A CLOSED FORM FOR THE DENSITY FUNCTIONS OF RANDOM WALKS IN ODD DIMENSIONS

JONATHAN M. BORWEIN and CORWIN W. SINNAMON

Abstract

We derive an explicit piecewise-polynomial closed form for the probability density function of the distance traveled by a uniform random walk in an odd-dimensional space, based on recent work of Borwein, Straub, and Vignat [1] and by R. García-Pelayo [3].

2010 Mathematics subject classification: Primary 60G50; Secondary 33C20.
Keywords and phrases: short random walks, generalized hypergeometric functions, Bessel integrals.

1. Preliminaries

In [1], the authors explore the distance traveled by a uniform n-step random walk in \mathbb{R}^{d} with unit step length. Following their lead, we denote the probability density function of this distance by $p_{n}(m-1 / 2 ; x)$, where $m=\frac{d-1}{2}$.
We recall that the density can be expressed in terms of an integral engaging the normalized Bessel function of the first kind of order v, defined by

$$
\begin{equation*}
j_{v}(x)=v!\left(\frac{2}{x}\right)^{v} J_{v}(x)=v!\sum_{k \geq 0} \frac{\left(-x^{2} / 4\right)^{k}}{k!(k+v)!} \tag{1.1}
\end{equation*}
$$

With this normalization, we have $j_{\nu}(0)=1$ and obtain:
Theorem 1 (Bessel representation [1, 4]). The probability density function of the distance to the origin in $d \geq 2$ dimensions after $n \geq 2$ steps is, for $x>0$,

$$
\begin{equation*}
p_{n}(m-1 / 2 ; x)=\frac{2^{-m+1 / 2}}{\Gamma(m+1 / 2)} \int_{0}^{\infty}(t x)^{m+1 / 2} J_{m-1 / 2}(t x) j_{m-1 / 2}^{n}(t) \mathrm{d} t \tag{1.2}
\end{equation*}
$$

wherein $m=\frac{d-1}{2}$.
The study of the density $p_{n}(v ; x)$ is quite classical, originating in the early 20 th century [2, 4-7]. The most fundamental cases are that of two dimensions [2] and three dimensions [7]. The Bessel representation of the density is valuable for its generality and its analytically-pleasing structure, which form the basis for many related results $[1,4]$. Additionally, when Theorem 1 is used for half-integer m, one can symbolically
integrate any given small-order case, although the structure of the closed form is obscured in the process.
While some probabilistic results such as Theorem 1 hold in all dimensions, many arithmetic and analytic results are distinct between odd and even dimensions. Indeed, even dimensional results often involve elliptic integrals [1, 2], while odd dimensional results are typically resolvable in terms of elementary functions. For instance, noting that $j_{1 / 2}(x)=\operatorname{sinc}(x)=\sin (x) / x$ partly explains why analysis in three-dimensional space is relatively simple. More generally, $j_{v}(x)$ is elementary when v is a proper halfinteger [$1,4,7]$. In light of this discussion, it is striking that the next result is very recent.

Theorem 2 (Convolution formula for density in odd dimensions [3]). Assume that the dimension $d=2 m+1$ is an odd number. Then for $x \geq 0$,

$$
\begin{equation*}
p_{n}(m-1 / 2 ; x)=\frac{(2 x)^{2 m} \Gamma(m)}{\Gamma(2 m)}\left(-\frac{1}{2 x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{m} P_{m, n}(x) \tag{1.3}
\end{equation*}
$$

where $P_{m, n}$ is the piecewise polynomial obtained from convolving

$$
f_{m}(x):=\frac{\Gamma(m+1 / 2)}{\Gamma(1 / 2) \Gamma(m)} \begin{cases}\left(1-x^{2}\right)^{m-1} & \text { if } x \in[-1,1] \\ 0 & \text { otherwise }\end{cases}
$$

$n-1$ times with itself.
The expression in Theorem 2 above is both elegant and compact. It shows easily that in odd dimensions the density is a piecewise polynomial, but it can be difficult to manipulate or compute with or without a computer algebra system such as Maple or Mathematica. Note also that $p_{n}(m-1 / 2 ; x)=p_{n}(m-1 / 2 ;-x)$ in all cases.

2. Main result

We now use Theorem 2 to obtain an entirely explicit and tractable, convolution and differentiation free formula for $p_{n}(m-1 / 2 ; x)$, valid for all lengths and in all odd dimensions. We begin with a preliminary result which simplifies $P_{m, n}(x)$. We shall employ the Heaviside step function $H(x)$ which has $H(x)=1$ for $x>0, H(x)=0$ for $x<0$, and $H(0)=1 / 2$. We also use the notation $\left[x^{j}\right] Q(x)$ to denote the coefficient of x^{j} in a polynomial Q.

Proposition 3. Let $n \geq 1$ and $m \geq 1$. Then for $|x| \leq n$ we have $P_{m, n}(x)=$
$\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n} \sum_{r=0}^{n}\binom{n}{r}(-1)^{m r} H(n-2 r+x) \sum_{j=0}^{(m-1) n} \frac{(n-2 r+x)^{m n-1+j}}{(m n-1+j)!}\left[x^{j}\right] C_{m}(x)^{r} C_{m}(-x)^{n-r}$
where

$$
\begin{equation*}
C_{m}(x):=\sum_{k=0}^{m-1} \frac{(m-1+k)!}{2^{k} k!(m-1-k)!} x^{k} . \tag{2.2}
\end{equation*}
$$

Note that $C_{m}(x)$ satisfies the useful recurrence

$$
C_{m}(x)=(2 m-3) x C_{m-1}(x)+C_{m-2}(x) .
$$

Moreover, in terms of hypergeometric functions $C_{m}(x)={ }_{2} \mathrm{~F}_{0}(m, 1-m ; ;-x / 2)$.

Proof. By the convolution theorem for the Fourier transform,

$$
\mathcal{F}\left(P_{m, n}(x)\right)=\mathcal{F}\left(f_{m}(x)\right)^{n}=\left(\frac{\Gamma(m+1 / 2)}{\Gamma(1 / 2) \Gamma(m)} \int_{-1}^{1}\left(1-x^{2}\right)^{m-1} e^{-i w x} d x\right)^{n}
$$

Observe that, for $m \geq 3, \mathcal{F}\left(f_{m}(x)\right)$ satisfies the recurrence

$$
T_{m}=\frac{(2 m-1)(2 m-3)}{w^{2}}\left(T_{m-1}-T_{m-2}\right)
$$

which is also satisfied by

$$
G_{m}(w):=\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right) \sum_{k=0}^{m-1} \frac{(m-1+k)!}{2^{k} k!(m-1-k)!}(-1)^{m} \frac{2 \cos \left(w+\frac{\pi}{2}(m+k)\right)}{w^{m+k}} .
$$

This can be checked by hand. It can also easily be shown with the following Maple 18 code.

```
with(inttrans, fourier):
f:=m -> piecewise( }-1<=\textrm{x}\mathrm{ and x <=1,
    GAMMA(m+1/2)/(GAMMA(m)*GAMMA(1/2)) * (1-x^2)^(m-1),0):
F:=m -> fourier(f(m),x,w):
simplify(F(m)-(2*m-1)*(2*m-3)/w^2*(F
```

The above code returns 0 to indicate that $\mathcal{F}\left(f_{m}(x)\right)$ satisfies the recurrence.
Correspondingly, we may execute the following Maple 18 code.

```
G := m -> (GAMMA(2*m)/(2^m*GAMMA(m)))
    * sum( (m-1+k)!/( 2^ k*k!*(m-1-k)!)
    * (-1)^m * (2* cos (w+Pi/2*(m+k))/w^(m+k)), k=0..m-1 ):
simplify (G(m) - (2*m-1)*(2*m-3)/w^2*(G(m-1)-G(m-2)));
```

This returns 0 to show that $G_{m}(x)$ satisfies the same recurrence.
We can easily check that $\mathcal{F}\left(f_{m}(x)\right)$ and $G_{m}(x)$ agree for $m=1$ and $m=2$, and so we may conclude that $\mathcal{F}\left(f_{m}(x)\right)=G_{m}(x)$ for all $m \geq 1$.

Therefore,

$$
\begin{aligned}
\mathcal{F}\left(P_{m, n}(x)\right) & =\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n}\left(\sum_{k=0}^{m-1} \frac{(m-1+k)!}{2^{k} k!(m-1-k)!} \cdot(-1)^{m} \frac{2 \cos \left(w+\frac{\pi}{2}(m+k)\right)}{w^{m+k}}\right)^{n} \\
& =\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n}\left(\sum_{k=0}^{m-1} \frac{(m-1+k)!}{2^{k} k!(m-1-k)!} \cdot(-1)^{m} \frac{e^{i w+i \frac{\pi}{2}(m+k)}+e^{-i w-i \frac{\pi}{2}(m+k)}}{w^{m+k}}\right)^{n} \\
& =\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n}\left(\sum_{k=0}^{m-1} \frac{(m-1+k)!}{2^{k} k!(m-1-k)!} \cdot(-1)^{m} \frac{(-1)^{m+k} e^{i w}+e^{-i w}}{(i w)^{m+k}}\right)^{n} \\
& =\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n}\left(\sum_{k=0}^{m-1} \frac{(m-1+k)!}{2^{k} k!(m-1-k)!} \cdot \frac{(-1)^{m} e^{i w}}{(-i w)^{m+k}}+\sum_{k=0}^{m-1} \frac{(m-1+k)!}{2^{k} k!(m-1-k)!} \cdot \frac{(-1)^{m} e^{-i w}}{(i w)^{m+k}}\right)^{n} \\
& =\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n}\left(e^{i w}\left(\frac{1}{i w}\right)^{m} C_{m}\left(\frac{-1}{i w}\right)+e^{-i w}\left(\frac{-1}{i w}\right)^{m} C_{m}\left(\frac{1}{i w}\right)\right)^{n} \\
& =\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n} \sum_{r=0}^{n}\binom{n}{r} \frac{e^{i w(n-2 r)}}{(i w)^{m n}}\left((-1)^{m} C_{m}\left(\frac{1}{i w}\right)\right)^{r} C_{m}\left(\frac{-1}{i w}\right)^{n-r} \\
& =\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n} \sum_{r=0}^{n}\binom{n}{r}(-1)^{m r} \sum_{j=0}^{(m-1) n} \frac{e^{i w(n-2 r)}}{(i w)^{m n+j}}\left[x^{j}\right] C_{m}(x)^{r} C_{m}(-x)^{n-r} .
\end{aligned}
$$

We can now reconstruct $P_{m, n}(x)$ from its Fourier transform, since

$$
\mathcal{F}^{-1}\left(\frac{e^{i w(n-2 r)}}{(i w)^{m n+j}}\right)=\frac{(n-2 r+x)^{m n-1+j}}{(m n-1+j)!} H(n-2 r+x)-\frac{1}{2} \frac{(n-2 r+x)^{m n-1+j}}{(m n-1+j)!} .
$$

Thus, taking the inverse Fourier transform of $\mathcal{F}\left(P_{m, n}(x)\right)$,

$$
\begin{align*}
& P_{m, n}(x)=\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n} \sum_{r=0}^{n}\binom{n}{r}(-1)^{m r} \sum_{j=0}^{(m-1) n} \frac{(n-2 r+x)^{m n-1+j}}{(m n-1+j)!} H(n-2 r+x)\left[x^{j}\right] C_{m}(x)^{r} C_{m}(-x)^{n-r} \\
& +\frac{1}{2}\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n} \sum_{r=0}^{n}\binom{n}{r}(-1)^{m r} \sum_{j=0}^{(m-1) n} \frac{(n-2 r+x)^{m n-1+j}}{(m n-1+j)!}\left[x^{j}\right] C_{m}(x)^{r} C_{m}(-x)^{n-r} . \tag{2.3}
\end{align*}
$$

It remains only to show that the second term above is zero. Observe that when $x<-n$, $P_{m, n}(x)$ simplifies to

$$
\begin{equation*}
\frac{1}{2}\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n} \sum_{r=0}^{n}\binom{n}{r}(-1)^{m r} \sum_{j=0}^{(m-1) n} \frac{(n-2 r+x)^{m n-1+j}}{(m n-1+j)!}\left[x^{j}\right] C_{m}(x)^{r} C_{m}(-x)^{n-r} \tag{2.4}
\end{equation*}
$$

From the definition of convolution, we can easily deduce that $P_{m, n}(x)$ vanishes for $|x|>n$. It follows that (2.4) is zero for $x<-n$, but since it is a polynomial it must be zero everywhere. Thus, the latter term in (2.3) is zero, yielding (2.1).

Next, we deal with the differential operator in Theorem 2.
Lemma 4. For all $F(x)$ and $m \geq 1$,

$$
\begin{equation*}
\left(-\frac{1}{2 x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{m} F(x)=\sum_{k=1}^{m} \frac{(-1)^{k}(2 m-1-k)!}{2^{2 m-k}(m-k)!(k-1)!} \frac{1}{x^{2 m-k}}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{k} F(x) . \tag{2.5}
\end{equation*}
$$

Proof. We proceed by induction. It is trivial to see that (2.5) is true for $m=1$. Suppose it holds for some $m \geq 1$. Then

$$
\begin{aligned}
\left(-\frac{1}{2 x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{m+1} F(x)= & \left(-\frac{1}{2 x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right) \sum_{k=1}^{m} \frac{(-1)^{k}(2 m-1-k)!}{2^{2 m-k}(m-k)!(k-1)!} \frac{1}{x^{2 m-k}}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{k} F(x) \\
= & \sum_{k=1}^{m} \frac{(-1)^{k+1}(2 m-1-k)!}{2^{2 m-k+1}(m-k)!(k-1)!}\left(\frac{1}{x^{2 m-k+1}}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{k+1} F(x)-\frac{2 m-k}{x^{2 m-k+2}}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{k} F(x)\right) \\
= & \sum_{k=2}^{m+1} \frac{(-1)^{k}(2 m-k)!}{2^{2 m-k+2}(m+1-k)!(k-2)!} \frac{1}{x^{2 m-k+2}}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{k} F(x) \\
& +\sum_{k=1}^{m} \frac{(-1)^{k}(2 m-k)!}{2^{2 m-k+1}(m-k)!(k-1)!} \frac{1}{x^{2 m-k+2}}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{k} F(x) \\
= & \sum_{k=1}^{m+1} \frac{(-1)^{k}(2 m+1-k)!}{2^{2 m+2-k}(m+1-k)!(k-1)!} \frac{1}{x^{2 m+2-k}}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{k} F(x) .
\end{aligned}
$$

Thus, (2.5) holds for all $m \geq 1$, proving the lemma.

We are now ready to approach the probability density. Combining our previous results will allow us to fully expand $p_{n}(m-1 / 2 ; x)$.

Theorem 5 (Densities in odd dimensions). Let $n \geq 2$ and $m \geq 1$. Then for $x \geq 0$,

$$
\begin{align*}
& p_{n}(m-1 / 2 ; x)=\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n} \sum_{r=0}^{n}\binom{n}{r}(-1)^{m r} H(n-2 r+x) \\
\times & \sum_{k=1}^{m}(-2)^{k}\binom{m-1}{k-1} \frac{(2 m-1-k)!}{(2 m-1)!} x^{k} \sum_{j=0}^{(m-1) n} \frac{(n-2 r+x)^{m n-1+j-k}}{(m n-1+j-k)!}\left[x^{j}\right] C_{m}(x)^{r} C_{m}(-x)^{n-r} \tag{2.6}
\end{align*}
$$

where $H(x)$ is the Heaviside step function and

$$
\begin{equation*}
C_{m}(x)=\sum_{k=0}^{m-1} \frac{(m-1+k)!}{2^{k} k!(m-1-k)!} x^{k} . \tag{2.7}
\end{equation*}
$$

Proof. By Theorem 2, Lemma 4, and Proposition 3, we arrive at

$$
\begin{aligned}
p_{n}(m-1 / 2 ; x) & =\frac{(2 x)^{2 m} \Gamma(m)}{\Gamma(2 m)}\left(-\frac{1}{2 x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{m} P_{m, n}(x) \\
& =\frac{(2 x)^{2 m} \Gamma(m)}{\Gamma(2 m)} \sum_{k=1}^{m} \frac{(-1)^{k}(2 m-1-k)!}{2^{2 m-k}(m-k)!(k-1)!} \frac{1}{x^{2 m-k}}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{k} P_{m, n}(x) \\
& =\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n} \sum_{k=1}^{m}(-2)^{k}\binom{m-1}{k-1} \frac{(2 m-1-k)!}{(2 m-1)!} x^{k} \\
& \times \sum_{r=0}^{n}\binom{n}{r}(-1)^{m r} \sum_{j=0}^{m n-n}\left[x^{j}\right] C_{m}(x)^{r} C_{m}(-x)^{n-r}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{k} \frac{(n-2 r+x)^{m n-1+j}}{(m n-1+j)!} H(n-2 r+x) .
\end{aligned}
$$

We can evaluate the derivative above directly, but we must be careful since there are jump discontinuities at $n-2 r$ for $0 \leq r \leq n$. We shall see that these points are not an issue. Applying the general Leibniz rule, we obtain

$$
\begin{aligned}
& \left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{k} \frac{(n-2 r+x)^{m n-1+j}}{(m n-1+j)!} H(n-2 r+x) \\
& =\sum_{a=0}^{k}\binom{k}{a}\left(\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{a} \frac{(n-2 r+x)^{m n-1+j}}{(m n-1+j)!}\right)\left(\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{k-a} H(n-2 r+x)\right) \\
& =\sum_{a=0}^{k}\binom{k}{a} \frac{(n-2 r+x)^{m n-1+j-a}}{(m n-1+j-a)!}\left(\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{k-a} H(n-2 r+x)\right)
\end{aligned}
$$

We shall see that the terms of this sum vanish except when $a=k$. Suppose $a<k$ and consider one such term. Clearly, $\left(\frac{\mathrm{d}}{\mathrm{d} x}\right)^{k-a} H(n-2 r+x)=0$ for $x \neq-n+2 r$. Additionally, since $a<k \leq m$ and $n \geq 2$ the exponent $m n-1+j-a$ is strictly positive, so $(n-2 r+x)^{m n-1+j-a}=0$ at $x=-n+2 r$. Thus, the summand above vanishes for $a<k$, yielding

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)^{k} \frac{(n-2 r+x)^{m n-1+j}}{(m n-1+j)!} H(n-2 r+x)=\frac{(n-2 r+x)^{m n-1+j-k}}{(m n-1+j-k)!} H(n-2 r+x)
$$

We now apply this relation above and the result follows from a simple rearrangement.

The formula we have presented is derived from the convolution form in Theorem 2 and produces an even function. However, $p_{n}(m-1 / 2 ; x)$ is the probability density function of a non-negative random variable, so it must be 0 for negative values of x. We may use this fact to significantly reduce the number of terms in our formula, halving the time needed to compute $p_{n}(m-1 / 2 ; x)$ for given values of n and m.

Corollary 6. Let $n \geq 2$ and $m \geq 1$. Then for $x \geq 0$,

$$
\begin{align*}
& p_{n}(m-1 / 2 ; x)=\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n\lfloor(n-1) / 2\rfloor} \sum_{r=0}^{n}\binom{n}{r}(-1)^{m r} H(n-2 r-x) \\
& \quad \times \sum_{k=1}^{m} 2^{k}\binom{m-1}{k-1} \frac{(2 m-1-k)!}{(2 m-1)!} x^{k} \sum_{j=0}^{(m-1) n} \frac{(n-2 r-x)^{m n-1+j-k}}{(m n-1+j-k)!}\left[x^{j}\right] C_{m}(x)^{r} C_{m}(-x)^{n-r} \tag{2.8}
\end{align*}
$$

Proof. Since our formula 2.6 is even (easily seen in Theorem 2), for $x \geq 0$ we have

$$
\begin{aligned}
p_{n}(m-1 / 2 ; x) & =p_{n}(m-1 / 2 ;-x) \\
& =\left(\frac{\Gamma(2 m)}{2^{m} \Gamma(m)}\right)^{n} \sum_{r=0}^{n}\binom{n}{r}(-1)^{m r} H(n-2 r-x) \\
& \times \sum_{k=1}^{m} 2^{k}\binom{m-1}{k-1} \frac{(2 m-1-k)!}{(2 m-1)!} x^{k} \sum_{j=0}^{(m-1) n} \frac{(n-2 r-x)^{m n-1+j-k}}{(m n-1+j-k)!}\left[x^{j}\right] C_{m}(x)^{r} C_{m}(-x)^{n-r}
\end{aligned}
$$

by Theorem 5. Observe that when $r>\lfloor(n-1) / 2\rfloor, H(n-2 r-x)$ is zero on $(0, \infty)$. At $x=0$, every term is 0 for all values of r. Thus, when $x \geq 0$, we may simply omit the terms where $r>\lfloor(n-1) / 2\rfloor$. So we let r range from 0 to $\lfloor(n-1) / 2\rfloor$ in the sum, which yields our result directly.

We finish with two examples echoing the direct analyses in [7]:
Example 7 (Density in three dimensions). In \mathbb{R}^{3}, we have $C_{1}(x)=1$ so for $n \geq 2$ and $x \geq 0$, the density reduces to

$$
p_{n}(1 / 2 ; x)=\frac{-x}{2^{n-1}} \sum_{r=0}^{n}\binom{n}{r}(-1)^{r} H(n-2 r+x) \frac{(n-2 r+x)^{n-2}}{(n-2)!} .
$$

In particular, we have

$$
\begin{gathered}
p_{2}(1 / 2 ; x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
x / 2 & \text { if } x \in[0,2) \\
0 & \text { if } x>2
\end{array}\right. \\
p_{3}(1 / 2 ; x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
\frac{1}{2} x^{2} & \text { if } x \in[0,1) \\
-\frac{1}{4} x^{2}+\frac{3}{4} x & \text { if } x \in[1,3) \\
0 & \text { if } x>3
\end{array}\right. \\
p_{4}(1 / 2 ; x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
-\frac{3}{16} x^{3}+\frac{1}{2} x^{2} & \text { if } x \in[0,2) \\
\frac{1}{16} x^{3}-\frac{1}{2} x^{2}+x & \text { if } x \in[2,4) \\
0 & \text { if } x>4
\end{array}\right.
\end{gathered}
$$

Figure 1. $p_{n}(1 / 2 ; x)$ for $n=2,3,4$.

Example 8 (Density in five dimensions). In \mathbb{R}^{5}, we have $C_{2}(x)=1+x$ so for $n \geq 2$ and $x \geq 0$, the density reduces to

$$
\begin{aligned}
p_{n}(3 / 2 ; x)= & \left(\frac{3}{2}\right)^{n-1} \sum_{r=0}^{n}\binom{n}{r} H(n-2 r+x) \\
& \times \sum_{j=0}^{n} \frac{(n-2 r+x)^{2 n-3+j}}{(2 n-3+j)!}\left(x^{2}-x \frac{(n-2 r+x)}{(2 n-2+j)}\right) \sum_{l=0}^{j}(-1)^{j-l}\binom{r}{l}\binom{n-r}{j-l} .
\end{aligned}
$$

In particular, we have

$$
\begin{gathered}
p_{2}(3 / 2 ; x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
-\frac{3}{16} x^{5}+\frac{3}{4} x^{3} & \text { if } x \in[0,2) \\
0 & \text { if } x>2
\end{array}\right. \\
p_{3}(3 / 2 ; x)=\left\{\begin{array}{cl}
0 & \text { if } x<0 \\
-\frac{3}{1120} x^{8}+\frac{9}{80} x^{6}-\frac{9}{32} x^{5}-\frac{9}{32} x^{4}+\frac{81}{80} x^{3}-\frac{243}{1120} x & \text { if } x \in[1,3) \\
0 & \text { if } x>3
\end{array}\right.
\end{gathered}
$$

As these examples demonstrate, Theorem 5 always provides an explicit, workable expression for $p_{n}(m-1 / 2 ; x)$ with clearly indicated structure. We finish by observing that since the moment function is defined by $W_{n}(m-1 / 2, s):=\int_{x=0}^{n} x^{s} p_{n}(m-1 / 2 ; x) \mathrm{d} x$, we may also obtain an explicit formula for $W_{n}(m-1 / 2, s)$.

Figure 2. $p_{n}(3 / 2 ; x)$ for $n=2,3$.

Acknowledgements

This research was performed between January and May 2015. In the first two months the second author was a undergraduate research fellow visiting CARMA from the University of Waterloo.

References

[1] J. M. Borwein, A. Straub and C. Vignat. "Densities of short uniform random walks in higher dimensions." Submitted April 2015.
[2] J. M. Borwein, A. Straub, J. Wan and W. Zudilin, with an Appendix by Don Zagier, "Densities of short uniform random walks." Canadian. J. Math. 64 (5), (2012), 961-990. Available at http://arxiv.org/abs/1103.2995.
[3] R. García-Pelayo. "Exact solutions for isotropic random flights in odd dimensions." Journal of Mathematical Physics, 53(10):103504, 2012.
[4] B. D. Hughes. "Random Walks and Random Environments, volume 1." Oxford University Press, 1995.
[5] J. C. Kluyver. "A local probability problem." Nederl. Acad. Wetensch. Proc., 8:341-350, 1906.
[6] K. Pearson. "A mathematical theory of random migration." In Drapers Company Research Memoirs, number 3 in Biometric Series. Cambridge University Press, 1906.
[7] L. Rayleigh. "On the problem of random vibrations, and of random flights in one, two, or three dimensions." Philosophical Magazine Series 6, 37(220):321-347, April 1919.

Jonathan M. Borwein, CARMA, University of Newcastle, NSW 2303, Australia
e-mail: jon.borwein@gmail.com
Corwin W. Sinnamon, University of Waterloo, Ontario N2L 3G1, Canada
e-mail: sinncore@gmail.com

