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Abstract IAbstract I
Variational argumentsVariational arguments connote classical connote classical 
techniques whose use can be traced back to the techniques whose use can be traced back to the 
early development of the calculus of variations early development of the calculus of variations 
and further. Rooted in the physical and further. Rooted in the physical principle of principle of 
least actionleast action they have wide applications in they have wide applications in 
diverse fields. diverse fields. 
The discovery of modern variational principles and The discovery of modern variational principles and 
nonsmooth analysis further expands the range of nonsmooth analysis further expands the range of 
applications of these techniques.applications of these techniques.
–– I anticipate a working knowledge of undergraduate analysis and I anticipate a working knowledge of undergraduate analysis and 

the basic principles of functional analysis    The recent monogrthe basic principles of functional analysis    The recent monograph aph 
““Variational AnalysisVariational Analysis'''' by Rockafellar and Wets provides an by Rockafellar and Wets provides an 
authoritative account of variational analysis in finite dimensioauthoritative account of variational analysis in finite dimensionsns

–– ““Variational Analysis and Generalized DifferentiationVariational Analysis and Generalized Differentiation: I & II: I & II”” by by 
Boris Mordukhovich, is a comprehensive complement to the Boris Mordukhovich, is a comprehensive complement to the 
present textpresent text



Abstract IIAbstract II
We shall start  with an overview of We shall start  with an overview of 
““theorytheory”” in Lecture 1in Lecture 1--2 and shall 2 and shall 
continue with concrete continue with concrete ““applicationsapplications”” in in 
Lectures 3Lectures 3--4 and 5.4 and 5.
–– the distinction is blurredthe distinction is blurred

As we proceed we shall see fewer As we proceed we shall see fewer 
broad results and more detailed proofsbroad results and more detailed proofs
–– full details of almost all results are in full details of almost all results are in 
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RationaleRationale
To talk about things I To talk about things I somewhatsomewhat
understandunderstand
To complement my colleaguesTo complement my colleagues’’
lectures  lectures  

To revisit some hard To revisit some hard oldold problemsproblems
To show some very To show some very recentrecent resultsresults
To pose some To pose some openopen problemsproblems



Why Overheads ?Why Overheads ?
I have I have picturespictures
I can offer complete I can offer complete notesnotes
To complement my colleaguesTo complement my colleagues’’
lectures  lectures  

I have I have lousylousy blackboard styleblackboard style
Since 2003 I work in a Since 2003 I work in a Computer Computer 
Science FacultyScience Faculty



Lecture 1Lecture 1

LECTURES I and II

Bumps, Cusps and Slices:
Functional-analytic 

Underpinnings of Variational Analysis

LECTURES I and IILECTURES I and II

Bumps, Cusps and Slices:Bumps, Cusps and Slices:
FunctionalFunctional--analytic analytic 

Underpinnings of Variational AnalysisUnderpinnings of Variational Analysis

- a general tour



LECTURES II and IIILECTURES II and III

The Fitzpatrick Function:The Fitzpatrick Function:
Monotone Operators asMonotone Operators as

Convex ObjectsConvex Objects

Lecture 4Lecture 4

- a detailed case study



LECTURE IVLECTURE IV

Best Approximation            Best Approximation            
and and 

ChebysevChebysev SetsSets

Lecture 4Lecture 4

- deep down and dirty
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MY INTENTIONS IN THIS TALK

Most significant results or constructions in

non-smooth analysis rely on exposing and re-

ally understanding underlying objects.

Usually these objects

are

• convex or

• differentiable

or both

          Insight taking place  

X As an illustration, in Rn

Theorem 1 (BFKL, 2001) Every “reason-

able” connected set with zero interior to

its domain is exactly the range of the

gradient of a continuously differentiable

bump function, i.e., with compact sup-

port.∗
∗Online slides are a superset of this talk
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After a topological detour, I shall illustrate
this in five ways:

1. Smooth variational principles and bumps

2. Bumps and generalized gradients

3. Derivatives and best approximations to
sets

4. Non-differentiable mean value theorems
and convex sandwich theorems

5. Convex functions and the Banach spaces
they populate

• Full references will be found in

J.M. Borwein and Qiji (Jim) Zhu, Tech-
niques of Variational Analysis CMS-
Springer Books 2005.

4



Michael Faraday

The most prominent requisite to a lec-

turer, though perhaps not really the most

important, is a good delivery; for though

to all true philosophers science and na-

ture will have charms innumerably in every

dress, yet I am sorry to say that the gen-

erality of mankind cannot accompany us

one short hour unless the path is strewed

with flowers.
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

• So I offer nano-flowers and nourishing tubers
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SOME TOPOLOGY

• The acronym usco (cusco) denotes a (convex-
valued) upper semicontinuous non-empty
compact-valued multifunction (set-valued
function).

• These are fundamental because they de-
scribe common features of maximal mono-
tone operators, convex subdifferentials and
Clarke generalized gradients.

¦ Cuscos are the most natural extensions of
continuous (single-valued) functions.

• The Clarke gradient is usually much too
large (generically “maximal”, see below).

¦ By contrast convex subdifferentials and
maximal monotone operators are always
“minimal” (interior to their domains), as
are the Clarke subdifferentials of a.e. strictly
differentiable functions (BM).
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• An usco (cusco) mapping Φ from a topo-

logical space T to subsets of a (linear)

topological space X is a minimal usco (cusco)

if its graph does not strictly contain the

graph of any other usco (cusco) on T .

• A Banach space is of class (S) (Stegall)

provided every weak∗ usco from a Baire

space into X∗ has a selection which is

generically weak∗ continuous. Every smooth

Banach space is class (S).

• A Banach space is (weak) Asplund if con-

vex functions on the space are generically

Fréchet (Gateaux) differentiable. Equiva-

lently, every separable subspace has a sep-

arable dual (e.g., reflexive spaces).

In our setting a fundamental result is:
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• A Banach space X is Asplund if and only

if every locally bounded minimal weak∗
cusco from a Baire space into X∗ is gener-

ically singleton and norm-continuous. A

fortiori, Asplund spaces are class (S).

We show the power of minimality by easily

proving a generic (partial) differentiability re-

sult:

Theorem 2 Suppose that f is locally Lips-

chitz on an open subset A of a Banach space

X and possesses a minimal subgradient on A.

(a) When Y is a class (S) subspace of X then

f is generically Y –Hadamard smooth through-

out A.

(b) When Y is an Asplund subspace of X then

f is generically Y –Fréchet smooth throughout

A.
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Proof. Let ΩY be the restriction of elements

of ∂f to Y .

As the composition of the ‘restriction’ linear

operator

R : x∗ → x∗|Y
and the minimal cusco ∂f , ΩY is a minimal

cusco from A ⊂ X to Y ∗.

(a) Consider first the class (S) case.

Then ΩY is generically single-valued on the

open (Baire) set A. An easy application of

Lebourg’s mean-value theorem establishes that

at each such point f is (strictly) Y -Hadamard

smooth.

(b) The Asplund case follows similarly. c©

¦ Note how Y and X∗ have been ‘detached’ !
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• An immediate consequence is that in any

Banach space, continuous convex func-

tions are generically Fréchet (respectively

Gateaux) differentiable with respect to any

fixed Asplund (respectively class (S)) sub-

space.

Remark 1 Fabian, Zaj́ıc̆ek and Zizler give a

category version of Asplund’s result that if a

Banach space and its dual have rotund renorms

one can find a rotund renorm whose dual norm

is rotund simultaneously.

• Their technique allows us to show that if

Y is a subspace of X such that both X

and X∗ admit ‘Y -rotund’ renorms (appro-

priately defined), then X can be renormed

to be simultaneously Y -smooth and Y -

rotund.
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The Simpsons
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BUMPS I: VARIATIONAL PRINCIPLES

• All variational principles devolve from Eke-
land’s powerful (1974) reworking of the
Bishop-Phelps theorem∗ (1961).

• More powerful recent ones exploit smooth-
ness of the underlying space—by partially
capturing the smoothness of an osculat-
ing norm or bump function

function
oscullant
tangent

Legend

∗All Banach spaces are “sub-reflexive”
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Viscosity is Fundamental

Definition [BZ, 1996] f is β-viscosity sub-
differentiable with subderivative x∗ at x if
there is a locally Lipschitz g, β-smooth at x,
with

∇β g(x) = x∗

and f − g taking a local minimum at x. De-
note all β-viscosity subderivatives by ∂v

β f(x).

All variational principles rely implicitly or ex-
plicitly on viscosity subdifferentials.

–1

1

2

–0.2 0.2 0.4 0.6 0.8 1 1.2 1.4

All Fréchet subdifferentials
are viscosity subdifferentials

12



X We know many facts such as . . .

• Bornology H = F in Euclidean space

• Bornology F = WH in reflexive space

• For locally Lipschitz f

∂v
G f = ∂v

H f ∂G f = ∂H f

• When `1 * X

∂v
WH f = ∂v

F f

for locally Lipschitz concave f

• When X has a Fréchet renorm

∂v
F f = ∂F f

(e.g., reflexive or WCG Asplund spaces)
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Example 1 Let f : Rn → R (n > 1) be con-

tinuous and Gateaux but not Fréchet differ-

entiable at 0.

Explicitly in R2, take

f(x, y) :=
xy3

x2 + y4

when (x, y) 6= (0,0) and f(0,0) = 0.

Let

g(h) := −|f(h)− f(0)−∇G f(0)h|

Then g is locally uniformly continuous and

1. Uniquely, ∂G g(0) = {0}.

2. But ∂v
G g(0) is empty.

X The proof is easy but instructive . . .

14
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Proof. We check that ∇G g(0) = 0, so

∂G g(0) = {0}. As always

∂v
G g(0) ⊂ ∂Gg(0).

Thus, if (2) fails, ∂v
G g(0) = {0}, and yet there

is a locally Lipschitz Gateaux (hence Fréchet)

differentiable function k such that

k(0) = g(0) = 0, ∇G k(0) = ∇G g(0) = 0

and k ≤ g in a neighbourhood of zero.

Thus, for small h,

|f(0 + h)− f(0)−∇G f(0)h|
‖h‖ ≤ −k(h)− k(0)

‖h‖
≤ |k(h)− k(0)|

‖h‖

This implies that f is Fréchet-differentiable at

0, a contradiction. c©
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The Smooth Variational Principle

Theorem 3 (Borwein-Preiss, 1987) Let X be

Banach and let f : X → (−∞,∞] be lsc, let

λ > 0 and let p ≥ 1. Suppose ε > 0 and z ∈ X

satisfy

f(z) < inf
X

f + ε.

Then there exist y and a sequence {xi} ⊂ X

with x1 = z and a continuous convex function

ϕp : X → R of the form

ϕp(x) :=
∞∑

i=1

µi‖x− xi‖p,

where µi > 0 and
∑∞

i=1 µi = 1 such that

(i) ‖xi − y‖ ≤ λ, n = 1,2, . . .,

(ii) f(y) + (ε/λp)ϕp(y) ≤ f(z), and

(iii) f(x) + ε
λp ϕp(x) > f(y) + ε

λp ϕp(y) forx 6= y

17



Corollary 1 All extended real-valued lsc (resp.
convex) functions on a smoothable (Gateaux,
Fréchet, . . .) space are densely subdifferen-
tiable (resp. differentiable) in the same sense.

• f : X → (∞,∞] attains a strong minimum
at x ∈ X if f(x) = infX f and whenever
xi ∈ X and f(xi) → f(x), we have ‖xi → x‖
(The problem is well posed.)

• also we set ‖g‖∞ := sup{|g(x)| : x ∈ X}.

Theorem 4 (Deville-Godefroy-Zizler, 1992)
Let X be Banach and let Y be a Banach space
of continuous bounded functions on X such
that

(i) ‖g‖∞ ≤ ‖g‖Y for all g ∈ Y.

(ii) For g ∈ Y and z ∈ X, x 7→ gz(x) = g(x+ z)
is in Y and ‖gz‖Y = ‖g‖Y .

(iii) For g ∈ Y and a ∈ R, x 7→ g(ax) is in Y.

(iv) There exists a bump function in Y.

18
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Then, whenever f : X → (∞,∞] is lsc and
bounded below, the set G of g ∈ Y such that
f + g attains a strong minimum on X is resid-
ual (in fact a dense Gδ set).

• Picking Y appropriately leads to:

Theorem 5 Let X be Banach with a Fréchet
smooth bump and let f be lsc. There is a > 0
(a = a(X)) such that for ε ∈ (0,1) and y ∈ X
satisfying

f(y) < inf
X

f + aε2,

there is a Lipschitz Fréchet differentiable g
and x ∈ X such that

(i) f + g has a strong minimum at x,

(ii) ‖g‖∞ < ε and ‖g′‖∞ < ε,

(iii) ‖x− y‖ < ε.

Corollary 2 For any C1 bump function b on
a finite dimensional space

0 ∈ intR(∇b)

19
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The Stegall Variational Principle

As we add more geometry we may often refine
the variational principle:

• Again, x ∈ S is a strong minimum of f on
S if f(x) = infS f and f(xi) → f(x) implies
‖x− xi‖ → 0.

• A slice for f bounded above on S is:

S(f, S, α) := {x ∈ S : f(x) > sup
S

f − α}.

• A necessary and sufficient condition for a
f to attain a strong minimum on a closed
set S is diam S(−f, S, α) → 0 as α → 0+.

Theorem 6 (Stegall, (1978)) Let X be Ba-
nach and let C ⊂ X be a closed bounded
convex set with the Radon-Nikodym property,
Let f be lsc on C and bounded from below.

For any ε > 0 there exists x∗ ∈ X∗ such that
‖x∗‖ < ε and f +x∗ attains a strong minimum
on C.

20
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• The following variant due to Fabian (1983)

is often convenient in applications

Corollary 3 Let X be Banach with the Radon-

Nikodym property (e.g., reflexive) and let f be

lsc. Suppose there exists a > 0 and b ∈ R such

that

f(x) > a‖x‖+ b, x ∈ X.

Then for any ε > 0 there exists x∗ ∈ X∗ such

that ‖x∗‖ < ε and f +x∗ attains a strong min-

imum on X.

X In separable space we may set the pertur-

bation in advance:

21
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A One-perturbation Variational Principle

Theorem 7 Let X be a Hausdorff space which
admits a proper lsc function

ϕ : X → R ∪ {+∞}
with compact level sets. For any proper lsc
bounded below function f : X → R ∪ {+∞}
the function f + ϕ attains its minimum.

In particular, if domϕ is relatively compact,
the conclusion is true for any proper lsc f .

Key application. In separable Banach space,
a nice convex choice is:

ϕ(x) :=




tan

(
‖S−1x‖2H

)
, if ‖S−1x‖2H <

π

2
,

+∞, otherwise.

for an appropriate compact, linear and injec-
tive mapping S : H → X (H := `2).

• ϕ is almost Hadamard smooth: x ∈ domϕ

lim
t↘0

sup
h∈domϕ

ϕ(x + th) + ϕ(x− th)− 2ϕ(x)

t
= 0
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• We recover a recent result (CF, 2001)
open for 25 years:

Corollary 4 GDS× Sep ⊂ GDS.

Proof Sketch. Suppose Y is the Gateaux
differentiability space factor. Let f : Y ×X →
R be convex continuous, and Ω ⊂ Y ×X non
empty open. Without loss, 2BY × 2BX ⊂ Ω
and f is bounded on Ω.

Let ϕ : X → [0,+∞] be as in Theorem 7 with
domain in BX, and define

g(y) :=




inf{−f(y, x) + ϕ(x); x ∈ X}, if y ∈ 2BY

+∞, else.

Then g is concave and continuous on 2BY .
As Y is a GDS, the function g is Gâteaux
differentiable at some y in BY .

Moreover

g(y) = −f(y, x) + ϕ(x)

and (y, x) is a point of joint differentiability
· · · c©
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• This is particularly interesting because we

cannot show the corresponding generic re-

sult:

WASP× Sep
?⊂ WASP,

while recently Moors and Somasundaram

(2003) showed—unconditionally—that

Example 2

WASP ⊂
6=

GDS

answering another long open question with

delicate set-theoretic topological tools.

• Lassonde and Revalski (2004) have ex-

tended the single perturbation principle to

ensure generic strong minimality.

24
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Two Open Questions

1. Viscosity. In Hilbert space is

∂v
G f(x)  ∂G f(x)

possible for Lipschitz f?
X For continuous f we saw it was:

A non-viscosity subdifferential

2. Genericity. WASP× Sep
?⊂ WASP.

24
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Star Trek

Kirk asks:

“ Aren’t there some mathematical
problems that simply can’t be solved?”

And Spock ‘fries the brains’ of a rogue com-
puter by telling it:

“ Compute to the last digit the value
of Pi.”

40
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BUMPS II: SUBDIFFERENTIALS

Maximality and Genericity

• These powerful positive results are com-

plemented by the following negative ones:

Below BX∗ is the dual ball, (XBX∗, ρ) is the

space of real-valued non-expansive mappings

|f(x)− f(y)| ≤ ‖x− y‖
in the uniform metric, while ∂0 and ∂a denote

the Clarke and approximate subdifferentials

∂af(x) := {x∗ : x∗ w∗
↽ x∗n ∈ ∂Hf(xn), xn → x}

and

∂0f(x) = co∗∂af(x).

• In reasonable (reflexive or separable) spaces,

∂0f(x) is the limit of nearby gradients.
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Theorem 8 (Maximal Subdifferentials) Let A

be open in a Banach space X.

(i) Then

{g ∈ XBX∗ : ∂0g(x) = BX∗ for all x ∈ A}
is residual in (XBX∗, ρ).

(ii) If X is smooth

{g ∈ XBX∗ : ∂ag(x) = BX∗ for all x ∈ A}
is residual in (XBX∗, ρ).

¦ Thus usually (generically) even the lim-

iting subdifferential is everywhere maxi-

mal (and convex, agreeing with the Clarke

subdifferential).

• T (x) := ∇f(x)+BX∗ is also a subgradient.

Much more is true (BMW).
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• Despite this, the limiting subdifferential of

a Lipschitz function can be non-convex

a.e. (BBW)—save on R where it differs

from the Clarke subdifferential at most

countably.

Moreover,

Theorem 9 Let 0 ∈ A be an open connected

and bounded subset of RN and let ε > 0.

There is a locally Lipschitz function f : RN →
R such that

R(∂af) ⊂ A

and

µ{x : ∂af(x) 6= A} < ε.

The proof relies on two facts:

27

Jon
Highlight



Fact 1 By Theorem 1, such connected A can

be realized as the range of the gradient of

a continuously differentiable bump (bounded

support) function bA.

Step 1. The support function of a strictly

convex body

σC(x) := sup
y∈C

〈y, x〉

leads to a bump

bC(x) :=
3
√

3

8

(
max

{
1− σC(−x)2,0

})2

with range exactly C.

0.5 0 0.5 1 1.5 2 2.5 3

0.4

0.2

0

0.2

0.4

(0,0) (2,0)

• This is clearest for the case of an ellipse

E := {x : 〈Ax, x〉 ≤ 1} where

σE(y) = 〈Ax, x〉1/2
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Step 2. A disjoint sum then leads to

1.5 1 0.5 0 0.5 1 1.5 2 2.5 3 3.5

0.5

0

0.5

1

1.5

2

2.5

3

(0,0) (2,0)

(2,2)

A Non-convex Gradient Range ∇bC

30



Step 3. Build a flat patch on a bump range

−0.26
−0.24

−0.22
−0.2

−0.18
−0.16

−0.01

0

0.01

0.02

0.03
0.05

0.1

0.15

0.2

0.25

0.3

0.35

XY

Step 4. Superposing a bump on a flat patch
of another leads to

(0,0) (2,0)

(0,2) (2,2)

S
0

S
1

S
2

S
3

A Non-simply Connected
Gradient Range ∇bC1∪C2

30



• Step 5. Careful analysis leads, in the limit,

to the general result.

¦ Indeed, there is a C1 bump b : R2 → R such

that ∇b(R2) is exactly the k-th approxima-

tion to the Sierpinski carpet (BFKL).

IN WHITEGRADIENT

A Multiply Connected Gradient Range

31



Fact 2 One can ‘seed’ an open dense set of

small measure with dilated bumps of constant

gradient range, A, forcing all limits to be A.

Reason. As observed by Ioffe, dilation and

translation do not effect the range. Consider

fA(x) :=
∞∑

n=0

2−n−1 bA(an + 2n+1x)

sketched below.

Scaled bumps in one and two dimensions

Limiting blue subdifferential at right

X Now, Facts 1 and 2 prove Theorem 9.
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Two Open Questions

• Can one build an explicit example of a

function on R2 with ∂af(x) ≡ B2?

• Is it always true in RN that the range of a

C1 bump’s gradient is semi-closed:

R (∇b) = cl− intR (∇b)?

– with enough smoothness this is true

(CN+1, Rifford, 2003).

• The situation is quite different in infinite

dimensions (BFL, Deville-Hajek and oth-

ers): the interior may be empty and one

can achieve many strange sets.
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The First Million Digits of π

• Pi as a random walk.

42



DERIVATIVES I: PROXIMALITY

• A norm is Kadec-Klee (sequentially) if the
weak and norm topologies coincide (se-
quentially) on the boundary of the unit
ball, as in Hilbert space.

Theorem 10 Let C be a closed subset of a
reflexive Banach space X with a Kadec-Klee
norm.

(a) (Density) The set of points in X at which
every minimizing sequence clusters to a best
approximation is dense in X.

(b) (Projection) If in addition, the original
norm is Fréchet then

∂FdC(x) ⊂ ∂FdC(PC(x))

where PC(x) is the (set of) best approxima-
tions of x on C.

(c) In particular, in any Fréchet LUR norm
on a reflexive space, this holds for all sets in
the Fréchet sense with a single-valued metric
projection.
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Proof. (a) We may assume xn →w p and at
any of the dense set of points with

φ ∈ ∂FdC(x) 6= ∅
all minimizing sequences actually converge in
norm to p since

φ(xn − x) → dC(x) ⇒ ‖xn − x‖ → ‖p− x‖,
and by Kadec-Klee xn → p, and p = PC(x).

The Fréchet slice forces
the approximating sequence to line up

The corresponding subgradient is a proximal
normal to C at p.
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(b-c) Finally, when the norm is F -smooth,
simple derivative estimates show that any mem-
ber of ∂FdC(x) must lie in

∂FdC(PC(x)).

c©

X This used to be hard.

• (Lau-Konjagin (1976-86)) X is reflexive
and Kadec-Klee iff best approximations al-
ways exist densely (or generically).

• Theorem 10 easily shows the normal cone
defined in terms of distance functions is
always contained in the normal cone de-
fined in terms of indicator functions.

• In Hilbert space we may conclude

∂FdC(x) ⊂ ∂πdC(PC(x)),

where ∂π denotes the set of proximal sub-
gradients.
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Random Subgradients

• ∂0dC is a minimal cusco for all closed C iff
the norm is uniformly Gateaux.

• While dC is often too well behaved,
√

dC(x)
is not Lipschitz and choosing C wisely pro-
vides many counter-examples:

√
dS(x) =

√
|1− ‖x‖|

Burke

Lewis

Overton

How random gradients fail
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Two Open Questions

• Every closed set in every reflexive space

(every renorm of Hilbert space) admits at

least one best approximation.

(Stronger variant.) For every closed set

of every reflexive space the proximal nor-

mal points are norm dense in the norm

boundary.

X Any counter-example is necessarily un-

bounded (and fractal-like)

• Every norm closed set in a reflexive Ba-

nach space with unique best approxima-

tions for every point in A (a Chebyshev

set) is convex.

[True in weak topology, and so in RN .]
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Viete's formula
or Vieta's formula, n. the formula for π, derived from the infinite product for 2/π, namely 

published in 1593, and generally regarded as the first use of an infinite product. (Named after the French
algebraist and geometer, François Viete  or Franciscus Vieta  (1540 - 1603), who introduced the use of
literals to algebra, but rejected the existence of negative numbers. He made original contributions to
trigonometry and the theory of equations, and decoded a complex code used by Philip II of Spain in his
war against the French, being accused of witchcraft for his pains.)   

 

Jon
From the Collin's Dictionary of Mathematics
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Franciscus Vieta

(1540-1603)

Arithmetic is absolutely as much science as
geometry [is]. Rational magnitudes are con-
veniently designated by rational numbers, and
irrational magnitudes by irrational [numbers].
If someone measures magnitudes with num-
bers and by his calculation get them different
from what they really are, it is not the reck-
oning’s fault but the reckoner’s.

Rather, says Proclus, ARITHMETIC IS
MORE EXACT THAN GEOMETRY. To
an accurate calculator, if the diameter is set
to one unit, the circumference of the inscribed
dodecagon will be the side of the binomial
[i.e. square root of the difference] 72−√3888.

Whosoever declares any other result, will be
mistaken, either the geometer in his measure-
ments or the calculator in his numbers.
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DERIVATIVES II and CONVEXITY I

Duality Inequalities

• The following hybrid inequality is based on

the two-set Mean Value theorem of Clarke

and Ledyaev (94) and its Fenchel rework-

ing by Lewis & Ralph (96).

Theorem 11 (Three Functions) Let C ⊂ Rn

be nonempty compact convex and let f and h

be lsc functions with dom(f) ∪ dom(h) ⊂ C.

For any Lipschitz g : C → R there is z∗ ∈
∂0g(C) (the Clarke subdifferential) such that

(min(f − g) + min(h + g))

≤ −f∗(z∗)− h∗(−z∗) ≤ min(f + h).
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A Three Function Sandwich

• The smooth case (BF) applies the classi-

cal Mean value theorem to t 7→ g(x(t)) for

an arc, x, on [0,1] obtained via Schauder’s

fixed point theorem.

• The nonsmooth case follows by ‘mollification’—

the limits lie in the Clarke subdifferential.

• Fenchel Duality is ‘recovered’ from g := f .

Recall, f∗(t) = supx y(x)− f(x).
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Finding the arc. We may smoothify since(
f + ε‖ · ‖2

)∗
is differentiable.

Let M := 2 sup{‖c‖ : c ∈ C} and

W := {x : [0,1] → C : Lip(x) ≤ M}.
By Arzela-Ascoli, W is compact in the uniform

norm topology.

For x ∈ W define a continuous self map T :

W → W by

Tx(t) :=
∫ t

0
∇f∗ ◦ ∇g ◦ x +

∫ 1

t
∇h∗ ◦ (−∇g) ◦ x.

Since W is compact and convex, the Schauder

fixed point theorem shows there is x ∈ W such

that x = Tx. That is,

x(t) =
∫ t

0
∇f∗ ◦ ∇g ◦ x +

∫ 1

t
∇h∗ ◦ (−∇g) ◦ x.
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• A striking partner is:

Theorem 12 (Two Functions) Let C ⊂ Rn

be nonempty compact convex and f proper

convex lower semicontinuous with dom(f) ⊂
C. If α 6= 1 and g : [C, αC] → R is Lipschitz

then there are z∗ ∈ ∂0g([C, αC]) and a ∈ C

such that

[g(αa)− g(a)]/(α− 1)− f(a) ≥ f∗(z∗).

¦ Two pleasant specializations follow.

Corollary 5 Let C ⊂ Rn be compact con-

vex and f proper convex lower semicontinuous

with dom(f) ⊂ C. If g : [C,−C] → R is Lip-

schitz then there are z∗ ∈ ∂0g([C,−C]) and

a ∈ C such that

[g(a)− g(−a)]/2− f(a) ≥ f∗(z∗).

Hence

f∗(z∗) ≤ 0

if f dominates the odd part of g on C.
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• The comparison of f to the odd part of g

reinforces the suggestion that fixed point

theory is central to these results.

Corollary 6 Let C ⊂ Rn be nonempty, com-

pact and convex and f proper convex lower

semicontinuous with dom(f) ⊂ C. If g : [C,0] →
R is Lipschitz then there are z∗ ∈ ∂0g([C,0])

and a ∈ C such that

f(a) + f∗(z∗) ≤ g(a)− g(0).

Hence

f∗(z∗) ≤ 0

whenever f dominates g − g(0) on C.

• By contrast, this corollary can be obtained

and strengthened by variational methods.
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Theorem 13 Let A be nonempty open bounded

in a Banach space and let g : A → R be Lips-

chitz. If x ∈ intA and

t := inf{‖z∗‖ : z∗ ∈ ∂0g(z), z ∈ A} > 0

then

sup
u∈∂A

(g(u)− t‖u− x‖) ≥ g(x).

X Specialized to the unit ball with x := 0 we

obtain, a la Corvallec:

Corollary 7 (Rolle Theorem) Let B be the

closed unit ball in Rn and g : B → R a Lipschitz

function. Then there is x∗ ∈ ∂0g(B) such that

‖x∗‖∗ ≤ max
a∈∂B

|g(a)|.

¦ Contrastingly:
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Corollary 8 (Odd Rolle Theorem) Let B be

the closed unit ball in Rn and g : B → R a

Lipschitz function. Then there is x∗ ∈ ∂0g(B)

such that

‖x∗‖∗ ≤ max
a∈B

g(a)− g(−a)

2
.

• That this last result is ‘topological’ is height-

ened by the following example (BKW):

Remark 2 Corollary 8 fails if B is replaced

by the unit sphere S. Indeed, there is a C1

mapping f : B ⊂ R2 → R such that

(i) f |S is even; but

(ii) f has no critical point in B.
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Two Open Questions

• The picture suggests that in the sandwich

theorem the slope is actually achieved by

a tangent. Is this true?

• Can one avoid using Brouwer’s fixed point

theorem in the proof—a variational proof?
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CONVEXITY II: BANACH SEQUENCES

Convex function properties are tightly coupled

to the sequential properties of the spaces they

may inhabit. We finish by illustrating this in

three cases.

1. Finite dimensional spaces

2. Spaces containing `1

3. Grothendiek spaces.

Fact 3 (Josephson-Nissensweig) A Banach space

is infinite dimensional iff it contains a JN se-

quence: that is, a norm-one but weak-star

null sequence.

• This is easy in separable space—e.g., the

unit vectors in `2—but appears hard in

general.
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Theorem 14 (a) Every continuous convex func-

tion finite throughout X is bounded on bounded

sets iff (b) X is a JN space: weak-star and

norm convergence of sequences coincides iff

(c) X is finite dimensional.

Theorem 15 Every continuous convex func-

tion finite on X has f∗∗ finite on X∗∗ iff X is

a Grothendiek space: weak-star and weak

convergence of sequences coincides (e.g., in

reflexive space or `∞).

Theorem 16 Gateaux and Fréchet differen-

tiability agree for convex functions on X iff X

is a JN-space.

Theorem 17 Weak Hadamard and Fréchet

differentiability agree for convex functions on

X iff X is a sequentially reflexive space:

`1 * X iff norm and Mackey convergence of

sequences coincides.
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• many other similar 
results for reflexivity, 

Schur spaces, etc

for some xn ∈ BX

Since the RHS < 1+ for all x in X.

Jon Borwein
Cross-Out

Jon Borwein
Replacement Text
\|y_n\|

Jon Borwein
Polygon

Jon Borwein
Rectangle

Jon Borwein
Rectangle







Two Open Questions

• Any two real valued Lipschitz functions on

Hilbert space are simultaneously densely

Fréchet differentiable.  (L&P)

♦ True in the separable Gateaux case. 

• A convex continuous function on separa-

ble Hilbert space admits a second-order

Gateaux expansion densely.

♦ True in finite dimensions.

♦ False for Fréchet or nonseparable `2.
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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 342, Number 1, March 1994 

SECOND ORDER DIFFERENTIABILITY OF CONVEX FUNCTIONS 
IN BANACH SPACES 

JONATHAN M. BORWEIN AND DOMINIKUS NOLL 

ABSTRACT. We present a second order differentiability theory for convex func- 
tions on Banach spaces. 

The classical theorem of Alexandrov states that a convex function on Rn is 
almost everywhere second order differentiable. This was first proved by Buse- 
mann and Feller [12] for functions on IR2 and later was extended by Alexandrov 
[2] to Rn . More recent proofs were obtained by Mignot [26], Bangert [6], and 
Rockafellar [36]. 

Around 1975, Aronszajn [3] and Christensen [13] among others proved ver- 
sions of Rademacher's theorem on almost everywhere differentiability of Lip- 
schitz operators which apply in separable infinite dimensional Banach spaces. 
While these results typically do not extend beyond the separable case, it was 
only in 1990 when Preiss [35] proved the remarkable fact that every real val- 
ued Lipschitz function on a not necessarily separable Banach space which is an 
Asplund space is still at least densely Frechet differentiable. 

Motivated by these infinite dimensional versions of Rademacher's theorem, 
the present work is to attack Alexandrov's theorem in infinite dimensions. As 
it turns out, the situation here is less promising than it is for Rademacher's 
theorem. For instance, Alexandrov's theorem fails in the spaces 1, , Lp , 1 5 
p < 2 ,  and much to our surprise, even in nonseparable Hilbert spaces. This 
leads us to focus on the case of separable Hilbert spaces. Here in fact, a positive 
solution seems possible. As one of our central results here, we in fact obtain a 
partial positive answer by proving a version of Alexandrov's theorem for convex 
integral functionals. 
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Monotone Operators as Convex Objects
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In Memoriam

In his ‘23’ “Mathematische Probleme” lecture to
the Paris ICM in 1900∗, David Hilbert wrote

“Besides it is an error to believe that rigor
in the proof is the enemy of simplicity.”

Simon Fitzpatrick† (1953–2004).
∗See Ben Yandell’s fine account of the Hilbert Problems and
their solvers in The Honors Class, AK Peters, 2002.
(He also died young in 2004.)
†At his blackboard with Regina Burachik
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MOTIVATION and GOALS

To reduce as much of monotone operator theory
as possible to (elementary) convex analysis

To thereby illustrate (some of) Simon Fitzpatrick’s
many fine contributions

To shed new light on the remaining open questions
(in non-reflexive space)

F “Even convex objects are hard . . .”F

An essentially strictly convex function with non-
convex subgradient domain and not strictly convex:

max{(x− 2)2 + y2 − 1,−(xy)1/4}
J JMB & J Zhu (Springer, 2005) JMB & A Lewis I
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Most details will appear in: J.M. Borwein
Maximal Monotonicity via Convex Analysis

Fitzpatrick Memorial, JCA, 13–14, 2006.

I http://users.cs.dal.ca/∼jborwein/mon-jca2.pdf

Coxeter’s favourite 4-D polytope
(with 120 dodecahedronal faces)
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1. Preliminaries

Throughout X is a real Banach space. The domain
of an extended valued convex function, dom(f), is
the set of values less than +∞. A point s is in the
core of a set S (s ∈ core S) when X =

⋃
λ>0 λ(S−s).

Now x∗ ∈ X∗ is a subgradient of f : X → (−∞,+∞]
at x ∈ dom f provided that

f(y)− f(x) ≥ 〈x∗, y − x〉
for all y in Y . The set of all subgradients of f at
x is the subdifferential of f at x, denoted ∂f(x).

We need the indicator function ιC(x) which is zero
for x in C and +∞ otherwise, the Fenchel conju-
gate f∗(x∗) := supx{〈x, x∗〉 − f(x)} and the infimal
convolution

f∗21

2
‖ · ‖2∗(x∗) := inf

{
f∗(y∗) +

1

2
‖z∗‖2∗ : x∗ = y∗ + z∗

}
.

When f is convex and closed

x∗ ∈ ∂f(x) exactly when f(x) + f∗(x∗) = 〈x, x∗〉.
Finally, the distance function associated with a
closed set C, given by dC(x) := infc∈C ‖x− c‖, is
convex if and only if C is. Moreover, dC = ιC2‖ · ‖.

5

Jon Borwein
Rectangle

Jon Borwein
Rectangle



We say T : X 7→ 2X∗
is monotone provided that for

any x, y ∈ X, and x∗ ∈ T (x), y∗ ∈ T (y),

〈y − x, y∗ − x∗〉 ≥ 0,

and that T is maximal monotone if its graph is not
properly included in any other monotone graph.

• The convex subdifferential in Banach space∗
and a skew linear matrix are the canonical ex-
amples of maximal monotone multifunctions

We save the notation J = JX for the duality map

JX(x) =
1

2
∂‖x‖2 =

{
x∗ ∈ X∗ : ‖x‖2 = ‖x∗‖2 = 〈x, x∗〉

}

• It is not an exaggeration to say the geometry
of Banach space devolves to a deep study of J

• The other foundational example is that of a
second order nonlinear elliptic PDE

∗There are several nice variational proofs. One based on the
Mean value theorem follows.
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Outline

Our goal is to derive all key results about maximal
monotone operators entirely from the existence of
subgradients and Sandwich theorem shown below

Section 2 considers general Banach spaces

Section 3 looks at (a-)cyclic operators

Section 4 presents our central result on maximal-
ity of the sum in reflexive space

Section 5 looks at more applications of the tech-
nique of Section 4

Section 6 provides limiting counter-examples.
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3.1 Subgradients and Convex Functions 35

The idea of the derivative is fundamental in analysis because it allows
us to approximate a wide class of functions using linear functions. In opti-
mization we are concerned specifically with the minimization of functions,
and hence often a one-sided approximation is sufficient. In place of the gra-
dient we therefore consider subgradients, those elements φ of E satisfying

〈φ, x− x̄〉 ≤ f(x)− f(x̄) for all points x in E. (3.1.4)

We denote the set of subgradients (called the subdifferential) by ∂f(x̄),
defining ∂f(x̄) = ∅ for x̄ not in dom f . The subdifferential is always a closed
convex set. We can think of ∂f(x̄) as the value at x̄ of the “multifunction”
or “set-valued map” ∂f : E→ E. The importance of such maps is another
of our themes. We define its domain

dom ∂f = {x ∈ E | ∂f(x) �= ∅}
(Exercise 19). We say f is essentially strictly convex if it is strictly convex
on any convex subset of dom ∂f .

The following very easy observation suggests the fundamental signifi-
cance of subgradients in optimization.

Proposition 3.1.5 (Subgradients at optimality) For any proper func-
tion f : E→ (∞,+∞], the point x̄ is a (global) minimizer of f if and only
if the condition 0 ∈ ∂f(x̄) holds.

Alternatively put, minimizers of f correspond exactly to “zeroes” of ∂f .
The derivative is a local property whereas the subgradient definition

(3.1.4) describes a global property. The main result of this section shows
that the set of subgradients of a convex function is usually nonempty, and
that we can describe it locally in terms of the directional derivative. We
begin with another simple exercise.

Proposition 3.1.6 (Subgradients and directional derivatives) If the
function f : E → (∞,+∞] is convex and the point x̄ lies in dom f , then
an element φ of E is a subgradient of f at x̄ if and only if it satisfies
〈φ, ·〉 ≤ f ′(x̄; ·).

The idea behind the construction of a subgradient for a function f that
we present here is rather simple. We recursively construct a decreasing
sequence of sublinear functions which, after translation, minorize f . At
each step we guarantee one extra direction of linearity. The basic step is
summarized in the following exercise.

Lemma 3.1.7 Suppose that the function p : E → (∞,+∞] is sublinear
and that the point x̄ lies in core (dom p). Then the function q(·) = p′(x̄; ·)
satisfies the conditions
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36 3. Fenchel Duality

(i) q(λx̄) = λp(x̄) for all real λ,

(ii) q ≤ p, and

(iii) lin q ⊃ lin p + span {x̄}.
With this tool we are now ready for the main result, which gives condi-

tions guaranteeing the existence of a subgradient. Proposition 3.1.6 showed
how to identify subgradients from directional derivatives; this next result
shows how to move in the reverse direction.

Theorem 3.1.8 (Max formula) If the function f : E → (∞,+∞] is
convex then any point x̄ in core (dom f) and any direction d in E satisfy

f ′(x̄; d) = max{〈φ, d〉 | φ ∈ ∂f(x̄)}. (3.1.9)

In particular, the subdifferential ∂f(x̄) is nonempty.

Proof. In view of Proposition 3.1.6, we simply have to show that for any
fixed d in E there is a subgradient φ satisfying 〈φ, d〉 = f ′(x̄; d). Choose
a basis {e1, e2, . . . , en} for E with e1 = d if d is nonzero. Now define
a sequence of functions p0, p1, . . . , pn recursively by p0(·) = f ′(x̄; ·), and
pk(·) = p′k−1(ek; ·) for k = 1, 2, . . . , n. We essentially show that pn(·) is the
required subgradient.

First note that, by Proposition 3.1.2, each pk is everywhere finite and
sublinear. By part (iii) of Lemma 3.1.7 we know

lin pk ⊃ lin pk−1 + span {ek} for k = 1, 2, . . . , n,

so pn is linear. Thus there is an element φ of E satisfying 〈φ, ·〉 = pn(·).
Part (ii) of Lemma 3.1.7 implies pn ≤ pn−1 ≤ . . . ≤ p0, so certainly, by

Proposition 3.1.6, any point x in E satisfies

pn(x− x̄) ≤ p0(x− x̄) = f ′(x̄;x− x̄) ≤ f(x)− f(x̄).

Thus φ is a subgradient. If d is zero then we have pn(0) = 0 = f ′(x̄; 0).
Finally, if d is nonzero then by part (i) of Lemma 3.1.7 we see

pn(d) ≤ p0(d) = p0(e1) = −p′0(e1;−e1) =
−p1(−e1) = −p1(−d) ≤ −pn(−d) = pn(d),

whence pn(d) = p0(d) = f ′(x̄; d). �

Corollary 3.1.10 (Differentiability of convex functions) Suppose the
function f : E → (∞,+∞] is convex and the point x̄ lies in core (dom f).
Then f is Gâteaux differentiable at x̄ exactly when f has a unique subgra-
dient at x̄ (in which case this subgradient is the derivative).
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(i) q(λx̄) = λp(x̄) for all real λ,

(ii) q ≤ p, and

(iii) lin q ⊃ lin p + span {x̄}.
With this tool we are now ready for the main result, which gives condi-

tions guaranteeing the existence of a subgradient. Proposition 3.1.6 showed
how to identify subgradients from directional derivatives; this next result
shows how to move in the reverse direction.

Theorem 3.1.8 (Max formula) If the function f : E → (∞,+∞] is
convex then any point x̄ in core (dom f) and any direction d in E satisfy

f ′(x̄; d) = max{〈φ, d〉 | φ ∈ ∂f(x̄)}. (3.1.9)

In particular, the subdifferential ∂f(x̄) is nonempty.

Proof. In view of Proposition 3.1.6, we simply have to show that for any
fixed d in E there is a subgradient φ satisfying 〈φ, d〉 = f ′(x̄; d). Choose
a basis {e1, e2, . . . , en} for E with e1 = d if d is nonzero. Now define
a sequence of functions p0, p1, . . . , pn recursively by p0(·) = f ′(x̄; ·), and
pk(·) = p′k−1(ek; ·) for k = 1, 2, . . . , n. We essentially show that pn(·) is the
required subgradient.

First note that, by Proposition 3.1.2, each pk is everywhere finite and
sublinear. By part (iii) of Lemma 3.1.7 we know

lin pk ⊃ lin pk−1 + span {ek} for k = 1, 2, . . . , n,

so pn is linear. Thus there is an element φ of E satisfying 〈φ, ·〉 = pn(·).
Part (ii) of Lemma 3.1.7 implies pn ≤ pn−1 ≤ . . . ≤ p0, so certainly, by

Proposition 3.1.6, any point x in E satisfies

pn(x− x̄) ≤ p0(x− x̄) = f ′(x̄;x− x̄) ≤ f(x)− f(x̄).

Thus φ is a subgradient. If d is zero then we have pn(0) = 0 = f ′(x̄; 0).
Finally, if d is nonzero then by part (i) of Lemma 3.1.7 we see

pn(d) ≤ p0(d) = p0(e1) = −p′0(e1;−e1) =
−p1(−e1) = −p1(−d) ≤ −pn(−d) = pn(d),

whence pn(d) = p0(d) = f ′(x̄; d). �

Corollary 3.1.10 (Differentiability of convex functions) Suppose the
function f : E → (∞,+∞] is convex and the point x̄ lies in core (dom f).
Then f is Gâteaux differentiable at x̄ exactly when f has a unique subgra-
dient at x̄ (in which case this subgradient is the derivative).
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2. Maximality in General Banach Space

For a monotone mapping T , we associate the Fitz-

patrick function introduced in 1988 by Fitzpatrick.

It is

FT (x, x∗) := sup{〈x, y∗〉+ 〈x∗, y〉 − 〈y, y∗〉 : y∗ ∈ T (y)}
which is clearly lower semicontinuous and convex

as an affine supremum. Moreover,

Proposition 1 (Fitzpatrick) For every maximal

monotone operator T one has

FT (x, x∗) ≥ 〈x, x∗〉
with equality if and only if x∗ ∈ T (x).

• The equality FT (x, x∗) = 〈x, x∗〉 for x∗ ∈ T (x)

requires only monotonicity not maximality.

• In generality, FT is not useful for non-maximal

operators. As an extreme example, on R if

T (0) = 0 and T (x) = ∅ otherwise, then FT ≡ 0.
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• The idea of associating a convex function to a

monotone operator and exploiting the relation-

ship was neglected for many years after its in-

troduction until revisited by Penot, Simons, Si-

mons and Zălinescu, Burachik and Svaiter etc.

Proposition 2 A proper lsc convex function on a

Banach space (i) is continuous throughout the core

of its domain; and (ii) has a non-empty subgradient

throughout the core of its domain.

These two basic facts lead to:

Theorem 1 (Hahn-Banach sandwich) Suppose

f,−g are lsc convex on a Banach space X and

f(x) ≥ g(x), for all x in X. Assume (CQ) holds:

0 ∈ core (dom(f)− dom(−g)) . (1)

Then there is an affine continuous function a such

that

f(x) ≥ a(x) ≥ g(x)

for all x in X.
9
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Proof. The perturbation or value function

h(u) := inf
x∈X

f(x)− g(x− u)

is convex and (CQ) implies continuity at 0.∗ Hence
there is λ ∈ ∂h(0), which is the linear part of the
affine separator. As needed, we have

f(x)− g(u− x) ≥ h(u)− h(0) ≥ λ(u). ¥

−√−x ≥ √
x

• We refer to constraint

qualifications like (1) as

transversality conditions

¢ CQ failure

• It is easy to deduce

complete Fenchel duality

theorem from Thm 1

Proposition 3 For a closed convex function f and
fJ := f + 1

2‖ · ‖2 we have that
(
f +

1

2
‖ · ‖2

)∗
= f∗21

2
‖ · ‖2∗

is everywhere continuous. Also

v∗ ∈ ∂f(v) + J(v) ⇔ f∗J(v
∗) + fJ(v)− 〈v, v∗〉 ≤ 0.

∗Bε ⊂ {f ≤ M} − {g ≤ M} ⇒ h|Bε ≤ 2M .
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2a. Representative Functions

A convex function HT is a representative function
for a monotone T on X×X∗ if (i) HT (x, x∗) ≥ 〈x, x∗〉
for all x, x∗; (ii) HT (x, x∗) = 〈x, x∗〉 if x∗ ∈ T (x).

For T maximal, Prop. 1 shows FT is a representa-
tive function as is the (closed) convexification

PT (x, x∗) = inf
N∑

i=1

λi〈xi, x
∗
i 〉

s.t.
∑

i

λi(xi, x
∗
i ,1) = (x, x∗,1), x∗i ∈ T (xi), λi ≥ 0.

Proposition 4 (Penot) For any monotone map-
ping T , PT is a representative convex function.

Proof. By monotonicity we have

PT (x, x∗) ≥ 〈x∗, y〉+ 〈y∗, x〉 − 〈y∗, y〉,
for y∗ ∈ T (y). Thus, for all points

PT (x, x∗) + PT (y, y∗) ≥ 〈x∗, y〉+ 〈y∗, x〉.
By definition PT (x, x∗) ≤ 〈x∗, x〉 for x∗ ∈ T (x).
Setting x = y and x∗ = y∗ shows PT (x, x∗) = 〈x∗, x〉
for x∗ ∈ T (x) while PT (z, z∗) ≥ 〈z∗, z〉 for (z∗, z) in
conv graphT : (also for PT ). ¥
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2b. Monotone Extension Theorems

A direct calculation shows (PT )∗ = FT for any

monotone T . This convexification originates with

Simons but was much refined by Penot.

We illustrate its flexibility by proving a central case

of the Debrunner-Flor theorem without Brouwer’s

theorem.

Theorem 2 Suppose T is monotone on X with

range contained in α BX∗, for some α > 0. Then

(a) For every x0 in X there is x∗0 ∈ conv∗R(T ) ⊂
α BX∗ such that (x0, x∗0) is monotonically related

to graph (T ).

(b) Hence, T has a bounded monotone extension

T with dom(T )=X and R(T ) ⊂ conv∗R(T ).

(c) Thence, a maximal monotone T with bounded

range has dom(T )=X.
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Proof. (a) It is enough, after translation, to show
x0 = 0 ∈ dom(T ). Fix α > 0 with R(T ) ⊂ C :=
conv∗R(T ) ⊂ α BX∗.
Consider

πT (x) := inf {PT (x, x∗) : x∗ ∈ C} .

Then πT is convex since PT is. Observe that

PT (x, x∗) ≥ 〈x, x∗〉
and so πT (x) ≥ infx∗∈C〈x, x∗〉 ≥ −α ‖x‖ for all x in
X. As x 7→ infx∗∈C〈x, x∗〉 is concave and continuous
the Sandwich Theorem 1 applies.

Thus, there exist w∗ in X∗ and γ in R with

PT (x, x∗) ≥ πT (x) ≥ 〈x, w∗〉+γ ≥ inf
x∗∈C

〈x, x∗〉 ≥ −α ‖x‖
for all x in X and x∗ in C ⊂ α BX∗.
Setting x = 0 shows γ ≥ 0. Now, for any (y, y∗) in
the graph of T we have PT (y, y∗) = 〈y, y∗〉. Thus,

〈y − 0, y∗ − w∗〉 ≥ γ ≥ 0,

which shows that (0, w∗) is monotonically related
to the graph of T .

Finally, 〈x, w∗〉+ γ ≥ infx∗∈C〈x, x∗〉 ≥ −α ‖x‖ for all
x ∈ X involves three sublinear functions, and so
implies that w∗ ∈ C ⊂ α BX∗.
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(b) Consider the set E of all monotone extensions
of T with range in C ⊂ α BX∗, ordered by inclusion.
By Zorn’s lemma E admits a maximal member T
and by (a) T has domain the whole space.
(c) follows immediately. ¥

I R(T ) ⊂ MBX∗ ⇒ πT := infX∗ PT (·, x∗) ≥ −M‖·‖
x∗ ∈ ∂πT (x) ⇔ πT (x) + FT (0, x∗) = 〈x, x∗〉

• (a) holds on any w∗-closed convex set C in
Hilbert space (Brezis). Our proof applies if

x0 ∈ core (domπT + dom sup
C

).

The full Debrunner-Flor extension theorem is next:

Theorem 3 (Debrunner-Flor) Suppose T is a
monotone operator on X with rangeT ⊂ C for
some weak-star compact and convex C. Suppose
also ϕ : C 7→ X is weak-star to norm continuous.
Then there is some c∗ ∈ C with

〈x− ϕ(c∗), x∗ − c∗〉 ≥ 0

for all x∗ ∈ T (x).
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Theorem 4 The full Debrunner-Flor extension the-
orem is equivalent to Brouwer’s theorem.

Proof. Phelps derives Debrunner-Flor from Brouwer.
Conversely, let g be a continuous self-map of a
compact convex set K ⊂ intBX in finite dimen-
sions.

Apply Debrunner-Flor to

the identity I on BX and

to ϕ : BX 7→ X given by

ϕ(x) := g(PK x), where PK

is the metric projection. We

have x∗0 ∈ BX, x0 :=

ϕ(x∗0) = g(PK x∗0) ∈ K,

〈x− x0, x− x∗0〉 ≥ 0

for all x ∈ BX.

Since x0 ∈ intBX, for h ∈ X and small ε > 0 we
have x0 + εh ∈ BX and so 〈h, x0 − x∗0〉 ≥ 0 for all
h ∈ X. Thus, x0 = x∗0 and so PK x∗0 = PK x0 =
x0 = g(PK x∗0), is a fixed point of the arbitrary self-
map g. ¥
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2c. Local Boundedness Results

Recall that an operator T is locally bounded around
a point x if T (Bε(x)) is bounded for some ε > 0.

Theorem 5 (Simons, Veronas) Let S, T : X →
2X∗

be monotone operators. Suppose
0 ∈ core [conv dom(T )− conv dom(S)].

There exist r, c > 0 so that, for all x with t∗ ∈ T (x)
and s∗ ∈ S(x),

max(‖t∗‖, ‖s∗‖) ≤ c (r + ‖x‖)(r + ‖t∗ + s∗‖).

Proof. Consider the convex lsc function∗

σT (x) := sup
z∗∈T (z)

〈x− z, z∗〉
1 + λ‖z|| .

First, conv dom(T ) ⊂ domσT , and 0 ∈ core

∞⋃

i=1

[{x : σS(x) ≤ i, ‖x‖ ≤ i} − {x : σT (x) ≤ i, ‖x‖ ≤ i}] ,

and apply conventional Baire category techniques–
with some care. ¥

∗This is a refinement of the function SF-JMB used to prove
local boundedness: FT(x,0) ≈ σT(x)
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Corollary 1 Let X be any Banach space. Suppose
T is monotone and

x0 ∈ core conv dom(T ).

Then T is locally bounded around x0.

Proof . Let S = 0 in Theorem 5 or directly apply
Proposition 2 to σT . ¥

We can also improve Theorem 2.

Corollary 2 A monotone mapping T with bounded
range admits an everywhere defined maximal
monotone extension with bounded range contained
in conv∗R(T ).

Proof. Let T̂ denote the extension of Theorem 2 (b).
Clearly it is everywhere locally bounded. The de-
sired extension T̃ (x) is the operator whose graph
is the norm-weak-star closure of the graph of
x 7→ conv T̂ (x), since this is both monotone and is
a norm-w∗ cusco.
Explicitly,

T̃ (x) := ∩ε>0conv ∗T̂ (Bε(x))

(see ToVA). ¥
17
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A mapping is locally maximal monotone, or type
(FP), if (graphT−1)∩(V ×X) is maximal monotone
in V ×X, for every convex open set V in X∗ with
V ∩ rangeT 6= ∅.

• Simons showed subgradients are (FP). So are
maximal monotones on reflexive space (SF-P).

We may usefully apply Corollary 2 to

Tn(x) := T (x) ∩ n BX∗.

Often the extension, T̂n is unique:

Proposition 5 (Fitzpatrick-Phelps) Suppose T
is maximal and n is such that R(T )∩n intBX∗ 6= ∅.
(a) There is a unique maximal monotone T̂n with

Tn(x) ⊂ T̂n(x) ⊂ nBX∗

whenever Mn(x) :=

{x∗ ∈ nB∗ : 〈x∗ − z∗, x− z〉 ≥ 0,∀z∗ ∈ T (z) ∩ n intBX∗}
is monotone; in which case Mn = T̂n.

(b) This holds if T is type (FP) and BX∗ is strictly
convex; so for any maximal monotone on a rotund
dual reflexive norm, e.g. Hilbert space.
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Proof. Since T̂n exists by Corollary 2 and since

T̂n(x) ⊂ Mn(x), (a) follows. We refer to Fitzpatrick

and Phelps for the fairly easy proof of (b). ¥

F {T̂n}n∈N is a non-reflexive generalization of the

resolvent -based Yosida approximate or the

Hausdorff-Moreau Lipschitz regularization of a

convex function.

In the (FP) case one also easily shows (F-P) that:

(I) T̂n(x) = T (x) ∩ n BX∗ if T (x) ∩ intn BX∗ 6= ∅

(II) T̂n(x) \ T (x) ⊂ n SX∗.

• clR(T ) is convex if

clR(T̂n) is for T type (II)

J function regularization

• For local properties (e.g.

differentiability) one may

replace T by T̂n
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2d. Maximality of Subgradients

Theorem 6 Every closed convex function has a

(locally) maximal monotone subgradient.∗

Proof. (Sketch) Without loss we may suppose

〈0− x∗,0− x〉 ≥ 0 for all x∗ ∈ ∂f(x)

but 0 6∈ ∂f(0); so f(x)− f(0) < 0 for some x.

The Approximate mean value theorem (see [ToVA,

Thm. 3.4.6]) lets us find xn
f→ c ∈ (0, x] and

x∗n ∈ ∂f(xn) with

lim sup
n

〈x∗n, xn − c〉 ≤ 0, lim sup
n

〈x∗n, x〉 ≤ f(x)−f(0) < 0.

Now c = θ x for some θ > 0. Hence,

lim sup
n

〈x∗n, xn〉 < 0,

a contradiction. The locally maximal case follows

‘similarly’ on exploiting that f(xn) → f(c), and that

∂f is dense type. ¥
∗This fails in all incomplete normed spaces and in some
Fréchet spaces
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2e. Convexity of Range and Domain

Corollary 3 Let X be any Banach space. Suppose
that T is maximal monotone with core conv D(T )
nonempty. Then

core conv D(T ) = int conv D(T ) ⊂ D(T ). (2)

In consequence dom(T ) has both a convex closure
and a convex interior.

Proof. We first prove the inclusion in (2). Fix
x + ε BX ⊂ int conv dom(T ) and, via Cor. 1, select
M := M(x, ε) > 0 so that T (x + ε BX) ⊂ M BX∗.
For N > M define w∗-closed nested sets

TN(x) := {x∗ : 〈x− y, x∗ − y∗〉 ≥ 0,∀y∗ ∈ T (y) ∩NBX∗}.
By Theorem 2 (b), the sets are non-empty, and by
the next lemma, bounded, hence w∗-compact. By
maximality of T , T (x) = ∩NTN(x) 6= ∅, as a nested
intersection, and x is in dom(T ) as asserted.

Then int conv dom(T ) = int dom(T ) and so the
final conclusion follows. ¥
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Lemma 1 For x ∈ int conv dom(T ) and N suffi-
ciently large, TN(x) is bounded.

Proof. A Baire category argument shows for N

large and u ∈ 1/N BX that x + u ∈ cl conv DN for

DN := {z : z ∈ D(T ) ∩N BX , T (z) ∩N BX∗ 6= ∅} .

Now for each x∗ ∈ TN(x), since x + u lies in the
closed convex hull of DN , we have

〈u, x∗〉 ≤ sup{〈z−x, z∗〉 : z∗ ∈ T (z)∩NBX∗, z ∈ NBX}
≤ 2N2 and so ‖x∗‖ ≤ 2N3. ¥

Another nice application is:

Corollary 4 (Verona) Let X be Banach and let
S, T : X → 2X∗

be maximal monotone. Suppose

0 ∈ core [conv dom(T )− conv dom(S)].

Then for any x ∈ dom(T ) ∩ dom(S), T (x) + S(x)
is a w∗-closed subset of X∗.

Proof. Theorem 5 shows bounded w∗-convergent
nets in T (x)+S(x) have limits in T (x)+S(x). We
apply the Krein-Smulian theorem. ¥
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• Thus, we preserve some structure. It is still

open if T + S must actually be maximal.

We may neatly recover convexity of intD(T ) :

Theorem 7 (Simons, 2005) Suppose T is maxi-

mal monotone and int dom(T ) is nonempty. Then

int dom(T ) = int {x : (x, x∗) ∈ domFT}.

• Suppose T is domain regularizable: for ε > 0,

there is a maximal Tε with H (D(T ), D(Tε)) ≤ ε

and coreD(Tε) 6= ∅. In reflexive space we can

use

Tε :=
(
T−1 + N−1

εBX

)−1
.

Then dom(T ) is convex.
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3. Cyclic and Acyclic Monotone Operators

For N = 2,3, . . ., an operatorn T is N-monotone if

N∑

k=1

〈x∗k, xk − xk−1〉 ≥ 0

whenever x∗k ∈ T (xk) and x0 = xN .

T is cyclically monotone if T is N-monotone for all
N ∈ N, as holds for convex subgradients.

• Monotonicity = 2-monotonicity:
〈x∗1, x1 − x2〉+ 〈x∗2, x2 − x1〉 ≥ 0

• (N + 1)-monotone ( N-monotone (Asplund):
〈x∗1, x1 − x3〉+ 〈x∗2, x2 − x1〉+ 〈x∗3, x3 − x2〉 ≥ 0.

• It is a classical result of Rockafellar that every
maximal cyclically monotone operator is the
subgradient of a proper closed convex function
(and conversely).

We recast this result to make the parallel with the
Debrunner-Flor Theorem 2 explicit.
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Theorem 8 (Rockafellar) Suppose C is cyclically
monotone on a Banach space X.

Then C has a maximal cyclically monotone exten-
sion C, which is of the form C = ∂fC for some
proper closed convex function fC.

Moreover R(C) ⊂ conv∗R(C).

Proof. We fix x0 ∈ domC, x∗0 ∈ C(x0) and define

fC(x) := sup
x∗k∈C(xk)

{〈x∗n, x− xn〉+
n−1∑

k=1

〈x∗k−1, xk − xk−1〉}

where the ‘sup’ is over all n ∈ N and all such chains.
The proof in Phelps’ monograph shows that

C ⊂ C := ∂fC.

The range assertion follows because fC is the supre-
mum of affine functions whose linear parts all lie
in rangeC. This is most easily seen by writing
fC = g∗C with

gC(x∗) := inf{
∑

i

tiαi :
∑

i

tix
∗
i = x∗,

∑

i

ti = 1, ti > 0}

for appropriate αi ∈ R. ¥
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The relationship of F∂f and ∂f is complicated:

〈x, x∗〉 ≤ F∂f(x, x∗) ≤ f(x) + f∗(x∗) ≤ F∗∂f(x, x∗)
≤ 〈x, x∗〉+ ι∂f(x, x∗),

(see Bauschke et al.) Two central questions are:

Q1. When is a maximal monotone operator T
the sum of a subgradient ∂f and a skew lin-
ear S? This is closely related to the behaviour
of

FLT (x) :=
∫ 1

0
sup

x∗(t)∈T (tx)
〈x, x∗(t)〉 dt

when 0 ∈ core domT , then FLT = FL∂f = f
and we call T (fully) decomposable.

Fitzpatrick’s Last Function ∗†
∗The use of FLT originates in discussions I had with Fitz-
patrick shortly before his death.
†T ‘inherits the differentiability’ of FLT .
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so ∇2f(x) cannot be symmetric for all x, since the off-diagonals of S are
constant. �

Example 5. If g := x2 + 1 then T (x, y) = (x + 1/20 x5 + 1/3 x3 − 1/3 y3 −
y, y + 1/20 y5 + 1/3 y3 − 1/3 x3 − x) and

fT (x, y) =
1

120
x6+

1
120

y6+
1
12

x4+
1
12

y4− 1
12

xy3− 1
12

yx3+
1
2

x2−xy+
1
2

y2.

Example 6. Consider the mapping

T (x, y) :=
(
sinh(x)− α y2/2, sinh(y)− α x2/2)

)
.

Then

DT =
(

cosh(x) −αy
−αx cosh(y)

)
which is monotone iff

α2 ≤ cosh(x)
x

cosh(y)
y

for all x, y > 0. The right hand side is a separable convex function, and is
minimized at x = y = x0 = coth(x0) = 1.199678 . . .. So T is monotone iff
α2 ≤ sinh2(x0) = 2.276717 . . ..

As before, the off-diagonal entries of DT are nonconstant and unequal,
so T is indecomposable.

4. Acyclic Decompositions

In this section, we reconstruct a modern version of a decomposition result
found in [1]. We will need to introduce some new monotonicity notions. A
mapping T : X → X∗ is said to be N -monotone for N ≥ 2 if for every
(x1, x

∗
1), (x2, x

∗
2), . . . , (xn, x∗n) ∈ grT we have:

(7)
N∑

i=1

〈x∗i , xi − xi−1〉 ≥ 0.

Here (x0, x
∗
0) := (xN , x∗N ). We write S ≤N T to indicate that T = S +R for

some N -monotone R.
By duplicating entries in (7), it is easy to see that an N -monotone map-

ping is also M -monotone for M ≤ N ; in particular, an N -monotone map-
ping is monotone. Asplund [1] showed that these classes are distinct via the
following example:

Example 7. Define a 2× 2 matrix Tn by

Tn =
(

cos(π/n) − sin(π/n)
sin(π/n) cos(π/n)

)
Then x → Tn(x) is n-monotone, but not n + 1-monotone.
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Q2. How does one generalize the decomposi-

tion of a linear monotone operator L into a

symmetric (cyclic) and a skew (acyclic) part?

Viz

L =
1

2
(L + L∗|X) +

1

2
(L− L∗|X).
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3a. Asplund’s approach to Q2

Every 3-monotone operator such that 0 ∈ T (0) has
the local property that

〈x, x∗〉+ 〈y, y∗〉 ≥ 〈x, y∗〉 (3)

whenever x∗ ∈ T (x) and y∗ ∈ T (y). We call a
monotone operator satisfying (3), 3−-monotone,
and write T ≥N S if T = S + R with R being N-
monotone (T ≥ω0 S if R is cyclically monotone.)

Proposition 6 (Dini Property) Let N be 3−,3,4,

. . ., or ω0. Consider an increasing (infinite) net
of monotone operators on a space X, satisfying

0 ≤N Tα ≤N Tβ ≤2 T

if α < β ∈ A. Suppose that 0 ∈ Tα(0),0 ∈ T (0) and
that 0 ∈ core domT . Then

a) There is a N-monotone TA with Tα ≤N TA ≤2
T, for all α ∈ A.

b) If R(T ) ⊂ MBX∗ for some M > 0 then one may
suppose R(TA) ⊂ MBX∗.

28



Proof. a) The single-valued case. Since 0 ≤2
Tα ≤2 Tβ ≤2 T , while T (0) = 0 = Tα(0), we have

0 ≤ 〈x, Tα(x)〉 ≤ 〈x, Tβ(x)〉 ≤ 〈x, T (x)〉,
for all x in domT . This shows 〈x, Tα(x)〉 converges
as α goes to ∞. Fix ε > 0, M > 0 with T (ε BX) ⊂
M BX∗. We write Tβα = Tβ − Tα for β > α, so that
〈Tβαx, x〉 → 0 for x ∈ domT as α, β →∞.
We appeal to (3) to obtain

〈x, Tβα(x)〉+ 〈y, Tβα(y)〉 ≥ 〈Tβα(x), y〉, (4)

for x, y ∈ domT . Also, 0 ≤ 〈x, Tβα(x)〉 ≤ ε for
β > α > γ(x) for all x ∈ domT .

Now, 0 ≤ 〈y, Tβα(y)〉 ≤ 〈y, T (y)〉 ≤ ε M for ‖y‖ ≤ ε2.
Thus, for ‖y‖ ≤ ε and β > α > γ(x) we have

ε(M + ε) ≥ 〈x, Tβα(x)〉+ 〈y, T (y)〉 (5)

≥ 〈x, Tβα(x)〉+ 〈y, Tβα(y)〉
≥ 〈y, Tβα(x)〉,

from which we obtain ‖Tβα(x)‖ ≤ M + ε for all
x ∈ domT , while 〈y, Tβα(x)〉 → 0 for all y ∈ X.

We conclude that {Tα(x)}α∈A is a norm-bounded
weak-star Cauchy net and so weak-star convergent
to the desired N-monotone limit TA(x).
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The set-valued case uses (3) to deduce that Tβ =

Tα + Tβα where (i) Tβα ⊂ (M + ε)BX∗ and (ii) for

each t∗βα ∈ Tβα one has t∗βα ⇁∗ 0 as α, β → ∞.

The conclusion is as before but somewhat more

technical.

b) Fix x ∈ X, and apply (3 to Tα to write

〈Tx, x〉+ 〈Ty, y〉 ≥ 〈Tαx, x〉+ 〈Tαy, y〉 ≥ 〈Tαx, y〉
for all y ∈ D(T ) = X, by Theorem 2 (c). Hence

〈Tx, x〉+ M‖y‖ ≥ ‖Tαx‖ ‖y‖, ∀‖y‖
Let ‖y‖ → ∞ to show Tα(x) lies in the M-ball, and

since the ball is weak-star closed, so does TA(x).

The set-valued case is analogous but messier. ¥

• 0 ≤2 (−ny, nx) ≤2 (−y, x) for n ∈ N, shows the

need for (3) in the deduction that Tβα(x) are

equi-norm bounded.
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F (Daniel property) If X is an Asplund space,
the proof of Prop 6 can be adjusted to show

TA(x) = norm− limα→∞ Tα(x)

Definition 1 We say a maximal monotone oper-
ator A is acyclic if whenever A = ∂g + S with S

maximal monotone and g closed and convex then
g is necessarily linear.

We provide a broad extension of Asplund’s original
idea:

Theorem 9 (Asplund Decomposition) Suppose
T is maximal monotone with core domT 6= ∅.

a) Then T may be decomposed as T = ∂f + A,
where f is closed and convex while A is acyclic.

b) If the range of T lies in M BX∗ then f may be
assumed M-Lipschitz.

♠ There is a like N−cyclic decomposition.
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A Hilbert curve in 3D

is more constructive

Proof. a) We normalize so 0 ∈ T (0). Zorn’s
lemma applies to the cyclically monotone operators

C := {C : 0 ≤ω0 C ≤2 T, 0 ∈ C(0)}
in the cyclic order. By Prop. 6 every chain in C
has a cyclically monotone upper-bound.

Fix a maximal C with 0 ≤ω0 C ≤2 T . Hence
T = C + A where by construction A is acyclic. Now,
T = C +A ⊂ ∂f +A, by Rockafellar’s result. Since
T is maximal the decomposition is as asserted.

b) We use the facts that (i) 0 ≤3− U ≤2 T im-
plies ‖U(x)‖ ≤ ‖T (x)‖ for all x and (ii) an M-
bounded cyclically monotone operator extends to
an M-Lipschitz subgradient—as Theorem 8 con-
firms. ¥
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By way of application we offer:

Corollary 5 Let T be an arbitrary maximal
monotone operator T . For µ > 0 one may decom-
pose

T ∩ µBX∗ ⊂ T̂µ = ∂fµ + Aµ,

where fµ is µ-Lipschitz and Aµ is acyclic
(with bounded range).

Proof. Combining Theorem 9 with Proposition 5
we deduce that the composition is as claimed. ¥

• In Corollary 5, rangeAµ is bounded. Thus, it
is only skew and linear when T is cyclic—so a
non-cyclic range bounded monotone operator
is never fully decomposable in the sense of Q1.

• Theorem 9 et al are entirely existential: can
one prove Theorem 9 constructively in finite
dimensions?

• How does one effectively diagnose acyclicity?
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An Acyclic Monotone Operator

A concrete example in R2 is implicit in these ob-

servations (JMB-Wiersma).

• Rθ: rotation by θ < π/2

• R̂θ: the range restriction

to B1 extended to be max-

imal with range in B1.

• CONJECTURE R̂θ is

acyclic.

3

2

2

1

1

-2

-1

3

0

-3 -1-2 0

-3

Theorem. Let

α(x) :=

√
1− 1 ∧ 1

‖x‖2, β(x) := 1 ∧ 1

‖x‖.

Then

R̂π/2(x) = α(x)R

(
x

‖x‖

)
+ β(x)

x

‖x‖
is acyclic.

I The proof is delicate and needs T2 = −I.
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3b. Fitzpatrick Functions of Order N

• The Fitzpatrick function of order N is:

FN
T (x, x∗) := sup

xN=x



〈x1, x∗〉+

N−1∑

k=1

〈xk+1 − xk, x∗k〉




where x∗k ∈ T (xk) for 1 ≤ k ≤ N − 1.

• The Rockafellar function of order N is:

RN
T (x, x1, x∗1) : =

sup 〈x− xN−1, x∗N−1〉 +
N−2∑

i=1

〈xi+1 − xi, x
∗
i 〉,

for x∗1 ∈ T (x1), x ∈ X and N ≥ 3, over all
x∗k ∈ T (xk) (for 2 ≤ k ≤ N − 1).

Then F∞T :=
(
P∞T

)∗
= supFN

T , P∞T := inf PN
T ,

and RT :=supRN
T . Moreover, for a maximal N-

monotone T we have

FN
T (x, x∗) ≥ 〈x, x∗〉

with equality if and only if x∗ ∈ T (x).
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We recast Rockafellar’s Theorem 8:

Theorem 10 Suppose A is cyclically monotone.
For a∗1 ∈ A(a1), x 7→ RA(x, a1, a∗1) is closed and
convex and RA(a1, a1, a∗1) = 0 . Also for every
x ∈ X, A(x) ⊂ ∂RA(x, a1, a∗1). When A is maximal
cyclically monotone one has A = ∂RA. Moreover,
for every closed f satisfying ∂f = A, one has

f(x)− f(a1) = RA(x, a1, a∗1) for x ∈ X.

We now connect the infinite Fitzpatrick function
to the Rockafellar function.

Theorem 11 (Bartz-Bauschke-Borwein-Reich -
Wang) Let A be cyclically monotone. For each
closed convex function f on X such that A ⊂ ∂f

one has

F∞A (x, x∗) = f(x) + sup
a∗1∈A(a1)

〈x∗, a1〉 − f(a1),

for (x, x∗) ∈ X × X∗. If actually domA = dom ∂f

then

F∞A (x, x∗) = (f ⊕ f∗)(x, x∗) := f(x) + f∗(x∗),
for all (x, x∗) ∈ X ×X∗.
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The Fitzpatrick Functions of a Rotation

Theorem 12 (BaBW) Let θ ∈ [0, π/2] and

Aθ :=

(
cos θ − sin θ
sin θ cos θ

)
.

1. θ = 0. then Aθ = I = ∇1
2‖ · ‖2 is cyclically

monotone, F∞I = 1
2‖ · ‖2 ⊕ 1

2‖ · ‖2, and n ≥ 2

Fn
I : (x, u) 7→ n− 1

2n

(
‖x‖2 + ‖u‖2

)
+

1

n
〈x, u〉. (6)

2. θ ∈ ]0, π/2]. For n ≥ 2, if n ∈ [2, π/θ[, then Aθ
is n-cyclically monotone and

Fn
Aθ

: (x, u) 7→ sin(n− 1)θ

2 sinnθ

(
‖x‖2 + ‖u‖2

)

+
sin θ

sinnθ
〈x, An−1

θ u〉. (7)

For π/θ ∈ N, Aθ is (π/θ)-monotone and

F
π/θ
Aθ

= ιGraphAθ
+ 〈·, ·〉. (8)

If n ∈ ]π/θ,+inf[, then Aθ is not n-cyclically
monotone since Fn

Aθ
≡ +∞.
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4. Maximality in Reflexive Banach Space

We begin with:

Proposition 7 A monotone operator T on a re-

flexive Banach space is maximal iff the mapping

T (·+ x) + J is surjective for all x in X.

Moreover, when J and J−1 are both single valued,

a monotone mapping T is maximal if and only if

T + J is surjective.

Proof. We prove the ‘if’. The ‘only if’ is com-

pleted in Corollary 8. Assume (w, w∗) is monoton-

ically related to the graph of T . By hypothesis, we

may solve w∗ ∈ T (x + w) + J(x). Thus w∗ = t∗+ j∗
where t∗ ∈ T (x + w), j∗ ∈ J(x). Hence,

0 ≤ 〈w − (w + x), w∗ − t∗〉
= −〈x, w∗ − t∗〉 = −〈x, j∗〉 = −‖x‖2 ≤ 0.

Thus, j∗ = 0, x = 0. So w∗ ∈ T (w), and we are

done. ¥
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We now prove our central result whose proof—
originally hard and due to Rockafellar—has been
revisited over many years culminating in recent re-
sults of Simons, Penot, Zălinescu among others:

Theorem 13 (Sum) Let X be reflexive, let T be
maximal monotone and f closed and convex. Sup-
pose 0 ∈ core {conv dom(T )− conv dom(∂f)}. Then

(a) ∂f + T + J is surjective.

(b) ∂f + T is maximal monotone.

(c) ∂f is maximal monotone.

Proof. (a) We consider the Fitzpatrick function
FT (x, x∗) and fJ(x) := f(x) + 1/2‖x‖2.

Let G(x, x∗) := −fJ(x)− f∗J(−x∗). Observe that

FT (x, x∗) ≥ 〈x, x∗〉 ≥ G(x, x∗)
pointwise thanks to the Fenchel-Young inequality

fJ(x) + f∗J(−x∗) ≥ 〈x,−x∗〉,
for all x ∈ X, x∗ ∈ X∗, along with Proposition 1.
The (CQ) assures the Sandwich theorem applies
to FT ≥ G since f∗J is everywhere finite by Prop. 3.
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Then there are w ∈ X and w∗ ∈ X∗ such that

FT (x, x∗)−G(z, z∗) ≥ w(x∗ − z∗) + w∗(x− z) (9)

for all x, x∗ and all z, z∗. In particular, for x∗ ∈ T (x)

and for all z∗, z we have

〈x− w, x∗ − w∗〉 +
[
fJ(z) + f∗J(−z∗) + 〈z, z∗〉]

≥ 〈w − z, w∗ − z∗〉.
Now use the fact that −w∗ ∈ dom(∂f∗J), by Prop.

3, to deduce that −w∗ ∈ ∂fJ(v) for some v and so

〈v − w, x∗ − w∗〉 + [fJ(v) + f∗J(−w∗) + 〈v, w∗〉]
≥ 〈w − v, w∗ − w∗〉 = 0.

The second term on the left is zero and so by

maximality w∗ ∈ T (w). Substitution of x = w and

x∗ = w∗ in (9), and rearranging yields

〈w, w∗〉 + {〈−z∗, w〉 − f∗J(−z∗)}
+ {〈z,−w∗〉 − fJ(z)} ≤ 0,

for all z, z∗. Taking the supremum over z and z∗
produces 〈w, w∗〉+ fJ(w) + f∗J(−w∗) ≤ 0.
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This shows −w∗ ∈ ∂fJ(w) = ∂f(w) + J(w) via the

sum formula for subgradients, implicit in Prop. 3.

Thus, 0 ∈ (T + ∂fJ)(w). As all translations of

T + ∂f may be used, while (CQ) is undisturbed,

we see that (∂f + T ) (x+ ·)+ J is surjective which

completes (a).

(b) ∂f + T is maximal by Proposition 7.

(c) Setting T ≡ 0 we recover the reflexive case of

the maximality for a lsc convex function. ¥

Recall that the normal cone NC(x) to a closed con-

vex set C at a point x in C is NC(x) = ∂ιC(x).

Corollary 6 The sum of a maximal monotone op-

erator T and a (necessarily maximal) normal cone

NC on a reflexive space is maximal monotone when-

ever the transversality condition

0 ∈ core [C − conv dom(T )]

holds.
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• In particular, if T is monotone and

C := cl conv dom(T )

has nonempty interior, then for any maximal
extension T the sum T + NC is a ‘domain pre-
serving’ maximal monotone extension of T .

Einstein, 1924

• “Quantentheorie des einatomigen idealen Gases”

• On Bose-Einstein condensates, in Paul Ehren-
fest’ papers in Leiden. Confirmed in 1995.
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Corollary 7 (Rockafellar) The sum of maximal
monotone operators T1 and T2, on a reflexive space,
is maximal when the transversality condition

0 ∈ core [conv dom(T1)− conv dom(T2)] holds.

Proof. Theorem 13 applies to the product
T (x, y) := (T1(x), T2(y)) and the indicator function
f(x, y) := ι{x=y} of the diagonal in X ⊗X.

We check that the given transversality condition
implies the needed (CQ), as in Theorem 13. Hence,
T + JX⊗X + ∂ι{x=y} is surjective. Thus, so is

T1 + T2 + 2 J

and we are done. ¥

• One may easily replace the core condition by a
relativized version—wrt the closed affine hull.

We re-record that F∂f(x, x∗) ≤ f(x) + f∗(x∗), and
that we have exploited the beautiful inequality

FT (x, x∗) + f(x) + f∗(−x∗) ≥ 0, (10)

for all x ∈ X, x∗ ∈ X∗, valid for any maximal
monotone T and any convex function f .
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Ludolph’s Rebuilt Tombstone in Leiden

Ludolph van Ceulen (1540-1610)

• Tombstone reconsecrated July 5, 2000.
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4a. The Fitzpatrick Inequality

We have a stronger Fitzpatrick inequality

FT1
(x, x∗) + FT2

(x,−x∗) ≥ 0 (11)

for all x ∈ X, x∗ ∈ X∗, valid for any maximal
monotone T1, T2. By Proposition 1

F∗T (x∗, x) ≥ sup
y∗∈T (y)

〈x, y∗〉+ 〈x∗, y〉 − FT (y, y∗)

= FT (x, x∗) (12)

and we clearly have an extension of (11) in that

H1
T (x, x∗) +H2

S(x,−x∗) ≥ 0,

for any representative functions H1
T and H2

S. Let-
ting F̂S(x, x∗) := FS(x,−x∗), we may establish:

Theorem 14 (Sums) Let S and T be maximal
monotone on a reflexive space. Suppose that∗

0 ∈ core {dom(FT )− dom(F̂S)} as happens if
0 ∈ core {conv graph (T )− conv graph (−S)}.

Then

0 ∈ range (T + S).

∗This works for any representative functions.
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Proof. We use Fenchel duality or follow the steps
of Theorem 13. We have µ ∈ X, λ ∈ X∗, β ∈ R with

FT (x, x∗) − 〈x, λ〉 − 〈µ, x∗〉+ 〈µ, λ〉 ≥ β

≥ −FS(y,−y∗) + 〈y, λ〉 − 〈µ, y∗〉 − 〈µ, λ〉,
for all variables x, y, x∗, y∗. Hence for x∗ ∈ T (x) and
−y∗ ∈ S(y) we obtain

〈x− µ, x∗ − λ〉 ≥ β ≥ 〈y − µ, y∗ + λ〉.
If β ≤ 0, we derive that −λ∗ ∈ S(µ) and so β = 0;
consequently, λ ∈ T (µ) and since 0 ∈ (T + S)(µ)
we are done. If β ≥ 0 we argue first with T . ¥

• A graph (CQ) is formally tougher than a do-
main (CQ) as conv graph (J`2) is the diagonal
in `2 ⊗ `2 = dom(FJ

`2
), while

FJ
`2
(x, x∗) =

1

4
‖x + x∗‖2,

yielding a simple proof in `2 of Cor. 8 below.

• Zalinescu has adapted this to extend results
like those of Simons in the reflexive case: the
sum has a semi-convex graph.
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Corollary 8 (Rockafellar-Minty surjectivity the-
orem) For a maximal monotone operator on a re-
flexive Banach space, range (T + J) = X∗.

Proof. Let f ≡ 0 in Theorem 13. Alternatively,

on noting that FJ(x, x∗) ≤ ‖x‖2+‖x∗‖2
2 , we may apply

Theorem 14. ¥

4b. Extensions to Non-reflexive Space

Let T denote the monotone closure of T in
X∗∗ ×X∗. That is, x∗ ∈ T (x∗∗) when

inf
y∗∈T (y)

〈x∗ − y∗, x∗∗ − y〉 ≥ 0.

Recall that T is type (NI) if

inf
y∗∈T (y)

〈x∗ − y∗, x∗∗ − y〉 ≤ 0

for all x∗∗ ∈ X∗∗, x∗ ∈ X∗:

Corollary 9 (Gossez for (D)). For T type (NI)

R(T + ∂f∗∗ + J∗∗) = X∗.

Proof. Mimic the steps of Theorem 13. ¥
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4c. A Non-reflexive Sum Rule

Theorem 15 Suppose that A and B are maximal
monotone in Banach space. If either

a) intD(A) ∩ intD(B) is nonempty;

b) intD(A) ∩ D(B) 6= ∅ while D(B) is closed and
convex; or

c) (Voisei) Both D(A), D(B) are closed and con-
vex and

0 ∈ core conv {D(A)−D(B)} . (13)

Then A + B is maximal monotone.

Let

ΦA,B(x, x∗) := inf
{u∗+v∗=x∗}

{FA(x, u∗) + FB(x, v∗)}

ΨA,B(x, x∗) := inf
{u∗+v∗=x∗}

{PA(x, u∗) + PB(x, v∗)} .
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Proof. Voisei (2005) shows, as in §5, that (13)
implies the lower-semicontinuity and attainment of
ΦA,B as the conjugate of ΨA,B. Hence

ΦA,B(x, x∗) ≥ 〈x, x∗〉
with equality if and only if x∗ ∈ (A + B)(x).

Moreover,

FA+B ≤ ΦA,B ≤ PA+B.

Hence A + B is maximal iff

FA+B(x, x∗) ≥ 〈x, x∗〉, (14)

for all x, x∗. Now all three conditions imply that

conv D(A) ∩ conv D(B) ⊂ D(A + B)
alg

,

since D(A) is convex when D(A) has nonempty
interior. This in turn implies (14). ¥

Corollary 10 Suppose that T is maximal monotone,
C is closed and convex while C ∩ intD(T ) 6= ∅.

Then T + NC is maximal monotone.

In particular, when D(T ) has nonempty interior,
then T is of type (FPV).
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4d. The Case of a Subgradient

We can significantly improve the result in this case:

Theorem 16 Suppose T is maximal monotone and
f is convex and closed. Suppose dom f ∩ intD(T )
is nonempty. Then T + ∂f is maximal.

Proof. We use FT,f(x, x∗) :=

f(x) + sup
y∗∈T (y)

{〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉 − f(y)},

with conjugate PT,f(x, x∗) :=

f(x) + convy∗i∈T (yi)
{〈yi, y

∗
i 〉 − f(yi)}.

We define VT,f(x, x∗) :=f(x) + (FT,f(x, ·)¤f∗)(x∗).
Then

FT,f(x, x∗) ≤ VT,f(x, x∗) ≤ PT,f(x, x∗),
and (a) FT,f(x, x∗) ≤ 〈x, x∗〉 for (x, x∗) monotoni-
cally related to Gr(T + ∂f) while (b) VT,f(x, x∗) ≥
〈x, x∗〉 for all x, x∗ with equality exactly for x∗ ∈
T (x) + ∂f(x). (c) The (CQ) ensures FT,f repre-
sents T + ∂f . As before

FT,f(x, x∗) = 〈x, x∗〉 ⇒ PT,f(x, x∗) = 〈x, x∗〉.
[Note: FT,0 = FT PT,0 = PT ] ¥
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5. Further Reflexive Applications

Another very useful result is:

Theorem 16 (Composition) Suppose X and Y

are Banach spaces with X reflexive, that T is max-
imal monotone operator on Y , and that A : X 7→ Y ,
is a bounded linear mapping. Then

TA := A∗ ◦ T ◦A

is maximal monotone on Xwhenever

0 ∈ core (range (A) + conv domT )

Proof. Monotonicity is clear. To obtain maximal-
ity, use the Fitzpatrick inequality (11) to write

f(x, x∗) + g(x, x∗) ≥ 0,

where

f(x, x∗) := inf{FT (Ax, y∗): A∗y∗ = x∗}
and

g(x, x∗) :=
1

2
‖x‖2 +

1

2
‖x∗‖2.
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Apply Fenchel’s duality theorem—or use the Sand-
wich theorem directly—to deduce the existence of
x ∈ X, x∗ ∈ X∗ with

f∗(x∗, x) + g∗(x∗, x) ≤ 0. (15)

Carefully using the standard formula for the conju-
gate of a convex composition —we have for some
y∗ with A∗y∗ = x∗:

f∗(x∗, x) = inf{F∗T (Ax, y∗): A∗y∗ = x∗}
= min{F∗T (y∗, Ax): A∗y∗ = x∗}
= F∗T (y∗, Ax) ≥ FT (Ax, y∗),

the last inequality following from (12). Moreover,

g∗(x∗, x) =
1

2
‖x‖2 +

1

2
‖A∗y∗‖2.

Thus, (15) implies that
{
FT (Ax, y∗)− 〈y∗, Ax〉

}

+
{
1

2
‖x‖2 +

1

2
‖A∗y∗‖2 + 〈y∗, Ax〉

}
≤ 0.

We see that y∗ ∈ T (Ax), −x∗ := −A∗y∗ ∈ JX(x),
since both bracketed terms are non-negative. Hence,

0 ∈ JX(x) + TA(x).
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In the same way if we start with

f(x, x∗) := inf{FT (Ax, y∗): A∗y∗ = x∗ + x∗0},

g(x, x∗) :=
1

2
‖x‖2 +

1

2
‖x∗‖2 − 〈x, x∗0〉,

we deduce, x∗0 ∈ JX(x) + TA(x). This applies to all
domain translations of T . As in Theorem 13, this
is sufficient to conclude TA is maximal. ¥

• This recovers the reflexive case of the formula
that A∗∂f(Ax) = ∂(fA)(x) with the same (CQ).

• A recent paper [Bot et al] relaxes the (CQ) to

{(A∗y∗, Ax, r): F∗T (Ax, y∗) ≤ r} (16)

is relatively closed in X∗ ×R(A)× R.

• Application of Theorem 16 to

T (x, y) := (T1(x), T2(y)),

and A(x) := (x, x) yields TA(x) = T1(x)+T2(x)
and recovers Theorem 13. With more effort
one may equally embed Theorem 16 in Theo-
rem 13.

51



Note only X need be reflexive. A key case of The-
orem 16 is a reflexive injection.

Corollary 11 Let T be maximal monotone on a
Banach space Y . Let ι denote the injection of a
reflexive subspace Z ⊂ Y into Y .
Then TZ := ι∗ ◦ T ◦ ι is maximal monotone on Z if

0 ∈ core (Z + conv domT ).

Hence, if 0 ∈ core (conv domT ), then TZ is maximal
for each reflexive Z.

• In this case, (16) implies the result holds when

{(y∗|Z, z, r): H∗T (z, y∗) ≤ r, z ∈ Z}
is relatively closed in Z∗ × Z × R
What happens generally?∗

∗Conjecture: ‘most’ subspaces behave well ⇒ T is (FPV)
and so D(T ) convex.
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Conjectural Details

1. For a lsc representative HT and dim F < ∞, if

HF
T (y, y∗) := inf{HT (y, x∗): x∗|F = y∗}

is lsc on F × F ∗ then TF is maximal.

2. Equivalently, this holds if

epiH+ {0} × F⊥ × {0} (17)

is closed.

3. Hence, if (17) holds for ‘most’ F meeting domT ,
we have a net of approximating ‘nice’ maximal
monotone (e.g., FPV, FP) operators.

Example 1 Consider T (x1, x2) := ∂f(x1, x2) and
HT (x1, x2, x∗1, x∗2) := f(x1, x2) + f∗(x∗1, x∗2) where

f(x1, x2) := max{|x1|,1−
√

x2}, x2 ≥ 0

f∗(x∗1, x∗2) =
{(|x∗1| − 1) ∨ x∗2}2

4x2
− (|x∗1| − 1) ∨ x∗2,

and |x∗1| ≤ 1, x∗2 < 0. Then (only) TR×0 is not
maximal and, necessarily, HR×0

T is not lsc.

54



A Dense Limiting Example

Example 2 Let C be closed convex and bounded
in an infinite dimensional Banach space X and fix
x0 6= 0 in X. Define

fC(x) := inf{t ∈ R : x + t x0 ∈ C}.
Set cx := x− fC(x)x0 ∈ C. Then fC is closed and

convex and has no global minimum. Moreover,
∂fC(x) = ∂fC(cx). This implies that

dom ∂fC ⊂ suppC + Rx0

Now arrange that 0 ∈ C, that

Y
⋂

span (C ∪ {x0}) = 0

for a dense subspace Y, while span C is also dense.
It follows that (∂fC)F fails to be maximal for every
non-trivial finite dimensional subspace F ⊂ Y .

Explicitly, take the (norm-compact) Hilbert cube
K := {x ∈ `2 : |xn| ≤ 1/2n,∀n ∈ N} and x0 :=
(1/2n) so that

fK(x) := sup
n∈N

|2n xn − 1|,

and take Y \ {0} to contain only more slowly de-
creasing sequences.
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5a. Variational Inequalities

T is coercive on C if

inf
y∗∈T (y)+∂ιC(y)

〈y, y∗〉/‖y‖ → ∞

as y ∈ C goes to infinity in

norm.a

aThis may be weakened signifi-
cantly, especially if 0 ∈ C.

A variational inequality V(T,C) requests a solu-
tion y ∈ C and y∗ ∈ T (y) to

〈y∗, x− y〉 ≥ 0 ∀x ∈ C.

Equivalently

0 ∈ T (y) + NC(y)

or

0 ∈ T (y) + ∂ιC(y).

• This models the necessary condition

〈∇f(x), c− x〉 ≥ 0

for all c ∈ C.
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Corollary 12 Suppose T is maximal monotone on

a reflexive space and is coercive on the closed con-

vex set C while 0 ∈ core (C − conv dom(T )). Then

V (T, C) has a solution.

Proof. Let f := ιC, the indicator function. For

n = 1,2,3 · · · , let Tn := T + J/n. We solve

0 ∈ (Tn + ∂ιC) (yn) = (T + ∂ιC) +
1

n
J(yn) (18)

and take limits as n goes to infinity.

More precisely, Theorem 13, yields yn in C, and

y∗n ∈ (T + ∂ιC) (yn), j∗n ∈ J(yn)/n with y∗n = −j∗n.
Then

〈y∗n, yn〉 = −1

n
〈j∗n, yn〉 = −1

n
‖yn‖2 ≤ 0,

and so coercivity of T + ∂ιC implies that ‖yn‖ re-

mains bounded and so j∗n → 0. We may assume

yn ⇁ y.

Since T +∂ιC is maximal monotone (again by The-

orem 13), it is demi-closed. It follows that

0 ∈ (T + ∂ιC)(y), and y is as required. ¥
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Letting C := X in Corollary 12 we deduce

Corollary 13 Every coercive maximal monotone
operator on a Banach space is surjective if (and
only if) the space is reflexive.

Proof. To complete the proof we recall that, by
James’ theorem, surjectivity of J is equivalent to
reflexivity of the corresponding space. ¥

We may improve Corollary 3 in the reflexive setting:

Theorem 17 Suppose T is maximal monotone on
a reflexive space. Then dom(T ) and range (T )
have convex closure (and interior).

Proof. Without loss, we assume 0 is in the clo-
sure of conv dom(T ). Fix y ∈ dom(T ), y∗ ∈ T (y).
Corollary 8 applied to T/n solves w∗n/n + j∗n = 0
with w∗n ∈ T (wn), j∗n ∈ J(wn), for integer n > 0. By
monotonicity

1

n
〈y∗, y − wn〉 ≥ 1

n
〈w∗n, y − wn〉 = ‖wn‖2 − 〈j∗n, y〉

where ‖wn‖2 = ‖j∗n‖2 = 〈j∗n, wn〉 and wn ∈ dom(T ).
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We deduce supn ‖wn‖ < ∞. Thus, (j∗n) has a weak

cluster point j∗. Thence, denoting D := dom(T )

d2
D(0) ≤ lim inf

n→∞ ‖wn‖2 ≤ inf
y∈D

〈j∗, y〉
= inf

y∈conv D
〈j∗, y〉 ≤ ‖j∗‖ dconv D(0) = 0.

We have shown that cl conv dom(T ) ⊂ cl dom(T )

and so cl dom(T ) is convex as required.

As range (T ) = dom(T−1) and X∗ is reflexive we

are done. ¥

More generally:

Theorem 18 (Fitzpatrick, Phelps) Every locally

maximal monotone operator on a Banach space

has cl rangeT convex.

Proof. We suppose not and then that there are

±x∗ in cl rangeT of unit-norm but with midpoint

0 6∈ cl rangeT .
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Proof. We build the ball

B
′
:= conv {±2x∗, α B∗X}

where 0 < α < 1/2 is chosen with

(rangeT ) ∩ 2αB∗X = ∅.
We extend T ∩B

′
as in Prop. 5, so that

R(T̂ ) ⊂ cl conv {R(T )∩B
′} and R(T̂ )\R(T ) ⊂ bdB

′
.

It follows that

range T̂ ⊂ (R(T )∩B′)
⋃

(cl conv {R(T )∩B
′}∩bdB

′
).

Hence range T̂ is weak-star disconnected. As T̂

is a weak-star cusco it has a weak-star connected
range which contradicts the construction. ¥

B
′
(red), α BX∗ (yellow) and 2α BX∗ (grey)

59



Corollary 14 Suppose T is maximal monotone on

a reflexive Banach space X and is locally bounded

at each point of cl dom(T ). Then dom(T ) = X.

Proof. Observe dom(T ) must be closed and so

convex. By the Bishop-Phelps theorem, there is

some boundary point x ∈ dom(T ) with a non-zero

support functional x∗.
Then T (x) + [0,∞)x∗ is monotonically related to

the graph of T . By maximality

T (x) + [0,∞)x∗ = T (x)

which is non-empty and (linearly) unbounded. ¥
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6. Limiting Examples and Constructions

• It is unknown outside reflexive space whether

cl dom(T ) must always be convex for a maxi-

mal monotone operator

• Reflexivity in Theorem 17 may be relaxed to

R(T + J) is boundedly w∗-dense—as an exam-

ination of the proof will show

We do however have the following result:

Theorem 19 (JB-SF-Vanderwerff) TFAE.

(a) A Banach space X is reflexive

(b) int range (∂f) is convex for each coercive lsc

convex function f on X

(c) int range (T ) is convex for each coercive maxi-

mal monotone mapping T .
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Proof. Suppose X is nonreflexive and p ∈ X with
‖p‖ = 5 and p∗ ∈ Jp where J is the duality map.
Define

f(x) := max
{
1

2
‖x‖2, ‖x∓ p‖ − 12± 〈p∗, x〉

}

for x ∈ X. By the max-formula, for x ∈ BX,

∂f(±p) = BX∗ ± p∗, ∂f(x) = Jx (19)

using inequalities like ‖p − p‖ − 12 + 〈p∗, p〉 = 13
> 25

2 = 1
2‖p‖2.

Moreover, f(0) = 0 and f(x) > 1
2‖x‖ for ‖x‖ > 1,

thus ‖x∗‖ > 1
2 if x∗ ∈ ∂f(x) and ‖x‖ > 1. Combining

this with (19) shows

range (∂f) ∩ 1

2
BX∗ = range (J) ∩ 1

2
BX∗.

Let U := UX∗ denote the open unit ball in X∗. Now
James’ theorem gives x∗ ∈ 1

2UX∗ \ range (J), thus
UX∗ \ range (∂f) 6= ∅. However, from (19)

U ⊂ conv {(p∗ + U) ∪ (−p∗ + U)} ⊂ conv intR(∂f)

so range (∂f) has non-convex interior. This shows
that (b) implies (a) while (c) implies (b) is clear.

Finally (a) ⇒ (c) follows from Theorem 17. ¥
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• Every locally maximal operator T has cl rangeT

convex (Fitzpatrick-Phelps)

Observe the two roles of convexity in the proof

of (a) ⇔ (c). One often uses the same logic to

establish a result of the form

“Property P holds for all maximal monotone

operators if and only if X is a Banach space

with property Q.”

Two other examples are:

• “Every monotone operator T on a space X is

bounded on bounded subsets of int domT iff X

is finite dimensional.”

• “Every monotone operator T on a space X is

single valued and norm-continuous on a generic

subset of int domT iff X is an Asplund space.”
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Example 3 Most explicitly Fitzpatrick and Phelps

used c0, the space of null sequences, and

f(x) := ‖x− e1‖∞ + ‖x + e1‖∞ (20)

where e1 is first unit vector. Then int range ∂f is

not convex (disconnected):

int range(∂f) =
{
U`1 + e1

}
∪

{
U`1 − e1

}

cl-int range(∂f) =
{
B`1 + e1

}
∪

{
B`1 − e1

}

both of which are far from convex. ¥

The range of ∂f in `1

H It is instructive to compute cl-range (∂f)
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Example 4 Gossez gives a coercive maximal
monotone operator T with full domain whose range
has a non-convex closure.

T is of the form 2−n J`1 + S for some n > 0 large
with bounded linear S : `1 → `∞ given by

(Sx)n := −
∑

k<n

xk +
∑

k>n

xk, ∀x = (xk) ∈ `1, n ∈ N.

In fact, ∓S : `1 7→ `∞ is skew bounded
and S∗ is not monotone but −S∗ is.

• Hence, −S is both of dense type and locally
maximal monotone (also called FP) while S is
in neither class (Bauschke-JMB) ¥

• Relatedly, let ι be the injection of `1 into `∞.
For small ε > 0

Sε := ει + S

is a coercive maximal monotone operator for
which the closure Sε fails to be coercive in X∗∗.

One may use a smooth renorming of `1. This
means T +λJ is single-valued, demicontinuous.
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Example 5 (Some further related results) More
abstractly, one can show that if the underlying
space X is rugged, meaning cl span range (J−J) =
X∗, then the following are equivalent whenever T

is bounded linear and maximal monotone:

i) T is of dense type.

ii) cl − range (T + λJ) = X∗, ∀λ > 0.

iii) cl − range (T + λJ) is convex, ∀λ > 0.

iv) T + λJ is locally maximal monotone, ∀λ > 0.

• Equivalences i)–iv) hold for the following rugged
spaces: c0, c, `1, `∞, L1[0,1], L∞[0,1], C[0,1].

In cases like c0 or C[0,1], which contain no
complemented copy of `1, a maximal monotone
bounded linear T is always of dense type.∗

In particular, S in Example 4 is necessarily not
of dense type, etc.

∗SF and JMB spent several weeks in 1994 looking for a
counter-example in C[0,1].
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7. Conclusion

Fitzpatrick’s function was built to provide a trans-
parent convex alternative to earlier saddle function
constructions of Krauss. His interests were more
in differentiation theory for Lipschitz functions.

Results relating when a maximal monotone T is
single-valued to differentiability of FT were not
forthcoming, and he put the function aside.

D-Drive

• This is still the one area where to the best of
my knowledge FT has proved of little help—in
part because generic properties of domFT and
of dom(T ) seem poorly related.
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• By contrast, Fitzpatrick’s function and its rela-
tives now provide the easiest access to a gamut
of solvability and boundedness results.

The clarity of the constructions also offers hope for
resolving some of the most persistent open ques-
tions about maximal monotone operators such as:

Q3. Must cl dom(T ) always be convex? Simons
shows this is so for operators of dual type (FPV).

Q4. Can T1 + T2 fail be maximal when

0 ∈ core conv (dom(T1)− dom(T2))?

Q5. Given a maximal monotone T , can one asso-
ciate a convex fT with T in such fashion that
T (x) is singleton as soon as ∂fT (x) is?

Q6. Are there some nonreflexive spaces, such as
c0, for which such questions can be answered
in the affirmative?∗

∗Conjecture. On c0 all maximal operators are type (NI).

68



Non-convex

functions are

hard too . . .
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Chapter 9

More Nonsmooth
Structure

9.1 Rademacher’s Theorem

We mentioned Rademacher’s fundamental theorem on the differentiability
of Lipschitz functions in the context of the Intrinsic Clarke subdifferential
formula (Theorem 6.2.5):

∂◦f(x) = conv {lim
r
∇f(xr) | xr → x, xr �∈ Q}, (9.1.1)

valid whenever the function f : E → R is locally Lipschitz around the
point x ∈ E and the set Q ⊂ E has measure zero. We prove Rademacher’s
theorem in this section, taking a slight diversion into some basic measure
theory.

Theorem 9.1.2 (Rademacher) Any locally Lipschitz map between Euc-
lidean spaces is Fréchet differentiable almost everywhere.

Proof. Without loss of generality (Exercise 1), we can consider a locally
Lipschitz function f : Rn → R. In fact, we may as well further suppose
that f has Lipschitz constant L throughout Rn, by Exercise 2 in Section
7.1.

Fix a direction h in Rn. For any t �= 0, the function gt defined on Rn

by

gt(x) =
f(x + th)− f(x)

t

is continuous, and takes values in the interval I = L‖h‖[−1, 1], by the
Lipschitz property. Hence, for k = 1, 2, . . ., the function pk : Rn → I
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Jon Borwein
Highlight
Rademacher

Jon Borwein
Highlight
ntrinsic Clarke subdifferential
formula



214 9. More Nonsmooth Structure

defined by
pk(x) = sup

0<|t|< 1/k

gt(x)

is lower semicontinuous and therefore Borel measurable. Consequently, the
upper Dini derivative D+

h f : Rn → I defined by

D+
h f(x) = lim sup

t→0
gt(x) = inf

k∈N
pk(x)

is measurable, being the infimum of a sequence of measurable functions.
Similarly, the lower Dini derivative D−

h f : Rn → I defined by

D−
h f(x) = lim inf

t→0
gt(x)

is also measurable.
The subset of Rn where f is not differentiable along the direction h,

namely
Ah = {x ∈ Rn |D−

h f(x) < D+
h f(x)},

is therefore also measurable. Given any point x ∈ Rn, the function t �→
f(x + th) is absolutely continuous (being Lipschitz), so the fundamental
theorem of calculus implies this function is differentiable (or equivalently,
x + th �∈ Ah) almost everywhere on R.

Consider the nonnegative measurable function φ : Rn×R→ R defined
by φ(x, t) = δAh

(x+th). By our observation above, for any fixed x ∈ Rn we
know

∫
R

φ(x, t) dt = 0. Denoting Lebesgue measure on Rn by μ, Fubini’s
theorem shows

0 =
∫
Rn

(∫
R

φ(x, t) dt
)

dμ =
∫
R

(∫
Rn

φ(x, t) dμ
)

dt =
∫
R

μ(Ah) dt

so the set Ah has measure zero. Consequently, we can define a measurable
function Dhf : Rn → R having the property Dhf = D+

h f = D−
h f almost

everywhere.
Denote the standard basis vectors in Rn by e1, e2, . . . , en. The function

G : Rn → Rn with components defined almost everywhere by

Gi = Dei
f =

∂f

∂xi
(9.1.3)

for each i = 1, 2, . . . , n is the only possible candidate for the derivative of
f . Indeed, if f (or −f) is regular at x, then it is easy to check that G(x)
is the Fréchet derivative of f at x (Exercise 2). The general case needs a
little more work.

Consider any continuously differentiable function ψ : Rn → R that is
zero except on a bounded set. For our fixed direction h, if t �= 0 we have∫

Rn

gt(x)ψ(x) dμ =
∫
Rn

f(x)
ψ(x− th)− ψ(x)

t
dμ.
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9.1 Rademacher’s Theorem 215

As t → 0, the bounded convergence theorem applies, since both f and ψ
are Lipschitz, so∫

Rn

Dhf(x)ψ(x) dμ = −
∫
Rn

f(x) 〈∇ψ(x), h〉 dμ.

Setting h = ei in the above equation, multiplying by hi, and adding over
i = 1, 2, . . . , n, yields∫

Rn

〈h,G(x)〉ψ(x) dμ = −
∫
Rn

f(x) 〈∇ψ(x), h〉 dμ =
∫
Rn

Dhf(x)ψ(x) dμ.

Since ψ was arbitrary, we deduce Dhf = 〈h,G〉 almost everywhere.
Now extend the basis e1, e2, . . . , en to a dense sequence of unit vectors

{hk} in the unit sphere Sn−1 ⊂ Rn. Define the set A ⊂ Rn to consist of
those points where each function Dhk

f is defined and equals 〈hk, G〉. Our
argument above shows Ac has measure zero. We aim to show, at each point
x ∈ A, that f has Fréchet derivative G(x).

Fix any ε > 0. For any t �= 0, define a function rt : Rn → R by

rt(h) =
f(x + th)− f(x)

t
− 〈G(x), h〉.

It is easy to check that rt has Lipschitz constant 2L. Furthermore, for each
k = 1, 2, . . ., there exists δk > 0 such that

|rt(hk)| < ε

2
whenever 0 < |t| < δk.

Since the sphere Sn−1 is compact, there is an integer M such that

Sn−1 ⊂
M⋃

k=1

(
hk +

ε

4L
B
)
.

If we define δ = min{δ1, δ2, . . . , δM} > 0, we then have

|rt(hk)| < ε

2
whenever 0 < |t| < δ, k = 1, 2 . . . ,M.

Finally, consider any unit vector h. For some positive integer k ≤ M
we know ‖h− hk‖ ≤ ε/4L, so whenever 0 < |t| < δ we have

|rt(h)| ≤ |rt(h)− rt(hk)|+ |rt(hk)| ≤ 2L
ε

4L
+

ε

2
= ε.

Hence G(x) is the Fréchet derivative of f at x, as we claimed. �

An analogous argument using Fubini’s theorem now proves the subdiffer-
ential formula (9.1.1)—see Exercise 3.
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216 9. More Nonsmooth Structure

Exercises and Commentary

A basic reference for the measure theory and the version of the fundamental
theorem of calculus we use in this section is [170]. Rademacher’s theorem
is also proved in [71]. Various implications of the insensitivity of Clarke’s
formula (9.1.1) to sets of measures zero are explored in [18]. In the same
light, the generalized Jacobian of Exercise 4 is investigated in [72].

1. Assuming Rademacher’s theorem with range R, prove the general
version.

2. ∗ (Rademacher’s theorem for regular functions) Suppose the
function f : Rn → R is locally Lipschitz around the point x ∈
Rn. Suppose the vector G(x) is well-defined by equation (9.1.3). By
observing

0 = f−(x; ei) + f−(x;−ei) = f◦(x; ei) + f◦(x;−ei)

and using the sublinearity of f◦(x; ·), deduce G(x) is the Fréchet
derivative of f at x.

3. ∗∗ (Intrinsic Clarke subdifferential formula) Derive formula
(9.1.1) as follows.

(a) Using Rademacher’s theorem (9.1.2), show we can assume that
the function f is differentiable everywhere outside the set Q.

(b) Recall the one-sided inclusion following from the fact that the
Clarke subdifferential is a closed multifunction (Exercise 12 in
Section 6.2)

(c) For any vector v ∈ E and any point z ∈ E, use Fubini’s theorem
to show that the set {t ∈ R | z + tv ∈ Q} has measure zero, and
deduce

f(z + tv)− f(z) =
∫ t

0

〈∇f(z + sv), v〉 ds.

(d) If formula (9.1.1) fails, show there exists v ∈ E such that

f◦(x; v) > lim sup
w→x, w �∈Q

〈∇f(w), v〉.

Use part (c) to deduce a contradiction.

4. ∗∗ (Generalized Jacobian) Consider a locally Lipschitz map be-
tween Euclidean spaces h : E→ Y and a set Q ⊂ E of measure zero
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3. * *  (Intrinsic Clarke subdifferential formula) Derive formula 
(9.1.1) as follows. 

(a) Using Rademacher's theorem (9.1.2), show we can assume that 
the function f is differentiable everywhere outside the set Q. 

(b) Recall the one-sided inclusion following from the fact that the 
Clarke subdifferential is a closed multifunction (Exercise 12 in 
Section 6.2) 

(c) For any vector u t E and any point z t E, use Fubini's theorem 
to show that the set {t t R 1 z + tu t Q} has measure zero, and 
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(d) If formula (9.1.1) fails, show there exists u t E such that 

f "(x; u) > limsup (V f (w), u) 
w-z, @Q 

Use part (c) to  deduce a contradiction. 
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9.1 Rademacher’s Theorem 217

outside of which h is everywhere Gâteaux differentiable. By analogy
with formula (9.1.1) for the Clarke subdifferential, we call

∂Qh(x) = conv {lim
r
∇h(xr) | xr → x, xr �∈ Q},

the Clarke generalized Jacobian of h at the point x ∈ E.

(a) Prove that the set Jh(x) = ∂Qh(x) is independent of the choice
of Q.

(b) (Mean value theorem) For any points a, b ∈ E, prove

h(a)− h(b) ⊂ conv Jh[a, b](a− b).

(c) (Chain rule) If the function g : Y → R is locally Lipschitz,
prove the formula

∂◦(g ◦ h)(x) ⊂ Jh(x)∗∂◦g(h(x)).

(d) Propose a definition for the generalized Hessian of a continuously
differentiable function f : E→ R.
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9.2 Proximal Normals and Chebyshev Sets

We introduced the Clarke normal cone in Section 6.3 (Tangent Cones), via
the Clarke subdifferential. An appealing alternative approach begins with
a more geometric notion of a normal vector. We call a vector y ∈ E a
proximal normal to a set S ⊂ E at a point x ∈ S if, for some t > 0, the
nearest point to x + ty in S is x. The set of all such vectors is called the
proximal normal cone, which we denote Np

S(x).
The proximal normal cone, which may not be convex, is contained in

the Clarke normal cone (Exercise 3). The containment may be strict, but
we can reconstruct the Clarke normal cone from proximal normals using
the following result.

Theorem 9.2.1 (Proximal normal formula) For any closed set S ⊂ E
and any point x ∈ S, we have

NS(x) = conv
{

lim
r

yr | yr ∈ Np
S(xr), xr ∈ S, xr → x

}
.

One route to this result uses Rademacher’s theorem (Exercise 7). In this
section we take a more direct approach.

The Clarke normal cone to a set S ⊂ E at a point x ∈ S is

NS(x) = cl (R+∂◦dS(x)),

by Theorem 6.3.8, where

dS(x) = inf
z∈S

‖z − x‖

is the distance function. Notice the following elementary but important
result that we use repeatedly in this section (Exercise 4(a) in Section 7.3).

Proposition 9.2.2 (Projections) If x̄ is a nearest point in the set S ⊂ E
to the point x ∈ E, then x̄ is the unique nearest point in S to each point
on the half-open line segment [x̄, x).

To derive the proximal normal formula from the subdifferential formula
(9.1.1), we can make use of some striking differentiability properties of
distance functions, summarized in the next result.

Theorem 9.2.3 (Differentiability of distance functions) Consider a
nonempty closed set S ⊂ E and a point x �∈ S. Then the following proper-
ties are equivalent:

(i) the Dini subdifferential ∂−dS(x) is nonempty;

(ii) x has a unique nearest point x̄ in S;
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9.2 Proximal Normals and Chebyshev Sets
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(iii) the distance function dS is Fréchet differentiable at x.

In this case,

∇dS(x) =
x− x̄

‖x− x̄‖ ∈ Np
S(x̄) ⊂ NS(x̄).

The proof is outlined in Exercises 4 and 6.
For our alternate proof of the proximal normal formula without re-

course to Rademacher’s theorem, we return to an idea we introduced in
Section 8.2. A cusco is a USC multifunction with nonempty compact con-
vex images. In particular, the Clarke subdifferential of a locally Lipschitz
function on an open set is a cusco (Exercise 5 in Section 8.2).

Suppose U ⊂ E is an open set, Y is a Euclidean space, and Φ : U → Y
is a cusco. We call Φ minimal if its graph is minimal (with respect to
set inclusion) among graphs of cuscos from U to Y . For example, the
subdifferential of a continuous convex function is a minimal cusco (Exercise
8). We next use this fact to prove that Clarke subdifferentials of distance
functions are also minimal cuscos.

Theorem 9.2.4 (Distance subdifferentials are minimal) Outside a
nonempty closed set S ⊂ E, the distance function dS can be expressed
locally as the difference between a smooth convex function and a continuous
convex function. Consequently, the Clarke subdifferential ∂◦dS : E → E is
a minimal cusco.

Proof. Consider any closed ball T disjoint from S. For any point y in S,
it is easy to check that the Fréchet derivative of the function x �→ ‖x− y‖
is Lipschitz on T . Suppose the Lipschitz constant is 2L. It follows that the
function x �→ L‖x‖2 − ‖x − y‖ is convex on T (see Exercise 9). Since the
function h : T → R defined by

h(x) = L‖x‖2 − dS(x) = sup
y∈S
{L‖x‖2 − ‖x− y‖}

is convex, we obtain the desired expression dS = L‖ · ‖2 − h.
To prove minimality, consider any cusco Φ : E → E satisfying Φ(x) ⊂

∂◦dS(x) for all points x in E. Notice that for any point x ∈ int T we have

∂◦dS(x) = −∂◦(−dS)(x) = ∂h(x)− Lx.

Since h is convex on int T , the subdifferential ∂h is a minimal cusco on this
set, and hence so is ∂◦dS . Consequently, Φ must agree with ∂◦dS on int T ,
and hence throughout Sc, since T was arbitrary.

On the set int S, the function dS is identically zero. Hence for all points
x in int S we have ∂◦dS = {0} and therefore also Φ(x) = {0}. We also
deduce 0 ∈ Φ(x) for all x ∈ cl (int S).
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Now consider a point x ∈ bdS. The Mean value theorem (Exercise 9
in Section 6.1) shows

∂◦dS(x) = conv
{

0, lim
r

yr
∣∣∣ yr ∈ ∂◦dS(xr), xr → x, xr �∈ S

}
= conv

{
0, lim

r
yr

∣∣∣ yr ∈ Φ(xr), xr → x, xr �∈ S
}

,

where 0 can be omitted from the convex hull unless x ∈ cl (int S) (see
Exercise 10). But the final set is contained in Φ(x), so the result now
follows. �

The Proximal normal formula (Theorem 9.2.1), follows rather quickly from
this result (and indeed can be strengthened), using the fact that Clarke
subgradients of the distance function are proximal normals (Exercise 11).

We end this section with another elegant illustration of the geometry
of nearest points. We call a set S ⊂ E a Chebyshev set if every point in E
has a unique nearest point PS(x) in S. Any nonempty closed convex set
is a Chebyshev set (Exercise 8 in Section 2.1). Much less obvious is the
converse, stated in the following result.

Theorem 9.2.5 (Convexity of Chebyshev sets) A subset of a Euclid-
ean space is a Chebyshev set if and only if it is nonempty, closed and convex.

Proof. Consider a Chebyshev set S ⊂ E. Clearly S is nonempty and
closed, and it is easy to verify that the projection PS : E→ E is continuous.
To prove S is convex, we first introduce another new notion. We call S a
sun if, for each point x ∈ E, every point on the ray PS(x)+R+(x−PS(x))
has nearest point PS(x). We begin by proving that the following properties
are equivalent (see Exercise 13):

(i) S is convex;

(ii) S is a sun;

(iii) PS is nonexpansive.

So, we need to show that S is a sun.
Suppose S is not a sun, so there is a point x �∈ S with nearest point

PS(x) = x̄ such that the ray L = x̄ + R+(x− x̄) strictly contains

{z ∈ L | PS(z) = x̄}.
Hence by Proposition 9.2.2 (Projections) and the continuity of PS , the
above set is nontrivial closed line segment [x̄, x0] containing x.

Choose a radius ε > 0 so that the ball x0 + εB is disjoint from S. The
continuous self map of this ball

z �→ x0 + ε
x0 − PS(z)
‖x0 − PS(z)‖

Jon Borwein
Highlight
The Proximal normal formula (Theorem 9.2.1), follows rather quickly



220 9. More Nonsmooth Structure

Now consider a point x ∈ bdS. The Mean value theorem (Exercise 9
in Section 6.1) shows

∂◦dS(x) = conv
{

0, lim
r

yr
∣∣∣ yr ∈ ∂◦dS(xr), xr → x, xr �∈ S

}
= conv

{
0, lim

r
yr

∣∣∣ yr ∈ Φ(xr), xr → x, xr �∈ S
}

,

where 0 can be omitted from the convex hull unless x ∈ cl (int S) (see
Exercise 10). But the final set is contained in Φ(x), so the result now
follows. �

The Proximal normal formula (Theorem 9.2.1), follows rather quickly from
this result (and indeed can be strengthened), using the fact that Clarke
subgradients of the distance function are proximal normals (Exercise 11).

We end this section with another elegant illustration of the geometry
of nearest points. We call a set S ⊂ E a Chebyshev set if every point in E
has a unique nearest point PS(x) in S. Any nonempty closed convex set
is a Chebyshev set (Exercise 8 in Section 2.1). Much less obvious is the
converse, stated in the following result.

Theorem 9.2.5 (Convexity of Chebyshev sets) A subset of a Euclid-
ean space is a Chebyshev set if and only if it is nonempty, closed and convex.

Proof. Consider a Chebyshev set S ⊂ E. Clearly S is nonempty and
closed, and it is easy to verify that the projection PS : E→ E is continuous.
To prove S is convex, we first introduce another new notion. We call S a
sun if, for each point x ∈ E, every point on the ray PS(x)+R+(x−PS(x))
has nearest point PS(x). We begin by proving that the following properties
are equivalent (see Exercise 13):

(i) S is convex;

(ii) S is a sun;

(iii) PS is nonexpansive.

So, we need to show that S is a sun.
Suppose S is not a sun, so there is a point x �∈ S with nearest point

PS(x) = x̄ such that the ray L = x̄ + R+(x− x̄) strictly contains

{z ∈ L | PS(z) = x̄}.
Hence by Proposition 9.2.2 (Projections) and the continuity of PS , the
above set is nontrivial closed line segment [x̄, x0] containing x.

Choose a radius ε > 0 so that the ball x0 + εB is disjoint from S. The
continuous self map of this ball

z �→ x0 + ε
x0 − PS(z)
‖x0 − PS(z)‖

Jon Borwein
Highlight
Convexity of Chebyshev sets

Jon Borwein
Highlight
un



Approximately convex sets

and Suns





x0

P(x)

x
P(z) ?

z ?



9.2 Proximal Normals and Chebyshev Sets 221

has a fixed point by Brouwer’s theorem (8.1.3). We then quickly derive a
contradiction to the definition of the point x0. �

Exercises and Commentary

Proximal normals provide an alternative comprehensive approach to non-
smooth analysis: a good reference is [56]. Our use of the minimality of
distance subdifferentials here is modelled on [38]. Theorem 9.2.5 (Convex-
ity of Chebyshev sets) is sometimes called the “Motzkin-Bunt theorem”.
Our discussion closely follows [62]. In the exercises, we outline three nons-
mooth proofs. The first (Exercises 14, 15, 16) is a variational proof follow-
ing [82]. The second (Exercises 17, 18, 19) follows [96], and uses Fenchel
conjugacy. The third argument (Exercises 20 and 21) is due to Asplund [2].
It is the most purely geometric, first deriving an interesting dual result on
furthest points, and then proceeding via inversion in the unit sphere. As-
plund extended the argument to Hilbert space, where it remains unknown
whether a norm-closed Chebyshev set must be convex. Asplund showed
that, in seeking a nonconvex Chebyshev set, we can restrict attention to
“Klee caverns”: complements of closed bounded convex sets.

1. Consider a closed set S ⊂ E and a point x ∈ S.

(a) Show that the proximal normal cone Np
S(x) may not be convex.

(b) Prove x ∈ intS ⇒ Np
S(x) = {0}.

(c) Is the converse to part (b) true?
(d) Prove the set {z ∈ S |Np

S(z) �= {0}} is dense in the boundary of
S.

2. (Projections) Prove Proposition 9.2.2.

3. (Proximal normals are normals) Consider a set S ⊂ E. Suppose
the unit vector y ∈ E is a proximal normal to S at the point x ∈ S.

(a) Use Proposition 9.2.2 (Projections) to prove d′S(x; y) = 1.
(b) Use the Lipschitz property of the distance function to prove

∂◦dS(x) ⊂ B.
(c) Deduce y ∈ ∂◦dS(x).
(d) Deduce that any proximal normal lies in the Clarke normal cone.

4. ∗ (Unique nearest points) Consider a closed set S ⊂ E and a point
x outside S with unique nearest point x̄ in S. Complete the following
steps to prove

x− x̄

‖x− x̄‖ ∈ ∂−dS(x).
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(a) Assuming the result fails, prove there exists a direction h ∈ E
such that

d−
S (x;h) < 〈‖x− x̄‖−1(x− x̄), h〉.

(b) Consider a sequence tr ↓ 0 such that

dS(x + trh)− dS(x)
tr

→ d−S (x;h)

and suppose each point x + trh has a nearest point sr in S.
Prove sr → x̄.

(c) Use the fact that the gradient of the norm at the point x− sr is
a subgradient to deduce a contradiction.

5. (Nearest points and Clarke subgradients) Consider a closed set
S ⊂ E and a point x outside S with a nearest point x̄ in S. Use
Exercise 4 to prove

x− x̄

‖x− x̄‖ ∈ ∂◦dS(x).

6. ∗ (Differentiability of distance functions) Consider a nonempty
closed set S ⊂ E.

(a) For any points x, z ∈ E, observe the identity

d2
S(z)− d2

S(x) = 2dS(x)(dS(z)− dS(x)) + (dS(z)− dS(x))2.

(b) Use the Lipschitz property of the distance function to deduce

2dS(x)∂−dS(x) ⊂ ∂−d2
S(x).

Now suppose y ∈ ∂−dS(x).

(c) If x̄ is any nearest point to x in S, use part (b) to prove x̄ =
x− dS(x)y, so x̄ is in fact the unique nearest point.

(d) Prove −2dS(x)y ∈ ∂−(−d2
S)(x).

(e) Deduce d2
S is Fréchet differentiable at x.

Assume x �∈ S.

(f) Deduce dS is Fréchet differentiable at x.

(g) Use Exercises 3 and 4 to complete the proof of Theorem 9.2.3.

7. ∗ (Proximal normal formula via Rademacher) Prove Theorem
9.2.1 using the subdifferential formula (9.1.1) and Theorem 9.2.3 (Dif-
ferentiability of distance functions).
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8. (Minimality of convex subdifferentials) If the open set U ⊂ E
is convex and the function f : U → R is convex, use the Max formula
(Theorem 3.1.8) to prove that the subdifferential ∂f is a minimal
cusco.

9. (Smoothness and DC functions) Suppose the set C ⊂ E is open
and convex, and the Fréchet derivative of the function g : C → R has
Lipschitz constant 2L on C. Deduce that the function L‖ · ‖2 − g is
convex on C.

10. ∗∗ (Subdifferentials at minimizers) Consider a locally Lipschitz
function f : E→ R+, and a point x in f−1(0). Prove

∂◦f(x) = conv
{

0, lim
r

yr
∣∣∣ yr ∈ ∂◦f(xr), xr → x, f(xr) > 0

}
,

where 0 can be omitted from the convex hull if int f−1(0) = ∅.
11. ∗∗ (Proximal normals and the Clarke subdifferential) Consider

a closed set S ⊂ E and a point x in S Use Exercises 3 and 5 and the
minimality of the subdifferential ∂◦dS : E→ E to prove

∂◦dS(x) = conv
{

0, lim
r

yr
∣∣∣yr ∈ Np

S(xr), ‖yr‖ = 1, xr → x, xr ∈ S
}

.

Deduce the Proximal normal formula (Theorem 9.2.1). Assuming
x ∈ bdS, prove the following stronger version. Consider any dense
subset Q of Sc, and suppose P : Q → S maps each point in Q to a
nearest point in S. Prove

∂◦dS(x) = conv
{

0, lim
r

xr − P (xr)
‖xr − P (xr)‖

∣∣∣ xr → x, xr ∈ Q
}

,

and derive a stronger version of the Proximal normal formula.

12. (Continuity of the projection) Consider a Chebyshev set S. Prove
directly from the definition that the projection PS is continuous.

13. ∗ (Suns) Complete the details in the proof of Theorem 9.2.5 (Con-
vexity of Chebyshev sets) as follows.

(a) Prove (iii) ⇒ (i).

(b) Prove (i) ⇒ (ii).

(c) Denoting the line segment between points y, z ∈ E by [y, z],
prove property (ii) implies

PS(x) = P[z,PS(x)](x) for all x ∈ E, z ∈ S. (9.2.6)
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}

,

and derive a stronger version of the Proximal normal formula.

12. (Continuity of the projection) Consider a Chebyshev set S. Prove
directly from the definition that the projection PS is continuous.

13. ∗ (Suns) Complete the details in the proof of Theorem 9.2.5 (Con-
vexity of Chebyshev sets) as follows.

(a) Prove (iii) ⇒ (i).

(b) Prove (i) ⇒ (ii).

(c) Denoting the line segment between points y, z ∈ E by [y, z],
prove property (ii) implies

PS(x) = P[z,PS(x)](x) for all x ∈ E, z ∈ S. (9.2.6)
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(d) Prove (9.2.6) ⇒ (iii).

(e) Fill in the remaining details of the proof.

14. ∗∗ (Basic Ekeland variational principle [43]) Prove the following
version of the Ekeland variation principle (Theorem 7.1.2). Suppose
the function f : E→ (∞,+∞] is closed and the point x ∈ E satisfies
f(x) < inf f + ε for some real ε > 0. Then for any real λ > 0 there is
a point v ∈ E satisfying the conditions

(a) ‖x− v‖ ≤ λ,

(b) f(v) + (ε/λ)‖x− v‖ ≤ f(x), and

(c) v minimizes the function f(·) + (ε/λ)‖ · −v‖.

15. ∗ (Approximately convex sets) Consider a closed set C ⊂ E. We
call C approximately convex if, for any closed ball D ⊂ E disjoint from
C, there exists a closed ball D′ ⊃ D disjoint from C with arbitrarily
large radius.

(a) If C is convex, prove it is approximately convex.

(b) Suppose C is approximately convex but not convex.

(i) Prove there exist points a, b ∈ C and a closed ball D cen-
tered at the point c = (a + b)/2 and disjoint from C.

(ii) Prove there exists a sequence of points x1, x2, . . . ∈ E such
that the balls Br = xr + rB are disjoint from C and satisfy
D ⊂ Br ⊂ Br+1 for all r = 1, 2, . . ..

(iii) Prove the set H = cl ∪r Br is closed and convex, and its
interior is disjoint from C but contains c.

(iv) Suppose the unit vector u lies in the polar set H◦. By
considering the quantity 〈u, ‖xr − x‖−1(xr − x)〉 as r →∞,
prove H◦ must be a ray.

(v) Deduce a contradiction.

(c) Conclude that a closed set is convex if and only if it is approxi-
mately convex.

16. ∗∗ (Chebyshev sets and approximate convexity) Consider a
Chebyshev set C ⊂ E, and a ball x + βB disjoint from C.

(a) Use Theorem 9.2.3 (Differentiability of distance functions) to
prove

lim sup
v→x

dC(v)− dC(x)
‖v − x‖ = 1.
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(b) Consider any real α > dC(x). Fix reals σ ∈ (0, 1) and ρ satisfy-
ing

α− dC(x)
σ

< ρ < α− β.

By applying the Basic Ekeland variational principle (Exercise
14) to the function −dC + δx+ρB, prove there exists a point
v ∈ E satisfying the conditions

dC(x) + σ‖x− v‖ ≤ dC(v)
dC(z)− σ‖z − v‖ ≤ dC(v) for all z ∈ x + ρB.

Use part (a) to deduce ‖x−v‖ = ρ, and hence x+βB ⊂ v+αB.
(c) Conclude that C is approximately convex, and hence convex by

Exercise 15.
(d) Extend this argument to an arbitrary norm on E.

17. ∗∗ (Smoothness and biconjugacy) Consider a function f : E →
(∞,+∞] that is closed and bounded below and satisfies the condition

lim
‖x‖→∞

f(x)
‖x‖ = +∞.

Consider also a point x ∈ dom f .

(a) Using Carathéodory’s theorem (Section 2.2, Exercise 5), prove
there exist points x1, x2, . . . , xm ∈ E and real λ1, λ2, . . . , λm > 0
satisfying∑

i

λi = 1,
∑

i

λixi = x,
∑

i

λif(xi) = f∗∗(x).

(b) Use the Fenchel-Young inequality (Proposition 3.3.4) to prove

∂(f∗∗)(x) =
⋂
i

∂f(xi).

Suppose furthermore that the conjugate f∗ is everywhere differen-
tiable.

(c) If x ∈ ri(dom(f∗∗)), prove xi = x for each i.
(d) Deduce ri(epi(f∗∗)) ⊂ epi(f).
(e) Use the fact that f is closed to deduce f = f∗∗, so f is convex.

18. ∗ (Chebyshev sets and differentiability) Use Theorem 9.2.3 (Dif-
ferentiability of distance functions) to prove that a closed set S ⊂ E is
a Chebyshev set if and only if the function d2

S is Fréchet differentiable
throughout E.
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19. ∗ (Chebyshev convexity via conjugacy) For any nonempty closed
set S ⊂ E, prove (‖ · ‖2 + δS

2

)∗
=
‖ · ‖2 − d2

S

2

Deduce, using Exercises 17 and 18, that Chebyshev sets are convex.

20. ∗∗ (Unique furthest points) Consider a set S ⊂ E, and define a
function rS : E→ [−∞,+∞] by

rS(x) = sup
y∈S

‖x− y‖.

Any point y attaining the above supremum is called a furthest point
in S to the point x ∈ E.

(a) Prove that the function (r2
S − ‖ · ‖2)/2 is the conjugate of the

function

gS =
δ−S − ‖ · ‖2

2
.

(b) Prove that the function r2
S is strictly convex on its domain.

Now suppose each point x ∈ E has a unique nearest point qS(x) in
S.

(c) Prove that the function qS is continuous.

We consider two alternative proofs that a set has the unique furthest
point property if and only if it is a singleton.

(d) (i) Use Section 6.1 , Exercise 10 (Max-functions) to show that
the function r2

S/2 has Clarke subdifferential the singleton
{x − qS(x)} at any point x ∈ E, and hence is everywhere
differentiable.

(ii) Use Exercise 17 (Smoothness and biconjugacy) to deduce
that the function gS is convex, and hence that S is a single-
ton.

(e) Alternatively, suppose S is not a singleton. Denote the unique
minimizer of the function rS by y. By investigating the conti-
nuity of the function qS on the line segment [y, qS(y)], derive a
contradiction without using part (d).

21. ∗∗ (Chebyshev convexity via inversion) The map ι : E\{0} → E
defined by ι(x) = ‖x‖−2x is called the inversion in the unit sphere.

(a) If D ⊂ E is a ball with 0 ∈ bdD, prove ι(D \ {0}) is a halfspace
disjoint from 0.
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(b) For any point x ∈ E and radius δ > ‖x‖, prove

ι((x + δB) \ {0}) =
1

δ2 − ‖x‖2 {y ∈ E : ‖y + x‖ ≥ δ}.

Prove that any Chebyshev set C ⊂ E must be convex as follows.

Without loss of generality, suppose 0 �∈ C but 0 ∈ cl (conv C). Con-
sider any point x ∈ E.

(c) Prove the quantity

ρ = inf{δ > 0 | ιC ⊂ x + δB}

satisfies ρ > ‖x‖.
(d) Let z denote the unique nearest point in C to the point

−x

ρ2 − ‖x‖2 .

Use part (b) to prove that ιz is the unique furthest point in ιC
to x.

(e) Use Exercise 20 to derive a contradiction.
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