Second Annual

ONTARIO R\&E SUMMIT

JUNE 13 \& 14, 2005, COURTYARD BY MARRIOTT, DOWNTOWN TORONTO

"Pawering Dntarig's Research Advantage"

What is HIGH PERFORMANCE (Pure) MATHEMATICS?

 Canada Research Chair in Collaborative Technology"I feel so strongly about the wrongness of reading a lecture that my language may seem immoderate The spoken word and the written word are quite different arts I feel that to collect an audience and then read one's material is like inviting a friend to go for a walk and asking him not to mind if you go alongside him in your car."
Sir Lawrence Bragg
What would he say about Ppt?
\qquad tlantic Computational Excellence Network

"It says it's sick of doing things like inventories and payrolls, and it wants to make some breakthroughs in astrophysics."

My intention is to show a variety of mathematical uses of high performance computing and communicating as part of

Experimental Inductive Mathematics

Our web site:

www.experimentalmath.info

contains all links and references
"Elsewhere Kronecker said `In mathematics, I recognize true scientific value only in concrete mathematical truths, or to put it more pointedly, only in mathematical formulas." ... I would rather say "computations" than "formulas", but my view is essentially the same."
Harold Edwards, Essays in Constructive Mathematics, 2004

East meets West: Collaboration goes National

Welcome to D-DRIVE whose mandate is to study and develop resources specific to distributed research in the sciences with first client groups being the following communities

- High Performance Computing
- Mathematical and Computational Science Research
- Math and Science
- Educational
- Research

Centre seen as 'serious nirvana'

The 2,500 square metre IRMACS research centre
\checkmark The building is a also a 190cpu G5 Grid
\checkmark At the official April opening, I gave one of the four presentations from D-DRIVE

April 07, 2005, vol. 32, no. 7
By Carol Thorbes
Move over creators of Max Head-room, Matrix and Metropolis. What researchers can accomplish at Simon Fraser University's IRMACS centre rivals the high tech feats of the most memorable futuristic films.

from atop in echoes its
al as a facility tering
research s whose
is the computer.
cted 2,500 square metre space atop the applied sciences building, the centre has eight ig rooms and a presentation theatre, seating up to 100 people. They are equipped with ble computational, multimedia, intermet and remote conferencing (including satellite)

Dalhousie Distributed Researo
ACEnet completes the Pan Canadian Consortia

Experimental Mathodology

1. Gaining insight and intuition
2. Discovering new relationships
3. Visualizing math principles
4. Testing and especially falsifying conjectures
5. Exploring a possible result to see if it merits formal proof
6. Suggesting approaches for formal proof
7. Computing replacing lengthy hand derivations
8. Confirming analytically derived results

Comparing $-y^{2} \ln (y)(r e d)$ to $y-y^{2}$ and $y^{2}-y^{4}$

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions, Pseudospectra
2. High Precision Mathematics.
3. Integer Relation Methods.

\checkmark Chaos, Zeta and the Riemann Hypothesis, HexPi and Normality 4. Inverse Symbolic Computation.
\checkmark A problem of Knuth, $\pi / 8$, Extreme Quadrature
4. The Future is Here.
\checkmark D-DRIVE: Examples and Issues
5. Conclusion.
\checkmark Engines of Discovery. The $21^{\text {st }}$ Century Revolution \checkmark Long Range Plan for HPC in Canada

Indra's Pearls A merging of 19th and $21^{\text {st }}$ Centuries

I N DRA'S
PEARLS The Vision of Felix Klein

David Mumford, Caroline Series, David Wright

2002: http://klein.math.okstate.edu/IndrasPearls/

This picture is worth 100,000 ENIACs

NERSC's 6000 cpu Seaborg in 2004 (10Tflops/sec)

 we need new software paradigms for 'bigga-scale' hardware
IBM BlueGene/L system at LLNL

Striking fractal patterns formed by plotting complex zeros for all polynomials in powers of x with coefficients 1 and -1 to degree 18

Coloration is by sensitivity of polynomials to slight variation around the values of the zeros. The color scale represents a normalized sensitivity to the range of values; red is insensitive to violet which is strongly sensitive.

- All zeros are pictured (at $\mathbf{3 6 0 0} \mathbf{~ d p i)}$
- Figure 1 b is colored by their local density
- Figure 1d shows sensitivity relative to the \mathbf{x}^{9} term
- The white and orange striations are not understood

A wide variety of patterns and features become visible, leading researchers to totally unexpected mathematical results

[^0]The TIFF on THREE SCALES

$$
\begin{gathered}
\begin{array}{c}
\text { Ramanujan's } \\
\text { Arithmetic-Geometric } \\
\text { Continued fraction (CF) }
\end{array} \\
R_{\eta}(a, b)=\frac{a}{\eta+\frac{b^{2}}{\eta+\frac{4 a^{2}}{\eta+\frac{9 b^{2}}{\eta+\ldots .}}}}
\end{gathered}
$$

A cardioid
\square For $a, b>0$ the CF satisfies a lovely symmetrization

$$
\mathcal{R}_{\eta}\left(\frac{a+b}{2}, \sqrt{a b}\right)=\frac{\mathcal{R}_{\eta}(a, b)+\mathcal{R}_{\eta}(b, a)}{2}
$$

Computing directly was too hard even just 4 places of $\mathcal{R}_{1}(1,1)=\log 2$
We wished to know for which a/b in C this all held \checkmark The scatterplot revealed a precise cardioid

$$
r^{2}-2 r\{2-\cos (\theta)\}+1=0
$$ where $r=a / b$.

\checkmark which discovery it remained to prove?

$$
\left|\frac{a+b}{2}\right| \geq \sqrt{|a b|}
$$

$$
\mathcal{R}=\frac{\left|\sum_{n \in \mathbf{Z}}(-1)^{n} q^{n^{2}}\right|}{\left|\sum_{n \in \mathbf{Z}} q^{n^{2}}\right|}
$$

FRACTAL of a Modular Inequality

plots $\mathcal{R}_{\text {in }}$ disk

- black exceeds 1
- lighter is lower

\checkmark related to Ramanujan's continued fraction \checkmark took several hours to print
\checkmark Crandall/Apple has parallel print mode

Mathematics and the aesthetic
Modern approaches to an ancient affinity (CMS-Springer, 2005)

Ramanujan's

Arithmetic-Geometric
 Continued fraction

1. The Blackbox

Six months later we had a beautiful proof using genuinely new dynamical results. Starting from the dynamical system $t_{0}:=t_{1}:=1$:
2. Seeing convergence
where $\omega_{n}=a^{2}, b^{2}$ for n even, odd respectively-

Pseudospectra or Stabilizing Eigenvalues

Gaussian elimination of random sparse (10\%-15\%) matrices
$\xrightarrow{3}$

'Large' $\left(10^{5}\right.$ to $\left.10^{8}\right)$ Matrices must be seen
 \checkmark sparsity and its preservation \checkmark conditioning and ill-conditioning
 \checkmark eigenvalues
 \checkmark singular values (helping Google work)

Pseudospectrum of a banded matrix

The ε-pseudospectrum of A
is:

$$
\sigma_{\varepsilon}(A)=\{x: \exists \lambda \text { s.t. }\|A x-\lambda x\| \leq \varepsilon\}
$$

\checkmark for $\varepsilon=0$ we recover the eigenvalues
\checkmark full pseudospectrum carries much more information http://web.comlab.ox.ac.uk/projects/pseudospectra

An Early Use of Pseudospectra (Landau, 1977)

An infinite dimensional integral equation in laser theory
\checkmark discretized to a matrix of dimension 600
\checkmark projected onto a well chosen invariant subspace of dimension 109

Generic Code Optimization

Experimentation with DGEMV (matrix-vector multiply):
$128 \times 128=16,384$ cases.
Experiment took 30+ hours to run.

Best performance = 338 Mflop/s with blocking=11 unrolling=11

Original performance $=$ 232 Mflop/s

Pentium M 1700 MHz Matrix-Vector Multiply

Visual Representation of Automatic Code Parallelization

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions, Pseudospectra
2. High Precision Mathematics.
3. Integer Relation Methods.
\checkmark Chaos, Zeta and the Riemann Hypothesis, HexPi and Normality
4. Inverse Symbolic Computation.
\checkmark A problem of Knuth, $\pi / 8$, Extreme Quadrature
5. The Future is Here.
\checkmark Examples and Issues
6. Conclusion.
\checkmark Engines of Discovery. The 21 ${ }^{\text {st }}$ Century Revolution \checkmark Long Range Plan for HPC in Canada

A WARMUP Computer Proof

$>$ Suppose we know that $1<\alpha<10$ and that α is an integer

- computing α to 1 significant place with a certificate will prove the value of α. Euclid's method is basic to such ideas. Drive
$>$ Likewise, suppose we know α is algebraic of degree d and length I (coefficient sum in absolute value)
If P is polynomial of degree D \& length L EITHER $P(\alpha)=0$ OR .
Example (MAA, April 2005). Prove that

$$
\int_{-\infty}^{\infty} \frac{y^{2}}{1+4 y+y^{6}-2 y^{4}-4 y^{3}+2 y^{5}+3 y^{2}} d y=\pi
$$

Proof. Purely qualitative analysis with partial fractions and arctans shows integral is $\pi \beta$ where β is algebraic of degree much less than 100 (actually 6), length much less than 100,000,000. \checkmark With $P(x)=x-1(D=1, L=2, d=6, I=?)$, this means checking the $\begin{array}{lc}\text { identity to } 100 \text { places is plenty PROOF: } & |\beta-1|<1 /(32 l) \mapsto \beta=1 \\ \checkmark \text { A fully symbolic Maple proof followed. } & \text { QED }\end{array}$

Fast High Precision Numeric Computation (and Quadrature)

Central to my work - with Dave Bailey meshed with visualization, randomized checks, many web interfaces and
\checkmark Massive (serial) Symbolic Computation

- Automatic differentiation code
\checkmark Integer Relation Methods

Parallel derivative free optimization in Maple

The On-Line Encyclopedia of Integer Sequences

Other languages: Albanian Arabic Bulgarian Catalan Chinese (simplified, traditional) Croatian Czech Danish Dutch Esperanto Estonian Finnish French German Greek Hebrew Hindi Hungarian Italian Japanese Korean Polish Portuguese Romanian Russian Serbian Spanish Swedish Tagalog Thai Turkish Ukrainian Vietnamese

For information about the Encyclopedia see the Welcome page.
Looky | Welcome | Francais \mid Demos \mid Index \mid Browse \mid More | WebCam Contribute new seq. or comment | Format |Transforms | Puzzles | Hot| Classics More pages | Superseeker |Maintained by N. J. A. Sloane (njas@research.att.com)
[Last modified Fri Apr 22 21:18:02 EDT 2005. Contains 105526 sequences.]

Other useful tools: Parallel Maple - Sloane's online sequence database

- Salvy and Zimmerman's generating function package 'gfun'
- Automatic identity proving: WilfZeilberger method for hypergeometric functions

Greetings from the On-Line Encyclopedia of Integer Sequences!

Matches (up to a limit of 30) found for 1236112347106235 :
[It may take a few minutes to search the whole database, depending on how many matches are found (the second and later lookus] are faster)]

Mame :

Comment
References F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
N. L. Biggs et al., Graph Theory 1736-1936, 0xford, 1976, p. 49.
S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. $295-316$.
D. D. Grant, The stability index of graphs, pp. 29-52 of Combipatorial Mathematics (Proceedings 2nd Australian Conf.), Lect. Notes Math. 403, 1974.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.

An Exemplary Database

ID Number: 1000055 (Formerly M0791 and NO299)

URL:

Sequence:
http://www . research.att.com/projects/OEIS?Anum $=\mathrm{A} 000055$
$1,1,1,1,2,3,6,11,23,47,106,235,551,1301,3159,7741,19320$,
$48629,123867,317955,823065,2144505,5623756,14828074$, $39299897,104636890,279793450,751065460,2023443032$, $5469566585,14830871802,40330829030,109972410221$.

- moderated
- 100,000 entries
- grows daily
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 58 and 244.
D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88.
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138. Steven Fingh, Otter's Tree Enumeration Constants
E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees)., N. J. A. Sloane, Illustration of initial terms
E. H. Weisstein, Link to a section of The World of Mathematics.

Index entries for sequences related to trees
Index entries for "core" sequences
G. Labelle, C. Lamathe and P. Leroux, Labeled and unlabeled enumeration of k-gonal 2-tree G.f.: $A(x)=1+T(x)-T^{\wedge} 2(x) / 2+T\left(x^{\wedge} 2\right) / 2$, where $T(x)=x+x^{\wedge} 2+2^{\star} x^{\wedge} 3+\ldots$

Fast Arithmetic (Complexity Reduction in Action)

Multiplication

\checkmark Karatsuba multiplication (200 digits +) or Fast Fourier Transform (FFT)
\checkmark in ranges from 100 to 1,000,000,000,000 digits

- The other operations
\checkmark via Newton's method $\quad \times, \div, \sqrt{ }$.
- Elementary and special functions
\checkmark via Elliptic integrals and Gauss AGM
For example:

> Karatsuba replaces one 'times' by many 'plus'

$$
\begin{aligned}
& \left(a+c \cdot 10^{N}\right) \times\left(b+d \cdot 10^{N}\right) \\
= & a b+(a d+b c) \cdot 10^{N}+c d \cdot 10^{2 N} \\
= & a b+\underbrace{\{(a+c)(b+d)-a b-c d\}}_{\text {three multiplications }} \cdot 10^{N}+c d \cdot 10^{2 N}
\end{aligned}
$$

FFT multiplication of multi-billion digit numbers reduces centuries to minutes. Trillions must be done with Karatsuba!

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions, Pseudospectra
2. High Precision Mathematics.
3. Integer Relation Methods.

\checkmark Chaos, Zeta \& Riemann Hypothesis, HexPi \&Normality
4. Inverse Symbolic Computation.
\checkmark A problem of Knuth, $\pi / 8$, Extreme Quadrature
5. The Future is Here.
\checkmark Examples and Issues

Drive
6. Conclusion.
\checkmark Engines of Discovery. The $21^{\text {st }}$ Century Revolution
\checkmark Long Range Plan for HPC in Canada

Let $\left(x_{n}\right)$ be a vector of real numbers. An integer relation algorithm finds integers $\left(a_{n}\right)$ such that

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0
$$

- At the present time, the PSLQ algorithm of mathematician-sculptor Helaman Ferguson is the best-known integer relation algorithm.
- PSLQ was named one of ten "algorithms of the century" by Computing in Science and Engineering.
- High precision arithmetic software is required: at least $\mathrm{d} \times \mathrm{n}$ digits, where d is the size (in digits) of the largest of the integers a_{k}.

An Immediate Use

To see if α is algebraic of degree N, consider $\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{N}\right)$

Application of PSLQ: Bifurcation Points in Chaos Theory

$B_{3}=3.54409035955 \ldots$ is third bifurcation point of the logistic iteration of chaos theory:

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right)
$$

i.e., B_{3} is the smallest r such that the iteration exhibits 8way periodicity instead of 4-way periodicity.
In 1990, a predecessor to PSLQ found that B_{3} is a root of the polynomial

$$
\begin{aligned}
0= & 4913+2108 t^{2}-604 t^{3}-977 t^{4}+8 t^{5}+44 t^{6}+392 t^{7} \\
& -193 t^{8}-40 t^{9}+48 t^{10}-12 t^{11}+t^{12}
\end{aligned}
$$

Recently B_{4} was identified as the root of a 256-degree polynomial by a much more challenging computation.
These results have subsequently been proven formally.

- The proofs use Groebner basis techniques
- Another useful part of the HPM toolkit

$$
\zeta(2)=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}, \zeta(6)=\frac{\pi^{6}}{945}, .
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { 2005. Bailey, Bradley } \\
\begin{array}{c}
\text { UMB discovered and } \\
\text { proved - in Maple - } \\
\text { three equivalent } \\
\text { binomiai lidentities }
\end{array} \\
\mathcal{Z}(x)
\end{array}=3 \sum_{k=1}^{\infty} \frac{1}{\binom{2 k}{k}\left(k^{2}-x^{2}\right)} \prod_{n=1}^{k-1} \frac{4 x^{2}-n^{2}}{x^{2}-n^{2}} \\
& =\sum_{k=0}^{\infty} \zeta(2 k+2) x^{2 k}=\sum_{n=1}^{\infty} \frac{1}{n^{2}-x^{2}}
\end{aligned}
$$ proved - in Maple three equivalent binomial identities

3. was easily computer proven (Wilf-Zeilberger)

If this were a philosophy talk I should discuss the following two quotes and defend our philosophy of mathematics:

Abstract of the future We show in a certain precise sense that the Goldbach Conjecture is true with probability larger than 0.99999 and that its complete truth could be determined with a budget of 10 billion.
"It is a waste of money to get absolute certainty, unless the conjectured identity in question is known to imply the Riemann Hypothesis."

Doron Zeilberger, 1993
\checkmark Goldbach: every even number (>2) is a sum of two primes?
\checkmark So we will look at the Riemann Hypothesis ...

Uber die Anzahl der Primzahlen unter einer Gegebenen Grosse
On the number of primes less than a given quantity
Riemann's six page 1859 'Paper of the Millennium'?
gugam grin e
(Boli...h.astanicke, 1859 , Nan........)
Then Dawfirdre Raverc.o. viesn der lea
$\mathbf{R H}$ is so
 because it
 yields precise
 results on
 distribution and behaviour of primes der Primate; ers Quant, vela.. divesdes

 makes the key link between primes and ζ

The imaginary parts of first 4 zeroes are:

$$
\begin{aligned}
& 14.134725142 \\
& 21.022039639 \\
& 25.010857580 \\
& 30.424876126
\end{aligned}
$$

The first 1.5 billion are on the critical line

Yet at 10^{22} the "Law of small numbers" still rules (Odlyzko)

The Modulus of Zeta and the Riemann Hypothesis (A Millennium Problem)

‘All non-real zeros have real part one-half’ (The Riemann Hypothesis)

Note the monotonicity of $x \rightarrow|\zeta(x+i y)|$ is equivalent to RH (discovered in a Calgary class in 2002 by Zvengrowski and Saidak)

PSLQ and Hex Digits of Pi

My brother made the observation that this log formula allows one to compute binary digits of $\log 2$ without knowing the previous ones! (a BBP formula)

Bailey, Plouffe and he hunted for such a formula for Pi. Three months later the computer - doing bootstrapped PSLQ hunts returned:

$$
\pi=4 F(1 / 4,5 / 4 ; 1 ;-1 / 4)+2 \arctan (1 / 2)-\log 5
$$

- this reduced to

$$
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right)
$$

which Maple, Mathematica and humans can easily prove.
\checkmark A triumph for "reverse engineered mathematics" - algorithm design
\checkmark No such formula exists base-ten (provably)

The pre-designed Algorithm ran the next day

ALGORITHMIC PROPERTIES

(1) produces a modest-length string hex or binary digits of π, beginning at an arbitrary position, using no prior bits;
(2) is implementable on any modern computer;
(3) requires no multiple precision software;
(4) requires very little memory; and

(5) has a computational cost growing only slightly faster than the digit position.

Join PiHex

Download

Source Code

About

Credits

Status
Top Producers What's New? Other Projects Who am I? Email me!

hits since the counter last reset.

PiHex

A distributed effort to calculate Pi.

The Quadrillionth Bit of Pi is ' 0 '! The Forty Trillionth Bit of Pi is '0'! The Five Trillionth Bit of Pi is ' 0 '!

PiHex was a distributed computing project which used idle computing power to set three records for calculating specific bits of Pi. PiHex has now finished.

Undergraduate	10^{6}
Colin Percival's	10^{7}
Grid	10^{8}
Computation	10^{9}
(PiHex) rivaled	10^{10}
Finding Nemo	10^{11}
	1.25×10^{12}
	2.5×10^{14}

Position	Hex Digits Beginning At This Position
10^{6}	26C65E52CB4593
10^{7}	17AF5863EFED8D
10^{8}	ECB840E21926EC
10^{9}	$85895585 A 0428 B$
10^{10}	$921 C 73 C 6838 F B 2$
10^{11}	9C381872D27596
1.25×10^{12}	07E45733CC790B
2.5×10^{14}	E6216B069CB6C1

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions, Pseudospectra
2. High Precision Mathematics.
3. Integer Relation Methods.

\checkmark Chaos, Zeta and the Riemann Hypothesis, HexPi and Normality 4. Inverse Symbolic Computation.
\checkmark A problem of Knuth, $\pi / 8$, Extreme Quadrature 5. The Future is Here.
\checkmark Examples and Issues

Drive
6. Conclusion.
\checkmark Engines of Discovery. The 21 ${ }^{\text {st }}$ Century Revolution
\checkmark Long Range Plan for HPC in Canada

An Inverse and a Color

 Calculator
Inverse Symbolic Computation

Archimedes: 223/71 $<\pi<22 / 7$

- "Inferring symbolic structure from numerical data"
- Mixes large table lookup, integer relation methods and intelligent preprocessing - needs micro-parallelism
- It faces the "curse of exponentiality"
> Implemented as identify in Maple and
Recognize in Mathematica

Inverse symbolic Calculator

Please enter a number or a Maple expression:

Run

O Simple Lookup and Browser for any mumber
O Smart Lookup for any number.
O Generalized Expansions for real mumbers of at least 16 digits.
O Integer Relation Algorithms for any number.

Knuth's Problem - we can know the answer first

$$
\begin{aligned}
& \text { A guided proof } \\
& \text { followed on } \\
& \text { asking why } \\
& \text { Maple could } \\
& \text { compute the } \\
& \text { answer so fast. } \\
& \\
& \text { The answer is } \\
& \text { Lambert's W } \\
& \text { which solves } \\
& \text { W } \exp (W)=x
\end{aligned}
$$

W's Riemann surface

Donald Knuth* asked for a closed form evaluation of:

$$
\sum_{k=1}^{\infty}\left\{\frac{k^{k}}{k!e^{k}}-\frac{1}{\sqrt{2 \pi k}}\right\}=-0.084069508727655 \ldots
$$

- 2000 CE. It is easy to compute 20 or 200 digits of this sum

\measuredangle The 'smart lookup' facility in the Inverse Symbolic Calculator \dagger rapidly returns

$$
0.084069508727655 \approx \frac{2}{3}+\frac{\zeta(1 / 2)}{\sqrt{2 \pi}}
$$

We thus have a prediction which Maple 9.5 on a laptop confirms to 100 places in under 6 seconds and to 500 in 40 seconds. * ARgUABLY WE ARE DONE

ENTERING

evalf(Sum(k^k/k!/exp(k)-1/sqrt(2*Pi*k),k=1..infinity),16)

'Simple Lookup’ fails; 'Smart Look up' gives:

Results of the search:
Maple output:

The ISC is the Inverse S programs and specialized tybolic Calculator, a set of dedicated to the identification of mathematical constants a way to produce identities with functiombers. It also serves as is one of the main ongoing proj functions and real numbers. It Experimental and Constructive 1 at the Centre for

BOLIC CALCULATOR

Mixéd-eonstants with 5 operations
5925971579390106 zeta (1/2)/sr(2)/sr(Pi)
Browse around .5825971579390106.

Quadrature I. Pi/8?
 A numerically challenging integral

 $$
\int_{0}^{\infty} \cos (2 x) \prod_{n=1}^{\infty} \cos \left(\frac{x}{n}\right) d x \stackrel{?}{=} \frac{\pi}{8}
$$

But $\pi / 8$ is

$$
\underline{0.392699081698724154807830422909937860524645434}
$$

while the integral is

0.392699081698724154807830422909937860524646174

A careful tanh-sinh quadrature proves this difference after 43 correct digits
\checkmark Fourier analysis explains this as happening when a hyperplane meets a hypercube

Before and After

Quadrature II. Hyperbolic Knots

Dalhousie Distributed Research Institute and Virtual Environment

$$
\begin{equation*}
\frac{24}{7 \sqrt{7}} \int_{\pi / 3}^{\pi / 2} \log \left|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}\right| d t \stackrel{?}{=} L_{-7}(2) \tag{@}
\end{equation*}
$$

where

$$
\begin{aligned}
L_{-7}(s)=\sum_{n=0}^{\infty} & {\left[\frac{1}{(7 n+1)^{s}}+\frac{1}{(7 n+2)^{s}}-\frac{1}{(7 n+3)^{s}}\right.} \\
& \left.+\frac{1}{(7 n+4)^{s}}-\frac{1}{(7 n+5)^{s}}-\frac{1}{(7 n+6)^{s}}\right]
\end{aligned}
$$

"Identity" (@) has been verified to 20,000 places. I have no idea of how to prove it.
\checkmark Easiest of 998 empirical results linking physics/topology (LHS) to number theory (RHS). [JMB-Broadhurst]

We have certain knowledge without proof

Extreme Quadrature ... 20,000 Digits (50 CERTIFIED) On 1024 CPUs

Ш. Ine integral was split at the nasty interior singularity Ш. The sum was `easy’.
Ш. All fast arithmetic \& function evaluation ideas used

Run-times and speedup ratios on the Virginia Tech G5 Cluster

CPUs	Init	Integral \#1	Integral \#2	Total	Speedup
1	$* 190013$	$* 1534652$	$* 1026692$	$* 2751357$	1.00
16	12266	101647	64720	178633	15.40
64	3022	24771	16586	44379	62.00
256	770	6333	4194	11297	243.55
1024	199	1536	1034	2769	993.63

Parallel run times (in seconds) and speedup ratios for the $20,000-d i g i t$ problem

Expected and unexpected scientific spinoffs

- 1986-1996. Cray used quartic-Pi to check machines in factory
- 1986. Complex FFT sped up by factor of two
- 2002. Kanada used hex-pi (20hrs not 300hrs to check computation)
- 2005. Virginia Tech (this integral pushed the limits)
- 1995- Math Resources LORs and handheld tools)

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions, Pseudospectra
2. High Precision Mathematics.
3. Integer Relation Methods.

\checkmark Chaos, Zeta and the Riemann Hypothesis, HexPi and Normality
4. Inverse Symbolic Computation.
\checkmark A problem of Knuth, $\pi / 8$, Extreme Quadrature
5. The Future is Here. (What is D-DRIVE?)
\checkmark Examples and Issues
6. Conclusion.
\checkmark Engines of Discovery. The 21 ${ }^{\text {st }}$ Century Revolution
\checkmark Long Range Plan for HPC in Canada

b. Advanced Knowledge Management

DALHOUSIE
 UNIVERSITY Inspiring Minds

Privacy and Security Lab

Projects include

- PSL
- FWDM (IMU)
- CiteSeer

People

Research
Resources
Links
Partners
Sample
pening Workshop

Diverse partners include
\checkmark International Mathematical Union
\checkmark CMS
\checkmark Symantec and IBM

c. Advanced Networking ...

 Dalhousie Distributed Research Institute and Virtual Environment

These include

- AccessGrid
- UCLP for
- visualization
- learning objects

C3 Membership

d. Access Grid, AGATE and Apple

Drive

Dalhousie Distributed Research Institute and Virtual Environment

e. University - Industry links

MITACS - MRI putting high end science on a hand held

Try your hand at new math

Firm develops software to help guide kids through maze of numbers By crec macticar Ron Fitgerald says math is a language Ron Fiugerad says matn is itantac.

- and most students are Bliterat.
and The president of Halifax sotware company MathResources inc. wants
change that. That's why Mr Fitzzerald
and his wife quit their jobs as book editiors in Toronto in 1994

Learning Curve

 4×1156 \&

MRI's First Product in Mid-nineties

PaVCA SED MATVRA

い范

Maplesoft

- Built on Harper Collins dictionary
- an IP adventure!
- Maple inside the MathResource
- Data base now in Maple 9.5
- CONVERGENCE?

${ }_{R}^{M A}$ The MathResource
File Bookmarks Index Appendix
A $Z \quad$ PreCalouhs

4ack anticlastic

A...Z

anticlastic,
adj. (of a surface) having curvatures of opposite signs in two perpendicular directions at a given point; saddle-shaped. For e: shown in

$>$ Any green opens a reusable Maple window with initial parameters set
$>$ Allows exploration with no learning curve

Outline. What is HIGH PERFORMANCE MATHEMATICS?

1. Visual Data Mining in Mathematics.
\checkmark Fractals, Polynomials, Continued Fractions, Pseudospectra
2. High Precision Mathematics.
3. Integer Relation Methods.

\checkmark Chaos, Zeta and the Riemann Hypothesis, HexPi and Normality 4. Inverse Symbolic Computation.
\checkmark A problem of Knuth, $\pi / 8$, Extreme Quadrature
4. The Future is Here.
\checkmark Examples and Issues
5. Conclusion.

Drive
\checkmark Engines of Discovery. The $21^{\text {st }}$ Century Revolution \checkmark Long Range Plan for HPC in Canada

CONCLUSION

ENGINES OF DISCOVERY: The 21st Century Revolution

The Long Range Plan for High Performance Computing in Canada

Self-Assembled Wires 2nm Wide [P. Kuekes, S. Williams, HP Labs]

The LRP tells a Story

-
 The Story

Executive

Summary

Main Chapters 8:-8.Technology
\%:Operations
-HQP

- Budget

25 Case

Studies

many sidebars

One Day ..

High-performance computing (HPC) affects the lives of Canadians every day. We can best explain this by telling you a story. It's about an ordinary family on an ordinary day, Russ, Susan, and Kerri Sheppard. They live on a farm 15 kilometres outside Wyoming, Ontario. The land first produced oil, and now it yields milk; and that's just fine locally.

Their day, Thursday, May 29, 2003, begins at 4:30 am when the alarm goes off. A busy day, Susan ZhongSheppard will fly to Toronto to see her father, Wu Zhong, at Toronto General Hospital; he's very sick from a stroke. She takes a quick shower and packs a day bag for her 6 am flight from Sarnia's Chris Hadfield airport. Russ Sheppard will stay home at their dairy farm, but his day always starts early. Their young daughter Kerri can sleep three more hours until school.

Waiting, Russ looks outside and thinks, It's been a dryish spring. Where's the rain?

In their farmhouse kitchen on a family-sized table sits a PC with a high-speed Internet line. He logs on and finds the Farmer Daily site. He then chooses the Environment Canada link, clicks on Ontario, and then scans down for SarniaLambton.

WEATHER PREDICTION

The "quality" of a five-day forecast in the year 2003 was equivalent to that of a 36 -hour forecast in 1963 [REF 1]. The quality of daily forecasts has risen sharply by roughly one day per decade of research and HPC progress. Accurate forecasts transform into billions of dollars saved annually in agriculture and in natural disasters. Using a model developed at Dalhousie University (Prof. Keith Thompson), the Meteorological Service of Canada has recently been able to predict coastal flooding in Atlantic Canada early enough for the residents to take preventative action.

The backbone that makes so much of our individual science possible

performance computing

orion
J.M. Borwein and D.H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century A.K. Peters, 2003.
J.M. Borwein, D.H. Bailey and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A.K. Peters, 2004.
D.H. Bailey and J.M Borwein, "Experimental Mathematics: Examples, Methods and Implications," Notices Amer. Math. Soc., 52 No. 5 (2005), 502-514.
"The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it."

- J. Hadamard quoted at length in E. Borel, Lecons sur la theorie des fonctions, 1928.

[^0]: "The idea that we could make biology mathematical, I think, perhaps is not working, but what is happening, strangely enough, is that maybe mathematics will become biological!"

 Greg Chaitin, Interview, 2000.

