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1 Preamble: Pi and Popular Culture

The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values
of π, the ratio of the circumference of a circle to its diameter, has challenged mathematicians–great and less
great—for many many centuries and, especially recently, π has provided compelling examples of computational
mathematics. Pi, uniquely in mathematics is pervasive in popular culture and the popular imagination.1

I shall intersperse this largely chronological account of Pi’s mathematical status with examples of its ubiquity.
More details will be found in the selected references at the end of the chapter—especially in Pi: a Source Book
[4]. In [4] all material not otherwise referenced may be followed up upon, as may much other material, both
serious and fanciful. Other interesting material is to be found in [11], which includes attractive discussions of
topics such as continued fractions and elliptic integrals.

Fascination with π is evidenced by the many recent popular books, television shows, and movies—even
perfume—that have mentioned π. In the 1967 Star Trek episode “Wolf in the Fold,” Kirk asks “Aren’t there
some mathematical problems that simply can’t be solved?” And Spock ‘fries the brains’ of a rogue computer
by telling it: “Compute to the last digit the value of Pi.” The May 6, 1993 episode of The Simpsons has the
character Apu boast “I can recite pi to 40,000 places. The last digit is one.” (See Figure 1.)

In November 1996, MSNBC aired a Thanksgiving Day segment about π, including that scene from Star
Trek and interviews with the present author and several other mathematicians at Simon Fraser University. The
1997 movie Contact, starring Jodie Foster, was based on the 1986 novel by noted astronomer Carl Sagan. In
the book, the lead character searched for patterns in the digits of π, and after her mysterious experience found
sound confirmation in the base-11 expansion of π. The 1997 book The Joy of Pi [5] has sold many thousands
of copies and continues to sell well. The 1998 movie entitled Pi began with decimal digits of π displayed on the
screen. Finally, in the 2003 movie Matrix Reloaded, the Key Maker warns that a door will be accessible for
exactly 314 seconds, a number that Time speculated was a reference to π.

As a forceable example, imagine the following excerpt from Eli Mandel’s 2002 Booker Prize winning novel
Life of Pi being written about another transcendental number:

“My name is
Piscine Molitor Patel

known to all as Pi Patel.

For good measure I added
π = 3.14

and I then drew a large circle which I sliced in two with a diameter, to evoke that basic lesson of
geometry.”

Equally, National Public Radio reported on April 12, 2003 that novelty automatic teller machine withdrawal
slips, showing a balance of $314, 159.26, were hot in New York City. One could jot a note on the back and,

1The MacTutor website, http://www-gap.dcs.st-and.ac.uk/~ history, at the University of St. Andrews—my home town in
Scotland—is rather a good accessible source for mathematical history.
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Around 250 BCE, Archimedes of Syracuse
(287–212 BCE) was the first to show that
the “two possible Pi’s” are the same.

Clearly for a circle of radius r and diam-
eter d, Area= π1 r2 while Perimeter
= π2 d, but that π1 = π2 is not obvious.

This is often overlooked (Figure 4.).

Figure 1: π’s original duality

3 . 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196

4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273

7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094

3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912

9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132

0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235

4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859

5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303

59825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893

Figure 2: 1,001 Decimal Digits of Pi

apparently innocently, let the intended target be impressed by one’s healthy saving account. Scott Simon, the
host, noted the close resemblance to π. Correspondingly, according to the New York Times of August 18 2005,
Google offered exactly “14, 159, 265 New Slices of Rich Technology” as the number of shares in its then new
stock offering. Likewise, March 14 in North America has become π Day, since in the USA the month is written
before the day (‘314’). In schools throughout North America, it has become a reason for mathematics projects,
especially focussing on Pi. It is hard to imagine e, γ or log 2 playing the same role. A corresponding scientific
example [3, p. 11] is

“A coded message, for example, might represent gibberish to one person and valuable information to
another. Consider the number 14159265... Depending on your prior knowledge, or lack thereof, it is
either a meaningless random sequence of digits, or else the fractional part of pi, an important piece
of scientific information.”

For those who know The Hitchhiker’s Guide to the Galaxy, it is amusing that 042 occurs at the digits ending
at the fifty-billionth decimal place in each of π and 1/π—thereby providing an excellent answer to the ultimate
question, “What is forty two?” A more intellectual offering is “The Deconstruction of Pi” given by Umberto
Eco on page three of his 1988 book Foucault’s Pendulum, [4, p. 658].

Pi. Our central character
π = 3.14159265358979323 . . .

is traditionally defined in terms of the area or perimeter of a unit circle, see Figure 1. The notation of π itself
was introduced by William Jones in 1737, replacing ‘p’ and the like, and was popularized by Leonhard Euler
who is responsible for much modern nomenclature. A more formal modern definition of π uses the first positive
zero of sin defined as a power series. The first thousand decimal digits of Pi are recorded in Figure 2.
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Figure 3: A pictorial proof of Archimedes

Despite continuing rumours to the contrary, π is not equal to 22/7 (see End Note 1). Of course 22/7 is one
of the early continued fraction approximations to π. The first six convergents are

3,
22
7

,
333
106

,
355
113

,
103993
33102

,
104348
33215

.

The convergents are necessarily good rational approximations to π. The sixth differs from π by only 3.31 10−10.
The corresponding simple continued fraction starts

π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, . . .],

using the standard concise notation. This continued fraction is still very poorly understood. Compare that for
e which starts

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, . . .].

A proof of this observation shows that e is not a quadratic irrational since such numbers have eventually periodic
continued fractions.

Archimedes’ famous computation discussed below is:

3
10
71

< π < 3
10
70

.(1)

Figure 3 shows this estimate graphically, with the digits shaded modulo ten; one sees structure in 22/7, less
obviously in 223/71, and not in π.

2 The Childhood of Pi

Four thousand years ago, the Babylonians used the approximation 3 1
8 = 3.125. Then, or earlier, according to

ancient papyri, Egyptians assumed a circle with diameter nine has the same area as a square of side eight, which
implies π = 256/81 = 3.1604 . . . . Some have argued that the ancient Hebrews were satisfied with π = 3:

“Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits
the height thereof; and a line of thirty cubits did compass it round about.” (I Kings 7:23; see also 2
Chronicles 4:2)

One should know that the cubit was a personal not universal measurement. In Judaism’s further defense, sev-
eral millennia later, the great Rabbi Moses ben Maimon Maimonedes (1135–1204) is translated by Langermann,
in “The ‘true perplexity’ [4, p. 753] as fairly clearly asserting the Pi’s irrationality.
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Archimedes’ construction for the
uniqueness of π, taken from his
Measurement of a Circle

Figure 4: Pi’s uniqueness

“You ought to know that the ratio of the diameter of the circle to its circumference is unknown, nor
will it ever be possible to express it precisely. This is not due to any shortcoming of knowledge on
our part, as the ignorant think. Rather, this matter is unknown due to its nature, and its discovery
will never be attained.” (Maimonedes)

In each of these three cases the interest of the civilization in π was primarily in the practical needs of
engineering, astronomy, water management and the like. With the Greeks, as with the Hindus, interest was
centrally metaphysical and geometric.

Archimedes’ Method. The first rigorous mathematical calculation of π was due to Archimedes, who used a
brilliant scheme based on doubling inscribed and circumscribed polygons

6 7→ 12 7→ 24 7→ 48 7→ 96

and computing the perimeters to obtain the bounds 3 10
71 < π < 31

7 , that we have recaptured above. The case of
6-gons and 12-gons is shown in Figure 5; for n = 48 one already ‘sees’ near-circles. Arguably no mathematics
approached this level of rigour again until the 19th century.

Archimedes’ scheme constitutes the first true algorithm for π, in that it is capable of producing an arbitrarily
accurate value for π. It also represents the birth of numerical and error analysis—all without positional notation
or modern trigonometry. As discovered severally in the 19th century, this scheme can be stated as a simple,
numerically stable, recursion, as follows [8].

Archimedean Mean Iteration (Pfaff-Borchardt-Schwab). Set a0 = 2
√

3 and b0 = 3—the values for
circumscribed and inscribed 6-gons. Then define

an+1 =
2anbn

an + bn
(H) bn+1 =

√
an+1bn (G).(2)
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Figure 5: Archimedes’ method of computing π with 6- and 12-gons

This converges to π, with the error decreasing by a factor of four with each iteration. In this case the error is
easy to estimate, the limit somewhat less accessible but still reasonably easy [10, 8].

Variations of Archimedes’ geometrical scheme were the basis for all high-accuracy calculations of π for the
next 1800 years—well beyond its ‘best before’ date. For example, in fifth century CE China, Tsu Chung-Chih
used a variation of this method to get π correct to seven digits. A millennium later, Al-Kashi in Samarkand
“who could calculate as eagles can fly” obtained 2π in sexagecimal:

2π ≈ 6 +
16
601

+
59
602

+
28
603

+
01
604

+
34
605

+
51
606

+
46
607

+
14
608

+
50
609

,

good to 16 decimal places (using 3·228-gons). This is a personal favourite, reentering it in my computer centuries
later and getting the predicted answer gave me goose-bumps.

3 Pre-calculus Era π Calculations

In Figures 6, 8, and 11 we chronicle the main computational records during the indicated period, only com-
menting on signal entries.

Little progress was made in Europe during the ‘dark ages’, but a significant advance arose in India (450 CE):
modern positional, zero-based decimal arithmetic—the “Indo-Arabic” system. This greatly enhanced arithmetic
in general, and computing π in particular. The Indo-Arabic system arrived with the Moors in Europe around
1000 CE. Resistance ranged from accountants feared losing their livelihood to clerics who saw the system as
‘diabolical’—they incorrectly assumed its origin was Islamic. European commerce resisted into the 18th century,
and even in scientific circles usage was limited until the 17th century.

The prior difficulty of doing arithmetic is indicated by college placement advice given a wealthy German
merchant in the 16th century:

“A wealthy (15th Century) German merchant, seeking to provide his son with a good business edu-
cation, consulted a learned man as to which European institution offered the best training. ‘If you
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Name Year Digits
Babylonians 2000? BCE 1
Egyptians 2000? BCE 1
Hebrews (1 Kings 7:23) 550? BCE 1
Archimedes 250? BCE 3
Ptolemy 150 3
Liu Hui 263 5
Tsu Ch’ung Chi 480? 7
Al-Kashi 1429 14
Romanus 1593 15
van Ceulen (Ludolph’s number∗) 1615 35

Figure 6: Pre-calculus π Calculations

only want him to be able to cope with addition and subtraction,’ the expert replied, ’then any French
or German university will do. But if you are intent on your son going on to multiplication and
division—assuming that he has sufficient gifts—then you will have to send him to Italy.’” (George
Ifrah, [10])

Claude Shannon (1916–2001) had a mechanical calculator wryly called Throback 1 built to compute in
Roman, at Bell Labs in 1953 to show that it was practicable to compute in Roman!

Ludolph van Ceulen (1540–1610). The last great Archimedean calculation, performed by van Ceulen using
262-gons—to 39 places with 35 correct—was published posthumously. The number is still called Ludolph’s
number in parts of Europe and was inscribed on his head-stone. This head-stone disappeared centuries ago but
was rebuilt, in part from surviving descriptions, recently as shown in Figure 7. It was reconsecrated on July
5th 2000 with Dutch royalty in attendance. Ludolph van Ceulen, a very serious mathematician, was also the
discoverer of the cosine formula.

4 Pi’s Adolescence

The dawn of modern mathematics appears in Viéte’s or Viéta’s product (1579)

2
π

=
√

2
2

√
2 +

√
2

2

√
2 +

√
2 +

√
2

2
· · ·

considered to be the first truly infinite product; and in the first infinite continued fraction for 2/π given by Lord
Brouncker (1620–1684), first President of the Royal Society of London:

2
π

=
1

1 +
9

2 +
25

2 +
49

2 + · · ·

.

This was based on the following brilliantly ‘interpolated’ product of John Wallis2 (1616–1703)

∞∏

k=1

4k2 − 1
4k2

=
2
π

,(3)

2One of the few mathematicians whom Newton admitted respecting, and also a calculating prodigy!
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Figure 7: Ludolph’s rebuilt tombstone in Leiden

which led to the discovery of the Gamma function, see End Note 2, and a great deal more.

François Viéte (1540–1603). A flavour of Viéte’s writings can be gleaned in this quote from his work, first
given in English in [4, p. 759].

“ Arithmetic is absolutely as much science as geometry [is]. Rational magnitudes are conveniently
designated by rational numbers, and irrational [magnitudes] by irrational [numbers]. If someone
measures magnitudes with numbers and by his calculation get them different from what they really
are, it is not the reckoning’s fault but the reckoner’s.

Rather, says Proclus, arithmetic is more exact then geometry.3 To an accurate calculator,
if the diameter is set to one unit, the circumference of the inscribed dodecagon will be the side of the
binomial [i.e. square root of the difference] 72−√3888. Whosoever declares any other result, will be
mistaken, either the geometer in his measurements or the calculator in his numbers.” (Viéte)

This fluent rendition is due to Marinus Taisbak, and the full text is worth reading. It certainly underlines
how influential an algebraist and geometer Viéte was. Viéte, who was the first to introduce literals (‘x’ and ‘y’)
into algebra, nonetheless rejected the use of negative numbers.

Equation (3) may be derived from Leonard Euler’s (1707–1783) product formula for π, given below in (4),
with x = 1/2, or by repeatedly integrating

∫ π/2

0
sin2n(t) dt by parts. One may divine (4) as Euler did by

considering sin(πx) as an ‘infinite’ polynomial and obtaining a product in terms of the roots—0, {1/n2 : n =
±1,±2, · · · }. It is thus plausible that

sin(π x)
x

= c

∞∏
n=1

(
1− x2

n2

)
.(4)

Euler, full well knowing that the whole argument was heuristic, argued that, as with a polynomial, c was
the value at zero, 1, and the coefficient of x2 in the Taylor series must be the sum of the roots. Hence, he was

3This phrase was written in Greek.
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able to pick off coefficients to evaluate the zeta-function at two:

ζ(2) :=
∑

n

1
n2

=
π2

6
.

This also leads to the evaluation of ζ(2n) :=
∑∞

k=1 1/k2n as a rational multiple of π2n:

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, ζ(8) =

π8

9450
, . . .

in terms of the Bernoulli numbers, Bn, where t/(exp(t) − 1) =
∑

n≥0 Bntn/n!, gives a generating function for
the Bn which are perforce rational. The explicit formula which solved the so called Basel problem posed by the
Bernoullis is

ζ(2m) = (−1)m−1 (2π)2m

2 (2m)!
B2m,

see also [12].

Much less is known about odd integer values of ζ, though they are almost certainly not rational multiple of
powers of π. More than two centuries later, in 1976 Roger Apéry, [4, p. 439], [8], showed ζ(3) to be irrational,
and we now also can prove that at least one of ζ(5), ζ(7), ζ(9) or ζ(11) is irrational, but we can not guarantee
which one. All positive integer values are strongly believed to be irrational. Though it is not relevant to our
story Euler’s work on the zeta-function also lead to the celebrated Riemann hypothesis [10].

5 Pi’s Adult Life with Calculus

In the later 17th century, Newton and Leibniz founded the calculus, and this powerful tool was quickly exploited
to find new formulae for π. One early calculus-based formula comes from the integral:

tan−1 x =
∫ x

0

dt

1 + t2
=

∫ x

0

(1− t2 + t4 − t6 + · · · ) dt = x− x3

3
+

x5

5
− x7

7
+

x9

9
− · · ·

Substituting x = 1 formally proves the well-known Gregory-Leibniz formula (1671–74)

π

4
= 1− 1

3
+

1
5
− 1

7
+

1
9
− 1

11
+ · · ·(5)

James Gregory (1638–75) was the greatest of a large Scottish mathematical family. The point, x = 1, however,
is on the boundary of the interval of convergence of the series. Justifying substitution requires a careful error
estimate for the remainder or Lebesgue’s monotone convergence theorem, etc., but most introductory texts
ignore the issue.

A Curious Anomaly in the Gregory Series. In 1988, it was observed that Gregory’s series for π,

π = 4
∞∑

k=1

(−1)k+1

2k − 1
= 4

(
1− 1

3
+

1
5
− 1

7
+

1
9
− 1

11
+ · · ·

)
(6)

when truncated to 5,000,000 terms, differs strangely from the true value of π:

3.14159245358979323846464338327950278419716939938730582097494182230781640...
3.14159265358979323846264338327950288419716939937510582097494459230781640...

2 -2 10 -122 2770

Values differ as expected from truncating an alternating series, in the seventh place—a “4” which should be a
“6.” But the next 13 digits are correct, and after another blip, for 12 digits. Of the first 46 digits, only four differ
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Name Year Correct Digits
Sharp (and Halley) 1699 71
Machin 1706 100
Strassnitzky and Dase 1844 200
Rutherford 1853 440
Shanks 1874 (707) 527
Ferguson (Calculator) 1947 808
Reitwiesner et al. (ENIAC) 1949 2,037
Genuys 1958 10,000
Shanks and Wrench 1961 100,265
Guilloud and Bouyer 1973 1,001,250

Figure 8: Calculus π Calculations

from the corresponding digits of π. Further, the “error” digits seemingly occur with a period of 14, as shown
above. Such anomalous behavior begs explanation. A great place to start is by using Neil Sloane’s Internet-
based integer sequence recognition tool, available at www.research.att.com/~njas/sequences. This tool has
no difficulty recognizing the sequence of errors as twice Euler numbers. Even Euler numbers are generated by
sec x =

∑∞
k=0(−1)kE2kx2k/(2k)!. The first few are 1,−1, 5,−61, 1385,−50521, 2702765. This discovery led to

the following asymptotic expansion:

π

2
− 2

N/2∑

k=1

(−1)k+1

2k − 1
≈

∞∑
m=0

E2m

N2m+1
.(7)

Now the genesis of the anomaly is clear: by chance the series had been truncated at 5,000,000 terms—exactly
one-half of a fairly large power of ten. Indeed, setting N = 10, 000, 000 in Equation (7) shows that the first
hundred or so digits of the truncated series value are small perturbations of the correct decimal expansion for
π. And the asymptotic expansions show up on the computer screen, as we observed above. On a hexadecimal
computer with N = 167 the corresponding strings are:

3.243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89452821E...
3.243F6A6885A308D31319AA2E03707344A3693822299F31D7A82EFA98EC4DBF69452821E...

2 -2 A -7A 2AD2

with the first being the correct value of π. In hexadecimal or hex one uses ‘A,B, . . ., F’ to write 10 through 15
as single ‘hex-digits’. Similar phenomena occur for other constants. (See [4].) Also, knowing the errors means
we can correct them and use (7) to make Gregory’s formula computationally tractable, despite the following
discussion!

6 Calculus Era π Calculations

Used naively, the beautiful formula (5) is computationally useless—so slow that hundreds of terms are needed
to compute two digits. Sharp, under the direction of Halley4, see Figure 8, actually used tan−1(1/

√
3) which is

geometrically convergent.

Moreover, Euler’s (1738) trigonometric identity

tan−1 (1) = tan−1

(
1
2

)
+ tan−1

(
1
3

)
(8)

4The astronomer and mathematician who largely built the Greenwich Observatory and after whom the comet is named.
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“I am ashamed to tell you to how many figures I car-
ried these computations, having no other business at
the time.”
(Issac Newton, 1666)

The great fire of London ended the plague year in Sep-
tember 1666.

Figure 9: Newton’s method for π

produces a geometrically convergent rational series

π

4
=

1
2
− 1

3 · 23
+

1
5 · 25

− 1
7 · 27

+ · · ·+ 1
3
− 1

3 · 33
+

1
5 · 35

− 1
7 · 37

+ · · ·(9)

An even faster formula, found earlier by John Machin, lies similarly in the identity

π

4
= 4 tan−1

(
1
5

)
− tan−1

(
1

239

)
.(10)

This was used in numerous computations of π, given in Figure 8, starting in 1706 and culminating with
Shanks’ famous computation of π to 707 decimal digits accuracy in 1873 (although it was found in 1945 to
be wrong after the 527-th decimal place, by Ferguson, during the last adding machine-assisted pre-computer
computations.5).

Newton’s arcsin computation. Newton discovered a different more effective—actually a disguised arcsin—
formula. He considering the area A of the left-most region shown in Figure 9. Now, A is the integral

A =
∫ 1/4

0

√
x− x2 dx.(11)

Also, A is the area of the circular sector, π/24, less the area of the triangle,
√

3/32. Newton used his newly
developed binomial theorem in (11):

A =
∫ 1

4

0

x1/2(1− x)1/2 dx =
∫ 1

4

0

x1/2

(
1− x

2
− x2

8
− x3

16
− 5x4

128
− · · ·

)
dx

=
∫ 1

4

0

(
x1/2 − x3/2

2
− x5/2

8
− x7/2

16
− 5x9/2

128
· · ·

)
dx

5This must be some sort a record for the length of time needed to detect a mathematical error.
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Integrate term-by-term and combining the above produces

π =
3
√

3
4

+ 24
(

1
3 · 8 −

1
5 · 32

− 1
7 · 128

− 1
9 · 512

· · ·
)

.

Newton used this formula to compute 15 digits of π. As noted, he later ‘apologized’ for “having no other
business at the time.” A standard chronology [4, p. 294] says “Newton significantly never gave a value for π.”
Caveat emptor all users of secondary sources.

The Viennese computer. Until quite recently—around 1950—a computer was a person. Hence the name
of ENIAC discussed later. This computer, one Johan Zacharias Dase (1824–1861), would demonstrate his
extraordinary computational skill by, for example, multiplying

79532853× 93758479 = 7456879327810587

in 54 seconds; two 20-digit numbers in six minutes; two 40-digit numbers in 40 minutes; two 100-digit numbers
in 8 hours and 45 minutes. In 1844, after being shown

π

4
= tan−1

(
1
2

)
+ tan−1

(
1
5

)
+ tan−1

(
1
8

)

he calculated π to 200 places in his head in two months, completing correctly—to my mind—the greatest
mental computation ever. Dase later calculated a seven-digit logarithm table, and extended a table of integer
factorizations to 10,000,000. Gauss requested that Dase be permitted to assist this project, but Dase died not
long afterwards in 1861 by which time Gauss himself already was dead.

An amusing Machin-type identity, that is expressing Pi as linear a combination of arctan’s, due to the Oxford
logician Charles Dodgson is

tan−1

(
1
p

)
= tan−1

(
1

p + q

)
+ tan−1

(
1

p + r

)
,

valid whenever 1 + p2 factors as qr. Dodgson is much better known as Lewis Carroll, the author of Alice in
Wonderland.

7 The Irrationality and Transcendence of π

One motivation for computations of π was very much in the spirit of modern experimental mathematics: to
see if the decimal expansion of π repeats, which would mean that π is the ratio of two integers (i.e., rational),
or to recognize π as algebraic—the root of a polynomial with integer coefficients—and later to look at digit
distribution. The question of the rationality of π was settled in the late 1700s, when Lambert and Legendre
proved (using continued fractions) that the constant is irrational.

The question of whether π was algebraic was settled in 1882, when Lindemann proved that π is transcenden-
tal. Lindemann’s proof also settled, once and for all, the ancient Greek question of whether the circle could be
squared with straight-edge and compass. It cannot be, because numbers that are the lengths of lines that can be
constructed using ruler and compasses (often called constructible numbers) are necessarily algebraic, and squar-
ing the circle is equivalent to constructing the value π. The classical Athenian playwright Aristophanes already
‘knew’ this and perhaps derided ‘circle-squarers’ (τετραγωσιειν) in his play The Birds of 414 BCE. Likewise,
the French Academy had stopped accepting proofs of the three great constructions of antiquity—squaring the
circle, doubling the cube and trisecting the angle—centuries earlier.

We next give, in extenso, Ivan Niven’s 1947 short proof of the irrationality of π. It well illustrates the
ingredients of more difficult later proofs of irrationality of other constants, and indeed of Lindemann’s proof of
the transcendence of π building on Hermite’s 1873 proof of the transcendence of e.
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8 A Proof that π is Irrational

Proof. Let π = a/b, the quotient of positive integers. We define the polynomials

f(x) =
xn(a− bx)n

n!

F (x) = f(x)− f (2)(x) + f (4)(x)− · · ·+ (−1)nf (2n)(x)

the positive integer being specified later. Since n!f(x) has integral coefficients and terms in x of degree not
less than n, f(x) and its derivatives f (j)(x) have integral values for x = 0; also for x = π = a/b, since
f(x) = f(a/b− x). By elementary calculus we have

d

dx
{F ′(x) sin x− F (x) cos x} = F ′′(x) sin x + F (x) sin x = f(x) sin x

and
∫ π

0

f(x) sin xdx = [F ′(x) sin x− F (x) cos x]π0

= F (π) + F (0).(12)

Now F (π) + F (0) is an integer, since f (j)(0) and f (j)(π) are integers. But for 0 < x < π,

0 < f(x) sin x <
πnan

n!
,

so that the integral in (12) is positive but arbitrarily small for n sufficiently large. Thus (12) is false, and so is
our assumption that π is rational. QED

Irrationality measures. We end this section by touching on the matter of measures of irrationality. The
infimum µ(α) of those µ > 0 for which

∣∣∣∣α−
p

q

∣∣∣∣ ≥
1
qµ

for all integers p, q with sufficiently large q, is called the Liouville-Roth constant for α and we say that we have
an irrationality measure for α if µ(α) < ∞.

Irrationality measures are difficult. Roth’s theorem, [8], implies that µ(α) = 2 for all algebraic irrationals,
as is the case for almost all reals. Clearly, µ(α) = 1 for rational α and µ(α) = ∞ iff and only if α is Liouville
numbers such as

∑
1/10n!. It is known that µ(e) = 2 while in 1993 Hata showed that µ(π) ≤ 8.02. Similarly,

it is known that µ(ζ(2)) ≤ 5.45, µ(ζ(3)) ≤ 4.8 and µ(log 2) ≤ 3.9.

A consequence of the existence of an irrationality measure µ for π, is the ability to estimate quantities such
as lim sup | sin(n)|1/n = 1 for integer n, since for large integer m and n with m/n → π, we have eventually

| sin(n)| = | sin(mπ)− sin(n)| ≥ 1
2
|mπ − n| ≥ 1

2 mµ−1
.

Related matters are discussed at more length in [1].
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9 Pi in the Digital Age

With the substantial development of computer technology in the 1950s, π was computed to thousands and
then millions of digits. These computations were greatly facilitated by the discovery soon after of advanced
algorithms for the underlying high-precision arithmetic operations. For example, in 1965 it was found that the
newly-discovered fast Fourier transform (FFT) [8, 10] could be used to perform high-precision multiplications
much more rapidly than conventional schemes. Such methods (e.g., for ÷,

√
x see [8, 9, 10]) dramatically

lowered the time required for computing π and other constants to high precision. We are now able to compute
algebraic values of algebraic functions essentially as fast as we can multiply, OB(M(N)), where M(N) is the
cost of multiplication and OB counts ‘bits‘ or ‘flops’.

In spite of these advances, into the 1970s all computer evaluations of π still employed classical formulae,
usually of Machin-type, see Figure 8. We will see below methods that compute N digits of π with time
complexity OB(M(N)) log OB(M(N)). Showing that the log term is unavoidable, as seems likely, would provide
an algorithmic proof that π is not algebraic.

Electronic Numerical Integrator and Calculator. The first computer calculation of Pi was performed
on ENIAC—a behemoth with a tiny brain from today’s vantage point. The ENIAC was built in Aberdeen
Maryland by the US Army:

Size/weight. ENIAC had 18,000 vacuum tubes, 6,000 switches, 10,000 capacitors, 70,000 resistors,
1,500 relays, was 10 feet tall, occupied 1,800 square feet and weighed 30 tons.
Speed/memory. A, now slow, 1.5GHz Pentium does 3 million adds/sec. ENIAC did 5,000, three
orders faster than any earlier machine. The first stored-memory computer, ENIAC could hold 200
digits.
Input/output. Data flowed from one accumulator to the next, and after each accumulator finished
a calculation, it communicated its results to the next in line. The accumulators were connected to
each other manually. The 1949 computation of π to 2,037 places on ENIAC took 70 hours in which
output had to be constantly reintroduced as input.

Ballantine’s (1939) Series for π. Another formula of Euler for arccot is

x

∞∑
n=0

(n!)2 4n

(2 n + 1)! (x2 + 1)n+1 = arctan
(

1
x

)
.

This, intriguingly and usefully, allowed Guilloud and Boyer to reexpress the formula, used by them in 1973 to
compute a million digits of Pi, viz, π/4 = 12 arctan (1/18) + 8 arctan (1/57) − 5 arctan (1/239) in the efficient
form

π = 864
∞∑

n=0

(n!)2 4n

(2n + 1)! 325n+1 + 1824
∞∑

n=0

(n!)2 4n

(2n + 1)! 3250n+1 − 20 arctan
(

1
239

)
,

where the terms of the second series are now just decimal shifts of the first.

Ramanujan-type elliptic series. Truly new types of infinite series formulae, based on elliptic integral
approximations, were discovered by Srinivasa Ramanujan (1887–1920), shown in Figure 10, around 1910, but
were not well known (nor fully proven) until quite recently when his writings were widely published. They are
based on elliptic functions and are described at length in [4, 8, 10].

One of these series is the remarkable:

1
π

=
2
√

2
9801

∞∑

k=0

(4k)! (1103 + 26390k)
(k!)43964k

.(13)

Each term of this series produces an additional eight correct digits in the result. When Gosper used this formula
to compute 17 million digits of π in 1985, and it agreed to many millions of places with the prior estimates,
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G.N. Watson elegantly describes feeling

“a thrill which is indistinguishable from the thrill
which I feel when I enter the Sagrestia Nuova
of the Cappella Medici and see before me the
austere beauty of the four statues representing
“Day”, “Night”, “Evening”, and “Dawn” which
Michelangelo has set over the tomb of Giuliano
de’Medici and Lorenzo de’Medici”

on viewing formulae of Ramanujan, such
as (13).

Figure 10: Ramanujan’s seventy-fifth birthday stamp

this concluded the first proof of (13), as described in [7] ! Actually, Gosper first computed the simple continued
fraction for π, hoping to discover some new things in its expansion, but found none.

At about the same time, David and Gregory Chudnovsky found the following rational variation of Ra-
manujan’s formula. It exists because

√−163 corresponds to an imaginary quadratic field with class number
one:

1
π

= 12
∞∑

k=0

(−1)k (6k)! (13591409 + 545140134k)
(3k)! (k!)3 6403203k+3/2

Each term of this series produces an additional 14 correct digits. The Chudnovskys implemented this formula
using a clever scheme that enabled them to use the results of an initial level of precision to extend the calculation
to even higher precision. They used this in several large calculations of π, culminating with a then record
computation to over four billion decimal digits in 1994. Their remarkable story was compellingly told by
Richard Preston in a prizewinning New Yorker article “The Mountains of Pi” (March 2, 1992).

While the Ramanujan and Chudnovsky series are in practice considerably more efficient than classical for-
mulae, they share the property that the number of terms needed increases linearly with the number of digits
desired: if you want to compute twice as many digits of π, you must evaluate twice as many terms of the series.

Relatedly, the Ramanujan-type series

1
π

=
∞∑

n=0

((
2n
n

)

16n

)3
42 n + 5

16
.(14)

allows one to compute the billionth binary digit of 1/π, or the like, without computing the first half of the series,
and is a foretaste of our later discussion of Borwein-Bailey-Plouffe (or BBP) formulae.

10 Reduced Operational Complexity Algorithms

In 1976, Eugene Salamin and Richard Brent independently discovered a reduced complexity algorithm for π.
It is based on the arithmetic-geometric mean iteration (AGM) and some other ideas due to Gauss and
Legendre around 1800, although Gauss, nor many after him, never directly saw the connection to effectively
computing π.
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Name Year Correct Digits
Miyoshi and Kanada 1981 2,000,036
Kanada-Yoshino-Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000

Figure 11: Post-calculus π Calculations

Quadratic Algorithm (Salamin-Brent). Set a0 = 1, b0 = 1/
√

2 and s0 = 1/2. Calculate

ak =
ak−1 + bk−1

2
(A) bk =

√
ak−1bk−1 (G)(15)

ck = a2
k − b2

k, sk = sk−1 − 2kck and compute pk =
2a2

k

sk
.(16)

Then pk converges quadratically to π. Note the similarity between the arithmetic-geometric mean iteration
(15), (which for general initial values converges fast to a non-elementary limit) and the out-of-kilter harmonic-
geometric mean iteration (2) (which in general converges slowly to an elementary limit), and which is an
arithmetic-geometric iteration in the reciprocals (see [8]).

Each iteration of the algorithm doubles the correct digits. Successive iterations produce 1, 4, 9, 20, 42, 85, 173, 347
and 697 good decimal digits of π, and takes log N operations for N digits. Twenty-five iterations computes π
to over 45 million decimal digit accuracy. A disadvantage is that each of these iterations must be performed to
the precision of the final result. In 1985, my brother Peter and I discovered families of algorithms of this type.
For example, here is a genuinely third-order iteration:

Cubic Algorithm. Set a0 = 1/3 and s0 = (
√

3− 1)/2. Iterate

rk+1 =
3

1 + 2(1− s3
k)1/3

, sk+1 =
rk+1 − 1

2
and ak+1 = r2

k+1ak − 3k(r2
k+1 − 1).

Then 1/ak converges cubically to π. Each iteration triples the number of correct digits.

Quartic Algorithm. Set a0 = 6− 4
√

2 and y0 =
√

2− 1. Iterate

yk+1 =
1− (1− y4

k)1/4

1 + (1− y4
k)1/4

and ak+1 = ak(1 + yk+1)4 − 22k+3yk+1(1 + yk+1 + y2
k+1).

Then 1/ak converges quartically to π. Note that only the power of 2 or 3 used in ak depends on k.

There are many more and longer mnemonics than the sample given in the inset box—see [4, p. 405, p.560,
p. 659] for a fine selection.
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Mnemonics for Pi

“Now I , even I, would celebrate
In rhyme inapt, the great

Immortal Syracusan, rivaled nevermore,
Who in his wondrous lore,

Passed on before
Left men for guidance

How to circles mensurate.” (30)

“How I want a drink, alcoholic of course, after the heavy lectures involving
quantum mechanics.” (15)

“See I have a rhyme assisting my feeble brain its tasks ofttimes resisting.” (13)

Philosophy of mathematics. In 1997 the first occurrence of the sequence 0123456789 was found (later than
expected heuristically) in the decimal expansion of π starting at the 17, 387, 594, 880-th digit after the decimal
point. In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has
changed. These challenge the principle of the excluded middle—either a predicate holds or it does not— and
involve classically well-defined objects that for an intuitionist are ill-founded until one can determine when or
if the sequence occurred, [6].

For example, consider the sequence which is ‘0’ except for a ‘1’ in the first place where 0123456789 first
begins to appear in order if it ever occurs. Did it converge when first used by Brouwer as an example? Does it
now? Was it then and is it now well defined? Classically it always was and converged to ‘0’. Intuitionistically
it converges now. What if we redefine the sequence to have its ‘1’ in the first place that 0123456789101112 first
begins?

11 Back to the Future

In December 2002, Kanada computed π to over 1.24 trillion decimal digits. His team first computed π in
hexadecimal (base 16) to 1,030,700,000,000 places, using the following two arctangent relations:

π = 48 tan−1 1
49

+ 128 tan−1 1
57
− 20 tan−1 1

239
+ 48 tan−1 1

110443

π = 176 tan−1 1
57

+ 28 tan−1 1
239

− 48 tan−1 1
682

+ 96 tan−1 1
12943

.

The first formula was found in 1982 by K. Takano, a high school teacher and song writer. The second formula
was found by F. C. W. Störmer in 1896. Kanada verified the results of these two computations agreed, and
then converted the hex digit sequence to decimal. The resulting decimal expansion was checked by converting
it back to hex. These conversions are themselves non-trivial, requiring massive computation.

This process is quite different from those of the previous quarter century. One reason is that reduced op-
erational complexity algorithms, require full-scale multiply, divide and square root operations. These in turn
require large-scale FFT operations, which demand huge amounts of memory, and massive all-to-all communica-
tion between nodes of a large parallel system. For this latest computation, even the very large system available
in Tokyo did not have sufficient memory and network bandwidth to perform these operations at reasonable
efficiency levels—at least not for trillion-digit computations. Utilizing arctans again meant using many more
arithmetic operations, but no system-scale FFTs, and it can be implemented using ×,÷ by smallish integer
values—additionally, hex is somewhat more efficient!
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Figure 12: Yasumasa Kanada in his Tokyo office

Kanada and his team evaluated these two formulae using a scheme analogous to that employed by Gosper
and by the Chudnovskys in their series computations, in that they were able to avoid explicitly storing the
multiprecision numbers involved. This resulted in a scheme that is roughly competitive in numerical efficiency
with the Salamin-Brent and Borwein quartic algorithms they had previously used, but with a significantly lower
total memory requirement. Kanada used a 1 Tbyte main memory system, as with the previous computation,
yet got six times as many digits. Hex and decimal evaluations included, it ran 600 hours on a 64-node Hitachi,
with the main segment of the program running at a sustained rate of nearly 1 Tflop/sec.

12 Why Pi?

What possible motivation lies behind modern computations of π, given that questions such as the irrationality
and transcendence of π were settled more than 100 years ago? One motivation is the raw challenge of harnessing
the stupendous power of modern computer systems. Programming such calculations are definitely not trivial,
especially on large, distributed memory computer systems.

There have been substantial practical spin-offs. For example, some new techniques for performing the fast
Fourier transform (FFT), heavily used in modern science and engineering computing, had their roots in attempts
to accelerate computations of π. And always the computations help in road-testing computers—often uncovering
subtle hardware and software errors.

Beyond practical considerations lies the abiding interest in the fundamental question of the normality (digit
randomness) of π. Kanada, for example, has performed detailed statistical analysis of his results to see if there
are any statistical abnormalities that suggest π is not normal, so far ‘no‘, see Figures 13 and 14. Indeed the
first computer computation of π and e on ENIAC, discussed above, was so motivated by John von Neumann.
The digits of π have been studied more than any other single constant, in part because of the widespread
fascination with and recognition of π. Kanada reports that the 10 decimal digits ending in position one trillion
are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.

Changing world views. In retrospect, we may wonder why in antiquity π was not measured to an accuracy
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Decimal Digit Occurrences

0 99999485134
1 99999945664
2 100000480057
3 99999787805
4 100000357857
5 99999671008
6 99999807503
7 99999818723
8 100000791469
9 99999854780

Total 1000000000000

Hex Digit Occurrences

0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

Figure 13: Apparently random behaviour of π base 10 and 16

in excess of 22/7? Perhaps it reflects not an inability to do so but a very different mind set to a modern
experimental—Baconian or Popperian—one. In the same vein, one reason that Gauss and Ramanujan did not
further develop the ideas in their identities for π is that an iterative algorithm, as opposed to explicit results,
was not as satisfactory for them (especially Ramanujan). Ramanujan much preferred formulae like

π ≈ 3√
67

log (5280) ,
3√
163

log (640320) ≈ π

correct to 9 and 15 decimal places both of which rely on deep number theory. Contrastingly, Ramanujan in his
famous 1914 paper Modular Equations and Approximations to Pi [4, p.253] found

(
92 +

192

22

)1/4

= 3.14159265258 · · ·

“empirically, and it has no connection with the preceding theory.” Only the marked digit is wrong.

Discovering the π Iterations. The genesis of the π algorithms and related material is an illustrative example
of experimental mathematics. My brother and I in the early eighties had a family of quadratic algorithms for
π, [8], call them PN , of the kind we saw above. For N = 1, 2, 3, 4 we could prove they were correct but and
only conjectured for N = 5, 7. In each case the algorithm appeared to converge quadratically to π. On closer
inspection while the provable cases were correct to 5, 000 digits, the empirical versions of agreed with π to
roughly 100 places only. Now in many ways to have discovered a “natural” number that agreed with π to that
level—and no more—would have been more interesting than the alternative. That seemed unlikely but recoding
and rerunning the iterations kept producing identical results.

Two decades ago even moderately high precision calculation was less accessible, and the code was being run
remotely over a phone-line in a Berkeley Unix integer package. After about six weeks, it transpired that the
package’s square root algorithm was badly flawed, but only if run with an odd precision of more than sixty digits!
And for idiosyncratic reasons that had only been the case in the two unproven cases. Needless to say, tracing
the bug was a salutary and somewhat chastening experience. And it highlights why one checks computations
using different sub-routines and methods.
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Figure 14: A ‘random walk’ on the first one million digits of π (Courtesy D. and G. Chudnovsky)

13 How to Compute the N-th Digits of π

One might be forgiven for thinking that essentially everything of interest with regards to π has been dealt with.
This is suggested in the closing chapters of Beckmann’s 1971 book A History of π. Ironically, the Salamin–
Brent quadratically convergent iteration was discovered only five years later, and the higher-order convergent
algorithms followed in the 1980s. Then in 1990, Rabinowitz and Wagon discovered a ‘spigot” algorithm for
π—the digits ‘drip out’ one by one. This permits successive digits of π (in any desired base) to be computed
by a relatively simple recursive algorithm based on the all previously generated digits.

Even insiders are sometimes surprised by a new discovery. Prior to 1996, most folks thought if you want
to determine the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true,
at least for hex (base 16) or binary (base 2) digits of π. In 1996, Peter Borwein, Plouffe, and Bailey found an
algorithm for computing individual hex digits of π. It (1) yields a modest-length hex or binary digit string for
π, from an arbitrary position, using no prior bits; (2) is implementable on any modern computer; (3) requires
no multiple precision software; (4) requires very little memory; and (5) has a computational cost growing only
slightly faster than the digit position. For example, the millionth hexadecimal digit (four millionth binary digit)
of π can be found in four seconds on a present generation Apple G5 workstation.

This new algorithm is not fundamentally faster than the best known schemes if used for computing all digits
of π up to some position, but its elegance and simplicity are of considerable interest, and is easy to parallelize.
It is based on the following at-the-time new formula for π:

π =
∞∑

i=0

1
16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
(17)

which was discovered using integer relation methods (see [10]), with a computer program that ran for several
months and then produced the (equivalent) relation:

π = 4F
(

1,
1
4
;
5
4
,−1

4

)
+ 2 tan−1

(
1
2

)
− log 5
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Hex strings starting
Position at this Position

106 26C65E52CB4593
107 17AF5863EFED8D
108 ECB840E21926EC
109 85895585A0428B
1010 921C73C6838FB2
1011 9C381872D27596
1.25× 1012 07E45733CC790B
2.5× 1014 E6216B069CB6C1

Borweins and Plouffe (MSNBC, 1996)

Figure 15: Percival’s hexadecimal findings

where F(1, 1/4; 5/4,−1/4) = 0.955933837 . . . is a Gaussian hypergeometric function.

Maple and Mathematica can both now prove (17). A human proof may be found in [10].

The algorithm in action. In 1997, Fabrice Bellard of INRIA computed 152 binary digits of π starting at
the trillionth position. The computation took 12 days on 20 workstations working in parallel over the Internet.
Bellard’s scheme is based on the following variant of (17):

π = 4
∞∑

k=0

(−1)k

4k(2k + 1)
− 1

64

∞∑

k=0

(−1)k

1024k

(
32

4k + 1
+

8
4k + 2

+
1

4k + 3

)
,

which permits hex or binary digits of π to be calculated roughly 43% faster than (17).

In 1998 Colin Percival, then a 17-year-old student at Simon Fraser University, utilized 25 machines to
calculate first the five trillionth hexadecimal digit, and then the ten trillionth hex digit. In September, 2000, he
found the quadrillionth binary digit is 0, a computation that required 250 CPU-years, using 1734 machines in
56 countries. We record some computational results in Figure 18.

A last comment for this section is that Kanada was able to confirm his 2002 computation in only 21 hours
by computing a 20 hex digit string starting at the trillionth digit, and comparing this string to the hex string
he had initially obtained in over 600 hours. Their agreement provided enormously strong confirmation.

14 Further BBP Digit Formulae

Motivated as above, constants α of the form

α =
∞∑

k=0

p(k)
q(k)2k

,(18)
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where p(k) and q(k) are integer polynomials, are said to be in the class of binary (Borwein-Bailey-Plouffe) BBP
numbers. I illustrate for log 2 why this permits one to calculate isolated digits in the binary expansion:

log 2 =
∞∑

k=0

1
k2k

.(19)

We wish to compute a few binary digits beginning at position d + 1. This is equivalent to calculating
{2d log 2}, where {·} denotes fractional part. We can write

{2d log 2} =

{{
d∑

k=0

2d−k

k

}
+

{ ∞∑

k=d+1

2d−k

k

}}
=

{{
d∑

k=0

2d−k mod k
k

}
+

{ ∞∑

k=d+1

2d−k

k

}}
.(20)

The key observation is that the numerator of the first sum in (20), 2d−k mod k, can be calculated rapidly by
binary exponentiation, performed modulo k. That is, it is economically performed by a factorization based on
the binary expansion of the exponent. For example,

317 = ((((32)2)2)2) · 3
uses only five multiplications, not the usual 16. It is important to reduce each product modulo k. Thus, 317

mod 10 is done as
32 = 9; 92 = 1; 12 = 1; 12 = 1; 1× 3 = 3.

A natural question in light of (17) is whether there is a formula of this type and an associated computational
strategy to compute individual decimal digits of π. Searches conducted by numerous researchers have been
unfruitful and recently D. Borwein (my father), Gallway and I have shown that there are no BBP formulae of
the Machin-type (as defined in [10]) of (17) for Pi unless the base is a power of two [10].

Ternary BBP formulae. Yet, BBP formulae exist in other bases for some constants. For example, Broadhurst
found this ternary BBP formula for π2:

π2 =
2
27

∞∑

k=0

1
39k

{ 243
(12k + 1)2

− 405
(12k + 2)2

− 81
(12k + 4)2

− 27
(12k + 5)2

− 72
(12k + 6)2

− 9
(12k + 7)2

− 9
(12k + 8)2

− 5
(12k + 10)2

+
1

(12k + 11)2
}
,

and π2 also has a binary BBP formula.

Also, the volume V8 in hyperbolic space of the figure-eight knot complement is well known to be

V8 = 2
√

3
∞∑

n=1

1
n
(
2n
n

)
2n−1∑

k=n

1
k

= 2.029883212819307250042405108549 . . .

Surprisingly, it is also expressible as

V8 =
√

3
9

∞∑
n=0

(−1)n

27n

{
18

(6n + 1)2
− 18

(6n + 2)2
− 24

(6n + 3)2
− 6

(6n + 4)2
+

2
(6n + 5)2

}
,

again discovered numerically by Broadhurst, and proved in [10]. A beautiful representation by Helaman Ferguson
the mathematical sculptor is given in Figure 19. Ferguson produces art inspired by deep mathematics, but not
by a formulaic approach.

Normality and dynamics. Finally, Bailey and Crandall in 2001 made exciting connections between the
existence of a b-ary BBP formula for α and its normality base b (uniform distribution of base-b digits)6. They

6See www.sciencenews.org/20010901/bob9.asp .
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These ‘subtractive’ acrylic circles represent
the weights [4,−2,−2,−1] in Equation (17)

Figure 16: Ferguson’s “Eight-Fold Way” and his BBP acrylic circles

make a reasonable, hence very hard, conjecture about the uniform distribution of a related chaotic dynamical
system. This conjecture implies: Existence of a ‘BBP’ formula base b for α ensures the normality base b of α.
For log 2, illustratively7, the dynamical system, base 2, is to set x0 = 0 and compute

xn+1 ←↩ 2
(

xn +
1
n

)
mod 1.

15 . . . Life of Pi.

As we have seen the life of Pi captures a great deal of mathematics—algebraic, geometric and analytic, both
pure and applied—along with some history and philosophy. It engages many of the greatest mathematicians
and some quite interesting characters along the way. Among the saddest and least well understood episodes
was an abortive 1896 attempt in Indiana to legislate the value of Pi. The bill, reproduced in [4, p. 231-235], is
is accurately described by Singmaster, [4, p. 236-239]. Much life remains in this most central of numbers.

At the end of the novel, Piscine (Pi) Molitor writes

“I am a person who believes in form, in harmony of order. Where we can, we must give things a
meaningful shape. For example—I wonder—could you tell my jumbled story in exactly one hundred
chapters, not one more, not one less? I’ll tell you, that’s one thing I hate about my nickname, the
way that number runs on forever. It’s important in life to conclude things properly. Only then can
you let go.”

We may well not share the sentiment, but we should celebrate that Pi knows π to be irrational.
7In this case it is easy to use Weyl’s criterion for equidistribution to establish this equivalence without mention of BBP numbers.
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16 End Notes

1. Why π is not 22/7. Today, even the computer algebra systems Maple or Mathematica ‘know’ this since

0 <

∫ 1

0

(1− x)4x4

1 + x2
dx =

22
7
− π,(21)

though it would be prudent to ask ‘why’ each can perform the integral and ‘whether’ to trust it? Assuming
we do trust it, then the integrand is strictly positive on (0, 1), and the answer in (21) is an area and so strictly
positive, despite millennia of claims that π is 22/7. In this case, requesting the indefinite integral provides
immediate reassurance. We obtain

∫ t

0

x4 (1− x)4

1 + x2
dx =

1
7

t7 − 2
3

t6 + t5 − 4
3

t3 + 4 t− 4 arctan (t) ,

as differentiation easily confirms, and so the Newtonian Fundamental theorem of calculus proves (21).

One can take the idea in Equation (21) a bit further, as in [10]. Note that
∫ 1

0

x4 (1− x)4 dx =
1

630
,(22)

and we observe that

1
2

∫ 1

0

x4 (1− x)4 dx <

∫ 1

0

(1− x)4x4

1 + x2
dx <

∫ 1

0

x4 (1− x)4 dx.(23)

Combine this with (21) and (22) to derive: 223/71 < 22/7 − 1/630 < π < 22/7 − 1/1260 < 22/7 and so
re-obtain Archimedes’ famous computation

3
10
71

< π < 3
10
70

.(24)

The derivation above seems first to have been published in Eureka, a Cambridge student journal in 1971.8

2. More about Gamma. One may define

Γ(x) =
∫ ∞

0

tx−1e−t dt

for Re x > 0. The starting point is that

xΓ(x) = Γ(x + 1), Γ(1) = 1.(25)

In particular, for integer n, Γ(n + 1) = n!. Also for 0 < x < 1

Γ(x) Γ(1− x) =
π

sin(πx)
,

since for x > 0 we have
Γ(x) = lim

n→∞
n! nx

∏n
k=0(x + k)

.

This is a nice consequence of the Bohr-Mollerup theorem which shows that Γ is the unique log-convex function
on the positive half line satisfying (25). Hence, Γ(1/2) =

√
π and equivalently we evaluate the Gaussian integral

∫ ∞

−∞
e−x2

dx =
√

π,

8Equation (21) was on a Sydney University examination paper in the early sixties.
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so central to probability theory. In the same vein, the improper sinc function integral evaluates as
∫ ∞

−∞

sin(x)
x

dx = π.

Considerable information about the relationship between Γ and π is to be found in [10, 11].

2. More about Complexity Reduction. To illustrate the stunning complexity reduction in the elliptic
algorithms for Pi, let us write a complete set of algebraic equations approximating π to over a trillion digits.

The number π is transcendental and the number 1/a20 computed next is algebraic
nonetheless they coincide for over 1.5 trillion places.

Set a0 = 6− 4
√

2, y0 =
√

2− 1 and then solve the following system:

y1 =
1− 4

p
1− y0

4

1 + 4
p

1− y0
4
, a1 = a0 (1 + y1)

4 − 23y1

�
1 + y1 + y1

2�
y2 =

1− 4
p

1− y1
4

1 + 4
p

1− y1
4
, a2 = a1 (1 + y2)

4 − 25y2

�
1 + y2 + y2

2�
y3 =

1− 4
p

1− y2
4

1 + 4
p

1− y2
4
, a3 = a2 (1 + y3)

4 − 27y3

�
1 + y3 + y3

2�
y4 =

1− 4
p

1− y3
4

1 + 4
p

1− y3
4
, a4 = a3 (1 + y4)

4 − 29y4

�
1 + y4 + y4

2�
y5 =

1− 4
p

1− y4
4

1 + 4
p

1− y4
4
, a5 = a4 (1 + y5)

4 − 211y5

�
1 + y5 + y5

2�
y6 =

1− 4
p

1− y5
4

1 + 4
p

1− y5
4
, a6 = a5 (1 + y6)

4 − 213y6

�
1 + y6 + y6

2�
y7 =

1− 4
p

1− y6
4

1 + 4
p

1− y6
4
, a7 = a6 (1 + y7)

4 − 215y7

�
1 + y7 + y7

2�
y8 =

1− 4
p

1− y7
4

1 + 4
p

1− y7
4
, a8 = a7 (1 + y8)

4 − 217y8

�
1 + y8 + y8

2�
y9 =

1− 4
p

1− y8
4

1 + 4
p

1− y8
4
, a9 = a8 (1 + y9)

4 − 219y9

�
1 + y9 + y9

2�
y10 =

1− 4
p

1− y9
4

1 + 4
p

1− y9
4
, a10 = a9 (1 + y10)

4 − 221y10

�
1 + y10 + y10

2�

y11 =
1− 4

p
1− y10

4

1 + 4
p

1− y10
4
, a11 = a10 (1 + y11)

4 − 223y11

�
1 + y11 + y11

2�
y12 =

1− 4
p

1− y11
4

1 + 4
p

1− y11
4
, a12 = a11 (1 + y12)

4 − 225y12

�
1 + y12 + y12

2�
y13 =

1− 4
p

1− y12
4

1 + 4
p

1− y12
4
, a13 = a12 (1 + y13)

4 − 227y13

�
1 + y13 + y13

2�
y14 =

1− 4
p

1− y13
4

1 + 4
p

1− y13
4
, a14 = a13 (1 + y14)

4 − 229y14

�
1 + y14 + y14

2�
y15 =

1− 4
p

1− y14
4

1 + 4
p

1− y14
4
, a15 = a14 (1 + y15)

4 − 231y15

�
1 + y15 + y15

2�
y16 =

1− 4
p

1− y15
4

1 + 4
p

1− y15
4
, a16 = a15 (1 + y16)

4 − 233y16

�
1 + y16 + y16

2�
y17 =

1− 4
p

1− y16
4

1 + 4
p

1− y16
4
, a17 = a16 (1 + y17)

4 − 235y17

�
1 + y17 + y17

2�
y18 =

1− 4
p

1− y17
4

1 + 4
p

1− y17
4
, a18 = a17 (1 + y18)

4 − 237y18

�
1 + y18 + y18

2�
y19 =

1− 4
p

1− y18
4

1 + 4
p

1− y18
4
, a19 = a18 (1 + y19)

4 − 239y19

�
1 + y19 + y19

2�
y20 =

1− 4
p

1− y19
4

1 + 4
p

1− y19
4
,a20 = a19 (1 + y20)

4 − 241y20

�
1 + y20 + y20

2� .

This quartic algorithm, with the Salamin–Brent scheme, was first used by Bailey in 1986 and was used
repeatedly by Yasumasa Kanada, see Figure 12, in Tokyo in computations of π over the past 15 years or so,
culminating in a 200 billion decimal digit computation in 1999, see Figure 17. Only 35 years earlier in 1963, Dan
Shanks—a very knowledgeable participant—was confident that computing a billion digits was forever impossible.
Today it is easy on a modest laptop.

Acknowledgements. Thanks are due to many, especially my close collaborators P. Borwein and D. Bailey.
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