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ABSTRACT. In this paper, we construct maximally monotone operators that are not of Gossez’s dense-type (D) in many nonreflexive

spaces. Many of these operators also fail to possess the Brønsted-Rockafellar (BR) property.

Using these operators, we show that the partial inf-convolution of two BC–functions will not always be a BC–function. This provides

a negative answer to a challenging question posed by Stephen Simons.

Among other consequences, we deduce — in a uniform fashion — that every Banach space which contains an isomorphic copy of the

James space J or its dual J∗, or c0 or its dual `1, admits a non type (D) operator.

The existence of non type (D) operators in spaces containing `1 or c0 has been proved recently by Bueno and Svaiter.

• Since this talk is rather technical, I have preserved all preliminaries and references and placed all proofs on separate pages, but will

skip most of those pages in my spoken presentation.
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1 Preliminaries

Throughout this paper, we assume that X is a real Banach space with norm ‖ · ‖, that X∗ is the continuous dual of X, and that X

and X∗ are paired by 〈·, ·〉. As usual, we identify X with its canonical image in the bidual space X∗∗. Furthermore, X × X∗ and

(X ×X∗)∗ := X∗ ×X∗∗ are likewise paired via 〈(x, x∗), (y∗, y∗∗)〉 := 〈x, y∗〉+ 〈x∗, y∗∗〉, where (x, x∗) ∈ X ×X∗ and (y∗, y∗∗) ∈ X∗ ×X∗∗.

Let A : X ⇒ X∗ be a set-valued operator (also known as a multifunction) from X to X∗, i.e., for every x ∈ X, Ax ⊆ X∗, and let

graA :=
{

(x, x∗) ∈ X ×X∗ | x∗ ∈ Ax
}

be the graph of A. The domain of A is domA :=
{
x ∈ X | Ax 6= ∅

}
, and ranA := A(X) for the

range of A. Recall that A is monotone if

(1) 〈x− y, x∗ − y∗〉 ≥ 0, ∀(x, x∗) ∈ graA ∀(y, y∗) ∈ graA,

and maximally monotone if A is monotone and A has no proper monotone extension (in the sense of graph inclusion). We say a maximally

monotone operator is pathological if it fails to have a property known to hold for all maximally monotone operators defined on reflexive

spaces. Let A : X ⇒ X∗ be monotone and (x, x∗) ∈ X ×X∗. We say (x, x∗) is monotonically related to graA if

〈x− y, x∗ − y∗〉 ≥ 0, ∀(y, y∗) ∈ graA.
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We now recall three fundamental properties of maximally monotone operators.

Definition 1.1 Let A : X ⇒ X∗ be maximally monotone. Then three key types of monotone operators are defined as follows.

(i) A is of dense type or type (D) (1971, [19], [28] and [37, Theorem 9.5]) if for every (x∗∗, x∗) ∈ X∗∗ ×X∗ with

inf
(a,a∗)∈graA

〈a− x∗∗, a∗ − x∗〉 ≥ 0,

there exist a bounded net (aα, a
∗
α)α∈Γ in graA such that (aα, a

∗
α)α∈Γ weak*×strong converges to (x∗∗, x∗).

(ii) A is of type negative infimum (NI) (1996, [32]) if

sup
(a,a∗)∈graA

(
〈a, x∗〉+ 〈a∗, x∗∗〉 − 〈a, a∗〉

)
≥ 〈x∗∗, x∗〉, ∀(x∗∗, x∗) ∈ X∗∗ ×X∗.

(iii) A is of “Brønsted-Rockafellar” (BR) type (1999, [34]) if whenever (x, x∗) ∈ X ×X∗, α, β > 0 and

inf
(a,a∗)∈graA

〈x− a, x∗ − a∗〉 > −αβ

then there exists (b, b∗) ∈ graA such that ‖x− b‖ < α, ‖x∗ − b∗‖ < β.

(Unlike almost other properties we study in monotone operator theory, this is an isometric property.)
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As is now known (see Fact 2.7 below), the first two properties coincide. This coincidence is central to many of our proofs. Fact 2.11

also shows us that every maximally monotone operator of type (D) is of isomorphic type (BR). (The converse fails, see Example 4.1(xiii).)

Moreover, in reflexive space every maximally monotone operator is of type (D), as is the subdifferential operator of every proper closed

convex function on a Banach space.

While monotone operator theory is rather complete in reflexive space — and for type (D) operators in general space — the general

situation is less clear [11, 9]. Hence our continuing interest in operators which are not of type (D).

We shall say a Banach space X is of type (D) [9] if every maximally monotone operator on X is of type (D). At present the only known

type (D) spaces are the reflexive spaces; and our work here suggests that there are no non-reflexive type (D) spaces. In [11, Exercise 9.6.3]

such spaces were called (NI) spaces and some potential non-reflexive examples were conjectured; all of which are ruled out by our current

work. In [11, Theorem 9.79] a variety of the pleasant properties of type (D) spaces was listed.
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1.1 More preliminary technicalities

Maximal monotone operators have proven to be a potent class of objects in modern Optimization and Analysis; see, e.g., [7, 8, 9], the

books [6, 11, 13, 27, 33, 36, 31, 42] and the references therein.

We adopt standard notation used in these books especially [11, Chapter 2] and [7, 33, 36]: Given a subset C of X, the indicator

function of C, written as ιC , is defined at x ∈ X by

ιC(x) :=


0, if x ∈ C;

+∞, otherwise.

(2)

The closed unit ball is BX :=
{
x ∈ X | ‖x‖ ≤ 1

}
, and N := {1, 2, 3, . . .}.

Let α, β ∈ R. In the sequel it will also be useful to let δα,β be defined by δα,β := 1, if α = β; δα,β := 0, otherwise.

For a subset C∗ of X∗, C∗
w*

is the weak∗ closure of C∗. If Z is a real Banach space with dual Z∗ and a set S ⊆ Z, we define S⊥ by

S⊥ := {z∗ ∈ Z∗ | 〈z∗, s〉 = 0, ∀s ∈ S}. Given a subset D of Z∗, we define D⊥ [29] by D⊥ := {z ∈ Z | 〈z, d∗〉 = 0, ∀d∗ ∈ D}.
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The adjoint of an operator A, written A∗, is defined by

graA∗ :=
{

(x∗∗, x∗) ∈ X∗∗ ×X∗ | (x∗,−x∗∗) ∈ (graA)⊥
}
.

We say A is a linear relation if graA is a linear subspace. We say that A is skew if graA ⊆ gra(−A∗); equivalently, if 〈x, x∗〉 = 0, ∀(x, x∗) ∈

graA. Furthermore, A is symmetric if graA ⊆ graA∗; equivalently, if 〈x, y∗〉 = 〈y, x∗〉, ∀(x, x∗), (y, y∗) ∈ graA. We define the symmetric

part and the skew part of A via

(3) P := 1
2
A+ 1

2
A∗ and S := 1

2
A− 1

2
A∗,

respectively. It is easy to check that P is symmetric and that S is skew. Let A : X ⇒ X∗ be monotone and S be a subspace of X. We

say A is S–saturated [36] if

Ax+ S⊥ = Ax, ∀x ∈ domA.

We say a maximally monotone operator A : X ⇒ X∗ is unique if all maximally monotone extensions of A (in the sense of graph inclusion)

in X∗∗ ×X∗ coincide.
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Let f : X → ]−∞,+∞]. Then dom f := f−1(R) is the domain of f , and f ∗ : X∗ → [−∞,+∞] : x∗ 7→ supx∈X(〈x, x∗〉 − f(x)) is the

Fenchel conjugate of f . We say f is proper if dom f 6= ∅. Let f be proper. The subdifferential of f is defined by

∂f : X ⇒ X∗ : x 7→ {x∗ ∈ X∗ | (∀y ∈ X) 〈y − x, x∗〉+ f(x) ≤ f(y)}.

For ε ≥ 0, the ε–subdifferential of f is defined by

∂εf : X ⇒ X∗ : x 7→
{
x∗ ∈ X∗ | (∀y ∈ X) 〈y − x, x∗〉+ f(x) ≤ f(y) + ε

}
.

Note that ∂f = ∂0f . We denote by J := JX the duality map, i.e., the subdifferential of the function 1
2
‖ · ‖2 mapping X to X∗.
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Now let F : X×X∗ → ]−∞,+∞]. We say F is a BC–function (BC stands for “Bigger conjugate”) [36] if F is proper and convex with

F ∗(x∗, x) ≥ F (x, x∗) ≥ 〈x, x∗〉 ∀(x, x∗) ∈ X ×X∗.(4)

Let Y be another real Banach space. We set PX : X × Y → X : (x, y) 7→ x, and PY : X × Y → Y : (x, y) 7→ y. Let L : X → Y be

linear. We say L is a (linear) isomorphism into Y if L is one to one, continuous and L−1 is continuous on ranL. We say L is an isometry

if ‖Lx‖ = ‖x‖,∀x ∈ X. The spaces X, Y are then isometric (isomorphic) if there exists an isometry (isomorphism) from X onto Y .

Let F1, F2 : X × Y → ]−∞,+∞]. Then the partial inf-convolution F1�1F2 is the function defined on X × Y by

F1�1F2 : (x, y) 7→ inf
u∈X

(
F1(u, y) + F2(x− u, y)

)
.

Then F1�2F2 is the function defined on X × Y by

F1�2F2 : (x, y) 7→ inf
v∈Y

(
F1(x, y − v) + F2(x, v)

)
.
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In Example 4.1(vi)&(viii), we provide a negative answer to the following question posed by S. Simons [36, Problem 22.12]:

Let F1, F2 : X ×X∗ → ]−∞,+∞] be proper lower semicontinuous and convex. Assume that F1, F2 are BC–functions and that

⋃
λ>0

λ [PX∗ domF1 − PX∗ domF2] is a closed subspace of X∗.

Is F1�1F2 necessarily a BC–function?

We are now ready to set to work. The paper is organized as follows.

• In Section 2, we collect auxiliary results for future reference and for the reader’s convenience.

• Our main result (Theorem 3.7) is established in Section 3.

• In Section 4, we provide various applications and extensions including the promised negative answer to Simons’ question.

• Furthermore, we show that every Banach space containing an isomorphic copy of the James space J or of J∗, of `1 or of c0 is not of

type (D) (Example 4.1(xi), Corollary 4.11 and Example 4.12).
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2 Auxiliary results

Observation:

Fact 2.1 (See [26, Proposition 2.6.6(c)]). Let D be a linear subspace of X∗. Then (D⊥)⊥ = D
w*

.

We now record a famous Banach space result:

Fact 2.2 (Banach and Mazur) (See [16, Theorem 5.8, page 240] or [15, Theorem 5.17, page 144]).) Every separable Banach space is

isometric to a closed linear subspace of C[0, 1].

Now we turn to prerequisite results on Fitzpatrick functions, monotone operators, and linear relations.

Fact 2.3 (Fitzpatrick) (See [17, Corollary 3.9 and Proposition 4.2] and [7, 11].) Let A : X ⇒ X∗ be maximally monotone, and set

(5) FA : X ×X∗ → ]−∞,+∞] : (x, x∗) 7→ sup
(a,a∗)∈graA

(
〈x, a∗〉+ 〈a, x∗〉 − 〈a, a∗〉

)
,

which is the Fitzpatrick function associated with A. Then FA is a BC–function and FA = 〈·, ·〉 on graA.
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Fact 2.4 (Simons and Zălinescu) (See [38, Theorem 4.2] or [36, Theorem 16.4(a)].) Let Y be a real Banach space and F1, F2 : X×Y →

]−∞,+∞] be proper, lower semicontinuous, and convex. Assume that for every (x, y) ∈ X × Y ,

(F1�2F2)(x, y) > −∞

and that
⋃
λ>0 λ [PX domF1 − PX domF2] is a closed subspace of X. Then for every (x∗, y∗) ∈ X∗ × Y ∗,

(F1�2F2)∗(x∗, y∗) = min
u∗∈X∗

[F ∗1 (x∗ − u∗, y∗) + F ∗2 (u∗, y∗)] .

With the order of the variables changed, we have the following similar result to Fact 2.4.

Fact 2.5 (Simons and Zălinescu) (See [36, Theorem 16.4(b)].) Let Y be a real Banach space and F1, F2 : X × Y → ]−∞,+∞] be

proper, lower semicontinuous and convex. Assume that for every (x, y) ∈ X × Y ,

(F1�1F2)(x, y) > −∞

and that
⋃
λ>0 λ [PY domF1 − PY domF2] is a closed subspace of Y . Then for every (x∗, y∗) ∈ X∗ × Y ∗,

(F1�1F2)∗(x∗, y∗) = min
v∗∈Y ∗

[F ∗1 (x∗, v∗) + F ∗2 (x∗, y∗ − v∗)] .
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Phelps and Simons proved the next Fact 2.6 for unbounded linear operators in [29, Proposition 3.2(a)], but their proof can also be

adapted for general linear relations. For the reader’s convenience, we write down their proof.

Fact 2.6 (Phelps and Simons) Let A : X ⇒ X∗ be a monotone linear relation. Then (x, x∗) ∈ X × X∗ is monotonically related to

graA if and only if

〈x, x∗〉 ≥ 0 and [〈y∗, x〉+ 〈x∗, y〉]2 ≤ 4〈x∗, x〉〈y∗, y〉, ∀(y, y∗) ∈ graA.

Proof. We have the following equivalences:

(x, x∗) ∈ X ×X∗ is monotonically related to graA

⇔ λ2〈y, y∗〉 − λ [〈y∗, x〉+ 〈x∗, y〉] + 〈x, x∗〉 = 〈λy∗ − x∗, λy − x〉 ≥ 0,∀λ ∈ R,∀(y, y∗) ∈ graA

⇔ 〈x, x∗〉 ≥ 0 and [〈y∗, x〉+ 〈x∗, y〉]2 ≤ 4〈x∗, x〉〈y∗, y〉, ∀(y, y∗) ∈ graA (by [29, Lemma 2.1]).

This completes the proof. �
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Fact 2.7 (Simons / Marques Alves and Svaiter) (See [32, Lemma 15] or [36, Theorem 36.3(a)], and [25, Theorem 4.4].) Let A :

X ⇒ X∗ be maximally monotone. Then A is of type (D) if and only if it is of type (NI).

We next cite some properties regarding the uniqueness of (maximally) monotone extension of a maximally monotone operator to

X∗∗ × X∗. Simons showed in [32] that every maximally monotone operator of type (NI) (or, equivalently, of type (D) by Fact 2.7) is

unique. Recently, Marques Alves and Svaiter contributed the following results:

Fact 2.8 (Marques Alves and Svaiter) (See [24, Theorem 1.6].) Let A : X ⇒ X∗ be a maximally monotone linear relation that is not

of type (D). Assume that A is unique. Then graA = domFA.

Fact 2.9 (Marques Alves and Svaiter) (See [25, Corollary 4.6].) Let A : X ⇒ X∗ be a maximally monotone operator such that graA

is not affine. Then A is of type (D) if and only if A is unique.

The Gossez operator defined as in Example 4.1(xii) is a maximally monotone and unique operator that is not of type (D) [20].

The definition of operators of type (BR) directly yields the following result.

Fact 2.10 Let A : X ⇒ X∗ be maximally monotone and (x, x∗) ∈ X × X∗. Assume that A is of type (BR) and that inf(a,a∗)∈graA〈x −

a, x∗ − a∗〉 > −∞. Then x ∈ domA and x∗ ∈ ranA.

Additionally,

Fact 2.11 (Marques Alves and Svaiter) (See [24, Theorem 1.4(4)] or [23].) Let A : X ⇒ X∗ be a maximally monotone operator that

is of type (NI) (or equivalently, by Fact 2.7, of type (D)). Then A is of type (BR).
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We shall also need some precise results about linear relations. The first two are elementary.

Fact 2.12 (Cross) (See [14, Proposition I.2.8(a)].) Let Y be a Banach space, and A : X ⇒ Y be a linear relation. Then (∀(x, x∗) ∈ graA)

Ax = x∗ + A0.

Lemma 2.13 Let A : X ⇒ X∗ be a linear relation. Assume that A∗ is monotone. Then kerA∗ ⊆ (ranA∗)⊥.

Proof. Let x∗∗ ∈ kerA∗ and then (αx∗∗, 0) ∈ graA∗,∀α ∈ R. Then

0 ≤ 〈αx∗∗ + y∗∗, y∗〉 = α〈x∗∗, y∗〉+ 〈y∗∗, y∗〉, ∀(y∗∗, y∗) ∈ graA∗, ∀α ∈ R.

Hence 〈x∗∗, y∗〉 = 0, ∀(y∗∗, y∗) ∈ graA∗ and thus x∗∗ ∈ (ranA∗)⊥. Thus kerA∗ ⊆ (ranA∗)⊥. �

Fact 2.14 (See [4, Theorem 3.1].) Let A : X ⇒ X∗ be a maximally monotone linear relation. Then A is of type (D) if and only if A∗ is

monotone.

Fact 2.15 (See [41, Theorem 3.1].) Let A : X ⇒ X∗ be a maximally monotone linear relation, and let f : X → ]−∞,+∞] be a proper

lower semicontinuous convex function with domA ∩ int dom ∂f 6= ∅. Then A+ ∂f is maximally monotone.



2 AUXILIARY RESULTS 16

Fact 2.16 (Simons) (See [36, Theorem 28.9].) Let Y be a Banach space, and L : Y → X be continuous and linear with ranL closed and

ranL∗ = Y ∗. Let A : X ⇒ X∗ be monotone with domA ⊆ ranL such that graA 6= ∅. Then A is maximally monotone if, and only if A is

ranL–saturated and L∗AL is maximally monotone.

Theorem 2.17 Let Y be a Banach space, and L : Y → X be an isomorphism into X. Let T : Y ⇒ Y ∗ be monotone. Then T is maximally

monotone if, and only if (L∗)−1TL−1, mapping X into X∗, is maximally monotone.

Proof. Let A = (L∗)−1TL−1. Then domA ⊆ ranL. Since L is an isomorphism into X, ranL is closed. By [26, Theorem 3.1.22(b)]

or [15, Exercise 2.39(i), page 59], ranL∗ = Y ∗. Hence gra(L∗)−1TL−1 6= ∅ if and only if graT 6= ∅. Clearly, A is monotone. Since

{0} × (ranL)⊥ ⊆ gra(L∗)−1 and then by Fact 2.12, A = (L∗)−1TL−1 is ranL–saturated. By Fact 2.16, A = (L∗)−1TL−1 is maximally

monotone if and only if L∗AL = T is maximally monotone. �
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The following consequence will allow us to construct maximally monotone operators that are not of type (D) in a variety of non-reflexive

Banach spaces.

Corollary 2.18 (Subspaces) Let Y be a Banach space, and L : Y → X be an isomorphism into X. Let T : Y ⇒ Y ∗ be monotone. The

following hold.

(i) Assume that (L∗)−1TL−1 is maximally monotone of type (D). Then T is maximally monotone of type (D). In particular, every

Banach subspace of a type (D) space is of type (D).

(ii) If T is maximally monotone and not of type (D), then (L∗)−1TL−1 is a maximally monotone operator mapping X into X∗ that is

not of type (D).

• Note that this applies to all spaces Y containing c0 despite the fact that c0 is not complemented in `∞ (Sobczyk, 1941)



2 AUXILIARY RESULTS 18

Proof. (i): By Theorem 2.17, T is maximally monotone. Suppose to the contrary that T is not of type (D). Then by Fact 2.7, there exists

(y∗∗0 , y
∗
0) ∈ Y ∗∗ × Y ∗ such that

sup
(b,b∗)∈graT

{
〈y∗∗0 , b∗〉+ 〈y∗0, b〉 − 〈b, b∗〉

}
< 〈y∗∗0 , y∗0〉.(6)

By [26, Theorem 3.1.22(b)] or [15, Exercise 2.39(i), page 59], ranL∗ = Y ∗ and thus there exists x∗0 ∈ X∗ such that L∗x∗0 = y∗0. Let

A = (L∗)−1TL−1. Then we have

sup
(a,a∗)∈graA

{
〈L∗∗y∗∗0 , a∗〉+ 〈x∗0, a〉 − 〈a, a∗〉

}
= sup

(Ly,a∗)∈graA

{
〈y∗∗0 , L∗a∗〉+ 〈x∗0, Ly〉 − 〈Ly, a∗〉

}
= sup

(Ly,a∗)∈graA

{
〈y∗∗0 , L∗a∗〉+ 〈L∗x∗0, y〉 − 〈y, L∗a∗〉

}
= sup

(Ly,a∗)∈graA

{
〈y∗∗0 , L∗a∗〉+ 〈y∗0, y〉 − 〈y, L∗a∗〉

}
= sup

(y,y∗)∈graT

{
〈y∗∗0 , y∗〉+ 〈y∗0, y〉 − 〈y, y∗〉

}
(by (Ly, a∗) ∈ graA⇔ (y, L∗a∗) ∈ graT )

< 〈y∗∗0 , y∗0〉 (by (6))

= 〈L∗∗y∗∗0 , x∗0〉.(7)

Thus A is not of type (NI) and hence A = (L∗)−1TL−1 is not of type (D) by Fact 2.7, which is a contradiction. Hence T is maximally

monotone of type (D).

(ii): Apply Theorem 2.17 and (i). �
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Remark 2.19 Note that it follows that X is of type (D) whenever X∗∗ is. The necessary part of Theorem 2.17 was proved by Bueno

and Svaiter in [12, Lemma 3.1]. A similar result to Corollary 2.18(i) was also obtained by Bueno and Svaiter in [12, Lemma 3.1] with the

additional assumption that T be maximally monotone.

3 Main result

We start with several technical tools. To relate Fitzpatrick functions and skew operators we have:

Lemma 3.1 Let A : X ⇒ X∗ be a skew linear relation. Then

FA = ιgra(−A∗)∩X×X∗ .(8)

Proof. Let (x0, x
∗
0) ∈ X ×X∗. We have

FA(x0, x
∗
0) = sup

(x,x∗)∈graA

{〈(x∗0, x0), (x, x∗)〉 − 〈x, x∗〉}

= sup
(x,x∗)∈graA

〈(x∗0, x0), (x, x∗)〉

= ι(graA)⊥(x∗0, x0)

= ιgra(−A∗)(x0, x
∗
0)

= ιgra(−A∗)∩X×X∗(x0, x
∗
0).

Hence (8) holds. �
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To produce operators not of type (D) but that are of (BR) we exploit:

Lemma 3.2 Let A : X ⇒ X∗ be a maximally monotone and linear skew operator. Assume that gra(−A∗) ∩X ×X∗ ⊆ graA. Then A is

of type (BR).

Proof. Let α, β > 0 and (x, x∗) ∈ X ×X∗ be such that inf(a,a∗)∈graA〈x− a, x∗ − a∗〉 > −αβ. Since A is skew, we have

inf
(a,a∗)∈graA

〈x, x∗〉 − [〈x, a∗〉+ 〈a, x∗〉] = inf
(a,a∗)∈graA

〈x− a, x∗ − a∗〉 > −αβ.(9)

Thus, 〈x, a∗〉 + 〈a, x∗〉 = 0,∀(a, a∗) ∈ graA and hence (x, x∗) ∈ gra(−A∗). Then by assumption, (x, x∗) ∈ graA. Taking (b, b∗) = (x, x∗),

we have ‖b− x‖ < α and ‖b∗ − x∗‖ < β. Hence A is of type (BR). �

Corollary 3.3 Let A : X ⇒ X∗ be a maximally monotone and linear skew operator that is not of type (D). Assume that A is unique.

Then graA = gra(−A∗) ∩X ×X∗ and so A is of type (BR).

Proof. Apply Fact 2.8, Lemma 3.1 and Lemma 3.2 directly. �

We now write down our key tool for constructing non (NI) operators.
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Proposition 3.4 Let A : X ⇒ X∗ be maximally monotone. Assume that A is of type (NI) (or, equivalently, of type (D) by Fact 2.7) and

that there exists e ∈ X∗ such that

〈x∗, x〉 ≥ 〈e, x〉2, ∀(x, x∗) ∈ graA.

Then e ∈ conv ranA.

Proof. Suppose e 6∈ conv ranA. Then by the Separation Theorem, there exists x∗∗0 ∈ X∗∗ such that 〈e − x∗, x∗∗0 〉 ≥ 1 for all x∗ ∈ ranA.

Then we have

〈x∗ − e, x− x∗∗0 〉 = 〈e− x∗, x∗∗0 〉+ 〈x∗ − e, x〉, ∀(x, x∗) ∈ graA

≥ 1 + 〈e, x〉2 − 〈e, x〉

≥ min
t∈R

t2 − t+ 1 =
3

4
.

Thus A is not of type (NI), which contradicts the assumption. �

The proof of the following result was partially inspired by that [12, Proposition 2.2].

Proposition 3.5 Let A : X ⇒ X∗ be a maximally monotone linear relation. Assume that there exists e ∈ X∗ such that e /∈ ranA and

that

〈x∗, x〉 ≥ 〈e, x〉2, ∀(x, x∗) ∈ graA.

Then A is neither of type (D) nor unique.
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Proof. By Proposition 3.4, A is not of type (D). Similar to the proof of Proposition 3.4, there exists x∗∗0 ∈ X∗∗ such that 〈e, x∗∗0 〉 ≥ 1 and

x∗∗0 ∈ (ranA)⊥. Let 0 < α < 2. Then we have

〈x∗ − αe, x− 1
α
x∗∗0 〉 = 〈αe− x∗, 1

α
x∗∗0 〉+ 〈x∗ − αe, x〉, ∀(x, x∗) ∈ graA

≥ 1 + 〈e, x〉2 − α〈e, x〉

≥ min
t∈R

t2 − αt+ 1

= 1− α2

4
> 0.

Thus for every 0 < α < 2, ( 1
α
x∗∗0 , αe) ∈ X∗∗ ×X∗ is monotonically related to graA. Take 0 < α1 < α2 < 2. Then by Zorn’s Lemma, we

have a maximally monotone extension, A1 : X∗∗ ⇒ X∗ such that graA1 ⊇ graA ∪ {( 1
α1
x∗∗0 , α1e, )}, and we can also obtain a maximally

monotone extension, A2 : X∗∗ ⇒ X∗ such that graA2 ⊇ graA ∪ {( 1
α2
x∗∗0 , α2e)}.

Now we show graA1 6= graA2. Suppose to the contrary that graA1 = graA2. Then by the monotonicity of A1, we have

〈 1
α1
x∗∗0 − 1

α2
x∗∗0 , α1e− α2e〉 ≥ 0.(10)

On the other hand,

〈 1
α1
x∗∗0 − 1

α2
x∗∗0 , α1e− α2e〉 = (α1 − α2)( 1

α1
− 1

α2
)〈x∗∗0 , e〉

< (α1 − α2)( 1
α1
− 1

α2
) < 0,

which contradicts (10). Hence graA1 6= graA2 and thus A is not unique. �
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Remark 3.6 Dr. Robert Csetnek kindly communicated to us the following alternative proof of the uniqueness part of Proposition 3.5:

Since

FA(0, e) = sup
(a,a∗)∈graA

{
〈e, a〉 − 〈a, a∗〉

}
≤ sup

(a,a∗)∈graA

{
〈e, a〉 − 〈e, a〉2

}
≤ 1

4
,

we see that (0, e) ∈ domFA. However, because (0, e) /∈ graA and A is not of type (D), Fact 2.8 implies that A is not unique.

We are now ready to establish our work-horse Theorem 3.7, which allows us to construct various maximally monotone operators —

both linear and nonlinear — that are not of type (D). The idea of constructing the operators in the following fashion is based upon [2,

Theorem 5.1] and was stimulated by [12].
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Theorem 3.7 (Predual constructions) Let A : X∗ → X∗∗ be linear and continuous. Assume that ranA ⊆ X and that there exists

e ∈ X∗∗\X such that

〈Ax∗, x∗〉 = 〈e, x∗〉2, ∀x∗ ∈ X∗.

Let P and S respectively be the symmetric part and antisymmetric part of A. Let T : X ⇒ X∗ be defined by

graT :=
{

(−Sx∗, x∗) | x∗ ∈ X∗, 〈e, x∗〉 = 0
}

=
{

(−Ax∗, x∗) | x∗ ∈ X∗, 〈e, x∗〉 = 0
}
.(11)

Let f : X → ]−∞,+∞] be a proper lower semicontinuous and convex function. Set F := f ⊕ f ∗ on X ×X∗. Then the following hold.

(i) A is a maximally monotone operator on X∗ that is neither of type (D) nor unique.

(ii) Px∗ = 〈x∗, e〉e, ∀x∗ ∈ X∗.

(iii) T is maximally monotone and skew on X.

(iv) graT ∗ = {(Sx∗ + re, x∗) | x∗ ∈ X∗, r ∈ R}.

(v) −T is not maximally monotone.

(vi) T is not of type (D).

(vii) FT = ιC, where

C := {(−Ax∗, x∗) | x∗ ∈ X∗}.(12)
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(viii) T is not unique.

(ix) T is not of type (BR).

(x) If domT ∩ int dom ∂f 6= ∅, then T + ∂f is maximally monotone.

(xi) F and FT are BC–functions on X ×X∗.

(xii) Moreover,

⋃
λ>0

λ
(
PX∗(domFT )− PX∗(domF )

)
= X∗,

while, assuming that there exists (v0, v
∗
0) ∈ X ×X∗ such that

f ∗(v∗0) + f ∗∗(v0 − A∗v∗0) < 〈v0, v
∗
0〉,(13)

then FT�1F is not a BC–function.

(xiii) Assume that
[
ranA−

⋃
λ>0 λ dom f

]
is a closed subspace of X and that

∅ 6= dom f ∗∗ ◦ A∗|X∗ " {e}⊥.

Then T + ∂f is not of type (D).

(xiv) Assume that dom f ∗∗ = X∗∗. Then T + ∂f is a maximally monotone operator that is not of type (D).
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Proof. (i): Clearly, A has full domain. Since A is monotone and continuous, A is maximally monotone. By the assumptions that e /∈ X

and ranA ⊆ X = X, then by Proposition 3.5, A is neither of type (D) nor unique. See also [1, Theorem 14.2.1 and Theorem 13.2.3] for

alternative proof of that A is not of type (D).

(ii): Now we show that

Px∗ = 〈x∗, e〉e, ∀x∗ ∈ X∗.(14)

Since 〈·, e〉e = ∂(1
2
〈·, e〉2) and by [29, Theorem 5.1], 〈·, e〉e is a symmetric operator on X∗. Clearly, A− 〈·, e〉e is skew. Then (14) holds.

(iii): Let x∗ ∈ X∗ with 〈e, x∗〉 = 0. Then we have

Sx∗ = 〈x∗, e〉e+ Sx∗ = Px∗ + Sx∗ = Ax∗ ∈ ranA ⊆ X.

Thus (11) holds and T is well defined.

We have S is skew and hence T is skew. Let (z, z∗) ∈ X ×X∗ be monotonically related to graT . By Fact 2.6, we have

0 = 〈z, x∗〉+ 〈−Sx∗, z∗〉 = 〈z + Sz∗, x∗〉, ∀x∗ ∈ {e}⊥.

Thus by Fact 2.1, we have z + Sz∗ ∈ ({e}⊥)⊥ = span{e} and then

∃κ ∈ R, z = −Sz∗ + κe.(15)

Since (0, 0) ∈ graT ,

κ〈z∗, e〉 = 〈−Sz∗ + κe, z∗〉 = 〈z, z∗〉 ≥ 0.(16)



3 MAIN RESULT 27

Then by (15) and (ii),

∃κ ∈ R, Az∗ = Pz∗ + Sz∗ = Pz∗ + κe− z = [〈z∗, e〉+ κ] e− z.(17)

By the assumptions that z ∈ X, Az∗ ∈ X and e /∈ X, [〈z∗, e〉+ κ] = 0 by (17). Then by (16), we have 〈z∗, e〉 = κ = 0 and thus

(z, z∗) ∈ graT by (15). Hence T is maximally monotone.

(iv): Let (x∗∗0 , x
∗
0) ∈ X∗∗ ×X∗. Then we have

(x∗∗0 , x
∗
0) ∈ graT ∗ ⇔ 〈x∗0, Sx∗〉+ 〈x∗, x∗∗0 〉 = 0, ∀x∗ ∈ {e}⊥

⇔ 〈x∗, x∗∗0 − Sx∗0〉 = 0, ∀x∗ ∈ {e}⊥

⇔ x∗∗0 − Sx∗0 ∈ ({e}⊥)⊥ = span{e} (by Fact 2.1)

⇔ ∃r ∈ R, x∗∗0 − Sx∗0 = re.

Thus graT ∗ = {(Sx∗ + re, x∗) | x∗ ∈ X∗, r ∈ R}.

(v): Since e /∈ X, we have e 6= 0. Then there exists z∗ ∈ X∗ such that z∗ 6∈ {e}⊥. Then by (ii)&(iv) and the assumption that

ranA ⊆ X, we have

(Az∗, z∗) = (Sz∗ + 〈e, z∗〉e, z∗) ∈ graT ∗ ∩X ×X∗.

Thus we have

〈Az∗ − x, z∗ − x∗〉 = 〈Az∗, z∗〉 − [〈Az∗, x∗〉+ 〈x, z∗〉] + 〈x, x∗〉

= 〈Az∗, z∗〉 ≥ 0, ∀(x, x∗) ∈ gra(−T ).
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Hence (Az∗, z∗) is monotonically related to gra(−T ). Since z∗ /∈ ran(−T ), (Az∗, z∗) /∈ gra(−T ) and thus −T is not maximally monotone.

(vi): By (iv), T ∗ is not monotone. Then by Fact 2.14, T is not of type (D).

(vii): By (iv), we have

(z, z∗) ∈ gra(−T ∗) ∩X ×X∗

⇔ ∃r ∈ R, (z, z∗) = (−Sz∗ − re, z∗), z ∈ X, z∗ ∈ X∗

⇔ ∃r ∈ R, (z, z∗) = (−Sz∗ − 〈z∗, e〉e+ [〈z∗, e〉 − r] e, z∗), z ∈ X, z∗ ∈ X∗

⇔ ∃r ∈ R, (z, z∗) = (−Az∗ + [〈z∗, e〉 − r] e, z∗), z ∈ X, z∗ ∈ X∗(18)

⇔ ∃r ∈ R, (z, z∗) = (−Az∗, z∗), 〈z∗, e〉 = r , z∗ ∈ X∗(19)

⇔ (z, z∗) ∈ {(−Ax∗, x∗) | x∗ ∈ X∗} = C.

Note that (18) holds by (ii), and (19) holds since z, Az∗ ∈ X and e /∈ X. Thus by Lemma 3.1, we have FT = ιC .

(viii): Since e /∈ X, we have e 6= 0. Then there exists z∗ ∈ X∗ such that z∗ 6∈ {e}⊥. Thus z∗ /∈ ranT . By (vii), z∗ ∈ PX∗ [domFT ].

Thus, graT 6= domFT . Then by (vi) and Fact 2.8, T is not unique.

(ix): Suppose to the contrary that T is of type (BR). Let z∗ be as in the proof of (viii). Then by Lemma 3.1 and (vii), we have

(−Az∗, z∗) ∈ gra(−T ∗) ∩X ×X∗ and then

inf
(x,x∗)∈graT

〈−Az∗ − x, z∗ − x∗〉 = 〈−Az∗, z∗〉 > −∞.

Then Fact 2.10 shows z∗ ∈ ranT , which contradicts that z∗ /∈ {e}⊥ = ranT . Hence T is not of type (BR).

(x): Apply (iii) and Fact 2.15.

(xi): Clearly, F is a BC–function. By (iii) and Fact 2.3, we see that FT is a BC–function.
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(xii): By (vii), we have

⋃
λ>0

λ
(
PX∗(domFT )− PX∗(domF )

)
= X∗.(20)

Then for every (x, x∗) ∈ X ×X∗ and u ∈ X, by (xi),

FT (x− u, x∗) + F (u, x∗) = FT (x− u, x∗) + (f ⊕ f ∗)(u, x∗) ≥ 〈x− u, x∗〉+ 〈u, x∗〉 = 〈x, x∗〉.

Hence

(FT�1F )(x, x∗) ≥ 〈x, x∗〉 > −∞.(21)

Then by (20), (21) and Fact 2.5,

(FT�1F )∗(v∗0, v0) = min
x∗∗∈X∗∗

F ∗T (v∗0, x
∗∗) + F ∗(v∗0, v0 − x∗∗)

≤ F ∗T (v∗0, A
∗v∗0) + F ∗(v∗0, v0 − A∗v∗0)

= 0 + F ∗(v∗0, v0 − A∗v∗0) (by (vii))

= (f ⊕ f ∗)∗(v∗0, v0 − A∗v∗0) = (f ∗ ⊕ f ∗∗)(v∗0, v0 − A∗v∗0)

= f ∗(v∗0) + f ∗∗(v0 − A∗v∗0)

< 〈v∗0, v0〉 (by (13)).

Hence FT�1F is not a BC–function.
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(xiii): By the assumption, there exists x∗0 ∈ dom f ∗∗ ◦ A∗|X∗ such that 〈e, x∗0〉 6= 0. Let ε0 =
〈e,x∗0〉2

2
. By [42, Theorem 2.4.4(iii)]), there

exists y∗∗∗0 ∈ ∂ε0f ∗∗(A∗x∗0). By the Fenchel-Moreau theorem ([42, Theorem 2.4.2(ii)]),

f ∗∗(A∗x∗0) + f ∗∗∗(y∗∗∗0 ) ≤ 〈A∗x∗0, y∗∗∗0 〉+ ε0.(22)

Then by [36, Lemma 45.9] or the proof of [30, Eq.(2.5) in Proposition 1], there exists y∗0 ∈ X∗ such that

f ∗∗(A∗x∗0) + f ∗(y∗0) < 〈A∗x∗0, y∗0〉+ 2ε0.(23)

Let z∗0 = y∗0 + x∗0. Then by (23), we have

f ∗∗(A∗x∗0) + f ∗(z∗0 − x∗0) < 〈A∗x∗0, z∗0 − x∗0〉+ 2ε0

= 〈A∗x∗0, z∗0〉 − 〈A∗x∗0, x∗0〉+ 2ε0

= 〈A∗x∗0, z∗0〉 − 〈x∗0, Ax∗0〉+ 2ε0

= 〈A∗x∗0, z∗0〉 − 2ε0 + 2ε0

= 〈A∗x∗0, z∗0〉.(24)

Then for every (x, x∗) ∈ X ×X∗ and u∗ ∈ X, by (xi),

FT (x, x∗ − u∗) + F (x, u∗) = FT (x, x∗ − u∗) + (f ⊕ f ∗)(x, u∗) ≥ 〈x, x∗ − u∗〉+ 〈x, u∗〉 = 〈x, x∗〉.

Hence

(FT�2F )(x, x∗) ≥ 〈x, x∗〉 > −∞.(25)
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Then by (25), (vii) and Fact 2.4,

(FT�2F )∗(z∗0 , A
∗x∗0) = min

y∗∈X∗
F ∗T (y∗, A∗x∗0) + F ∗(z∗0 − y∗, A∗x∗0)

≤ F ∗T (x∗0, A
∗x∗0) + F ∗(z∗0 − x∗0, A∗x∗0)

= 0 + F ∗(z∗0 − x∗0, A∗x∗0) (by (vii))

= (f ⊕ f ∗)∗(z∗0 − x∗0, A∗x∗0)

= f ∗(z∗0 − x∗0) + f ∗∗(A∗x∗0)

< 〈z∗0 , A∗x∗0〉 (by (24)).(26)

Let F0 : X ×X∗ → ]−∞,+∞] be defined by

(x, x∗) 7→ 〈x, x∗〉+ ιgra(T+∂f)(x, x
∗).(27)

Clearly, FT�2F ≤ F0 on X ×X∗ and thus (FT�2F )∗ ≥ F ∗0 on X∗×X∗∗. By (26), F ∗0 (z∗0 , A
∗x∗0) < 〈z∗0 , A∗x∗0〉. Hence T + ∂f is not of type

(NI) and thus T + ∂f is not of type (D) by Fact 2.7.

(xiv): Since dom f ∗∗ = X∗∗, dom f = X by the Fenchel-Moreau theorem (see [42, Theorem 2.3.3]). By dom f ∗∗ = X∗∗ again,

dom f ∗∗ ◦ A∗|X∗ = X∗ " {e}⊥. Then apply (x)&(xiii) directly. �
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Remark 3.8 (Grothendieck spaces [11]) In light of part (xiii) of the previous theorem), we record that for a closed convex function

(
dom f = X implies dom f ∗∗ = X∗∗

)
⇔
(
X is a Grothendieck space

)
.

All reflexive spaces are Grothendieck spaces while all non-reflexive Grothendieck spaces (such as L∞[0, 1]) contain an isomorphic copy of

c0. ♦

We are now ready to exploit Theorem 3.7.

4 Examples and applications

We begin in subsection 4.1 with the case of c0 and its dual `1.

This allows us to recover known results in a uniform fashion before introducing additional notions from the theory of Schauder bases

in subsection 4.2.
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4.1 Applications to c0

Example 4.1 (c0) Let X := c0, with norm ‖ · ‖∞ so that X∗ = `1 with norm ‖ · ‖1, and X∗∗ = `∞ with its second dual norm ‖ · ‖∗. Let

α := (αn)n∈N ∈ `∞ with lim supαn 6= 0, and let Aα : `1 → `∞ be defined by

(Aαx
∗)n := α2

nx
∗
n + 2

∑
i>n

αnαix
∗
i , ∀x∗ = (x∗n)n∈N ∈ `1.(28)

Now let Pα and Sα respectively be the symmetric part and antisymmetric part of Aα. Let Tα : c0 ⇒ X∗ be defined by

graTα :=
{

(−Sαx∗, x∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}

=
{

(−Aαx∗, x∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}

=
{(

(−
∑
i>n

αnαix
∗
i +

∑
i<n

αnαix
∗
i )n∈N, x

∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}
.(29)

Then

(i) 〈Aαx∗, x∗〉 = 〈α, x∗〉2, ∀x∗ = (x∗n)n∈N ∈ `1 and (29) is well defined.

(ii) Aα is a maximally monotone operator on `1 that is neither of type (D) nor unique.

(iii) Tα is a maximally monotone operator on c0 that is not of type (D). Hence c0 is not of type (D).

(iv) −Tα is not maximally monotone.

(v) Tα is neither unique nor of type (BR).

(vi) FTα�1(‖ · ‖ ⊕ ιBX∗ ) is not a BC–function.

(vii) Tα + ∂‖ · ‖ is a maximally monotone operator on c0(N) that is not of type (D).



4 EXAMPLES AND APPLICATIONS 34

(viii) If 1√
2
< ‖α‖∗ ≤ 1, then FTα�1(1

2
‖ · ‖2 ⊕ 1

2
‖ · ‖2

1) is not a BC–function.

(ix) For λ > 0, Tα + λJ is a maximally monotone operator on c0 that is not of type (D).

(x) Let λ > 0 and a linear isometry L mapping c0 to a subspace of C[0, 1] be given.

Then both (L∗)−1(Tα+∂‖ ·‖)L−1 and (L∗)−1(Tα+λJ)L−1 are maximally monotone operators that are not of type (D). Hence C[0, 1]

is not of type (D).

(xi) Every Banach space that contains an isomorphic copy of c0 is not of type (D).

(xii) Let G : `1 → `∞ be Gossez’s operator [20] defined by

(
G(x∗)

)
n

:=
∑
i>n

x∗i −
∑
i<n

x∗i , ∀(x∗n)n∈N ∈ `1.

Then Te : c0 ⇒ `1 as defined by

graTe := {(−G(x∗), x∗) | x∗ ∈ `1, 〈x∗, e〉 = 0}

is a maximally monotone operator that is not of type (D), where e := (1, 1, . . . , 1, . . .).

(xiii) Moreover, G is a unique maximally monotone operator that is not of type (D), but G is of type (BR).
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Proof. We have α /∈ c0. Since α = (αn)n∈N ∈ `∞ and ‖Aα‖ ≤ 2‖α‖2, Aα is linear and continuous. By (28), ranAα ⊆ c0 ⊆ `∞.

(i): We have

〈Aαx∗, x∗〉 =
∑
n

x∗n(α2
nx
∗
n + 2

∑
i>n

αnαix
∗
i )

=
∑
n

α2
nx
∗
n

2 + 2
∑
n

∑
i>n

αnαix
∗
nx
∗
i

=
∑
n

α2
nx
∗
n

2 +
∑
n 6=i

αnαix
∗
nx
∗
i

= (
∑
n

αnx
∗
n)2 = 〈α, x∗〉2, ∀x∗ = (x∗n)n∈N ∈ `1.(30)

Then Theorem 3.7(ii) shows that the symmetric part Pα of Aα is Pαx
∗ = 〈α, x∗〉α (for every x∗ ∈ `1). Thus, the skew part Sα of Aα is

(Sαx
∗)n = (Aαx

∗)n − (Pαx
∗)n

= α2
nx
∗
n + 2

∑
i>n

αnαix
∗
i −

∑
i≥1

αnαix
∗
i

=
∑
i>n

αnαix
∗
i −

∑
i<n

αnαix
∗
i .(31)

Then by Theorem 3.7, (29) is well defined.

(ii): Apply (i) and Theorem 3.7(i) directly.

(iii): Combine Theorem 3.7(iii)&(vi).

(iv): Apply Theorem 3.7(v) directly.

(v): Apply Theorem 3.7(viii)&(ix).

(vi) Since α 6= 0, there exists i0 ∈ N such that αi0 6= 0. Let ei0 := (0, . . . , 0, 1, 0, . . .), i.e., the i0th entry is 1 and the others are 0. Then
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by (31), we have

Sαei0 = αi0(α1, . . . , αi0−1, 0,−αi0+1,−αi0+2, . . .).(32)

Then

A∗ei0 = Pαei0 − Sαei0

= αi0(0, . . . , 0, αi0 , 2αi0+1, 2αi0+2, . . .).(33)

Now set v∗0 := ei0 and v0 := 3‖α‖2
∗ei0 . Thus by (33),

v0 − A∗v∗0 = 3‖α‖2
∗ei0 − A∗ei0

= (0, . . . , 0, 3‖α‖2
∗ − α2

i0
,−2αi0αi0+1,−2αi0αi0+2, . . .).(34)

Let f := ‖ · ‖ on X = c0. Then f ∗ = ιBX∗ and f ∗∗ = ‖ · ‖∗ by [42, Corollary 2.4.16]. We have

f ∗(v∗0) + f ∗∗(v0 − A∗ei0) = ιBX∗ (ei0) + ‖v0 − A∗ei0‖∗

=
∥∥3‖α‖2

∗ei0 − A∗ei0
∥∥∗

< 3‖α‖2
∗ (by (34))

= 〈v0, v
∗
0〉.

Hence by Theorem 3.7(xii), FTα�1(‖ · ‖ ⊕ ιBX∗ ) is not a BC–function.

(vii): Let f := ‖ · ‖ on X. Since dom f ∗∗ = X∗∗, we can apply Theorem 3.7(xiv).
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(viii): By 1√
2
< ‖α‖∗ ≤ 1, take |αi0|2 > 1

2
. Let ei0 be defined as in the proof of (vi). Then take v∗1 := 1

2
ei0 and v1 :=

(
1 + 1

2
α2
i0

)
ei0 .

By (33), we have

v1 − A∗v∗1 = (0, . . . , 0, 1,−αi0αi0+1,−αi0αi0+2, . . .).(35)

Since |αi0αj| ≤ ‖α‖2
∗ ≤ 1, ∀j ∈ N, then

‖v1 − A∗v∗1‖∗ ≤ 1.(36)

Let f := 1
2
‖ · ‖2 on X = c0. Then f ∗ = 1

2
‖ · ‖2

1 and f ∗∗ = 1
2
‖ · ‖2

∗. We have

f ∗(v∗1) + f ∗∗(v1 − A∗v∗1) = 1
2
‖v∗1‖2

1 + 1
2
‖v1 − A∗v∗1‖2

∗

≤ 1
8

+ 1
2

(by (36))

<
α2
i0

4
+ 1

2
(since α2

i0
> 1/2)

= 〈v∗1, v1〉.

Hence by Theorem 3.7(xii), FTα�1(1
2
‖ · ‖2 ⊕ 1

2
‖ · ‖2

∗) is not a BC–function.

(ix): Let λ > 0 and f := λ
2
‖ · ‖2 on X = c0. Then f ∗∗ = λ

2
‖ · ‖2

∗. Then apply Theorem 3.7(xiv).

(x): Since c0 is separable by [26, Example 1.12.6] or [15, Proposition 1.26(ii)], by Fact 2.2, there exists a linear operator L : c0 → C[0, 1]

that is an isometry from c0 to a subspace of C[0, 1]. Then combine (vii)&(ix) and Corollary 2.18.

(xi) Combine (iii) (or (vii) or (ix)) and Corollary 2.18.

(xii): To obtain the result on Te, directly apply (iii) (or see [2, Example 5.2]).

(xiii) Now −G is type (D) but G is not [2]. To see that G is unique, note that −G∗ is monotone by Fact 2.14 and so provides the



4 EXAMPLES AND APPLICATIONS 38

unique maximal extension. Since G is skew and continuous, clearly, −G∗x∗ = Gx∗, ∀x∗ ∈ `1. Then Lemma 3.2 implies that G is of type

(BR). The uniqueness of G was also verified in [1, Example 14.2.2]. �

Remark 4.2 The maximal monotonicity of the operator Te in Example 4.1(xii) was also verified by Voisei and Zălinescu in [39, Example 19]

and later a direct proof was given by Bueno and Svaiter in [12, Lemma 2.1]. Herein we have given a new proof of the above results.

Bueno and Svaiter also showed that Te is not of type (D) in [12]. They also showed that each Banach space that contains an isometric

(isomorphic) copy of c0 is not of type (D) in [12]. Example 4.1(xi) recaptures their result, while Example 4.1(vi)&(viii) provide a negative

answer to Simons’ [36, Problem 22.12]. ♦

Remark 4.3 (The continuous case) We recall that a Banach space X is a conjugate monotone space if every continuous linear mono-

tone operator on X has a monotone conjugate. In particular this holds if every continuous linear monotone operator on X is weakly

compact. In consequence, a Banach lattice X contains a complemented copy of `1 if and only if it admits a non (D) continuous linear

monotone operator, on using Fact 2.14 along with [2, Remark 5.5] and [2, Examples. 5.2 and 5.3].

Thus, in lattices such as c0, c and C[0, 1] only discontinuous linear monotone operators can fail to be of type (D). This subtlety escaped

the current authors for fifteen years. ♦

We now turn to a broader class of spaces:
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4.2 Applications to more general nonreflexive spaces

Our results below are facilitated by making use of Schauder basis structure [16].

Definition 4.4 (Schauder basis) We say (en, e
∗
n)n∈N in X × X∗ is a Schauder basis of X if for every x ∈ X there exists a unique

sequence (αn)n∈N in R such that x =
∑

n≥1 αnen, where αn = 〈x, e∗n〉 and 〈ei, e∗j〉 = δi,j, ∀i, j ∈ N.

Definition 4.5 (Shrinking Schauder basis) Let (en, e
∗
n)n∈N in X × X∗ be a Schauder basis of X. We say the basis is shrinking if

span{e∗n | n ∈ N} = X∗.

In particular, a Banach space with a shrinking basis has a separable dual and so is an Asplund space [16].

Fact 4.6 (See [16, Lemma 4.7(iii) and Facts 4.11(ii)&(iii)] or [15, Lemma 6.2(iii) and Facts 6.6(ii)&(iii)] .) Let (en, e
∗
n)n∈N in X ×X∗ be

a Schauder basis of X. Then

(i) limn

∑n
i=1〈x, e∗i 〉ei = x, ∀x ∈ X;

(ii)
∑n

i=1〈x∗, ei〉e∗i weak∗ converges to x∗, written as,
∑n

i=1〈x∗, ei〉e∗i
w*
⇁x∗, ∀x∗ ∈ X∗;

(iii) (e∗n, en)n∈N in X∗ ×X∗∗ is a Schauder basis of span{e∗n | n ∈ N}.

Lemma 4.7 Let (en, e
∗
n)n∈N in X ×X∗ be a Schauder basis of X. Then e∗n

w*
⇁ 0 whenever lim infn∈N ‖en‖ > 0.

Proof. Let x ∈ X. Since ‖〈x, e∗n〉en‖ → 0 due to Fact 4.6(i), as lim infn∈N ‖en‖ > 0, we have 〈x, e∗n〉 → 0. Hence e∗n
w*
⇁ 0 as n→∞. �
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The proof of Example 4.8(i) was inspired by that of [3, Proposition 3.5].

Example 4.8 (Schauder basis) Let (en, e
∗
n)n∈N in X ×X∗ be a Schauder basis of X. Assume that for some e ∈ X∗∗ we have

n∑
i=1

ei
w*
⇁e ∈ X∗∗.(37)

Let A : X ⇒ X∗ be defined by

graA :=

{(∑
n

(
−
∑
i>n

〈ei, y∗〉+
∑
i<n

〈ei, y∗〉
)
en, y

∗
)
∈ X ×X∗ | y∗ ∈ {e}⊥

}
.

Assume that lim inf ‖en‖ > 0. Then the following hold.

(i) A is a maximally monotone and linear skew operator.

(ii) A is not of type (BR).

(iii) A is not of type (D).

(iv) A is not unique.

(v) Every Banach space containing a copy of X is not of type (D).
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Proof. (i): First, we show A is skew. Let (y, y∗) ∈ graA. Then 〈e, y∗〉 = 0 and

y =
∞∑
n=1

(
−
∑
i>n

〈ei, y∗〉+
∑
i<n

〈ei, y∗〉
)
en. By the assumption that

∑n
i=1 ei

w*
⇁e ∈ X∗∗, we have

s :=
∑
i≥1

〈ei, y∗〉 = 〈e, y∗〉 = 0.(38)

Thus,

〈y, y∗〉 = 〈
∑
n

(
−
∑
i>n

〈ei, y∗〉+
∑
i<n

〈ei, y∗〉
)
en, y

∗〉

= lim
k
〈
k∑

n=1

(
−
∑
i>n

〈ei, y∗〉+
∑
i<n

〈ei, y∗〉
)
en, y

∗〉 (by Fact 4.6(i))

= lim
k

k∑
n=1

(
−
∑
i>n

〈ei, y∗〉+
∑
i<n

〈ei, y∗〉
)
〈en, y∗〉
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= − lim
k

k∑
n=1

(∑
i>n

〈ei, y∗〉 −
∑
i<n

〈ei, y∗〉
)
〈en, y∗〉

= − lim
k

k∑
n=1

( ∑
i≥n+1

〈ei, y∗〉+
∑
i≥n

〈ei, y∗〉
)
〈en, y∗〉 (by (38))(39)

= − lim
k

(
〈e1, y

∗〉
∑
i≥1

〈ei, y∗〉+ 〈e2, y
∗〉
∑
i≥2

〈ei, y∗〉+ · · ·+ 〈ek, y∗〉
∑
i≥k

〈ei, y∗〉

+ 〈e1, y
∗〉
∑
i≥2

〈ei, y∗〉+ 〈e2, y
∗〉
∑
i≥3

〈ei, y∗〉+ · · ·+ 〈ek, y∗〉
∑
i≥k+1

〈ei, y∗〉
)

= − lim
k

(
s〈e1, y

∗〉+ (s− 〈e1, y
∗〉)〈e2, y

∗〉+ · · ·+ (s−
k−1∑
i=1

〈ei, y∗〉)〈ek, y∗〉

+ (s− 〈e1, y
∗〉)〈e1, y

∗〉+
(
s−

2∑
i=1

〈ei, y∗〉
)
〈e2, y

∗〉+ · · ·+ (s−
k∑
i=1

〈ei, y∗〉)〈ek, y∗〉
)

= − lim
k

(
s

k∑
i=1

〈ei, y∗〉 − 〈e1, y
∗〉〈e2, y

∗〉 −
2∑
i=1

〈ei, y∗〉〈e3, y
∗〉 − · · · −

k−1∑
i=1

〈ei, y∗〉〈ek, y∗〉

+ s
k∑
i=1

〈ei, y∗〉 −
k∑
i=1

〈ei, y∗〉2 − 〈e1, y
∗〉〈e2, y

∗〉 − · · · −
k−1∑
i=1

〈ei, y∗〉〈ek, y∗〉
)

= − lim
k

[
2s

k∑
i=1

〈ei, y∗〉 − (
k∑
i=1

〈ei, y∗〉)2

]

= −(2s2 − s2) = −s2 = 0. (by (38))

Hence A is skew.

To show maximality, let (x, x∗) ∈ X ×X∗ be monotonically related to graA. By Fact 2.6, we have

〈y∗, x〉+ 〈x∗, y〉 = 0, ∀(y, y∗) ∈ graA.(40)
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By (37), we have

〈e, e∗n〉 =
∑
i≥1

〈ei, e∗n〉 = δn,n = 1, ∀n ∈ N.(41)

Let y∗ := −e∗1 + e∗n (n ≥ 2) and y := −e1− 2
∑n−1

i=2 ei− en. By (41), we have 〈e, y∗〉 = 0. Hence y∗ ∈ {e}⊥ and (y, y∗) ∈ graA. Using (40),

− 〈x, e∗1〉+ 〈x, e∗n〉 − 〈x∗, e1〉 − 〈x∗, en〉 − 2
n−1∑
i=2

〈x∗, ei〉 = 0.

Thus, we have

〈x, e∗n〉 = 〈x, e∗1〉 − 〈x∗, e1〉+ 〈x∗, en〉+ 2
n−1∑
i=1

〈x∗, ei〉.(42)

From (37),
∑

i≥1〈ei, z∗〉 = 〈e, z∗〉(∀z∗ ∈ X∗), we have 〈x∗, en〉 → 0.

Hence, by Lemma 4.7 — since lim inf ‖en‖ > 0 — and (42),

−2
∑
i≥1

〈x∗, ei〉 = 〈x, e∗1〉 − 〈x∗, e1〉.(43)

Next we show −2
∑

i≥1〈x∗, ei〉 = 〈x, e∗1〉 − 〈x∗, e1〉 = 0. Let t =
∑

i≥1〈x∗, ei〉. Then by (42) and (43),

x =
∑
n≥1

〈x, e∗n〉en

=
∑
n≥1

(
− 2

∑
i≥1

〈x∗, ei〉+ 2
∑
i<n

〈x∗, ei〉+ 〈x∗, en〉
)
en

=
∑
n≥1

(
− 2

∑
i≥n

〈x∗, ei〉+ 〈x∗, en〉
)
en
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=
∑
n≥1

(
−
∑
i≥n

〈x∗, ei〉 −
∑
i≥n

〈x∗, ei〉+ 〈x∗, en〉
)
en

=
∑
n≥1

(
−
∑
i≥n

〈x∗, ei〉 −
∑
i≥n+1

〈x∗, ei〉
)
en.(44)

Using (0, 0) ∈ graA, as in the proof of (39), shows

0 ≥ −〈x∗, x〉 = 〈
∑
n≥1

(∑
i≥n

〈x∗, ei〉+
∑
i≥n+1

〈x∗, ei〉
)
en, x

∗〉

= lim
k
〈
k∑

n=1

(∑
i≥n

〈x∗, ei〉+
∑
i≥n+1

〈x∗, ei〉
)
en, x

∗〉

= 2t2 − t2 = t2.

Hence t = 0. By (44),

x =
∑
n≥1

(
−
∑
i>n

〈x∗, ei〉+
∑
i<n

〈x∗, ei〉
)
en.

Hence (x, x∗) ∈ graA. Thus, A is maximally monotone.

(ii): Suppose to the contrary that A is of type (BR). One checks that (e1, e
∗
1) ∈ graA∗ and 〈e, e∗1〉 = limn〈

∑n
i=1 ei, e

∗
1〉 = 1. Thus,

(e1,−e∗1) ∈ gra(−A∗) ∩ X × X∗ and −e∗1 /∈ {e}⊥. Since ranA ⊆ {e}⊥, −e∗1 /∈ ranA. Then inf(a,a∗)∈graA〈e1 − a,−e∗1 − a∗〉 = 〈e1,−e∗1〉 =

−1 > −∞. Then by Fact 2.10, −e∗1 ∈ ranA, which is a contradiction that −e∗1 /∈ ranA. Hence A is not of type (BR).

(iii): By Fact 2.11 and (ii), A is not of type (NI) and hence A is not of type (D) by Fact 2.7.

(iv): Apply (iii)&(ii) and Corollary 3.3 directly.

(v): Combine (i)&(iii) and Corollary 2.18. �
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We shall especially exploit the lovely properties of the James space:

Definition 4.9 The James space, J, consists of all the sequences x = (xn)n∈N in c0 with the finite norm

‖x‖ := sup
n1<···<nk

(
(xn1 − xn2)

2 + (xn2 − xn3)
2 + · · ·+ (xnk−1

− xnk)2
)1

2 .

Fact 4.10 (See [16, page 205] or [15, Claim, page 185].) The space J is constructed to be of codimension-one in J∗∗.

Indeed, J∗∗ = J⊕ span{e} where e := (1, 1, . . . , 1, . . .) is the constant sequence in c(N) ⊂ `∞.

Thus, J is a separable Asplund space, equivalently J∗ is separable [11, 16, 15], and non-reflexive. Inter alia, the basis (en, e
∗
n)n∈N is a

shrinking Schauder basis in J and (e∗n, en)n∈N is a basis for J∗, where en = (0, . . . , 0, 1, 0, . . .), i.e., the nth entry is 1 and others 0.

Corollary 4.11 (James space) Let X be the James space, J. Let en be defined as in Fact 4.10, and let A be defined as in Example 4.8.

Then A is a maximally monotone and skew operator that is neither of type (BR) nor unique and so A is not of type (D). Hence, every

Banach space that contains an isomorphic copy of J is not of type (D).

Proof. To apply Example 4.8 we need only verify that (37) holds. To see this is so, we note that
(∑n

i=1 ei
)
n∈N lies in BJ∗∗ — directly

from the definition of the norm in J. Now by the Banach-Alaoglu theorem and [16, Proposition 3.103, page 128] or [15, Proposition 3.24,

page 72], we have the vector e = (1, 1, . . . , 1, . . .) is the unique w∗ limit of
(∑n

i=1 ei
)
n∈N. �
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We finish our set of core examples by dealing with the dual space J∗.

Example 4.12 (Shrinking Schauder basis) Let (en, e
∗
n)n∈N in X ×X∗ be a shrinking Schauder basis of X. Assume that

∑n
i=1 ei

w*
⇁e

for some e ∈ X∗∗. LetA : X∗ ⇒ X∗∗ be defined by

graA =

{
(y∗, y∗∗) ∈ X∗ ×X∗∗ |

k∑
n=1

(∑
i>n

〈ei, y∗〉 −
∑
i<n

〈ei, y∗〉
)
en

w*
⇁y∗∗

}
.(45)

Then A is a maximally monotone and linear skew operator, which is of type (BR).

In particular, let (en)n∈N and e be defined as in Fact 4.10. Then A + 〈·, e〉e is a maximally monotone operator that is neither of type

(D) nor unique; and every Banach space containing a copy of J∗ is not of type (D).
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Proof. Again, we first show A is skew. Let (y∗, y∗∗) ∈ graA. Then

k∑
n=1

(∑
i>n

〈ei, y∗〉 −
∑
i<n

〈ei, y∗〉
)
en

w*
⇁y∗∗.

By the assumption that
∑n

i=1 ei
w*
⇁e ∈ X∗∗, we have

s :=
∑
i≥1

〈ei, y∗〉 = 〈e, y∗〉.(46)

Thus,

〈y∗∗, y∗〉 = lim
k
〈
k∑

n=1

(∑
i>n

〈ei, y∗〉 −
∑
i<n

〈ei, y∗〉
)
en, y

∗〉

= lim
k

k∑
n=1

(∑
i>n

〈ei, y∗〉 −
∑
i<n

〈ei, y∗〉
)
〈en, y∗〉

= lim
k

k∑
n=1

( ∑
i≥n+1

〈ei, y∗〉+
∑
i≥n

〈ei, y∗〉 − s
)
〈en, y∗〉 (by (46))

= −s lim
k

k∑
n=1

〈en, y∗〉+ lim
k

k∑
n=1

( ∑
i≥n+1

〈ei, y∗〉+
∑
i≥n

〈ei, y∗〉
)
〈en, y∗〉

= −s2 + (2s2 − s2) = 0 (as in the proof of (39)).

Hence A is skew.
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Now we confirm maximality. Let (x∗, x∗∗) ∈ X∗ ×X∗∗ be monotonically related to graA. By Fact 2.6, we have

〈y∗, x∗∗〉+ 〈x∗, y∗∗〉 = 0, ∀(y∗, y∗∗) ∈ graA.(47)

Fix n ∈ N and set y∗ := e∗n. Then
∑k

j=1

(∑
i>j〈ei, y∗〉 −

∑
i<j〈ei, y∗〉

)
ej =

∑n−1
j=1 ej −

∑k
j=n+1 ej. By the assumption that

∑k
i=1 ei

w*
⇁e, we

have

n−1∑
j=1

ej −
k∑

j=n+1

ej
w*
⇁ 2

n−1∑
j=1

ej + en − e.

Hence (e∗n, 2
∑n−1

j=1 ej + en − e) ∈ graA. Then by (47),

〈x∗∗, e∗n〉+ 2
n−1∑
j=1

〈x∗, ej〉+ 〈x∗, en〉 − 〈x∗, e〉 = 0.

Since
∑

j≥1〈x∗, ej〉 = 〈x∗, e〉, we have

〈x∗∗, e∗n〉 = −2
n−1∑
j=1

〈x∗, ej〉 − 〈x∗, en〉+ 〈x∗, e〉 =
∑
j>n

〈x∗, ej〉 −
∑
j<n

〈x∗, ej〉.(48)

By Fact 4.6(iii), (e∗n, en)n∈N is a Schauder basis of span{e∗n | n ∈ N} = X∗. Then applying Fact 4.6(ii) and (48),
∑k

n=1

(∑
j>n〈x∗, ej〉 −∑

j<n〈x∗, ej〉
)
en

w*
⇁x∗∗. Hence (x∗, x∗∗) ∈ graA. Thus, A is maximally monotone.
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We next show that A is of type (BR). Let (z∗, z∗∗) ∈ gra(−A∗) ∩ X∗ × X∗∗. Much as in the proof above starting at (47), we have

(z∗, z∗∗) ∈ graA. Thus, gra(−A∗) ∩X ×X∗∗ ⊆ graA. Then by Lemma 3.2, A is of type (BR).

We turn to the particularization. By Fact 4.10, (en, e
∗
n)n∈N is a shrinking Schauder basis for J. By Fact 2.15 since A is maximal,

T = A+ 〈·, e〉e = A+ ∂ 1
2
〈·, e〉2 is maximally monotone. Since A is skew, we have

〈x∗, x∗∗〉 = 〈x∗, e〉2, ∀(x∗, x∗∗) ∈ graT.(49)

Now we claim that

e /∈ ranT .(50)

Let (y∗, y∗∗) in graT . Then

k∑
j=1

(
2
∑
i>j

〈ei, y∗〉+ 〈ej, y∗〉
)
ej

=
k∑
j=1

(
〈y∗, e〉+

∑
i>j

〈ei, y∗〉 −
∑
i<j

〈ei, y∗〉
)
ej (by

∑
i≥1

〈ej, y∗〉 = 〈e, y∗〉)

= 〈y∗, e〉
k∑
j=1

ej +
k∑
j=1

(∑
i>j

〈ei, y∗〉 −
∑
i<j

〈ei, y∗〉
)
ej

w*
⇁y∗∗.(51)
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Then by (51),

lim
k
〈y∗∗, e∗k〉 = lim

k
lim
L
〈
L∑
j=1

(
2
∑
i>j

〈ei, y∗〉+ 〈ej, y∗〉
)
ej, e

∗
k〉

= lim
k

(
2
∑
i>k

〈ei, y∗〉+ 〈ek, y∗〉
)

= 0 (by
∑
k≥1

〈ek, y∗〉 = 〈e, y∗〉).(52)

Then by Fact 4.10, y∗∗ ∈ J and hence ranT ⊆ J. Thus

ranT ⊆ J.(53)

Since 〈e, e∗k〉 = 1, ∀k ∈ N, then by Lemma 4.7, e /∈ J. Then by (53), we have (50) holds. Combining (49), (50) and Proposition 3.5,

T = A+ 〈·, e〉e is neither of type (D) nor unique.

This suffices to finish the argument. �
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Remark 4.13 (`1) A simpler version of the previous result recovers the original result that `1 admits Gossez type operators. ♦

We complete this section with an easy but useful corollary.

Corollary 4.14 (Higher duals) Suppose that both X and X∗ admit maximally monotone operators not of type (D) then so does every

higher dual space Xn. In particular, this applies to both X = c0 and X = J.

Proof. We apply part (ii) of Corollary 2.18 to the standard injections of both X and to X∗ into their second duals. �

We note that while X∗ is always complemented in X∗∗∗ this is not true of X within X∗∗ (consider c0 inside `∞).

5 Conclusion

We have provided various tools for the further construction of pathological maximally monotone operators and related Fitzpatrick functions.

In particular, we have shown — building on the work of Gossez, Phelps, Simons, Svaiter, Marques Alves, Bueno and others, and our own

previous work — that every Banach space which contains an isomorphic copy of either the James space J or its dual J∗, or c0 or its dual

`1, admits an operator which is not of type (D).

We observe that the type (D) property is preserved by direct sums and subspaces. Since every separable space is isometric to a quotient

space of `1 [16, Theorem 5.1, page 237] or [15, Theorem 5.9, page 140], the property is not preserved by quotients.



5 CONCLUSION 52

Example 5.1 (Summary) We list some of the salient spaces covered by our work:

(i) Separable Asplund spaces: both J and c0 afford examples.

(ii) Separable spaces whose dual is nonseparable and contain `1: include  L1([0, 1]), C([0, 1]) and its superspace L∞([0, 1]).

(iii) Separable spaces whose dual is nonseparable but does not contain a copy of `1: these include the James tree space JT [16, page 233]

or [15, page 199] as it contains many copies of J (and of `2(N)).

One remaining potential type (D) space is Gowers’ space [21] which isa non-reflexive Banach space containing neither c0, `1 or any reflexive

subspace. ♦

As we saw, the maximally monotone operators in our examples — with the exception of the Gossez operator — that are not of type

(D) are actually not unique. This raises the question of how in generality to construct maximally monotone linear relations that are not

of type (D) but that are unique.

Finally, it is now reasonable to conjecture that every nonreflexive space admits non (BR) operators.
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5.1 Graphic of classes of maximally monotone operators

We capture much of the current state of knowledge in the following diagram in which the notation below is used.

“ ∗ ” refers to skew operators such as T in Theorem 3.7, Tα in Example 4.1,

A in Example 4.8 and A in Corollary 4.11.

“ ∗ ∗” refers to the operators such as A&T in Theorem 3.7, Aα&Tα in Example 4.1,

A in Example 4.8, A in Corollary 4.11, and A+ 〈·, e〉e in Example 4.12.

“ ∗ ∗ ∗ ” denotes maximally monotone and unique operators with non affine graphs.

We let (ANA), (FP) and (FPV) respectively denote the other monotone operator classes “almost negative alignment”, “Fitzpatrick-Phelps”

and “Fitzpatrick-Phelps-Veronas”. Then by [36, 11, 9, 5, 33, 25, 37, 41], we have the following relationships.
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type (FPV)

*** Gossez operator* **

uniquenesstype (ED)type (NI)type (FP)

type (ANA)type (BR)

type (D)

The following questions are amongst those left open.

(i) Is every maximally monotone operator necessarily of type (FPV)?

(ii) Is every maximally monotone operator necessarily of type (ANA)? Is at least every maximally monotone linear relation necessarily

of type (ANA)?

(iii) Is every maximally monotone operator of type (BR) necessarily of type (ANA)?

The first of these is especially important, being closely related to the sum theorem in general Banach space (see [36, 11, 9, 40]).
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Applications, vol. 34, pp. 371–395, 1971.

[20] J.-P. Gossez, “On the range of a coercive maximal monotone operator in a nonreflexive Banach space”, Proceedings of the American
Mathematical Society, vol. 35, pp. 88-92, 1972.

[21] W. T. Gowers, “A Banach space not containing c0, l1 or a reflexive subspace”, Transactions of the American Mathematical Society,
vol. .344, pp. 407-420, 1994.

[22] M. Marques Alves and B.F. Svaiter, “A new proof for maximal monotonicity of subdifferential operators”, Journal of Convex Analysis,
vol. 15, pp. 345–348, 2008.

[23] M. Marques Alves and B.F. Svaiter, “Brøndsted-Rockafellar property and maximality of monotone operators representable by convex
functions in non-reflexive Banach spaces”, Journal of Convex Analysis, vol. 15, pp. 693-706, 2008.

[24] M. Marques Alves and B.F. Svaiter, “Maximal monotone operators with a unique extension to the bidual”, Journal of Convex
Analysis, vol. 16, pp. 409-421, 2009

[25] M. Marques Alves and B.F. Svaiter, “On Gossez type (D) maximal monotone operators”, Journal of Convex Analysis, vol. 17,
pp. 1077–1088, 2010.

[26] R.E. Megginson, An Introduction to Banach Space Theory, Springer-Verlag, 1998.

[27] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, 2nd Edition, Springer-Verlag, 1993.

[28] R.R. Phelps, “Lectures on maximal monotone operators”, Extracta Mathematicae, vol. 12, pp. 193–230, 1997;
http://arxiv.org/abs/math/9302209v1, February 1993.

[29] R.R. Phelps and S. Simons, “Unbounded linear monotone operators on nonreflexive Banach spaces”, Journal of Convex Analysis,
vol. 5, pp. 303–328, 1998.

[30] R.T. Rockafellar, “On the maximal monotonicity of subdifferential mappings”, Pacific Journal of Mathematics, vol. 33, pp. 209–216,
1970.



REFERENCES 57

[31] R.T. Rockafellar and R.J-B Wets, Variational Analysis, 3rd Printing, Springer-Verlag, 2009.

[32] S. Simons, “The range of a monotone operator”, Journal of Mathematical Analysis and Applications, vol. 199, pp. 176–201, 1996.

[33] S. Simons, Minimax and Monotonicity, Springer-Verlag, 1998.

[34] S. Simons, “Maximal monotone multifunctions of Brøndsted-Rockafellar type”, Set-Valued Analysis, vol. 7 pp. 255-294, 1999.

[35] S. Simons, “Five kinds of maximal monotonicity”, Set-Valued and Variational Analysis, vol. 9, pp. 391–409, 2001.

[36] S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, 2008.

[37] S. Simons, “Banach SSD Spaces and classes of monotone sets”, Journal of Convex Analysis, vol. 18, pp. 227–258, 2011.
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