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Abstract

Motivated by the desire to visualize large mathematical data sets, especially in
number theory, we offer various tools for representing floating point numbers as planar
(or three dimensional) walks and for quantitatively measuring their “randomness.”

1 Introduction

The digit expansions of π, e,
√

2 and other mathematical constants have fascinated math-
ematicians from the dawn of history. Indeed, one prime motivation in computing and
analyzing digits of π is to explore the age-old question of whether and why these digits
appear “random.” The first computation on ENIAC in 1949 of π to 2037 decimal places
was proposed by John von Neumann so as to shed some light on the distribution of π (and
of e) [14, pg. 277–281].

One key question of some significance is whether (and why) numbers such as π and e
are “normal.” A real constant α is b-normal if, given the positive integer b ≥ 2, every m-
long string of base-b digits appears in the base-b expansion of α with precisely the expected
limiting frequency 1/bm. It is a well-established albeit counterintuitive fact that given an
integer b ≥ 2, almost all real numbers, in the measure theory sense, are b-normal. What’s
more, almost all real numbers are b-normal simultaneously for all positive integer bases (a
property known as “absolutely normal”).
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Nonetheless, it has been surprisingly difficult to prove normality for well-known math-
ematical constants for any given base b, much less all bases simultaneously. The first
constant to be proven 10-normal is the Champernowne number, namely the constant
0.12345678910111213141516 . . ., produced by concatenating the decimal representation of
all positive integers in order. Some additional results of this sort were established in the
1940s by Copeland and Erdős [25].

At the present time, normality proofs are not available for any well-known constant
such as π, e, log 2,

√
2. We do not even know, say, that a 1 appears one-half of the time,

in the limit, in the binary expansion of
√

2 (although it certainly appears to), nor do we
know for certain that a 1 appears infinitely often in the decimal expansion of

√
2. For that

matter, it is widely believed that every irrational algebraic number (i.e., every irrational
root of an algebraic polynomial with integer coefficients) is b-normal to all positive integer
bases b, but there is no proof, not for any specific algebraic number to any specific base.

In 2002, one of the present authors (Bailey) and Richard Crandall showed that given a
real number r in [0, 1), with rk denoting the k-th binary digit of r, the real number

α2,3(r) : =
∞∑
k=1

1

3k23k+rk
(1)

is 2-normal. It can be seen that if r 6= s, then α2,3(r) 6= α2,3(s), so that these constants are
all distinct. Since r can range over the unit interval, this class of constants is uncountable.
So, for example, the constant α2,3 = α2,3(0) =

∑
k≥1 1/(3k23k) = 0.0418836808315030 . . . is

provably 2-normal (this special case was proven by Stoneham in 1973 [42]). A similar result
applies if 2 and 3 in formula (13) are replaced by any pair of coprime integers (b, c) with
b ≥ 2 and c ≥ 2 [10]. More recently, Bailey and Michal Misieurwicz were able to establish
2-normality of α2,3 by a simpler argument, by utilizing a “hot spot” lemma proven using
ergodic theory methods [11].

In 2004, two of the present authors (Bailey and Jonathan Borwein), together with
Richard Crandall and Carl Pomerance, proved the following: If a positive real y has alge-
braic degree D > 1, then the number #(y,N) of 1-bits in the binary expansion of y through
bit position N satisfies #(y,N) > CN1/D, for a positive number C (depending on y) and
all sufficiently large N [5]. A related result has been obtained by Hajime Kaneko of Kyoto
University in Japan [36]. However, these results fall far short of establishing b-normality
for any irrational algebraic in any base b, even in the single-digit sense.

2 Twenty-first century approaches to the normality problem

In spite of such developments, there is a sense in the field that more powerful techniques
must be brought to bear on this problem before additional substantial progress can be
achieved. One idea along this line is to directly study the decimal expansions (or expansions
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in other number bases) of various mathematical constants by applying some techniques of
scientific visualization and large-scale data analysis.

In a recent paper [4], by accessing the results of several extremely large recent compu-
tations [45, 46], the authors tested the first roughly four trillion hexadecimal digits of π
by means of a Poisson process model: in this model, it is extraordinarily unlikely that π
is not normal base 16, given its initial segment. During that work, the authors of [4], like
many others, investigated visual methods of representing their large mathematical data
sets. Their chosen tool was to represent this data as walks in the plane.

In this work, based in part on sources such as [21, 22, 20, 18, 13], we make a more
rigorous and quantitative study of these walks on numbers. We pay particular attention
to π for which we have copious data, and which—despite the fact that its digits can be
generated by simple algorithms—behaves remarkably “randomly.”

The organization of the paper is as follows. In Section 3 we describe and exhibit
uniform walks on various numbers, both rational and irrational, artificial and natural. In
the next two sections, we look at quantifying two of the best-known features of random
walks: the expected distance travelled after N steps (Section 4) and the number of sites
visited (Section 5). In Section 6 we discuss measuring the fractal (actually box) dimension
of our walks. In Section 7 we describe two classes for which normality and nonnormality
results are known, and one for which we have only surmise. In Section 8 we show some
various examples and leave some open questions. Finally, in Appendix 9 we collect the
numbers we have examined, with concise definitions and a few digits in various bases.

3 Walking on numbers

3.1 Random and deterministic walks

One of our tasks is to compare deterministic walks (such as those generated by the digit
expansion of a constant) with pseudorandom walks of the same length. For example, in
Figure 1 we draw a uniform pseudorandom walk with one million base-4 steps, where at
each step the path moves one unit east, north, west or south, depending on the whether the
pseudorandom iterate at that position is 0, 1, 2 or 3. The color indicates the path followed
by the walk—it is shifted up the spectrum (red-orange-yellow-green-cyan-blue-purple-red)
following an HSV scheme with S and V equal to one. The HSV (hue, saturation and value)
model is a cylindrical-coordinate representation that yields a rainbow-like range of colors.

Let us now compare this graph with that of some rational numbers. For instance,
consider these two rational numbers Q1 and Q2:

Q1=

1049012271677499437486619280565448601617567358491560876166848380843

1443584472528755516292470277595555704537156793130587832477297720217

7081818796590637365767487981422801328592027861019258140957135748704

7122902674651513128059541953997504202061380373822338959713391954
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Figure 1: A uniform pseudorandom walk.

/

1612226962694290912940490066273549214229880755725468512353395718465

1913530173488143140175045399694454793530120643833272670970079330526

2920303509209736004509554561365966493250783914647728401623856513742

9529453089612268152748875615658076162410788075184599421938774835

Q2=

7278984857066874130428336124347736557760097920257997246066053320967

1510416153622193809833373062647935595578496622633151106310912260966

7568778977976821682512653537303069288477901523227013159658247897670

30435402490295493942131091063934014849602813952

/

1118707184315428172047608747409173378543817936412916114431306628996

5259377090978187244251666337745459152093558288671765654061273733231

7877736113382974861639142628415265543797274479692427652260844707187

532155254872952853725026318685997495262134665215

At first glance, these numbers look completely dissimilar. However, if we examine their
digit expansions, we find that they are very close as real numbers: the first 240 decimal
digits are the same, as are the first 400 base-4 digits.

But even more information is exhibited when we view a plot of the base-4 digits of Q1
and Q2 as deterministic walks, as shown in Figure 2. Here, as above, at each step the
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path moves one unit east, north, west or south, depending on the whether the digit in the
corresponding position is 0, 1, 2 or 3, and with color coded to indicate the overall position
in the walk.

The rational numbers Q1 and Q2 represent the two possibilities when one computes a
walk on a rational number: either the walk is bounded as in Figure 2(a) (for any walk with
more than 440 steps one obtains the same plot), or it is unbounded but repeating some
pattern after a finite number of digits as in Figure 2(b).

(a) A 440-step walk on Q1 base 4. (b) A 8240-step walk on Q2 base 4.

Figure 2: Walks on the rational numbers Q1 and Q2.

Of course, not all rational numbers are that easily identified by plotting their walk. It
is possible to create a rational number whose period is of any desired length. For example,
the following rational numbers from [38],

Q3 =
3624360069

7000000001
and Q4 =

123456789012

1000000000061
,

have base-10 periodic parts with length 1,750,000,000 and 1,000,000,000,060, respectively.
A walk on the first million digits of both numbers is plotted in Figure 4. These huge periods
derive from the fact that the numerators and denominators of Q3 and Q4 are relatively
prime, and the denominators are not congruent to 2 or 5. In such cases, the period P is
simply the discrete logarithm of the denominator D modulo 10; or, in other words, P is
the smallest n such that 10n mod D = 1.

Graphical walks can be generated in a similar way for other constants in various bases—
see Figures 2 through 8. Where the base b ≥ 3, the base-b digits can be used to a select,
as a direction, the corresponding base-b complex root of unity—a multiple of 120◦ for base
three, a multiple of 90◦ for base four, a multiple of 72◦ for base 5, etc. We generally treat
the case b = 2 as a base-4 walk, by grouping together pairs of base-2 digits (we could
render a base-2 walk on a line, but the resulting images would be much less interesting).
In Figure 3 the origin has been marked, but since this information is not that important
for our purposes and can be approximately deduced by the color in most cases, it is not
indicated in the others. The color scheme for Figures 2 through 8 is the same as the above,
except that Figure 6 is colored to indicate the number of returns to each point.
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Figure 3: A million step base-4 walk on e.

(a) Q3 = 3624360069
7000000001

(b) Q4 = 123456789012
1000000000061

Figure 4: Walks on the first million base 10-digits of the rationals Q3 and Q4 from [38].
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3.2 Normal numbers as walks

As noted above, proving normality for specific constants of interest in mathematics has
proven remarkably difficult. The tenor of current knowledge in this arena is illustrated by
[44, 13, 33, 37, 39, 38, 43]. It is useful to know that while small in measure, the “absolutely
abnormal” or “absolutely nonnormal” real numbers (namely those that are not b-normal for
any integer b) are residual in the sense of topological category [1]. Moreover, the Hausdorff–
Besicovitch dimension of the set of real numbers having no asymptotic frequencies is equal
to 1. Likewise the set of Liouville numbers has measure zero but is of the second category
[17, p. 352].

One question that has possessed mathematicians for centuries is whether π is normal.
Indeed, part of the original motivation of the present study was to develop new tools for
investigating this age-old problem.

In Figure 5 we show a walk on the first 100 billion base-4 digits of π. This may be viewed
dynamically in more detail online at http://gigapan.org/gigapans/106803, where the
full-sized image has a resolution of 372,224×290,218 pixels (108.03 gigapixels in total).
This must be one of the largest mathematical images ever produced. The computations
for creating this image took roughly a month, where several parts of the algorithm were
run in parallel with 20 threads on CARMA’s MacPro cluster.

By contrast, Figure 6 exhibits a 100 million base 4 walk on π, where the color is coded
by the number of returns to the point. In [4], the authors empirically tested the normality
of its first roughly four trillion hexadecimal (base-16) digits using a Poisson process model,
and concluded that, according to this test, it is “extraordinarily unlikely” that π is not
16-normal (of course, this result does not pretend to be a proof).

In what follows, we propose various methods to analyze real numbers and visualize
them as walks. Other methods widely used to visualize numbers include the matrix rep-
resentations shown in Figure 9, where each pixel is colored depending on the value of the
digit to the right of the decimal point, following a left-to-right up-to-down direction (in
base 4 the colors used for 0, 1, 2 and 3 are red, green, cyan and purple, respectively).
This method has been mainly used to visually test “randomness.” In some cases, it clearly
shows the features of some numbers, as for small periodic rationals; see Figure 9(c). This
scheme also shows the nonnormality of the number α2,3; see Figure 9(d) (where the hori-
zontal red bands correspond to the strings of zeroes), and it captures some of the special
peculiarities of the Champernowne’s number C4 (normal) in Figure 9(e). Nevertheless, it
does not reveal the apparently nonrandom behavior of numbers like the Erdős–Borwein
constant; compare Figure 9(f) with Figure 8(e). See also Figure 23.

As we will see in what follows, the study of normal numbers and suspected normal
numbers as walks will permit us to compare them with true random (or pseudorandom)
walks, obtaining in this manner a new way to empirically test “randomness” in their digits.
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Figure 5: A walk on the first 100 billion base-4 digits of π (normal?).

Figure 6: A walk on the 100 million base-4 digits of π, colored by number of returns
(normal?). Color follows an HSV model (green-cyan-blue-purple-red) depending on the
number of returns to each point (where the maximum is colored in pink/red).
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Figure 7: A walk on the first 100,000 bits of the primes (CE(2)) base two (normal).

4 Expected distance to the origin

Let b ∈ {3, 4, . . .} be a fixed base, and let X1, X2, X3, . . . be a sequence of independent
bivariate discrete random variables whose common probability distribution is given by

P

(
X =

(
cos
(

2π
b k
)

sin
(

2π
b k
) )) =

1

b
for k = 1, . . . , b. (2)

Then the random variable SN :=
∑N

m=1Xm represents a base-b random walk in the plane
of N steps.

The following result on the asymptotic expectation of the distance to the origin of
a base-b random walk is probably known, but being unable to find any reference in the
literature, we provide a proof.

Theorem 4.1. The expected distance to the origin of a base-b random walk of N steps is
asymptotically equal to

√
πN/2.

Proof. By the multivariate central limit theorem, the random variable 1/
√
N
∑N

m=1(Xm−
µ) is asymptotically bivariate normal with mean

(
0
0

)
and covariance matrix M , where µ is

the two-dimensional mean vector of X and M is its 2× 2 covariance matrix. By applying
Lagrange’s trigonometric identities, one gets

µ =

(
1
b

∑b
k=1 cos

(
2π
b k
)

1
b

∑b
k=1 sin

(
2π
b k
) ) =

1

b

 −1
2 +

sin((b+1/2) 2π
b )

2 sin(π/b)

1
2 cot(π/b)− cos((b+1/2) 2π

b )
2 sin(π/b)

 =

(
0
0

)
. (3)
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(a) A million step walk on α2,3

base 3 (normal?).
(b) A 100,000 step walk on α2,3

base 6 (nonnormal).

(c) A million step walk on
α2,3 base 2 (normal).

(d) A 100,000 step walk on
Champernowne’s number C4

base 4 (normal).

(e) A million step walk
on EB(2) base 4 (nor-
mal?).

(f) A million step walk on CE(10)
base 4 (normal?).

Figure 8: Walks on various numbers in different bases.
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(a) π base 4 (b) (Pseudo)random number base 4

(c) The rational number Q1 base 4 (d) α2,3 base 6

(e) Champernowne’s number C4

base 4
(f) EB(2) base 4

Figure 9: Horizontal color representation of a million digits of various numbers.
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Number Base Steps
Average normalized

distance to the origin
Normal

Mean of 10,000
4 1,000,000 1.00315 Yes

random walks
Mean of 10,000 walks

4 1,000,000 1.00083 ?
on the digits of π

α2,3 3 1,000,000 0.89275 ?
α2,3 4 1,000,000 0.25901 Yes
α2,3 5 1,000,000 0.88104 ?
α2,3 6 1,000,000 108.02218 No
α4,3 3 1,000,000 1.07223 ?
α4,3 4 1,000,000 0.24268 Yes
α4,3 6 1,000,000 94.54563 No
α4,3 12 1,000,000 371.24694 No
α3,5 3 1,000,000 0.32511 Yes
α3,5 5 1,000,000 0.85258 ?
α3,5 15 1,000,000 370.93128 No
π 4 1,000,000 0.84366 ?
π 6 1,000,000 0.96458 ?
π 10 1,000,000 0.82167 ?
π 10 10,000,000 0.56856 ?
π 10 100,000,000 0.94725 ?
π 10 1,000,000,000 0.59824 ?
e 4 1,000,000 0.59583 ?√
2 4 1,000,000 0.72260 ?

log 2 4 1,000,000 1.21113 ?
Champernowne C10 10 1,000,000 59.91143 Yes

EB(2) 4 1,000,000 6.95831 ?
CE(10) 4 1,000,000 0.94964 ?

Rational number Q1 4 1,000,000 0.04105 No
Rational number Q2 4 1,000,000 58.40222 No

Euler constant γ 10 1,000,000 1.17216 ?
Fibonacci F 10 1,000,000 1.24820 ?

ζ(2) = π2

6 4 1,000,000 1.57571 ?
ζ(3) 4 1,000,000 1.04085 ?

Catalan’s constant G 4 1,000,000 0.53489 ?
Thue–Morse TM2 4 1,000,000 531.92344 No

Paper-folding P 4 1,000,000 0.01336 No

Table 1: Average of the normalized distance to the origin (i.e. multiplied by 2/
√
πN , where

N is the number of steps) of the walk of various constants in different bases.
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Thus,

M =
1

b

[ ∑b
k=1 cos2

(
2π
b k
) ∑b

k=1 cos
(

2π
b k
)

sin
(

2π
b k
)∑b

k=1 cos
(

2π
b k
)

sin
(

2π
b k
) ∑b

k=1 sin2
(

2π
b k
) ]

. (4)

Since

b∑
k=1

cos2

(
2π

b
k

)
=

b∑
k=1

1 + cos
(

4π
b k
)

2
=
b

2
,

b∑
k=1

sin2

(
2π

b
k

)
=

b∑
k=1

1− cos
(

4π
b k
)

2
=
b

2
,

b∑
k=1

cos

(
2π

b
k

)
sin

(
2π

b
k

)
=

b∑
k=1

sin
(

4π
b k
)

2
= 0, (5)

formula (4) reduces to

M =

[
1
2 0
0 1

2

]
. (6)

Hence, 1/
√
NSN is asymptotically bivariate normal with mean

(
0
0

)
and covariance matrix

M . Since its components (1/
√
NSN1 , 1/

√
NSN2 )T are uncorrelated, then they are indepen-

dent random variables, whose distribution is (univariate) normal with mean 0 and variance
1/2. Therefore, the random variable√√√√( √2√

N
SN1

)2

+

( √
2√
N
SN2

)2

(7)

converges in distribution to a χ random variable with two degrees of freedom. Then, for
N sufficiently large,

E

(√
(SN1 )2 + (SN2 )2

)
=

√
N√
2
E


√√√√( √2√

N
SN1

)2

+

( √
2√
N
SN2

)2


≈
√
N√
2

Γ(3/2)

Γ(1)
=

√
πN

2
, (8)

where E(·) stands for the expectation of a random variable. Therefore, the expected
distance to the origin of the random walk is asymptotically equal to

√
πN/2.
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As a consequence of this result, for any random walk of N steps in any given base,
the expectation of the distance to the origin multiplied by 2/

√
πN (which we will call

normalized distance to the origin) must approach 1 as N goes to infinity. Therefore,
for a “sufficiently” big random walk, one would expect that the arithmetic mean of the
normalized distances (which will be called average normalized distance to the origin) should
be close to 1.

We have created a sample of 10,000 (pseudo)random walks base-4 of one million points
each in Python1, and we have computed their average normalized distance to the origin.
The arithmetic mean of these numbers for the mentioned sample of pseudorandom walks is
1.0031, while its standard deviation is 0.3676, so the asymptotic result fits quite well. We
have also computed the normalized distance to the origin of 10,000 walks of one million
steps each generated by the first ten billion digits of π. The resulting arithmetic mean is
1.0008, while the standard deviation is 0.3682. In Table 1 we show the average normalized
distance to the origin of various numbers. There are several surprises in this data, such as
the fact that by this measure, Champernowne’s number C10 is far from what is expected
of a truly “random” number.

5 Number of points visited during an N-step base-4 walk

The number of distinct points visited during a walk of a given constant (on a lattice) can be
also used as an indicator of how “random” the digits of that constant are. It is well known
that the expectation of the number of distinct points visited by an N -step random walk
on a two-dimensional lattice is asymptotically equal to πN/ log(N); see, e.g., [35, pg. 338]
or [12, pg. 27]. This result was first proven by Dvoretzky and Erdős [32, Thm. 1]. The
main practical problem with this asymptotic result is that its convergence is rather slow;
specifically, it has order of O

(
N log logN/(logN)2

)
. In [30, 31], Downham and Fotopoulos

show the following bounds on the expectation of the number of distinct points,(
π(N + 0.84)

1.16π − 1− log 2 + log(N + 2)
,

π(N + 1)

1.066π − 1− log 2 + log(N + 1)

)
, (9)

which provide a tighter estimate on the expectation than the asymptotic limit πN/ log(N).
For example, for N = 106, these bounds are (199256.1, 203059.5), while πN/ log(N) =
227396, which overestimates the expectation.

In Table 2 we have calculated the number of distinct points visited by the base-4 walks
on several constants. One can see that the values for different step walks on π fit quite well
the expectation. On the other hand, numbers that are known to be normal like α2,3 or

1Python uses the Mersenne Twister as the core generator and produces 53-bit precision floats, with a
period of 219937 − 1 ≈ 106002. Compare the length of this period to the comoving distance from Earth to
the edge of the observable universe in any direction, which is approximately 4.6 · 1037 nanometers, or the
number of protons in the universe, which is approximately 1080.
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(a) (Pseudo)random walks.

0 2000 4000 6000 8000 10000
120000

140000

160000

180000

200000

220000

240000

260000

(b) Walks based on the first 10 billion digits of π.

Figure 10: Number of points visited by 104 base-4 million steps walks.

the base-4 Champernowne number substantially differ from the expectation of a random
walk. These constants, despite being normal, do not have a “random” appearance when
one draws the associated walk, see Figure 8(d).

At first look the walk on α2,3 might seem random, see Figure 8(c). A closer look,
shown in Figure 11, reveals a more complex structure: the walk appears to be somehow
self-repeating. This helps explain why the number of sites visited by the base-4 walk on
α2,3 or α4,3 is smaller than the expectation for a random walk. A detailed discussion of the
Stoneham constants and their walks is given in Section 7.2, where the precise structure of
Figure 11 is conjectured.

Figure 11: Zooming in on the base-4 walk on α2,3 of Figure 8(c) and Conjecture 7.6.
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Number Steps Sites visited
Bounds on the expectation of
sites visited by a random walk
Lower bound Upper bound

Mean of 10,000
1,000,000 202,684 199,256 203,060

random walks
Mean of 10,000 walks

1,000,000 202,385 199,256 203,060
on the digits of π

α2,3 1,000,000 95,817 199,256 203,060
α4,3 1,000,000 68,613 199,256 203,060
α3,2 1,000,000 195,585 199,256 203,060
π 1,000,000 204,148 199,256 203,060
π 10,000,000 1,933,903 1,738,645 1,767,533
π 100,000,000 16,109,429 15,421,296 15,648,132
π 1,000,000,000 138,107,050 138,552,612 140,380,926
e 1,000,000 176,350 199,256 203,060√
2 1,000,000 200,733 199,256 203,060

log 2 1,000,000 214,508 199,256 203,060
Champernowne C4 1,000,000 548,746 199,256 203,060

EB(2) 1,000,000 279,585 199,256 203,060
CE(10) 1,000,000 190,239 199,256 203,060

Rational number Q1 1,000,000 378 199,256 203,060
Rational number Q2 1,000,000 939,322 199,256 203,060

Euler constant γ 1,000,000 208,957 199,256 203,060
ζ(2) 1,000,000 188,808 199,256 203,060
ζ(3) 1,000,000 221,598 199,256 203,060

Catalan’s constant G 1,000,000 195,853 199,256 203,060
TM2 1,000,000 1,000,000 199,256 203,060

Paper-folding P 1,000,000 21 199,256 203,060

Table 2: Number of points visited in various N -step base-4 walks. The values of the two
last columns are upper and lower bounds on the expectation of the number of distinct sites
visited during an N -step random walk; see [30, Theorem 2] and [31].
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(a) Whole walk/half walk, random.
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 on the digits of pi of 1 million steps

(b) Whole walk/half walk, digits of π.

Figure 12: Comparison of approximate box dimension of 10,000 walks. On the left are
results for a sample of (pseudo)random walks, while on the right we used the first ten
billion digits of π in blocks of one million digits.

6 Fractal and box-dimension

Another approach that can be taken is to estimate the fractal dimensions of walks. (One
can observe in each of the pictures in Figures 1 through 8 that the walks on numbers
exhibit a fractal-like structure.) The fractal dimension is an appropriate tool to measure
the geometrical complexity of a set, characterizing its space-filling capacity (see e.g. [6]
for a nice introduction about fractals). The box-counting dimension, also known as the
Minkowski–Bouligand dimension, permits us to estimate the fractal dimension of a given
set and often coincides with the fractal dimension. If we denote by #boxε(A) the number
of boxes of side length ε > 0 required to cover a compact set A ⊂ Rn, the box-counting
dimension is defined as

dbox(A) := lim
ε→0

log (#boxε(A))

log(1/ε)
. (10)

The box-counting dimension of a given image is easily estimated by dividing the image into
a non-overlapping regular grid and counting the number of nonempty boxes for different
grid sizes. We estimated the box-counting dimension c by the slope of a linear regression
model on log(1/ε) and the logarithm of the number of nonempty boxes for different values of
box-size ε. This method seems to be both efficient and stable for analyzing “randomness.”

A random walk on a two-dimensional lattice, being space-filling (see e.g. [35, pp. 124–
125]), has fractal dimension two—if we were able to use infinitely many steps. It also
returns to any point with probability one. Note in Figure 5 that after 100 billion steps on
π we are back close to the origin.
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For the aforementioned sample of 10,000 pseudorandom walks of one million steps, the
average of their box-counting dimension is 1.752, with a variance of 0.0011. The average of
the box-counting dimension of these same walks with 500,000 steps is somewhat lower at
1.738, with a variance of 0.0013. We also computed the box-counting dimension of 10,000
walks based on the first ten billion digits of π. The average dimension of the one million
steps walks is 1.753, with a variance of 0.0011. The average dimension of these same walks
with the smaller length of 500,000 steps is necessarily somewhat lower at 1.739, with a
variance of 0.0013. Note how random π seems as shown in Figure 12.

7 Copeland–Erdős, Stoneham, and Erdős–Borwein con-
stants

As well as the classical numbers—such as e, π, γ—listed in the Appendix, we also considered
various other constructions, which we describe in the next three subsections.

7.1 Champernowne number and its concatenated relatives

The first mathematical constant proven to be 10-normal is the Champernowne number,
which is defined as the concatenation of the decimal values of the positive integers, i.e.,
C10 = 0.12345678910111213141516 . . .. Champernowne proved that C10 is 10-normal in
1933 [23]. This was later extended to base-b normality (for base-b versions of the Cham-
pernowne constant) as in Theorem 7.1. In 1946, Copeland and Erdős established that
the corresponding concatenation of primes 0.23571113171923 . . . and the concatenation of
composites 0.46891012141516 . . ., among others, are also 10-normal [25]. In general they
proved that concatenation leads to normality if the sequence grows slowly enough. We call
such numbers concatenation numbers:

Theorem 7.1 ([25]). If a1, a2, · · · is an increasing sequence of integers such that for every
θ < 1 the number of ai’s up to N exceeds N θ provided N is sufficiently large, then the
infinite decimal

0.a1a2a3 · · ·

is normal with respect to the base b in which these integers are expressed.

This result clearly applies to the Champernowne numbers (Figure 8(d)), to the primes
of the form ak+c with a and c relatively prime, in any given base, and to the integers which
are the sum of two squares (since every prime of the form 4k + 1 is included). In further
illustration, using the primes in binary leads to normality in base two of the number

CE(2) = 0.1011101111101111011000110011101111110111111100101101001101011 . . .2 ,

as shown as a planar walk in Figure 7.
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7.1.1 Strong normality

In [13] it is shown that C10 fails the following stronger test of normality which we now
discuss. The test is is a simple one, in the spirit of Borel’s test of normality, as opposed to
other more statistical tests discussed in [13]. If the digits of a real number α are chosen at
random in the base b, the asymptotic frequency mk(n)/n of each 1-string approaches 1/b
with probability 1. However, the discrepancy mk(n)−n/b does not approach any limit, but
fluctuates with an expected value equal to the standard deviation

√
(b− 1)n/b. (Precisely

mk(n) := #{i : ai = k, i ≤ n} when α has fractional part 0.a0 a1 a2 · · · in base b.)
Kolmogorov’s law of the iterated logarithm allows one to make a precise statement

about the discrepancy of a random number. Belshaw and P. Borwein [13] use this to define
their criterion and then show that almost every number is absolutely strongly normal.

Definition 7.2 (Strong normality [13]). For real α, and mk(n) as above, α is simply
strongly normal in the base b if for each 0 ≤ k ≤ b− 1 one has

lim sup
n→∞

mk(n)− n/b√
2n log log n

=

√
b− 1

b
and lim inf

n→∞

mk(n)− n/b√
2n log log n

= −
√
b− 1

b
. (11)

A number is strongly normal in base b if it is simply strongly normal in each base bj,
j = 1, 2, 3, . . ., and is absolutely strongly normal if it is strongly normal in every base.

In paraphrase (absolutely) strongly normal numbers are those that distributionally
oscillate as much as is possible.

Belshaw and Borwein show that strongly normal numbers are indeed normal. They
also make the important observation that Champernowne’s base-b number is not strongly
normal in base b. Indeed, there are bν−1 digits of length ν and they all start with a digit
between 1 and b−1 while the following ν−1 digits take values between 0 and b−1 equally.
In consequence, there is a dearth of zeroes. This is easiest to analyze base 2. As illustrated
below, the concatenated numbers start

1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

For ν = 3 there are 4 zeroes and 8 ones, for ν = 4 there are 12 zeroes and 20 ones, and for
ν = 5 there are 32 zeroes and 48 ones.

Since the details were not given in [13] we give them here.

Theorem 7.3. (Belshaw and P. Borwein) Champernowne’s base-2 number is is not 2-
strongly normal.

Proof. In general, let nk := 1 + (k−1)2k for k ≥ 1. One has m0(nk) = 1 + (k−1)2k and so

m1(nk)−m0(nk) = nk − 2m0(nk) = 2k − 1.
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In fact m1(n) > m0(n) for all n. To see this, suppose it true for n ≤ nk, and proceed by
induction on k. Let us arrange the digits of the integers 2k, 2k + 1, . . . , 2k + 2k−1 − 1 in a
2k−1 by k+ 1 matrix, where the i-th row contains the digits of the integer 2k + i− 1. Each
row begins 10, and if we delete the first two columns we obtain a matrix in which the i-th
row is given by the digits of i−1, possibly preceded by some zeroes. Neglecting the first row
and the initial zeroes in each subsequent row, we see first nk−1 digits of Champernowne’s
base-2 number, where by our induction hypothesis m1(n) > m0(n) for n ≤ nk−1.

If we now count all the zeroes as we read the matrix in the natural order, any excess
of zeroes must come from the initial zeroes, and there are exactly 2k−1 − 1 of these.
As we showed above, m1(nk) − m0(nk) = 2k − 1, so m1(n) > m0(n) + 2k−1 for every
n ≤ nk +(k+1)2k−1. A similar argument for the integers from 2k +2k−1 to 2k+1−1 shows
that m1(n) > m0(n) for every n ≤ nk+1. Therefore, 2m1(n) > m0(n) + m1(n) = n for all
n, and so

lim inf
n→∞

m1(n)− n/2√
2n log log n

≥ 0 6= −1

2
,

and as asserted Champernowne’s base-2 number is is not 2-strongly normal.

It seems likely that by appropriately shuffling the integers, one should be able to display
a strongly normal variant. Along this line, Martin [39] has shown how to construct an
explicit absolutely nonnormal number.

Finally, while the log log limiting behavior required by (11) appears hard to test numer-
ically to any significant level, it appears reasonably easy computationally to check whether
other sequences, such as many of the concatenation sequences of Theorem 7.1, fail to be
strongly normal for similar reasons.

Heuristically, we would expect the number CE(2) above to fail to be strongly normal,
since each prime of length k both starts and ends with a one, while intermediate bits should
show no skewing. Indeed, for CE(2) we have checked that 2m1(n) > n for all n ≤ 109, see
also Figure 13(a). Thus motivated, we are currently developing tests for strong normality
of numbers such as CE(2) and α2,3 below in binary.

For α2,3, the corresponding computation of the first 109 values of m1(n)−n/2√
2n log logn

leads to

the plot in Figure 13(b) and leads us to conjecture that it is 2-strongly normal.

7.2 Stoneham numbers: a class containing provably normal and nonnor-
mal constants

Giving further motivation for these studies is the recent provision of rigorous proofs of
normality for the Stoneham numbers, which are defined by

αb,c :=
∑
m≥1

1

cmbcm
, (12)

for relatively prime integers b, c [10].
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Figure 13: Plot of the first 109 values of m1(n)−n/2√
2n log logn

.

Theorem 7.4 (Normality of Stoneham constants [3]). For every coprime pair of integers
(b, c) with b ≥ 2 and c ≥ 2, the constant αb,c =

∑
m≥1 1/(cmbc

m
) is b-normal.

So, for example, the constant α2,3 =
∑

k≥1 1/(3k23k) = 0.0418836808315030 . . . is prov-
ably 2-normal. This special case was proven by Stoneham in 1973 [42]. More recently,
Bailey and Misiurewicz were able to establish this normality result by a much simpler
argument, based on techniques of ergodic theory [11] [15, pg. 141–173].

Equally interesting is the following result:

Theorem 7.5 (Nonnormality of Stoneham constants [3]). Given coprime integers b ≥
2 and c ≥ 2, and integers p, q, r ≥ 1, with neither b nor c dividing r, let B = bpcqr.
Assume that the condition D = cq/pr1/p/bc−1 < 1 is satisfied. Then the constant αb,c =∑

k≥0 1/(ckbc
k
) is B-nonnormal.

In various of the Figures and Tables we explore the striking differences of behavior—
proven and unproven—for αb,c as we vary the base. For instance, the nonnormality of α2,3

in base-6 digits was proved just before we started to draw walks. Contrast Figure 8(b)
to Figure 8(c) and Figure 8(a). Now compare the values given in Table 1 and Table 2.
Clearly, from this sort of visual and numeric data, the discovery of other cases of Theorem
7.5 is very easy.

As illustrated also in the “zoom” of Figure 11, we can use these images to discover
more subtle structure. We conjecture the following relations on the digits of α2,3 in base 4
(which explain the values in Tables 1 and 2):
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Conjecture 7.6 (Base-4 structure of α2,3). Denote by ak the kth digit of α2,3 in its base
4 expansion; that is, α2,3 =

∑∞
k=1 ak/4

k,with ak ∈ {0, 1, 2, 3} for all k. Then, for all
n = 0, 1, 2, . . . one has:

(i)

3
2

(3n+1)+3n∑
k= 3

2
(3n+1)

eakπ i/2 =
(−1)n+1 − 1

2
+

(−1)n − 1

2
i = −

{
i, n odd
1, n even

;

(ii) ak = ak+3n = ak+2·3n for all k =
3

2
(3n + 1),

3

2
(3n + 1) + 1, . . . ,

3

2
(3n + 1) + 3n − 1.

In Figure 14, we show the position of the walk after 3
2(3n+1), 3

2(3n+1)+3n and 3
2(3n+

1) + 2 · 3n steps for n = 0, 1, . . . , 11, which, together with Figures 8(c) and 11, graphically
explains Conjecture 7.6. Similar results seem to hold for other Stoneham constants in other
bases. For instance, for α3,5 base 3 we conjecture the following.

Figure 14: A pattern in the digits of α2,3 base 4. We show only positions of the walk after
3
2(3n + 1), 3

2(3n + 1) + 3n and 3
2(3n + 1) + 2 · 3n steps for n = 0, 1, . . . , 11.

Conjecture 7.7 (Base 3 structure of α3,5). Denote by ak the kth digit of α3,5 in its
base 3 expansion; that is, α3,5 =

∑∞
k=1 ak/3

k, with ak ∈ {0, 1, 2} for all k. Then, for all
n = 0, 1, 2, . . . one has:

(i)
2+5n+1+4·5n∑
k=2+5n+1

eakπ i/2 = (−1)n

(
−1 +

√
3i

2

)
= e(3n+2)πi/3;

(ii) ak = ak+4·5n = ak+8·5n = ak+12·5n = ak+16·5n for k = 5n+1 + j, j = 2, . . . , 2 + 4 · 5n.

Along this line, Bailey and Crandall showed that, given a real number r in [0, 1), and
rk denoting the k-th binary digit of r, that the real number

α2,3(r) :=

∞∑
k=0

1

3k23k+rk
(13)
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is 2-normal. It can be seen that if r 6= s, then α2,3(r) 6= α2,3(s), so that these constants are
all distinct. Thus, this generalized class of Stoneham constants is uncountably infinite. A
similar result applies if 2 and 3 in this formula are replaced by any pair of co-prime integers
(b, c) greater than one [10] [15, pg. 141–173]. We have not yet studied this generalized class
by graphical methods.

7.3 The Erdős–Borwein constants

The constructions of the previous two subsections exhaust most of what is known for
concrete irrational numbers. By contrast, we finish this section with a truly tantalizing
case:

In a base b ≥ 2, we define the Erdős–(Peter) Borwein constant EB(b) by the Lambert
series [17]:

EB(b) :=
∑
n≥1

1

bn − 1
=
∑
n≥1

τ(n)

bn
, (14)

where τ(n) is the number of divisors of n. It is known that the numbers
∑

n≥1 1/(bn − r)
are irrational for r a non-zero rational and b = 2, 3, . . . such that r 6= bn for all n [19].
Whence, as provably irrational numbers other than the standard examples are few and far
between, it is interesting to consider their normality.

Crandall [26] has observed that the structure of (14) is analogous to the “BBP” formula
for π (see [7, 15]), as well as some nontrivial knowledge of the arithmetic properties of τ ,
to establish results such as that the googol-th bit (namely, the bit in position 10100 to the
right of the “decimal” point) of EB(2) is a 1.

In [26] Crandall also computed the first 243 bits (one Tbyte) of EB(2), which required
roughly 24 hours of computation, and found that there are 4359105565638 zeroes and
4436987456570 ones. There is a corresponding variation in the second and third place
in the single digit hex (base-16) distributions. This certainly leaves some doubt as to
its normality. Likewise, Crandall finds that in the first 1, 000 decimal positions after the
quintillionth digit 1018), the respective digit counts for digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are
104, 82, 87, 100, 73, 126, 87, 123, 114, 104. Our own more modest computations of EB(10)
base-10 again leave it far from clear that EB(10) is 10-normal. See also Figure 8(e) but
contrast it to Figure 9(f).

We should note that for computational purposes, we employed the identity∑
n≥1

1

bn − 1
=
∑
n≥1

bn + 1

bn − 1

1

bn2 ,

for |b| > 1, due to Clausen, as did Crandall [26].
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(a) Directions used: →, ↑, ←, ↓. dbox = 1.736. (b) Directions used: ↗, ↘, ↖, ↙. dbox = 1.796.

Figure 15: Two different rules for plotting a base-2 walk on the first two million values of
λ(n) (the Liouville number λ2).

8 Other avenues and concluding remarks

Let us recall two further examples utilized in [13], that of the Liouville function which
counts the parity of the number of prime factors of n, namely Ω(n) (see Figure 15) and
of the human genome taken from the UCSC Genome Browser at http://hgdownload.

cse.ucsc.edu/goldenPath/hg19/chromosomes/, see Figure 18. Note the similarity of
the genome walk to the those of concatenation sequences. We have explored a wide variety
of walks on genomes, but we will reserve the results for a future study.

We should emphasize that, to the best of our knowledge, the normality and transcen-
dence status of the numbers explored is unresolved other than in the cases indicated in
sections 7.1 and 7.2 and indicated in Appendix 9. While one of the clearly nonrandom
numbers (say Stoneham or Copeland–Erdős) may pass muster on one or other measure of
the walk, it is generally the case that it fails another. Thus, the Liouville number λ2 (see
Figure 15) exhibits a much more structured drift than π or e, but looks more like them
than like Figure 18(a).

This situation gives us hope for more precise future analyses. We conclude by remarking
on some unresolved issues and plans for future research.

8.1 Three dimensions

We have also explored three-dimensional graphics—using base-6 for directions—both in
perspective as in Figure 16, and in a large passive (glasses-free) three-dimensional viewer
outside the CARMA laboratory; but have not yet quantified these excursions.
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Figure 16: A 3D walk on the first million base 6 digits of π.

8.2 Genome comparison

Genomes are made up of so called purine and pyrimidines nucleotides. In DNA, purine
nucleotide bases are adenine and guanine (A and G), while the pyrimidine bases are thymine
and cytosine (T and C). Thymine is replaced by uracyl in RNA. The haploid human
genome (i.e., 23 chromosomes) is estimated to hold about 3.2 billion base pairs and so to
contain 20,000-25,000 distinct genes. Hence there are many ways of representing a stretch
of a chromosome as a walk, say as a base-four uniform walk on the symbols (A,G,T,C)
illustrated in Figure 18 (where A, G, T and C draw the new point to the south, north,
west and east, respectively, and we have not plotted undecoded or unused portions), or as
a three dimensional logarithmic walk inside a tetrahedron.

We have also compared random chaos games in a square with genomes and numbers
plotted by the same rules.2 As an illustration we show twelve games in Figure 17: four on
a triangle, four on a square, and four on a hexagon. At each step we go from the current
point halfway towards one of the vertices, chosen depending on the value of the digit. The
color indicates the number of hits, in a similar manner as in Figure 6. The nonrandom
behavior of the Champernowne numbers is apparent in the coloring patterns, as are the
special features of the Stoneham numbers described in Section 7.2 (the non-normality of
α2,3 and α3,2 in base 6 yields a paler color, while the repeating structure of α2,3 and α3,5

is the origin of the purple tone, see Conjectures 7.6 and 7.7).

8.3 Automatic numbers

We have also explored numbers originating with finite state automata such as those of
the paper-folding and the Thue–Morse sequences, P and TM2, see [2] and Section 9.

2The idea of a chaos game was described by Barnsley in his 1988 book Fractals Everywhere [6]. Games
on amino acids seem to originate with [34]. For a recent summary see [16, pp. 194–205].
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Figure 17: Chaos games on various numbers, colored by frequency. Row 1: C3, α3,5, a
(pseudo)random number, and α2,3. Row 2: C4, π, a (pseudo)random number, and α2,3.
Row 3: C6, α3,2, a (pseudo)random number, and α2,3.
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(a) Human X. dbox = 1.237. (b) log 2. dbox = 1.723.

Figure 18: Base four walks on 106 bases of the X-chromosome and 106 digits of log 2.

Automatic numbers are never normal and are typically transcendental; by comparison the
Liouville number λ2 is not p-automatic for any prime p [24].

The walks on P and TM2 have a similar shape, see Figure 19, but while the Thue–
Morse sequence generates very large pictures, the paper-folding sequence generates very
small ones since it is highly self-replicating; see also the values in Tables 1 and 2.

A turtle plot on these constants, where each binary digit corresponds to either “forward
motion” of length one or “rotate the Logo turtle” a fixed angle, exhibits some of their
striking features (see Figure 20). For instance, drawn with a rotating angle of π/3, TM2

converges to a Koch snowflake [40], see Figure 20(c). We show a corresponding turtle
graphic of π in Figure 20(d). Analogous features occur for the paper-folding sequence as
described in [27, 28, 29], and two variants are shown in Figures 20(a) and 20(b).

8.4 Continued fractions

Simple continued fractions often encode more information than base expansions about a
real number. Basic facts are that a continued fraction terminates or repeats if and only if
the number is rational or a quadratic irrational, respectively; see [15, 7]. By contrast, the
simple continued fractions for π and e start as follows in the standard compact form:

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, . . .]

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, . . .],
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(a) A thousand digits of
the Thue–Morse sequence
TM2 base 2.

(b) Ten million digits of
the paper-folding sequence
base 2.

Figure 19: Walks on two automatic and nonnormal numbers.

from which the surprising regularity of e and apparent irregularity of π as contin-
ued fractions is apparent. The counterpart to Borel’s theorem—that almost all num-
bers are normal—is that almost all numbers have ‘normal’ continued fractions α =
[a1, a2, . . . , an, . . .], for which the Gauss–Kuzmin distribution holds [15]: for each k =
1, 2, 3, . . .

Prob{an = k} = − log2

(
1− 1

(k + 1)2

)
, (15)

so that roughly 41.5% of the terms are 1, 16.99% are 2, 9.31% are 3, etc.
In Figure 21 we show a histogram of the first 100 million terms, computed by Neil

Bickford and accessible at http://neilbickford.com/picf.htm, of the continued fraction
of π. We have not yet found a satisfactory way to embed this in a walk on a continued
fraction but in Figure 22 we show base-4 walks on π and e where we use the remainder
modulo four to build the walk (with 0 being right, 1 being up 2 being left and 3 being
down). We also show turtle plots on π, e.

Andrew Mattingly has observed that:

Proposition 8.1. With probability one, a mod four random walk (with 0 being right, 1
being up 2 being left and 3 being down) on the simple continued fraction coefficients of a
real number is asymptotic to a line making a positive angle with the x-axis of:

arctan

(
1

2

log2(π/2)− 1

log2(π/2)− 2 log2 (Γ (3/4))

)
≈ 110.44◦.

Proof. The result comes by summing the expected Gauss–Kuzmin probabilities of each
step being taken as given by (15).
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(a) Ten million digits of the paper-
folding sequence with rotating angle
π/3. dbox = 1.921.

(b) Dragon curve from one million dig-
its of the paper-folding sequence with
rotating angle 2π/3. dbox = 1.783.

(c) Koch snowflake from 100,000 digits
of the Thue–Morse sequence TM2 with
rotating angle π/3. dbox = 1.353.

(d) One million digits of π with rotat-
ing angle π/3. dbox = 1.760.

Figure 20: Turtle plots on various constants with different rotating angles in base 2—where
‘0’ gives forward motion and ‘1’ rotation by a fixed angle.
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(a) Histogram of the terms in green, Gauss–
Kuzmin function in red.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4000

3000

2000

1000

0

1000

2000

3000

4000

(b) Difference between the expected and com-
puted values of the Gauss–Kuzmin function.

Figure 21: Expected values of the Gauss–Kuzmin distribution of (15) and the values of
100 million terms of the continued fraction of π.

This is illustrated in Figure 22(a) with a 90◦ anticlockwise rotation; thus making the
case that one must have some a priori knowledge before designing tools.

It is also instructive to compare at digits and continued fractions of numbers as hori-
zontal matrix plots of the form already used in Figure 9. In Figure 23 we show six pairs
of million-term digit-strings and their corresponding fraction. In some cases both look
random, in others one or the other does.

In conclusion, we have only tapped the surface of what is becoming possible in a period
in which data—e.g., five hundred million terms of the continued fraction or five trillion
binary digits of π, full genomes and much more—can be downloaded from the internet,
then rendered and visually mined, with fair rapidity.

9 Appendix: Selected numerical constants

In what follows, x := 0.a1a2a3a4 . . .b denotes the base-b expansion of the number x, so that
x =

∑∞
k=1 akb

−k. Base-10 expansions are denoted without a subscript.

Catalan’s constant (irrational?; normal?):

G :=

∞∑
k=0

(−1)k

(2k + 1)2
= 0.9159655941 . . . (16)
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(a) A 100,000 step walk on the continued fraction of π
modulo 4.

(b) A 100 step walk on the continued frac-
tion of e modulo 4.

(c) A one million step turtle walk
on the continued fraction of π mod-
ulo 2 with rotating angle π/3.

(d) A 100 step turtle walk on the
continued fraction of e modulo 2
with rotating angle π/3.

Figure 22: Uniform walks on π and e based on continued fractions.
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Figure 23: Million step comparisons of base-4 digits and continued fractions. Row 1:
α2,3(base 6) and C4. Row 2: e and π. Row 3: Q1 and pseudorandom iterates; as listed
from top left to bottom right.
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Champernowne numbers (irrational; normal to corresponding base):

Cb :=
∞∑
k=1

∑bk−1
m=bk−1 mb

−k[m−(bk−1−1)]

b
∑k−1

m=0m(b− 1)bm−1
(17)

C10 = 0.123456789101112 . . .

C4 = 0.1231011121320212223 . . .4

Copeland–Erdős constants (irrational; normal to corresponding base):

CE(b) :=
∞∑
k=1

pkb
−(k+

∑k
m=1blogb pmc), where pk is the kth prime number (18)

CE(10) = 0.2357111317 . . .

CE(2) = 0.1011101111 . . .2

Exponential constant (transcendental; normal?):

e :=

∞∑
k=0

1

k!
= 2.7182818284 . . . (19)

Erdős–Borwein constants (irrational; normal?):

EB(b) :=

∞∑
k=1

1

bk − 1
(20)

EB(2) = 1.6066951524 . . . = 1.212311001 . . .4

Euler–Mascheroni constant (irrational?; normal?):

γ := lim
m→∞

(
m∑
k=1

1

k
− logm

)
= 0.5772156649 . . . (21)

Fibonacci constant (irrational?; normal?):

F : =
∞∑
k=1

Fk10−(1+k+
∑k
m=1blog10 Fmc), where Fk =

(
1+
√

5
2

)k
−
(

1−
√

5
2

)k
√

5
(22)

= 0.011235813213455 . . .

Liouville number (irrational; not p-automatic):

λ2 :=

∞∑
k=1

(
λ(k) + 1

2

)
2−k (23)

where λ(k) := (−1)Ω(k) and Ω(k) counts prime factors of k

= 0.5811623188 . . . = 0.10010100110 . . .2
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Logarithmic constant (transcendental; normal?):

log 2 :=

∞∑
k=1

1

k2k
(24)

= 0.6931471806 . . . = 0.10110001011100100001 . . .2

Pi (transcendental; normal?):

π := 2

∫ 1

−1

√
1− x2 dx = 4

∞∑
k=0

(−1)k

2k + 1
(25)

= 3.1415926535 . . . = 11.00100100001111110110 . . .2

Riemann zeta function at integer arguments (transcendental for n even; irrational
for n = 3; unknown for n > 3 odd; normal?):

ζ(s) :=

∞∑
k=1

1

ks
(26)

In particular:

ζ(2) =
π2

6
= 1.6449340668 . . .

ζ(2n) = (−1)n+1 (2π)2n

2(2n)!
B2n (where B2n are Bernoulli numbers)

ζ(3) = Apéry’s constant =
5

2

∞∑
k=1

(−1)k+1

k3
(

2k
k

) = 1.2020569031 . . .

Stoneham constants (irrational; normal in some bases; nonnormal in different bases;
normality unknown in still other bases):

αb,c :=

∞∑
k=1

1

bckck
(27)

α2,3 = 0.0418836808 . . . = 0.0022232032 . . .4 = 0.0130140430003334 . . .6

α4,3 = 0.0052087571 . . . = 0.0001111111301 . . .4 = 0.0010430041343502130000 . . .6

α3,2 = 0.0586610287 . . . = 0.0011202021212121 . . .3 = 0.0204005200030544000002 . . .6

α3,5 = 0.0008230452 . . . = 0.00000012101210121 . . .3 = 0.002ba00000061d2 . . .15

Thue–Morse constant (transcendental; 2-automatic, hence nonnormal):

TM2 :=
∞∑
k=1

1

2t(n)
where t(0) = 0, while t(2n) = t(n) and t(2n+ 1) = 1− t(n) (28)

= 0.4124540336 . . . = 0.01101001100101101001011001101001 . . .2

34



Paper-folding constant (transcendental; 2-automatic, hence nonnormal):

P :=
∞∑
k=0

82k

22k+2 − 1
= 0.8507361882 . . . = 0.1101100111001001 . . .2 (29)
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