer experiments can provide precisely the sort of evidence that is
required.

Although computer technology had its roots in mathematics, the field is a relative
latecomer to the application of computer technology, compared say with physics and
chemistry. But now this is changing, as an army of young mathematicians, many of whom
have been trained in the usage of sophisticated computer math tools from their high school
years, begin their research careers. Further advances in software, including compelling new
mathematical visualization environments (see Figures 6 and 7), will have their impact.
And the remarkable trend towards greater miniaturization (and corresponding higher
power and lower cost) in computer technology, as tracked by Moore’s Law, is pretty well
assured to continue for at least another ten years, according to Gordon Moore himself
and other industry analysts. As Richard Feynman noted back in 1959, “There’s plenty of
room at the bottom.” [27]. It will be interesting to see what the future will bring.
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