The Life of π : History and Computation A Talk for Pi Day or Other Days

Jonathan M. Borwein frSC faA faAAS
Laureate Professor \& Director of CARMA
University of Newcastle
http://carma.newcastle.edu. au/jon/piday-14.pdf
wWw.huffingtonpost.com/david-h-bailey/pi-day-314-14_b_4851011.html
3.14 pm, March 14, 2014 Revised 24.03.14 for Baylor 22-23.04

AMSI
AUSTRALIAN MATHEMATICAL
SCIENCES INSTITUTE

CARMA

The Life of Pi: From this extended on line presentation we shall sample

- Pi in popular culture: Pi Day - 3.14.
- Why Pi? From utility to ... normality.
- Recent computations and digit extraction methods.

The Life of Pi: From this extended on line presentation we shall sample

- Pi in popular culture: Pi Day - 3.14 .
- Why Pi? From utility to ... normality.
- Recent computations and digit extraction methods.

The Life of Pi: From this extended on line presentation we shall sample

- Pi in popular culture: Pi Day - 3.14.
- Why Pi? From utility to ... normality.
- Recent computations and digit extraction methods

The Life of Pi: From this extended on line presentation we shall sample

- Pi in popular culture: Pi Day - 3.14 .
- Why Pi? From utility to ... normality.
- Recent computations and digit extraction methods.

Outline. We will cover Some of:

24. Pi's Childhood

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250-BCE Precalculus Calculation Records The Fairly Dark Ages
(2)
43. Pi Adolescence Infinite Expressions Mathematical Interlude, ARMA Geometry and Aritiometic
(3) 48. Adulthood of Pi Machin Formulas
Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality
79. Pi in the Digital Age Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi
(5) 113. Computing Individual Digits of BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits

BBP Formulas Explained
CARMA
BBP for Pi squared - in base 2 and base 3

Introduction: Pi is ubiquitous

- The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians - great and less great - for eons.
- And, especially recently, π has provided compelling examples of computational mathematics.

Pi_{i}, uniquely in mathematics,
is pervasive in popular culture
and the popular imagination.
In this talk I shall intersperse
a largely chronological account of π 's mathematical and numerical status with examples of its ubiquity.

Introduction: Pi is ubiquitous

- The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians - great and less great - for eons.
- And, especially recently, π has provided compelling examples of computational mathematics.

Pi , uniquely in mathematics,
is pervasive in popular culture
and the popular imagination.
In this talk I shall intersperse
a largely chronological account of π 's mathematical and numerical status with examples of its ubiquity.

Introduction: Pi is ubiquitous

- The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians - great and less great - for eons.
- And, especially recently, π has provided compelling examples of computational mathematics.

Pi , uniquely in mathematics,
is pervasive in popular culture and the popular imagination.

In this talk I shall intersperse
a largely chronological account of π 's mathematical and numerical status with examples of its ubiquity.

Introduction: Pi is ubiquitous

- The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians - great and less great - for eons.
- And, especially recently, π has provided compelling examples of computational mathematics.

Pi , uniquely in mathematics,
is pervasive in popular culture and the popular imagination.

In this talk I shall intersperse a largely chronological account of π 's mathematical and numerical status with examples of its ubiquity.

113. Computing Individual Digits of π

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

"Because it's not there."
113. Computing Individual Digits of π

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;

"Because it's not there."

113. Computing Individual Digits of π

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;

"Because it's not there."

113. Computing Individual Digits of π

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;

"Because it's not there."

113. Computing Individual Digits of π

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;

"Because it's not there."

113. Computing Individual Digits of π

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;

"Because it's not there."

113. Computing Individual Digits of π

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;

"Because it's not there."

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;

"Because it's not there."

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;

"Because it's not there."

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);

"Because it's not there."

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);

"Because it's not there."

The Life of Pi Teaches a Great Deal:

We shall learn that scientists are humans and see a lot:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty and likelihood);
- of just plain interesting sometimes weird - stuff.

"Because it's not there."

24. Pi's Childhood
 43. Pi's Adolescence
 48. Adulthood of Pi
 79. Pi in the Digital Age
 113. Computing Individual Digits of π

Mnemonics for Pi Abound: Piems - Word lengths give digits

Mnemonics for Pi Abound: Piems - Word lengths give digits

Now I, even I, would celebrate (314159)

In rhymes inapt, the great (26535) Immortal Syracusan, rivaled nevermore, Who in his wondrous lore, Passed on before Left men for guidance How to circles mensurate

- punctuation is alwavs ignored

Mnemonics for Pi Abound: Piems — Word lengths give digits

Now I, even I, would celebrate (314159)

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."

Mnemonics for Pi Abound: Piems - Word lengths give digits

Now I, even I, would celebrate (314159)

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."
113. Computing Individual Digits of π

Mnemonics for Pi Abound: Piems - Word lengths give digits

Now I, even I, would celebrate
(314159)

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."

Life of Pi (2001):

Yann Martel's 2002 Booker Prize novel starts

''My name is

Piscine Molitor Patel known to all as Pi Patel For good measure I added

2013 Ang Lee's movie version (4 Oscars)

- 1706. Notation of π introduced by William Jones.
- 1737. Leonhard Euler (1707-83) nopularized π.
- One of the three or four greatest mathematicians of all times: - He introduced much of our modern notation:

Life of Pi (2001):

Yann Martel's 2002 Booker Prize novel starts

> ''My name is

Piscine Molitor Patel known to all as Pi Patel For good measure I added

$$
\pi=3.14
$$

and I then drew a large circle which I sliced in two with a diameter, to evoke that basic lesson of geometry.''

2013 Ang Lee's movie version (4 Oscars)

- 1706. Notation of π introduced by William Jones.
- 1737. Leonhard Euler (1707-83) popularized π.
- One of the three or four greatest mathematicians of all times:
- He introduced much of our modern notation:

Life of Pi (2001):

Yann Martel's 2002 Booker Prize novel starts

> ''My name is

Piscine Molitor Patel known to all as Pi Patel For good measure I added

$$
\pi=3.14
$$

2013 Ang Lee's movie version (4 Oscars)
and I then drew a large circle which I sliced in two with a diameter, to evoke that basic lesson of geometry.',

- 1706. Notation of π introduced by William Jones.
- 1737. Leonhard Euler (1707-83) popularized π.
- One of the three or four greatest mathematicians of all times:
- He introduced much of our modern notation: $\int, \Sigma, \phi, e, \Gamma, \ldots$. CARMA

43. Pi's Adolescence
44. Adulthood of Pi
45. Pi in the Digital Age
46. Computing Individual Digits of π

Wife of Pi (2013)

Life of Pi (2014)

Pi: the Source Book (1997)

- Berggren, Borwein and Borwein, 3rd Ed, Springer, 2004. (3,650 years of copyright releases. E-rights for Ed. 4 are in process.)

Pi: the Source Book (1997)

- Berggren, Borwein and Borwein, 3rd Ed, Springer, 2004. (3,650 years of copyright releases. E-rights for Ed. 4 are in process.)
- MacTutor at www-gap.dcs.st-and.ac.uk/~history (my home town) is a good informal mathematical history source.
- See also www.cecm.sfu.ca/~jborwein/pi_cover.html.

Pi: in The Matrix (1999)

Keanu Reeves, Neo, only has 314 seconds to enter "The Source."
(Do we need Parts 4 and 5?)
From http://www.freakingnews.com/Pi-Day-Pictures--1860.asp
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

Pi the Movie (1998): a Sundance screenplay winner

A Film By Darien Aronofsky

$\mathrm{R}=\boldsymbol{\pi}$
mance
ARTISAN

Roger Ebert gave the film 3.5 stars out of 4: "Pi is a
thiller. I am not very thrilled these days by whether the
bad guys will get shot or the chase scene will end one
way instead of another. You have to make a movie like
that pretty skillfully before I care.
"But I am thrilled when a man risks his mind in the pursuit of a
dangerous obsession."

Pi the Movie (1998): a Sundance screenplay winner

Roger Ebert gave the film 3.5 stars out of 4: " Pi is a thriller. I am not very thrilled these days by whether the bad guys will get shot or the chase scene will end one way instead of another. You have to make a movie like that pretty skillfully before I care.
"But I am thrilled when a man risks his mind in the pursuit of a dangerous obsession."
24. Pi's Childhood
43. Pi's Adolescence 48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

Pi the URL

Pi to one MILLION decimal places
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679 8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196 4428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273 7245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094 3305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912 9833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132 0005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235 4201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859 5024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303 5982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989 3809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151 5574857242454150695950829533116861727855889075098381754637464939319255060400927701671139009848824012 8583616035637076601047101819429555961989467678374494482553797747268471040475346462080466842590694912 9331367702898915210475216205696602405803815019351125338243003558764024749647326391419927260426992279 6782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955 3211653449872027559602364806654991198818347977535663698074265425278625518184175746728909777727938000 8164706001614524919217321721477235014144197356854816136115735255213347574184946843852332390739414333 4547762416862518983569485562099219222184272550254256887671790494601653466804988627232791786085784383 8279679766814541009538837863609506800642251252051173929848960841284886269456042419652850222106611863 8279679766814541009538837863609506800642251252051173929848960841284886269456042419652850222106611863
0674427862203919494504712371378696095636437191728746776465757396241389086583264599581339047802759009 9465764078951269468398352595709825822620522489407726719478268482601476990902640136394437455305068203

From 3.141592653589793238462643383279502884197169399375105820974944592.com/ This 2005 URL seems to have disappeared.

π Day turns 26: Our book Pi and the AGM is 27

Interest over time
The number 100 represents the peak search volume

- From www.google.com/trends?q=Pi+ - H, E, D, C: "Pi Day March 14 (3.14, get it?)" - G,F: A 'Pl', and the Seattle PI dies - A,B: 'Life of Pi' (Try looking for Pi now: 2014!)
- 1908. Pi Day was Larry Shaw's gag at the Exploratorium (SF)
- 2003. Schools running our award-winning applet nearly crashed SFU. It recites Pi fast in many languages
http://oldweb.cecm.sfu.ca/pi/yapPing.html

π Day turns 26: Our book Pi and the AGM is 27

- From www.google.com/trends?q=Pi+

$$
\begin{aligned}
& \text { H, E, D, C: "Pi Day March } 14 \text { (3.14, get it?)" } \\
& \text { G,F: A 'PI', and the Seattle PI dies } \\
& \text { A,B: 'Life of Pi' (Try looking for Pi now: 2014!) }
\end{aligned}
$$

- 1988. Pi Day was Larry Shaw's gag at the Exploratorium (SF)
- 2003. Schools running our award-winning applet nearly crashed SFU. It recites Pi fast in many languages

π Day turns 26: Our book Pi and the AGM is 27

- From www.google.com/trends?q=Pi+
- H, E, D, C: "Pi Day March 14 (3.14, get it?)"
- G,F: A 'PI', and the Seattle PI dies
- A,B: 'Life of Pi' (Try looking for Pi now: 2014!)
- 1988. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- 2003. Schools running our award-winning applet nearly crashed SFU. It recites Pi fast in many languages

π Day turns 26: Our book Pi and the AGM is 27

- From www.google.com/trends?q=Pi+
- H, E, D, C: "Pi Day March 14 (3.14, get it?)"
- G,F: A 'PI', and the Seattle PI dies
- A,B: 'Life of Pi' (Try looking for Pi now: 2014!)
- 1988. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- 2003. Schools running our award-winning applet nearly crashed SFU. It recites Pi fast in many languages

π Day turns 26: Our book Pi and the AGM is 27

- From www.google.com/trends?q=Pi+
- H, E, D, C: "Pi Day March 14 (3.14, get it?)"
- G,F: A 'PI', and the Seattle PI dies
- A,B: 'Life of Pi' (Try looking for Pi now: 2014!)
- 1988. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- 2003. Schools running our award-winning applet nearly crashed SFU. It recites Pi fast in many languages

π Day turns 26: Our book Pi and the AGM is 27

- From www.google.com/trends?q=Pi+
- H, E, D, C: "Pi Day March 14 (3.14, get it?)"
- G,F: A 'PI', and the Seattle PI dies
- A,B: 'Life of Pi' (Try looking for Pi now: 2014!)
- 1988. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- 2003. Schools running our award-winning applet nearly crashed SFU. It recites Pi fast in many languages
- http://oldweb.cecm.sfu.ca/pi/yapPing.html.

24. Pi's Childhood
25. Pi's Adolescence
26. Adulthood of Pi
27. Pi in the Digital Age
28. Computing Individual Digits of π

Google Search for "Pi Day 2013"

1. Pi Day
www.timeanddate.com , Calendar, Holidays
Pi Day 2013. Thursday, March 14, 2013. Monday, July 22, 2013. Pi Day 2014. Friday, March 14, 2014. Tuesday, July 22, 2014. List of dates for other years ...
2. News for "Pi day 2013"
3. Celebrate Pi Day $2013-$ with Pie

Patch.com - 8 hours ago
A perfect day for math geeks, Einstein lovers, and admirers of pie.
4. Celebrate Pi Day 2013 with Fredericksburg Pizza

Patch.com-22 hours ago
5. Pi Day 2013: A Celebration of the Mathematical Constant 3.1415926535...

Patch.com-1 day ago
6. Celebrate Pi Day 2013 -- with Pie - Millburn-Short Hills, NJ Patch millburn.patch.com/.../celebrate-pi-day-2013-wit... - United States
9 hours ago - A perfect day for math geeks, Einstein lovers, and admirers of pie.
7. Pi Day 2013: A Celebration of the Mathematical Constant ... manassas.patch.com/.../pi-day-2013-a-celebration... - United States
2 days ago - March 14, or 3-14, is Pi Day - a day to celebrate the mathematical constant 3.14. What Pi Day activities do you have planned?
8. "Pi" Day 2013 - FunCheapSF.com sf.funcheap.com , City Guide

2 days ago - Pi Day 2013 Any day can be a holiday, so why not look to math for some inspiration. Pi day (March 14th... 3/14... 3.14) seeks to celebrate π...
9. Pi Day 2013 Facebook
www.facebook.com/events/181240568664057/
Thu, 14 Mar - Everywhere,,
Celebrate mathematics by celebrating Pi Day! Pi is the ratio of the circumference of a circle to its diameter (3.14159265...) For more info see: http://www.piday.org ...
10. Pi Day 2013: Events, Activities, \& History | Exploratorium
www.exploratorium.edu/learning_studio/pi/
Welcome to our twenty-fifth annual Pi Day! Help us celebrate this never-ending number (3.14159. ..) and Einstein's birthday as well. On the afternoon of March ...

Crossword Pi — NYT March 14, 2007

- To solve the puzzle, first note that the clue for 28 DOWN is March 14, to Mathematicians, to which the answer is PIDAY. Moreover, roughly a dozen other characters in the puzzle are $\pi=\mathrm{PI}$.
- For example, the clue for 5 down was More pleased with the six character answer HAP $\pi E R$.

CARMA
(MSNBC Thanksgiving 1997)

Crossword Pi — NYT March 14, 2007

- To solve the puzzle, first note that the clue for 28 DOWN is March 14, to Mathematicians, to which the answer is PIDAY. Moreover, roughly a dozen other characters in the puzzle are $\pi=\mathrm{PI}$.
- For example, the clue for 5 down was More pleased with the six character answer HAP π ER.

Borweins and Plouffe

A Fine Book

CARMA

The Puzzle (By Permission)

The Puzzle Answered

ANSWER TO PREVIOUS PUZZLE

The Simpsons (Permission refused by Fox)

TO: DROM: TACQUFINE A+KINS
DA>E: $10 / 9 / 92$
NUMBER OF PAEES: 1
F $7 \times(310) \quad 203-3852$
Phone (310) 203-3959
A Professer at UCLA told me that
you might he able to give me the 4000 th
answer to: What is the 40,000 th
digit of P_{i} ?

$$
\begin{aligned}
& \text { We would like to use the answer how help? } \\
& \text { in our show. Can you }
\end{aligned}
$$

Apu: I can recite pi to 40,000 places. The last digit is 1. Homer: Mmm... pie. ("Marge in Chains." May 6, 1993)
See also "Springfield Theory," (Science News, June 10, 2006) at www.aarms.math.ca/ACMN/links,
Mouthful of Pi, http://tvtropes.org/pmwiki/pmwiki.php/Main/MouthfulOfPi and
http://www.recordholders.org/en/list/memory htmltpi. The record is now over 80,000

The Simpsons (Permission refused by Fox)

TO: FOM: TACQUFWNE A+KINS
FROM: - TACQUF/UNE
NUMBER OF PAEES: 1
F $7 \times(310) \quad 203-3852$
PhONE (310) 203-3959
PHONE (310)203-3959 me that
A Professer at UCLA told me he to give me the
you might the What is the 40,000 th
answer to: What is the 40,000 th
digit of P_{i} ?
We would like to use the answer?
Apu: I can recite pi to 40,000 places. The last digit is 1 . Homer: Mmm... pie. ("Marge in Chains." May 6, 1993)

Mouthful of Pi, http://tvtropes.org/pmwiki/pmwiki.php/Main/MouthfulOfPi and
http://www.recordholders.org/en/list/memory.html\#pi. The record is now over 80,000 .

The Simpsons (Permission refused by Fox)

F $7 \times(310) \quad 203-3852$
Phone (310) 203-3959
PHONE (310) 203-3959
A Professor at UCLA told me that
yow might he alle to give me the
anower to: What is the 40,000 th
answer to: What is the 40,000 th
digit of Pi ?
We would like to use the answer?
Apu: I can recite pi to 40,000 places. The last digit is 1 . Homer: Mmm... pie. ("Marge in Chains." May 6,1993)

- See also "Springfield Theory," (Science News, June 10, 2006) at www.aarms.math.ca/ACMN/links, Mouthful of Pi, http://tvtropes.org/pmwiki/pmwiki.php/Main/MouthfulOfPi and http://www.recordholders.org/en/list/memory.html\#pi. The record is now over 80,000.

24. Pi's Childhood
25. Pi's Adolescence
26. Adulthood of Pi
27. Pi in the Digital Age
28. Computing Individual Digits of π

National Pi Day 3.12.2009: The first successful Pi Law

H.RES. 224

Latest Title: Supporting the designation of Pi Day, and for other purposes.
Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)
Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: $(2 / 3$ required): 391-10 (Roll no. 124).

1985-2011. Gordon in Congress
2007-2011. Chairman of House Committee on Science
and Technology.
1897. Indiana Bill 246 was fortunately shelved.

Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'

J.M. Borwein

Home \% Nevs a Poltics and Law

March 11, 2009 5:01 PM PDT
National Pi Day? Congress makes it official
by Declan McCulagh 泪 Fortsie Primt 国E-mal Toshare pocoments 2 remeet $f=f$ share 217

 colored beads on it, esch color represerting a digit from 0 to 9 (Credt: Dariel TerdimanKMET)

Washington pollticans took time from bailouts and earmark-laden spending packages on wednesday for what migrt seemike an urusual act: omiclally desigrating a National Pi Day
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

National Pi Day 3.12.2009: The first successful Pi Law

H.RES. 224

Latest Title: Supporting the designation of Pi Day, and for other purposes.
Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)
Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: $(2 / 3$ required): 391-10 (Roll no. 124).

1985-2011. Gordon in Congress
2007-2011. Chairman of House Committee on Science
1897. Indiana Bill 246 was fortunately shelved.

Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'

J.M. Borwein

Home \% Nens a Poitics and Law

March 11, 2009 5:01 PM PDT
National Pi Day? Congress makes it official

 colved beads on it, esch color repressating a digigt from 0 to 9 . (Credt: Dariel TerdimanKMET)

Washington pollticans took time from bailouts and earmark-laden spending packages on wednesday for what migrt seemike an urusual act: omiclally desigrating a National Pi Day
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

National Pi Day 3.12.2009: The first successful Pi Law

H.RES. 224

Latest Title: Supporting the designation of Pi Day, and for other purposes.
Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)
Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: $(2 / 3$ required): 391-10 (Roll no. 124).

1985-2011. Gordon in Congress
2007- 2011. Chairman of House Committee on Science and Technology.
1897. Indiana Bill 246 was fortunately shelved. Attempt to legislate value(s) of Pi and charge royalties started in the Committee on Swamps

J.M. Borwein

Home \& News ? Poltics and Law

March11, 2009 5:01 PM PDT
National Pi Day? Congress makes it official
 2 remeet $f=f$ share 217

 colored beads on it, esch color represerting a digit from 0 to 9 . (Credt: Dariel TerdimanKMET)

Washington pollticans took time from bailouts and earmark-laden spending packages on wednesday for what migrt seemike an urusual act: oflicially designeting a National Pi Day
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

National Pi Day 3.12.2009: The first successful Pi Law

H.RES. 224

Latest Title: Supporting the designation of Pi Day, and for other purposes.
Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)
Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: $(2 / 3$ required): 391-10 (Roll no. 124).

1985-2011. Gordon in Congress
2007- 2011. Chairman of House Committee on Science and Technology.
1897. Indiana Bill 246 was fortunately shelved.

Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

J.M. Borwein

Home \% Nens a Poitics and Law

March 11, 2009 5:01 PM PDT
National Pi Day? Congress makes it official
 2 remeet $f=f$ share 217

 colored beads on it, esch color represerting a digit from 0 to 9 . (Credt: Dariel TerdimanKMET)

Washington pollticans took time from bailouts and earmark-laden spending packages on wednesday for what migrt seemike an urusual act: omiclally desigrating a National Pi Day
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

National Pi Day 3.12.2009: The first successful Pi Law

H.RES. 224

Latest Title: Supporting the designation of Pi Day, and for other purposes.
Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)
Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: $(2 / 3$ required): 391-10 (Roll no. 124).

1985-2011. Gordon in Congress
2007- 2011. Chairman of House Committee on Science and Technology.
1897. Indiana Bill 246 was fortunately shelved.

Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Home \% Nens a Poitics and Law

March 11, 2009 5:01 PM PDT
National Pi Day? Congress makes it official
 2 reveet $f 10$ share 217

 colored beads on it, esch color represerting a digit from 0 to 9 . (Credt: Dariel TerdimanKMET)

Washington pollticans took time from bailouts and earmark-laden spending packages on wednesday for what migrt seemike an urusual act: orictally designating a National Pi Day
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

National Pi Day 3.12.2009: The first successful Pi Law

H.RES. 224

Latest Title: Supporting the designation of Pi Day, and for other purposes.
Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)
Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: $(2 / 3$ required): 391-10 (Roll no. 124).

1985-2011. Gordon in Congress
2007- 2011. Chairman of House Committee on Science and Technology.
1897. Indiana Bill 246 was fortunately shelved. Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.
!

Home \& Nevs a Poltics and Law

March 11, 2009 5:01 PM PDT
National Pi Day? Congress makes it official
 2 reveet $f 10$ share 217

 colored beads on it, esch color represerting a digit from 0 to 9 . (Credt: Dariel TerdimanKMET)

Washington pollticans took time from bailouts and earmark-laden spending packages on wednesday for what migrt seemike an urusual act: omiclally designeting a National Pi Day
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

CNN Pi Day 3.13.2010: and Google (in North America)

On Pi Day, one number 'reeks of mystery'
 by Elizabeth Landau, CN
 March 12, 2010 12:36 p.m. ESTMarch 12,2010 12:36 p.m. EST

Google's homage to 3.14.10

STORY HIGHLIGHTS (CNN) -- The sound of meditation for some people is full of deep Pi Day lalls on March 14, which breaths or gentle humming. For Marc Umile, it's
is also Abert Enstein's birthday " $3.14159265358979 . .$.
The ture "rantomness" of pis
digits -3.14 and so on - has digits - 3.14 and so on - has never been proven
The U.S. House passed a
resolutoon suppocting Pi Day in March 2009

Whether in the shower, driving to work, or walking down the street, he'll mentally rattle off digits of pi to pass the time. Holding 10th place in the world for pi memorization -- he typed out 15,314 digits from memory in 2007 -. Umile meditates through one of the most beloved and mysterious numbers in all of mathematics.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

CNN Pi Day 3.13.2010: and Google (in North America)

On Pi Day, one number 'reeks of mystery'
 by Elizabeth Landau, CN
 March 12, 2010 12:36 p.m. ESTMarch 12,2010 12:36 p.m. EST

Google's homage to 3.14.10

STORY HIGHLIGHTS (CNN) -- The sound of meditation for some people is full of deep Pi Day lalls on March 14, which breaths or gentle humming. For Marc Umile, it's
is also Abert Enstein's birthday " $3.14159265358979 . .$.
The ture "rantomness" of pis
digits -3.14 and so on - has digits - 3.14 and so on - has never been proven
The U.S. House passed a
resolutoon suppocting Pi Day in March 2009

Whether in the shower, driving to work, or walking down the street, he'll mentally rattle off digits of pi to pass the time. Holding 10th place in the world for pi memorization -- he typed out 15,314 digits from memory in 2007 -. Umile meditates through one of the most beloved and mysterious numbers in all of mathematics.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

CNN Pi Day 3.13.2010: and Google (in North America)

On Pi Day, one number 'reeks of mystery'
 By Elizabeth Landau, CN
 March 12, 2010 12:36 p.m. ESTMarch 12,2010 12:36 p.m. EST

Google's homage to 3.14.10

STORY HIGHLIGHTS (CNN) -- The sound of meditation for some people is full of deep

 Pi Day talls on March 14, which breaths or gentle humming. For Marc Umile, it'sis also Abert Enstein's birthday " $3.14159265358979 . .$.
The ture "rantomness" of pis
digits - . 3.14 and so on digits $-=1.14$ and so
never been prover
The U.S. House passed a resolution supporting Pi Day in March 2009

Whether in the shower, driving to work, or walking down the street, he'll mentally rattle off digits of pi to pass the time. Holding 10th place in the world for pi memorization -- he typed out 15,314 digits from memory in 2007 -. Umile meditates through one of the most beloved and mysterious numbers in all of mathematics.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

Judge rules "Pi is a non-copyrightable fact" on 3.14.2012

NewScientist Physics \& Math a mex

Home N	In-Dapth Articles Blogs			Opinion	TV	Gall		Topic Guildos	Last Word	Subscribe	Dating
SPACE	TECH	ENVIRON	ant	health		FE	PHYS	SICSEMATH	Sciencein	society	

Home | Physlcs \& Math | News
US judge rules that you can't copyright pi
) 18:15 16 March 2012 by Stephen Ornes

The mathematical consiart pi continues to infinity, but an exiraordinary lawsult that centred on this most beloved string of digits has come to an end. Appropritately, the decision was made on PI Day.

On 14 March, which commemorates the constant that begins 3.14, US district court judge Michael H. Simon dismissed a claim of copyright inftringernent brought by one mathamatical musician against another, who had also created music bassed on the digits of pi.
"Piis a non-copyrghtable fact, and the transcription of pi to music is a nencopyrightable idea," Simon wote in his legal opinion dismissing the case. "The resulting pattern of notes is an expression that merges with the noncopyrightable idea of putting pito music:

The bizarre tale began about a year ago, when Machsel Blake of Portiand, Oregon, released a song and YouTube video featuring an original musical composition "What pi sounds like", translating the constan't's first few doze

More Latest news
I Is the LHC throwing away too much data?

Two of many cartoons

My PIN is the last 4 digits of π

24. Pi's Childhood
25. Pi's Adolescence
26. Adulthood of Pi
27. Pi in the Digital Age
28. Computing Individual Digits of π

Judge rules "Pi is a non-copyrightable fact" on 3.14.2012

NewScientist Physics \& Math a mex

Home N	In-Dapth Articles Blogs			Opinion	TV	Gall		Topic Guildos	Last Word	Subscribe	Dating
SPACE	TECH	ENVIRON	ant	health		FE	PHYS	SICSEMATH	Sciencein	society	

Home | Physlcs \& Math | News
US judge rules that you can't copyright pi
) 18:15 16 March 2012 by Stephen Ornes

The mathematical consiart pi continues to infinity, but an exiraordinary lawsult that centred on this most beloved string of digits has come to an end. Appropritately, the decision was made on PI Day.

On 14 March, which commemorates the constant that begins 3.14, US district court judge Michael H. Simon dismissed a claim of copyright inftringernent brought by one mathamatical musician against another, who had also created music bassed on the digits of pi.
"Piis a non-copyrghtable fact, and the transcription of pi to music is a nencopyrightable idea," Simon wote in his legal opinion dismissing the case. "The resulting pattern of notes is an expression that merges with the noncopyrightable idea of putting pito music:

The bizarre tale began about a year ago, when Machsel Blake of Portiand, Oregon, released a song and YouTube video featuring an original musical composition "What pi sounds like", translating the constan't's first few doze

More Latest news
I Is the LHC throwing away too much data?

Two of many cartoons

My PIN is the last 4 digits of π

43. Pi's Adolescence
44. Adulthood of Pi
45. Pi in the Digital Age
46. Computing Individual Digits of π

Judge rules "Pi is a non-copyrightable fact" on 3.14.2012

NewScientist

Physics \& Math
Home News In-Depth Articles Blogs Opinion TV Galleries Topic Guides
SPACE TECH ENVIRONMEN \qquad PHYSICSEMATH
of

Home | Physlcs \& Math | News
US judge rules that you can't copyright pi
) 18:15 16 March 2012 by Stephen Ornes

© pant ©seno gio shars

More Latest news
I Is the LHC throwing away too much data?

Two of many cartoons

> My PIN is the last 4 digits of π
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

Google (29-1-13) and US Gov't (14-8-12) still both love π

Google rounds up Pwnie prize to $\$$ million for
Chrome OS hacks
Google shoves Chrome OS in to the hacker spotlight.

U.S. Population Reaches $\mathbf{3 1 4 , 1 5 9 , 2 6 5}$, Or Pi Times 100 Million: Census

The Huffington Post | By Bonnie Kavoussi
The Huffington Post I By Bonnie Kavoussi
Posted: 0814/2012 4:03 pm Updated. $0 \Omega 14 / 20125: 55 \mathrm{pm}$

The U.S. population has reached a nerdy and delightful milestone
Shortly after $2: 29$ p.m. on Tuesday. August 14, 2012, the U.S. population was exactly $314,159,265$, or Pi (π) times 100 million, the US. Census Bureau reports.
$\mathrm{Pi}(\pi)$ is a unique number in multiple ways. For one, it is the ratio of a circle's circumference to its diameter. It is also an irrational number, meaning it goes on forever without ever repeating itself. Are you remembering how much you loved geometry class? You can check out Pi to one million places here.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

π Records Always Make The News

MWyIABC News

Print Pirit Entsal Shere Share

Geeks slice pi to 5 trillion decimal places

updated Fri Aug 6, 2010 10:26 AEST
A pair of Japanese and United States computer whizzes claim to have calculated p i to five trillion decimal places - a number, which if verified, eclipses the previous record set by a French software engineer.
We believe our achievement sets a new record," lapanese system engineer Shigeru Kondo We be
said.
 two-quadrillionth digit
Ey Jason Paliner
sclence and technology reporter, BBC News
A researcher has ealculated the A researeher has eatculated the
$2,000,000,000,000,000$ th digit of the mathematical constant pi- and a few digits either side of it.

Wicholas sie, of tech firm Yatoo, said that when pi is expressed in binary, the bxo quachiliconth digit is 0.

Mr Sze used Yahoo's Hadoop cloud computiog technology to more than double the prestous record.
It took 23 days on 1,000 of Yahoo's computers - on a standard $P C$, the calculation would have taken 500 years.

The heart of the calculaton made use or an approach caled MapReduce originally developed by Google that CNidas up big problems into originally developed by Google that covddes up big problems
sfialler sub-problems, combining the answers, to solve ctherwise intratable mathematical challenges.

At Yahoo, a cluster of 1,000 computers implemented tt is algorithin to solve an equation that plucks out specinc digts or al

```
Yee a US computer science
ed mathematicians for
```

ith 3.14159 in a string whose
eved to be nearly 2.7 trillion.
"Mr Kondo said.

Systems enginoer Shigeru Kondo says it took 90 days to calculated pitw five trillon decimal plisces. (Constructive Methenatics)

Pi calculated to 'record number' of
By Jason Palmer
Science and technology reporter, BBC News
A computer scientist claims to
have computed the
mathernatical constant pi to mathematical constant pi to
nearly 2.7 trillion digits, some 123 billion more than the previous record.
Fabnice Bellard used a desktop computer to perform the calculation, taking a tatal of 131 days to complete and check the

- By now you get the idea: π is everywhere ... also volumes, areas CARMA lengths, probabilities, everywhere.

24. Pi's Childhood
25. Pi's Adolescence
26. Adulthood of Pi
27. Pi in the Digital Age
28. Computing Individual Digits of π

Links and References

25. Links and References

(1) The Pi Digit site: http://carma.newcastle.edu.au/bbp

2 Dave Bailey's Pi Resources: http://crd.lbl.gov/~dhbailey/pi/
(3) The Life of Pi: http://carma.newcastle.edu.au/jon/pi-2012.pdf.

4 Experimental Mathematics: http://www.experimentalmath.info/.
(5) Dr Pi's brief Bio: http://carma.newcastle.edu.au/jon/bio_short.html.

1 D.H. Bailey and J.M. Borwein, "On Pi Day 2014, Pi's normality is still in question." American Mathematical Monthly, 121 March (2014), 191-204. (and Huffington Post 3.14.14 Blog)
2 D.H. Bailey, and J.M. Borwein, Mathematics by Experiment: Plausible Reasoning in the 21st Century, AK Peters Ltd, Ed 2, 2008, ISBN: 1-56881-136-5. See http://www.experimentalmath.info/
3 J.M. Borwein, "Pi: from Archimedes to ENIAC and beyond," in Mathematics and Culture, Einaudi, 2006. Updated 2012: http://carma.newcastle.edu.au/jon/pi-2012.pdf.
4 J.M. \& P.B. Borwein, and D.A. Bailey, "Ramanujan, modular equations and pi or how to compute a billion digits of pi," MAA Monthly, 96 (1989), 201-219. Reprinted in Organic Mathematics, www.cecm.sfu.ca/organics, 1996, CMS/AMS Conference Proceedings, 20 (1997), ISSN: 0731-1036.
5 J.M. Borwein and P.B. Borwein, "Ramanujan and Pi," Scientific American, February 1988, 112-117. Also pp. 187-199 of Ramanujan: Essays and Surveys, Bruce C. Berndt and Robert A. Rankin Eds., AMS-LMS History of Mathematics, vol. 22, 2001.
6) Jonathan M. Borwein and Peter B. Borwein, Selected Writings on Experimental and Computational Mathematics, PsiPress. October 2010. ${ }^{1}$
7 L. Berggren, J.M. Borwein and P.B. Borwein, Pi: a Source Book, Springer-Verlag, (1997), (2000), (2004)CARMA Fourth Edition, in Press.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE Precalculus Calculation Records
The Fairly Dark Ages

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3 \frac{1}{8}=3.125$.
 1650 BCE. Rhind papyrus: a circle of diameter nine has the area of a square of side eight:

> Pi is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi=3$

Also, he made a molten sea of ten cubits from brim
to brim, round in compass, and five cubits the height
thereof: and a line of thirtv cubits did compass it round
about. (I Kings 7:23; 2 Chron. 4:2)

- More interesting is that Moses ben Maimon Maimonedes (the
'Rambam') (1135-1204) writes in The true perplexity that because
of its nature "nor will it ever be possible to express it [$\pi \pi]$ exactly" "CARMA

24. Pi's Childhood
25. Pi's Adolescence
26. Adulthood of Pi
27. Pi in the Digital Age
28. Computing Individual Digits of π

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE Precalculus Calculation Records
The Fairly Dark Ages

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3 \frac{1}{8}=3.125$.

1650 BCE. Rhind papyrus: a circle of diameter nine has the area of a square of side eight:

$$
\pi=\frac{256}{81}=3.1604 \ldots
$$

Pi is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi=3$
Also, he made a molten sea of ten cubits from brim
to brim, round in compass, and five cubits the height
thereof: and a line of thirtv cubits did compass it round
about. (I Kings 7:23; 2 Chron. 4:2)

- More interesting is that Moses ben Maimon Maimonedes (the
'Rambam') (1135-1204) writes in The true perplexitv that because
of its nature "nor will it ever be possible to express it [$\pi \tau]$ exactly" CARMA

24. Pi's Childhood
25. Pi's Adolescence
26. Adulthood of Pi
27. Pi in the Digital Age
28. Computing Individual Digits of π

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3 \frac{1}{8}=3.125$.

1650 BCE. Rhind papyrus: a circle of diameter nine has the area of a square of side eight:

$$
\pi=\frac{256}{81}=3.1604 \ldots
$$

- $\mathbf{P i}$ is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi=3$:
Also, he made a molten sea of ten cubits from brim
to brim, round in compass, and five cubits the height
thereof; and a line of thirty cubits did compass it round
about. (। Kings 7:23; 2 Chron. 4:2)

- More interesting is that Moses ben Maimon Maimonedes (the
'Rambam') (1135-1204) writes in The true perplexity that because
of its nature

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3 \frac{1}{8}=3.125$.

1650 BCE. Rhind papyrus: a circle of diameter nine has the area of a square of side eight:

$$
\pi=\frac{256}{81}=3.1604 \ldots
$$

- $\mathbf{P i}$ is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi=3$:
Also, he made a molten sea of ten cubits from brim
 to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about. (I Kings 7:23; 2 Chron. 4:2)
More interesting is that Moses ben Maimon Maimonedes (the
'Rambam') (1135-1204) writes in The true perplexity that because

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3 \frac{1}{8}=3.125$.

1650 BCE. Rhind papyrus: a circle of diameter nine has the area of a square of side eight:

$$
\pi=\frac{256}{81}=3.1604 \ldots
$$

- $\mathbf{P i}$ is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi=3$:
Also, he made a molten sea of ten cubits from brim
 to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about. (I Kings 7:23; 2 Chron. 4:2)

- More interesting is that Moses ben Maimon Maimonedes (the 'Rambam') (1135-1204) writes in The true perplexity that because of its nature "nor will it ever be possible to express it [π] exactly." CARMA

24. Pi's Childhood
25. Pi's Adolescence
26. Adulthood of Pi
27. Pi in the Digital Age
28. Computing Individual Digits of π

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records
The Fairly Dark Ages

There are two Pi(es): Did they tell you?

Archimedes of Syracuse (c. 287 - 212 BCE) was first to show that the "two Pi's" are one in Measurement of the Circle (c. 250 BCE):

Area $=\pi_{1} r^{2}$ and Perimeter $=2 \pi_{2} r$

The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference, of the circle.

Let $A B O D$ be the given circle, K the triangle described.

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482
3421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596 is accurate enough to compute the volume of the known universe to the accuracy of a hydrogen nucleus.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records
The Fairly Dark Ages

There are two Pi(es): Did they tell you?

Archimedes of Syracuse (c. 287 - 212 BCE) was first to show that the "two Pi's" are one in Measurement of the Circle (c. 250 BCE):

Area $=\pi_{1} r^{2}$ and Perimeter $=2 \pi_{2} r$.

The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference, of the circle.

Let $A B C D$ be the given circle, K the triangle described.

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482
3421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596 is accurate enough to compute the volume of the known universe to the accuracy of a hydrogen nucleus.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records
The Fairly Dark Ages

There are two Pi(es): Did they tell you?

Archimedes of Syracuse (c. 287 - 212 BCE) was first to show that the "two Pi's" are one in Measurement of the Circle (c. 250 BCE):

Area $=\pi_{1} r^{2}$ and Perimeter $=2 \pi_{2} r$.

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825 3421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596 is accurate enough to compute the volume of the known universe to the accuracy of a hydrogen nucleus.

CARMA
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

Archimedes Method circa 250 BCE

The first rigorous mathematical calculation of π was also due to Archimedes, who used a brilliant scheme based on doubling inscribed and circumscribed polygons

to obtain the bounds $3 \frac{10}{71}<\pi<3 \frac{1}{7}$.

> - Archimedes' scheme is the first true algorithm for π, in that it is capable of producing an arbitrarily accurate value for π. CARMA
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

Archimedes Method circa 250 BCE

The first rigorous mathematical calculation of π was also due to Archimedes, who used a brilliant scheme based on doubling inscribed and circumscribed polygons

$$
\mathbf{6} \mapsto \mathbf{1 2} \mapsto 24 \mapsto 48 \mapsto \mathbf{9 6}
$$

to obtain the bounds $3 \frac{10}{71}<\pi<3 \frac{1}{7}$

> - Archimedes' scheme is the first true algorithm for π, in that it is capable of producing an arbitrarily accurate value for π. CARMA

Archimedes Method circa 250 BCE

The first rigorous mathematical calculation of π was also due to Archimedes, who used a brilliant scheme based on doubling inscribed and circumscribed polygons

$$
\mathbf{6} \mapsto \mathbf{1 2} \mapsto 24 \mapsto 48 \mapsto \mathbf{9 6}
$$

to obtain the bounds $3 \frac{10}{71}<\pi<3 \frac{1}{7}$.

> - Archimedes' scheme is the first true algorithm for π, in that it is capable of producing an arbitrarily accurate value for π. CARMA

Archimedes Method circa 250 BCE

The first rigorous mathematical calculation of π was also due to Archimedes, who used a brilliant scheme based on doubling inscribed and circumscribed polygons

$$
\mathbf{6} \mapsto \mathbf{1 2} \mapsto 24 \mapsto 48 \mapsto \mathbf{9 6}
$$

to obtain the bounds $3 \frac{10}{71}<\pi<3 \frac{1}{7}$.

- Archimedes' scheme is the first true algorithm for π, in that it is capable of producing an arbitrarily accurate value for π.

24. Pi's Childhood
25. Pi's Adolescence
26. Adulthood of Pi
27. Pi in the Digital Age
28. Computing Individual Digits of π

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records The Fairly Dark Ages

Where Greece Was: Magna Graecia

(1) Syracuse

Troy
Byzantium
Constantinople
(4)

Rhodes
(Helios)
(5)

Hallicarnassus
(Mausolus)
(6)

Ephesus
(Artemis)

Athens
(Zeus)

The others of the Seven Wonders: Lighthouse of Alexandria, Pyramids of Giza, Gardens of Babylon
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records The Fairly Dark Ages

Where Greece Was: Magna Graecia

(1) Syracuse
(2) Troy
(3) Byzantium Constantinople

4 Rhodes (Helios)
(5) Hallicarnassus (Mausolus)
(6) Ephesus
(Artemis)
(7) Athens (Zeus)

The others of the Seven Wonders: Lighthouse of Alexandria, Pyramids of Giza, Gardens of Babylon
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records The Fairly Dark Ages

Where Greece Was: Magna Graecia

(1) Syracuse
(2) Troy
(3) Byzantium Constantinople

4 Rhodes (Helios)
(5) Hallicarnassus (Mausolus)
(6) Ephesus
(Artemis)
(7) Athens (Zeus)

The others of the Seven Wonders: Lighthouse of Alexandria, Pyramids of Giza, Gardens of Babylon
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of π

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records
The Fairly Dark Ages

Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.
- Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
- After 1929. Painted over with gold icons and left in a wet bucket in a garden.

1998. Bought at auction for $\$ 2$ million.

1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.

- Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.
"Archimedes used knowledge of levers and centres of gravity to envision ways of balancing geometric figures against one another which allowed him to compare their areas or volumes. He then used rigorous geometric argument to prove Method discoveries."
- See Bernard Beauzamy, Archimedes' modern works, 2012.

24. Pi's Childhood
25. Pi's Adolescence
26. Adulthood of Pi
27. Pi in the Digital Age
28. Computing Individual Digits of π

Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.

> Sometime before April 141229 , partially erased, cut up, and
> overwritten by religious text.
> After 1929 . Painted over with gold icons and left in a wet bucket in a garden.
> 1998. Bought at auction for $\$ 2$ million.
> $1998-2008$. "Reconstructed" using very high-end
> mathematical imaging techniques.
> Contained bits of 7 texts including Archimedes On Floating
> Bodies and Method of Mechanical Theorems, thought lost.
"Archimedes used knowledge of levers and centres of gravity to envision ways of balancing geometric figures against one another which allowed him to compare their areas or volumes. He then used rigorous geometric argument to prove Method discoveries."

```
- See Bernard Beauzamy. Archimedes' modern works, 2012.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Archimedes Palimpsest (Codex C)}
- 1906. Discovery of a 10th-C palimpsest in Constantinople.
- Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
- After 1929. Painted over with gold icons and left in a wet bucket in a garden.
```

1998. Bought at auction for \$2 million.
1998-2008. "Reconstructed" using very high-end
mathematical imaging techniques.
Contained bits of }7\mathrm{ texts including Archimedes On Floating
Bodies and Method of Mechanical Theorems, thought lost.
```
"Archimedes used knowledge of Ievers and centres of gravity to envision ways of balancing geometric figures against one another which allowed him to compare their areas or volumes. He then used rigorous geometric argument to prove Method discoveries."

\section*{Archimedes Palimpsest (Codex C)}
- 1906. Discovery of a 10th-C palimpsest in Constantinople.
- Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
- After 1929. Painted over with gold icons and left in a wet bucket in a garden.
- 1998. Bought at auction for \(\$ 2\) million.
mathematical imaging techniques.
Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.
"Archimedes used knowledge of levers and centres of gravity to envision ways of balancing geometric figures against one another which allowed
him to compare their areas or volumes. He then used rigorous geometric
argument to prove Method discoveries.'
- See Rernard Reauzamy, Archimedes' modern works, 2012.

\section*{Archimedes Palimpsest (Codex C)}
- 1906. Discovery of a 10th-C palimpsest in Constantinople.
- Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
- After 1929. Painted over with gold icons and left in a wet bucket in a garden.
- 1998. Bought at auction for \(\$ 2\) million.
- 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
- Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.
"Archimedes used knowledge of levers and centres of gravity to envision
ways of balancing geometric figures against one another which allowed
him to compare their areas or volumes. He then used rigorous geometric
argument to prove Method discoveries.
- See Bernard Beauzamy, Archimedes' modern works, 2012

\section*{Archimedes Palimpsest (Codex C)}
- 1906. Discovery of a 10th-C palimpsest in Constantinople.
- Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
- After 1929. Painted over with gold icons and left in a wet bucket in a garden.
- 1998. Bought at auction for \(\$ 2\) million.
- 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
- Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.
"Archimedes used knowledge of levers and centres of gravity to envision ways of balancing geometric figures against one another which allowed him to compare their areas or volumes. He then used rigorous geometric argument to prove Method discoveries."
- See Bernard Beauzamy, Archimedes' modern works, 2012.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Archimedes from The Method}
"... certain things first became clear to me by a mechanical method, although they had to be proved by geometry afterwards because their investigation by the said method did not furnish an actual proof. But it is of course easier, when we have previously acquired, by the method, some knowledge of the questions, to supply the proof than it is to find it without any previous knowledge."

24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Let's be Clear: \(\pi\) Really is not \(\frac{22}{7}\)}

Even Maple or Mathematica 'knows' this since
\[
\begin{equation*}
0<\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi \tag{1}
\end{equation*}
\]
though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on \((0,1)\), and the answer in (1) is an area and so strictly positive, despite millennia of claims that \(\pi\) is \(22 / 7\).
- Accidentally, 22/7 is one of the early continued fraction
approximation to \(\pi\). These commence:


\section*{Let's be Clear: \(\pi\) Really is not \(\frac{22}{7}\)}

Even Maple or Mathematica 'knows' this since
\[
\begin{equation*}
0<\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi \tag{1}
\end{equation*}
\]
though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on \((0,1)\), and the answer in (1) is an area and so strictly positive, despite millennia of claims that \(\pi\) is \(22 / 7\).
- Accidentally, 22/7 is one of the early continued fraction
approximation to \(\pi\). These commence:


\section*{Let's be Clear: \(\pi\) Really is not \(\frac{22}{7}\)}

Even Maple or Mathematica 'knows' this since
\[
\begin{equation*}
0<\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi \tag{1}
\end{equation*}
\]
though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on \((0,1)\), and the answer in (1) is an area and so strictly positive, despite millennia of claims that \(\pi\) is \(22 / 7\).
- Accidentally, \(22 / 7\) is one of the early continued fraction approximation to \(\pi\). These commence:
\[
3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \ldots
\]
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Archimedes Method circa 1800 CE}

As discovered - by Schwabb, Pfaff, Borchardt, Gauss - in the 19th century, this becomes a simple recursion:

\section*{Algorithm (Archimedes)}

Set \(a_{0}:=2 \sqrt{3}, b_{0}:=3\). Compute
\[
\begin{align*}
a_{n+1} & =\frac{2 a_{n} b_{n}}{a_{n}+b_{n}}  \tag{H}\\
b_{n+1} & =\sqrt{a_{n+1} b_{n}} \tag{G}
\end{align*}
\]

These tend to \(\pi\), error decreasing by a factor of four at each step.

\section*{Archimedes Method circa 1800 CE}

As discovered - by Schwabb, Pfaff, Borchardt, Gauss - in the 19th century, this becomes a simple recursion:

\section*{Algorithm (Archimedes)}

Set \(a_{0}:=2 \sqrt{3}, b_{0}:=3\). Compute
\[
\begin{align*}
& a_{n+1}=\frac{2 a_{n} b_{n}}{a_{n}+b_{n}}  \tag{H}\\
& b_{n+1}=\sqrt{a_{n+1} b_{n}} \tag{G}
\end{align*}
\]

These tend to \(\pi\), error decreasing by a factor of four at each step.

\section*{Archimedes Method circa 1800 CE}

As discovered - by Schwabb, Pfaff, Borchardt, Gauss - in the 19th century, this becomes a simple recursion:

\section*{Algorithm (Archimedes)}

Set \(a_{0}:=2 \sqrt{3}, b_{0}:=3\). Compute
\[
\begin{align*}
& a_{n+1}=\frac{2 a_{n} b_{n}}{a_{n}+b_{n}}  \tag{H}\\
& b_{n+1}=\sqrt{a_{n+1} b_{n}} \tag{G}
\end{align*}
\]

These tend to \(\pi\), error decreasing by a factor of four at each step.
- The greatest mathematician (scientist) to live before the Enlightenment. To compute \(\pi\) Archimedes had to invent many

\section*{Archimedes Method circa 1800 CE}

As discovered - by Schwabb, Pfaff, Borchardt, Gauss - in the 19th century, this becomes a simple recursion:

\section*{Algorithm (Archimedes)}

Set \(a_{0}:=2 \sqrt{3}, b_{0}:=3\). Compute
\[
\begin{align*}
& a_{n+1}=\frac{2 a_{n} b_{n}}{a_{n}+b_{n}}  \tag{H}\\
& b_{n+1}=\sqrt{a_{n+1} b_{n}} \tag{G}
\end{align*}
\]

These tend to \(\pi\), error decreasing by a factor of four at each step.
- The greatest mathematician (scientist) to live before the Enlightenment. To compute \(\pi\) Archimedes had to invent many subjects - including numerical and interval analysis.
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Proving \(\pi\) is not \(\frac{22}{7}\)}

In this case, the indefinite integral provides immediate reassurance.
We obtain
\(\int_{0}^{\mathrm{t}} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=\frac{1}{7} t^{7}-\frac{2}{3} t^{6}+t^{5}-\frac{4}{3} t^{3}+4 t-4 \arctan (t)\)
as differentiation easily confirms, and the fundamental theorem of calculus proves (1).

QED
One can take this idea a bit further. Note that


\section*{Proving \(\pi\) is not \(\frac{22}{7}\)}

In this case, the indefinite integral provides immediate reassurance.
We obtain
\(\int_{0}^{\mathrm{t}} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=\frac{1}{7} t^{7}-\frac{2}{3} t^{6}+t^{5}-\frac{4}{3} t^{3}+4 t-4 \arctan (t)\)
as differentiation easily confirms, and the fundamental theorem of calculus proves (1).

QED
One can take this idea a bit further. Note that
\[
\begin{equation*}
\int_{0}^{1} x^{4}(1-x)^{4} d x=\frac{1}{630} . \tag{2}
\end{equation*}
\]

\section*{... Going Further}

Hence
\[
\frac{1}{2} \int_{0}^{1} x^{4}(1-x)^{4} d x<\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x<\int_{0}^{1} x^{4}(1-x)^{4} d x
\]


Archimedes: \(223 / 71<\pi<22 / 7\)
Combine this with (1) and (2) to derive:
\[
223 / 71<22 / 7-1 / 630<\pi<22 / 7-1 / 1260<22 / 7
\]
and so re-obtain Archimedes' famous
\[
3 \frac{10}{71}<\pi<3 \frac{10}{70}
\]
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Never Trust Secondary References}
- See Dalziel in Eureka (1971), a Cambridge student journal
- Integral (1) was on the 1968 Putnam, an early 60's Sydney exam, and traces back to 1944 (Dalziel)


Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

> I have no satisfaction in formulas unless I feel their arithmetical magnitude - Baron William Thomson Kelvin

> In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Never Trust Secondary References}
- See Dalziel in Eureka (1971), a Cambridge student journal.
- Integral (1) was on the 1968 Putnam, an early 60 's Sydney exam, and traces back to 1944 (Dalziel).


Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

> I have no satisfaction in formulas unless / feel their arithmetical magnitude - Baron William Thomson Kelvin

> In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.

\section*{Never Trust Secondary References}
- See Dalziel in Eureka (1971), a Cambridge student journal.
- Integral (1) was on the 1968 Putnam, an early 60's Sydney exam, and traces back to 1944 (Dalziel).


Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.-Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.
- Archimedes, Huygens, Riemann, De Morgan, and many others had similar sentiments.

\section*{Never Trust Secondary References}
- See Dalziel in Eureka (1971), a Cambridge student journal.
- Integral (1) was on the 1968 Putnam, an early 60's Sydney exam, and traces back to 1944 (Dalziel).


Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.-Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.
- Archimedes, Huygens, Riemann, De Morgan, and many others had similar sentiments.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Kuhnian 'Paradigm Shifts' and Normal Science}

Variations of Archimedes' method were used for all calculations of \(\pi\) for \(\mathbf{1 8 0 0}\) years - well beyond its 'best before' date.

480CE. In China Tsu Chung-Chih got \(\pi\) to seven digits.

1429. A millennium later, Al-Kashi in Samarkand - on the silk road - "who could calculate as eagles can fly' computed \(2 \pi\) in sexagecimal:

24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Kuhnian 'Paradigm Shifts' and Normal Science}

Variations of Archimedes' method were used for all calculations of \(\pi\) for \(\mathbf{1 8 0 0}\) years - well beyond its 'best before' date.
- 480CE. In China Tsu Chung-Chih got \(\pi\) to seven digits.

1429. A millennium later, Al-Kashi in Samarkand - on the silk road - "who could calculate as eagles can fly' computed \(2 \pi\) in sexagecimal:


\section*{Kuhnian 'Paradigm Shifts' and Normal Science}

Variations of Archimedes' method were used for all calculations of \(\pi\) for \(\mathbf{1 8 0 0}\) years - well beyond its 'best before' date.
- 480CE. In China Tsu Chung-Chih got \(\pi\) to seven digits.

1429. A millennium later, Al-Kashi in Samarkand - on the silk road - "who could calculate as eagles can fly" computed \(2 \pi\) in sexagecimal:
\[
\begin{aligned}
2 \pi=6 & +\frac{16}{60^{1}}+\frac{59}{60^{2}}+\frac{28}{60^{3}}+\frac{01}{60^{4}} \\
& +\frac{34}{60^{5}}+\frac{51}{60^{6}}+\frac{46}{60^{7}}+\frac{14}{60^{8}}+\frac{50}{60^{9}},
\end{aligned}
\]
good to \(\mathbf{1 6}\) decimal places (using \(3 \cdot 2^{28}\)-gons).
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Precalculus \(\pi\) Calculations}
\begin{tabular}{|l|c|c|}
\hline Name & Year & Digits \\
\hline Babylonians & \(2000 ?\) BCE & 1 \\
Egyptians & 2000? BCE & 1 \\
Hebrews (1 Kings 7:23) & 550 ? BCE & 1 \\
Archimedes & 250 ? BCE & 3 \\
Ptolemy & 150 & 3 \\
Liu Hui & 263 & 5 \\
Tsu Ch'ung Chi & \(480 ?\) & 7 \\
Al-Kashi & 1429 & 14 \\
Romanus & 1593 & 15 \\
Van Ceulen (Ludolph's number*) & 1615 & 35 \\
\hline
\end{tabular}
* Used \(2^{62}\)-gons for 39 places \(/ 35\) correct - published posthumously.
113. Computing Individual Digits of \(\pi\)

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records
The Fairly Dark Ages

\section*{Ludolph's Rebuilt Tombstone in Leiden}


\section*{Ludolph van Ceulen (1540-1610)}
- Destroyed several centuries ago; the plans remained.
24. Pi's Childhood
43. Pi's Adolescence 48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records
The Fairly Dark Ages

\section*{Ludolph's Reconsecrated Tombstone in Leiden}

- Tombstone reconsecrated July 5, 2000
- Attended by Dutch royal family and 750 others.
- My brother lectured on Pi from halfway up to the pulpit. CARMA
24. Pi's Childhood
43. Pi's Adolescence 48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records
The Fairly Dark Ages

\section*{Ludolph's Reconsecrated Tombstone in Leiden}

- Tombstone reconsecrated July 5, 2000.
- Attended by Dutch royal family and 750 others.
- My brother lectured on Pi from halfway up to the pulpit. CARMA
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records
The Fairly Dark Ages

\section*{Ludolph's Reconsecrated Tombstone in Leiden}

- Tombstone reconsecrated July 5, 2000.
- Attended by Dutch royal family and 750 others.
- My brother lectured on Pi from halfway up to the pulpit.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{The Fairly Dark Ages}


Europe stagnated during the 'dark ages'. A significant advance arose in India (450 CE ): modern positional, zero-based decimal arithmetic - the "Indo-Arabic" system.

- Came to Europe between 1000 (Gerbert/Sylvester) and 1202 CE (Fibonacci's Liber Abaci) - see Devlin's 2011 The Man of Numbers: Fibonacci's Arithmetic Revolution.
- Still underestimated, this greatly enhanced arithmetic and
mathematics in general, and computing \(\pi\) in particular.
Resistance ranged from accountants who feared for their
livelihood to clerics who saw the system as 'diabolical' - they
incorrectly assumed its origin was Islamic.
European commerce resisted until 18th century, and even in
scientific circles usage was limited into 17 th century. CARMA
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{The Fairly Dark Ages}


Europe stagnated during the 'dark ages'. A significant advance arose in India (450 CE ): modern positional, zero-based decimal arithmetic - the "Indo-Arabic" system.

- Came to Europe between 1000 (Gerbert/Sylvester) and 1202 CE (Fibonacci's Liber Abaci) - see Devlin's 2011 The Man of Numbers: Fibonacci's Arithmetic Revolution.
- Still underestimated, this greatly enhanced arithmetic and mathematics in general, and computing \(\pi\) in particular.

Resistance ranged from accountants who feared for their
livelihood to clerics who saw the system as 'diabolical' - they
incorrectly assumed its origin was Islamic.
European commerce resisted until 18th century, and even in
scientific circles usage was limited into 17th century.

\section*{The Fairly Dark Ages}


Europe stagnated during the 'dark ages'. A significant advance arose in India (450 CE ): modern positional, zero-based decimal arithmetic - the "Indo-Arabic" system.

- Came to Europe between 1000 (Gerbert/Sylvester) and 1202 CE (Fibonacci's Liber Abaci) - see Devlin's 2011 The Man of Numbers: Fibonacci's Arithmetic Revolution.
- Still underestimated, this greatly enhanced arithmetic and mathematics in general, and computing \(\pi\) in particular.
- Resistance ranged from accountants who feared for their livelihood to clerics who saw the system as 'diabolical' - they incorrectly assumed its origin was Islamic.
- European commerce resisted until 18th century, and even in scientific circles usage was limited into 17th century.

\section*{Arithmetic was Hard}
- See DHB \& JMB, "Ancient Indian Square Roots: An Exercise in Forensic Paleo-Mathematics," MAA Monthly. 2012.
- The prior difficulty of arithmetic \({ }^{2}\) is shown by "college placement' advice to a wealthy 16C German merchant:
```

If you only want him to be able to cope with addition
and subtraction, then anv French or German universitv
will do. But if you are intent on your son going on to
multiplication and division - assuming that he has
sufficient gifts - then you will have to send him to Italy
George Ifrah or Tobias Danzig

```
\({ }^{2}\) Claude Shannon (1913-2006) had 'Throback 1' built to compute in CARMA Roman, at Bell Labs in 1953.

\section*{Arithmetic was Hard}
- See DHB \& JMB, "Ancient Indian Square Roots: An Exercise in Forensic Paleo-Mathematics," MAA Monthly. 2012.
- The prior difficulty of arithmetic \({ }^{2}\) is shown by "college placement' advice to a wealthy 16C German merchant:

If you only want him to be able to cope with addition and subtraction, then any French or German university will do. But if you are intent on your son going on to multiplication and division - assuming that he has sufficient gifts - then you will have to send him to Italy.
- George Ifrah or Tobias Danzig
\({ }^{2}\) Claude Shannon (1913-2006) had 'Throback 1' built to compute in \({ }_{\text {CARMA }}\) Roman, at Bell Labs in 1953.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records
The Fairly Dark Ages

\section*{Google Buys (Pi-3) \(\times 100,000,000\) Shares}

\section*{Google}

\section*{©be Natu ねork Eimes}
nytimes.com
August 19, 2005

\section*{14,159,265 New Slices of Rich Technology}

By JOHN MARKOFF

SAN FRANCISCO, Aug. 18 - Google said in a surprise move on Thursday that it would raise a \(\$ 4\) billion war chest with a new stock offering. The announcement stirred widespread speculation in Silicon Valley that Google, the premier online search site, would move aggressively into businesses well beyond Web searching and search-based advertising.

Google, which raised \(\$ 1.67\) billion in its initial public offering last August, expects to collect \(\$ 4.04\) billion by selling \(14,159,265\) million Class A shares, based on Wednesday's closing price of \(\$ 285.10\). In Google's whimsical fashion, the number of shares offered is the same as the first eight digits after the decimal point in pi, the ratio of the circumference of a circle to its diameter, which starts with 3.14159265 .
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Links and References
Babylon, Egypt and Israel
Archimedes Method circa 250 BCE
Precalculus Calculation Records
The Fairly Dark Ages

\section*{Google Buys (Pi-3) \(\times 100,000,000\) Shares}

\section*{Google}

\section*{©be Natu ねork Eimes}
nytimes.com
August 19, 2005

\section*{14,159,265 New Slices of Rich Technology}

By JOHN MARKOFF

SAN FRANCISCO, Aug. 18 - Google said in a surprise move on Thursday that it would raise a \(\$ 4\) billion war chest with a new stock offering. The announcement stirred widespread speculation in Silicon Valley that Google, the premier online search site, would move aggressively into businesses well beyond Web searching and search-based advertising.

Google, which raised \(\$ 1.67\) billion in its initial public offering last August, expects to collect \(\$ 4.04\) billion by selling \(14,159,265\) million Class A shares, based on Wednesday's closing price of \(\$ 285.10\). In Google's whimsical fashion, the number of shares offered is the same as the first eight digits after the decimal point in pi, the ratio of the circumference of a circle to its diameter, which starts with 3.14159265 .
- Why did Google want precisely this many pieces of the Pie?
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{44. Pi's (troubled) Adolescence}
1579. Modern mathematics dawns in Viéte's product
\[
\begin{equation*}
\frac{\sqrt{2}}{2} \frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdots=\frac{2}{\pi} \tag{4}
\end{equation*}
\]
- considered to be the first truly infinite formula - and in the first continued fraction given by Lord Brouncker (1620-1684):
\[
\frac{2}{\pi}=\frac{1}{1+\frac{9}{2+\frac{25}{2+\frac{49}{2+\cdots}}}}
\]
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Wallis Product}

Eqn. (4) was based on John Wallis' (1613-1706) 'interpolated' product:
\[
\begin{equation*}
\frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{3 \cdot 5}{4 \cdot 4} \cdot \frac{5 \cdot 7}{6 \cdot 6} \cdots=\prod_{k=1}^{\infty} \frac{4 k^{2}-1}{4 k^{2}}=\frac{2}{\pi} \tag{5}
\end{equation*}
\]
which led to discovery of the Gamma function and much more.
- Christiaan Huygens (1629-1695) did not believe (5) before he checked it numerically.
\(\square\) It's a clue.
A never repeating or ending chain, the total timeless catalogue, elusive sequences, sum of the universe. This riddle of nature begs:
Can the totality see no pattern, revealing order as reality's disguise?
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Wallis Product}

Eqn. (4) was based on John Wallis' (1613-1706) 'interpolated' product:
\[
\begin{equation*}
\frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{3 \cdot 5}{4 \cdot 4} \cdot \frac{5 \cdot 7}{6 \cdot 6} \cdots=\prod_{k=1}^{\infty} \frac{4 k^{2}-1}{4 k^{2}}=\frac{2}{\pi} \tag{5}
\end{equation*}
\]
which led to discovery of the Gamma function and much more.
- Christiaan Huygens (1629-1695) did not believe (5) before he checked it numerically.

> It's a clue
> A never repeating or ending chain, the total timeless catalogue,
> elusive seauences. sum of the universe.
> This riddle of nature begs:
> Can the totality see no pattern, revealing order as reality's disguise?

\section*{Wallis Product}

Eqn. (4) was based on John Wallis' (1613-1706) 'interpolated' product:
\[
\begin{equation*}
\frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{3 \cdot 5}{4 \cdot 4} \cdot \frac{5 \cdot 7}{6 \cdot 6} \cdots=\prod_{k=1}^{\infty} \frac{4 k^{2}-1}{4 k^{2}}=\frac{2}{\pi} \tag{5}
\end{equation*}
\]
which led to discovery of the Gamma function and much more.
- Christiaan Huygens (1629-1695) did not believe (5) before he checked it numerically.

> It's a clue.

A never repeating or ending chain, the total timeless catalogue, elusive sequences, sum of the universe.

This riddle of nature begs:
Can the totality see no pattern, revealing order as reality's disguise?
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Wallis Product}

Eqn. (4) was based on John Wallis' (1613-1706) 'interpolated' product:
\[
\begin{equation*}
\frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{3 \cdot 5}{4 \cdot 4} \cdot \frac{5 \cdot 7}{6 \cdot 6} \cdots=\prod_{k=1}^{\infty} \frac{4 k^{2}-1}{4 k^{2}}=\frac{2}{\pi} \tag{5}
\end{equation*}
\]
which led to discovery of the Gamma function and much more.
- Christiaan Huygens (1629-1695) did not believe (5) before he checked it numerically.

> It's a clue.

A never repeating or ending chain, the total timeless catalogue, elusive sequences, sum of the universe.

This riddle of nature begs:
Can the totality see no pattern, revealing order as reality's disguise?
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age

\section*{Mathematical Interlude I: the Zeta Function}

Formula (5) follows from Euler's product formula for \(\pi\),
\[
\begin{equation*}
\frac{\sin (\pi x)}{x}=c \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2}}\right) \tag{6}
\end{equation*}
\]
with \(x=1 / 2\), or by integrating \(\int_{0}^{\pi / 2} \sin ^{2 n}(t) d t\) by parts.


\section*{1976. Apéry showed \(\zeta(3)\) irrational; and Zudilin (CARMA) has}
shown at least one of \(\zeta(5), \zeta(7), \zeta(9), \zeta(11)\) is irrational.

\section*{Mathematical Interlude I: the Zeta Function}

Formula (5) follows from Euler's product formula for \(\pi\),
\[
\begin{equation*}
\frac{\sin (\pi x)}{x}=c \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2}}\right) \tag{6}
\end{equation*}
\]
with \(x=1 / 2\), or by integrating \(\int_{0}^{\pi / 2} \sin ^{2 n}(t) d t\) by parts.

One may divine (6) - as Euler did
- by considering \(\sin (\pi x)\) as an 'infinite' polynomial and obtaining a product in terms of the roots
\(0,\left\{1 / n^{2}\right\}\). Euler argued that, like a polynomial, \(c=\pi\) is the value at 0 .
```

The coefficient of }\mp@subsup{x}{}{2}\mathrm{ in the Taylor
series is the sum of the roots:

```

```

\zeta(4) = \mp@subsup{\pi}{}{4}/90,\zeta(6)= 䘖/945
(using Bernoulli numbers)

```

\section*{1976. Apéry showed \(\zeta(3)\) irrational; and Zudilin (CARMA) has}

\section*{Mathematical Interlude I: the Zeta Function}

Formula (5) follows from Euler's product formula for \(\pi\),
\[
\begin{equation*}
\frac{\sin (\pi x)}{x}=c \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2}}\right) \tag{6}
\end{equation*}
\]
with \(x=1 / 2\), or by integrating \(\int_{0}^{\pi / 2} \sin ^{2 n}(t) d t\) by parts.

One may divine (6) - as Euler did - by considering \(\sin (\pi x)\) as an 'infinite' polynomial and obtaining a product in terms of the roots \(0,\left\{1 / n^{2}\right\}\). Euler argued that, like a polynomial, \(c=\pi\) is the value at 0 .

The coefficient of \(x^{2}\) in the Taylor series is the sum of the roots:
\(\zeta(2):=\sum_{n} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}\).
Hence, \(\zeta(2 n)=\) rational \(\times \pi^{2 n}\) : so
\(\zeta(4)=\pi^{4} / 90, \zeta(6)=\pi^{6} / 945\)
(using Bernoulli numbers)

\section*{1976. Apéry showed \(\zeta(3)\) irrational; and Zudilin (CARMA) has} shown at least one of \(\zeta(5), \zeta(7), \zeta(9), \zeta(11)\) is irrational

\section*{Mathematical Interlude I: the Zeta Function}

Formula (5) follows from Euler's product formula for \(\pi\),
\[
\begin{equation*}
\frac{\sin (\pi x)}{x}=c \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2}}\right) \tag{6}
\end{equation*}
\]
with \(x=1 / 2\), or by integrating \(\int_{0}^{\pi / 2} \sin ^{2 n}(t) d t\) by parts.

One may divine (6) - as Euler did - by considering \(\sin (\pi x)\) as an 'infinite' polynomial and obtaining a product in terms of the roots \(0,\left\{1 / n^{2}\right\}\). Euler argued that, like a polynomial, \(c=\pi\) is the value at 0 .

The coefficient of \(x^{2}\) in the Taylor series is the sum of the roots:
\(\zeta(2):=\sum_{n} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}\).
Hence, \(\zeta(2 n)=\) rational \(\times \pi^{2 n}\) : so
\(\zeta(4)=\pi^{4} / 90, \zeta(6)=\pi^{6} / 945\)
(using Bernoulli numbers)

\section*{Mathematical Interlude I: the Zeta Function}

Formula (5) follows from Euler's product formula for \(\pi\),
\[
\begin{equation*}
\frac{\sin (\pi x)}{x}=c \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2}}\right) \tag{6}
\end{equation*}
\]
with \(x=1 / 2\), or by integrating \(\int_{0}^{\pi / 2} \sin ^{2 n}(t) d t\) by parts.

One may divine (6) - as Euler did - by considering \(\sin (\pi x)\) as an 'infinite' polynomial and obtaining a product in terms of the roots \(0,\left\{1 / n^{2}\right\}\). Euler argued that, like a polynomial, \(c=\pi\) is the value at 0 .

The coefficient of \(x^{2}\) in the Taylor series is the sum of the roots:
\(\zeta(2):=\sum_{n} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}\).
Hence, \(\zeta(2 n)=\) rational \(\times \pi^{2 n}\) : so
\(\zeta(4)=\pi^{4} / 90, \zeta(6)=\pi^{6} / 945\)
(using Bernoulli numbers)
1976. Apéry showed \(\zeta(3)\) irrational; and Zudilin (CARMA) has shown at least one of \(\zeta(5), \zeta(7), \zeta(9), \zeta(11)\) is irrational.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{François (Vieta) Viéte (1540-1603)}

\begin{abstract}
Arithmetic is absolutely as much science as geometry [is]. Rational magnitudes are conveniently designated by rational numbers, and irrational by irrational [numbers]. If someone measures magnitudes with numbers and by his calculation get them different from what they really are, it is not the reckoning's fault but the reckoner's.
\end{abstract}
- The inventor of ' \(x\) ' and ' \(y\) ', he did not believe in negative numbers.
- Geometry had ruled for two millennia before Vieta and Descartes.


\section*{François (Vieta) Viéte (1540-1603)}

Arithmetic is absolutely as much science as geometry [is]. Rational magnitudes are conveniently designated by rational numbers, and irrational by irrational [numbers]. If someone measures magnitudes with numbers and by his calculation get them different from what they really are, it is not the reckoning's fault but the reckoner's.
- The inventor of ' \(x\) ' and ' \(y\) ', he did not believe in negative numbers.
- Geometry had ruled for two millennia before Vieta and Descartes.

24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age

\section*{Final Jeopardy! 20 Sept 2005: Mnemonics are valuable}


CATEGORY: By the numbers. CLUE: The phrase "How I want a drink, alcoholic of course" is often used to help memorize this ANSWER: What is Pi? FINAL SCORES:

Ray: \(\$ 7,200+\$ 7,000=\$ 14,200(\) What is Pi) (New champion: \(\$ 14,200\) )
Stacey: \(\$ 11,400-\$ 3,001=\$ 8,399\) (What is no clue!?) (2nd place: \$2,000)
Victoria: \(\$ 12,900-\$ 9,901=\$ 2,999\) (What is quadratic for) (3rd place: \(\$ 1,000\) )
2.14-2.16.2011 IBM Wation query system (now an on-
cologist) routed Jeopardy champs Jennings \& Rutter: http:
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age

\section*{Final Jeopardy! 20 Sept 2005: Mnemonics are valuable}


CATEGORY: By the numbers. CLUE: The phrase "How I want a drink, alcoholic of course" is often used to help memorize this. ANSWER: What is Pi? FINAL SCORES:

Ray: \(\$ 7,200+\$ 7,000=\$ 14,200(\) What is Pi\()\) (New champion: \(\$ 14,200\) )
Stacey: \(\$ 11,400-\$ 3,001=\$ 8,399\) (What is no clue!?)

Victoria: \(\$ 12,900-\$ 9,901=\$ 2,999\) (What is quadratic for) (3rd place: \(\$ 1,000\) )
2.14-2.16.2011 IBM Watson query system (now an on-
cologist) routed Jeopardy champs Jennings \& Rutter
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Final Jeopardy! 20 Sept 2005: Mnemonics are valuable}

CATEGORY: By the numbers. CLUE: The phrase "How I want a drink, alcoholic of course" is often used to help memorize this. ANSWER: What is Pi? FINAL SCORES:


\section*{Final Jeopardy! 20 Sept 2005: Mnemonics are valuable}


CATEGORY: By the numbers. CLUE: The phrase "How I want a drink, alcoholic of course" is often used to help memorize this. ANSWER: What is Pi? FINAL SCORES:

Ray: \(\$ 7,200+\$ 7,000=\$ 14,200(\) What is Pi\()\)
(New champion: \(\$ 14,200\) )
Stacey: \(\$ 11,400-\$ 3,001=\$ 8,399\) (What is no clue!?)
(2nd place: \(\$ 2,000\) )
Victoria: \(\$ 12,900-\$ 9,901=\$ 2,999\) (What is quadratic for) (3rd place: \(\$ 1,000\) )


\section*{Final Jeopardy! 20 Sept 2005: Mnemonics are valuable}

\section*{Q}

CATEGORY: By the numbers. CLUE: The phrase "How I want a drink, alcoholic of course" is often used to help memorize this. ANSWER: What is Pi? FINAL SCORES:

Ray: \(\$ 7,200+\$ 7,000=\$ 14,200(\) What is Pi\()\)
(New champion: \(\$ 14,200\) )
Stacey: \(\$ 11,400-\$ 3,001=\$ 8,399\) (What is no clue!?)
(2nd place: \(\$ 2,000\) )
Victoria: \(\$ 12,900-\$ 9,901=\$ 2,999\) (What is quadratic for)
(3rd place: \(\$ 1,000\) )


\subsection*{2.14-2.16.2011 IBM Watson query system \\ cologist) routed Jeopardy champs Jennings \& Rutter:}

\section*{Final Jeopardy! 20 Sept 2005: Mnemonics are valuable}

CATEGORY: By the numbers. CLUE: The phrase "How I want a drink, alcoholic of course" is often used to help memorize this. ANSWER: What is Pi? FINAL SCORES:

Ray: \(\$ 7,200+\$ 7,000=\$ 14,200(\) What is Pi\()\)
(New champion: \(\$ 14,200\) )
Stacey: \(\$ 11,400-\$ 3,001=\$ 8,399\) (What is no clue!?)
(2nd place: \(\$ 2,000\) )
Victoria: \(\$ 12,900-\$ 9,901=\$ 2,999\) (What is quadratic for)
(3rd place: \(\$ 1,000\) )

2.14-2.16.2011 IBM Watson query system (now an oncologist) routed Jeopardy champs Jennings \& Rutter: http: CARMA
//www.nytimes.com/interactive/2010/06/16/magazine/watson-trivia-game.html

\section*{Pi's Adult Life with Calculus}

I am ashamed to tell you to how many figures I carried these computations, having no other business at the time. Isaac Newton, 1666
- 17C Newton and Leibnitz discovered calculus ... and fought over priority (Machin adjudicated).
- It was instantly exploited to find formulas for \(\pi\).

One early use comes from the arctan integral and series: \({ }^{3}\)


\section*{Pi's Adult Life with Calculus}

I am ashamed to tell you to how many figures I carried these computations, having no other business at the time. Isaac Newton, 1666
- 17C Newton and Leibnitz discovered calculus ... and fought over priority (Machin adjudicated).
- It was instantly exploited to find formulas for \(\pi\).

One early use comes from the arctan integral and series: \({ }^{3}\)


\section*{Pi's Adult Life with Calculus}

I am ashamed to tell you to how many figures I carried these computations, having no other business at the time. Isaac Newton, 1666
- 17C Newton and Leibnitz discovered calculus ... and fought over priority (Machin adjudicated).
- It was instantly exploited to find formulas for \(\pi\).

One early use comes from the arctan integral and series: \({ }^{3}\)
\[
\begin{aligned}
\tan ^{-1} x & =\int_{0}^{x} \frac{d t}{1+t^{2}}=\int_{0}^{x}\left(1-t^{2}+t^{4}-t^{6}+\cdots\right) d t \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\cdots
\end{aligned}
\]
\({ }^{3}\) Known to Madhava of Sangamagrama (c. 1350 - c. 1425) near Kerala. He probably computed 13 digits of Pi .
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Madahava-Gregory-Leibniz formula}

Formally \(x:=1\) gives the Gregory-Leibniz formula (1671-74)
\[
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots
\]

Naively, this is useless - hundreds of terms produce two digits.
Sharp guided by Edmund Halley (1656-1742) used \(\tan ^{-1}(1 / \sqrt{3})\)
- By contrast Fuler's (1738) trigonometric identity

produces the geometrically convergent:


\section*{Madahava-Gregory-Leibniz formula}

Formally \(x:=1\) gives the Gregory-Leibniz formula (1671-74)
\[
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots
\]
- Naively, this is useless - hundreds of terms produce two digits.
- Sharp guided by Edmund Halley (1656-1742) used \(\tan ^{-1}(1 / \sqrt{3})\)
- By contrast, Euler's (1738) trigonometric identity

produces the geometrically convergent:


\section*{Madahava-Gregory-Leibniz formula}

Formally \(x:=1\) gives the Gregory-Leibniz formula (1671-74)
\[
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\cdots
\]
- Naively, this is useless - hundreds of terms produce two digits.
- Sharp guided by Edmund Halley (1656-1742) used \(\tan ^{-1}(1 / \sqrt{3})\)
- By contrast, Euler's (1738) trigonometric identity
\[
\begin{equation*}
\tan ^{-1}(1)=\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right) \tag{7}
\end{equation*}
\]
produces the geometrically convergent:
\[
\begin{align*}
\frac{\pi}{4}= & \frac{1}{2}-\frac{1}{3 \cdot 2^{3}}+\frac{1}{5 \cdot 2^{5}}-\frac{1}{7 \cdot 2^{7}}+\cdots \\
& +\frac{1}{3}-\frac{1}{3 \cdot 3^{3}}+\frac{1}{5 \cdot 3^{5}}-\frac{1}{7 \cdot 3^{7}}+\cdots \tag{8}
\end{align*}
\]

\section*{John Machin (1680-1751) and Brook Taylor (1685-1731)}

An even faster formula, found earlier by John Machin - Brook Taylor's teacher - lies in the identity
\[
\begin{equation*}
\frac{\pi}{4}=4 \tan ^{-1}\left(\frac{1}{5}\right)-\tan ^{-1}\left(\frac{1}{239}\right) \tag{9}
\end{equation*}
\]

- Used in numerous computations of \(\pi\) (starting in 1706) culminating with Shanks' computation of \(\pi\) to 707 decimals in 1873.
1945. Found to be wrong by Ferguson - after 527 decimal places - as De Morgan had suspected. (A Guinness record?)

\section*{John Machin (1680-1751) and Brook Taylor (1685-1731)}

An even faster formula, found earlier by John Machin - Brook Taylor's teacher - lies in the identity
\[
\begin{equation*}
\frac{\pi}{4}=4 \tan ^{-1}\left(\frac{1}{5}\right)-\tan ^{-1}\left(\frac{1}{239}\right) \tag{9}
\end{equation*}
\]

\section*{Machin}


Taylor
- Used in numerous computations of \(\pi\) (starting in 1706) culminating with Shanks' computation of \(\pi\) to \(\mathbf{7 0 7}\) decimals in 1873.
- 1945. Found to be wrong by Ferguson - after 527 decimal places - as De Morgan had suspected. (A Guinness record?)
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Isaac Newton's arcsin}

Newton discovered a different (disguised arcsin) formula. He considered the area \(A\) of the red region to the right:


Now \(A:=\int_{0}^{1 / 4} \sqrt{x-x^{2}} d x\) equals the circular sector, \(\pi / 24\), less the triangle, \(\sqrt{3} / 32\). His new binomial theorem gave:

Integrating term-by-term and combining the above:


\section*{Isaac Newton's arcsin}

Newton discovered a different (disguised arcsin) formula. He considered the area \(A\) of the red region to the right:


Now \(A:=\int_{0}^{1 / 4} \sqrt{x-x^{2}} d x\) equals the circular sector, \(\pi / 24\), less the triangle, \(\sqrt{3} / 32\). His new binomial theorem gave:

Integrating term-by-term and combining the above:


\section*{Isaac Newton's arcsin}

Newton discovered a different (disguised arcsin) formula. He considered the area \(A\) of the red region to the right:


Now \(A:=\int_{0}^{1 / 4} \sqrt{x-x^{2}} d x\) equals the circular sector, \(\pi / 24\), less the triangle, \(\sqrt{3} / 32\). His new binomial theorem gave:
\[
\begin{aligned}
A & =\int_{0}^{\frac{1}{4}} x^{1 / 2}(1-x)^{1 / 2} d x=\int_{0}^{\frac{1}{4}} x^{1 / 2}\left(1-\frac{x}{2}-\frac{x^{2}}{8}-\frac{x^{3}}{16}-\frac{5 x^{4}}{128}-\cdots\right) d x \\
& =\int_{0}^{\frac{1}{4}}\left(x^{1 / 2}-\frac{x^{3 / 2}}{2}-\frac{x^{5 / 2}}{8}-\frac{x^{7 / 2}}{16}-\frac{5 x^{9 / 2}}{128} \cdots\right) d x .
\end{aligned}
\]

Integrating term-by-term and combining the above:
\[
\pi=\frac{3 \sqrt{3}}{4}+24\left(\frac{2}{3 \cdot 8}-\frac{1}{5 \cdot 32}-\frac{1}{7 \cdot 512}-\frac{1}{9 \cdot 4096} \cdots\right) .
\]
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Newton's (1643-1727) Annus Mirabilis}

Newton used his formula to find 15 digits of \(\pi\).
- As noted, he 'apologized' for "having no other business at the time." A standard 1951 MAA chronology said, condescendingly,
"Newton never tried to compute \(\pi\)."

Newton, Gregory (1638-1675) and Leibniz (1646-1716)


The fire of London ended the
plague in September 1666. The
nlague closed Cambridge and left
Newton free at his country home

Wikipedia: Newton made revolutionary inventions and discoveries in calculus, motion, optics and gravitation. As such,
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Newton's (1643-1727) Annus Mirabilis}

Newton used his formula to find \(\mathbf{1 5}\) digits of \(\pi\).
- As noted, he 'apologized' for "having no other business at the time." A standard 1951 MAA chronology said, condescendingly,
"Newton never tried to compute \(\pi\)."


The fire of London ended the plague in September 1666. The plague closed Cambridge and left Newton free at his country home to think.

Wikipedia: Newton made revolutionary inventions and discoveries in calculus, motion, optics and gravitation. As such, it has later been called Isaac Newton's "Annus Mirabilis."

\section*{Calculus \(\pi\) Calculations: and an IBM 7090}
\begin{tabular}{|l|r|r|}
\hline Name & Year & Digits \\
\hline Sharp (and Halley) & 1699 & 71 \\
Machin & 1706 & 100 \\
Strassnitzky and Dase & 1844 & 200 \\
Rutherford & 1853 & 440 \\
W. Shanks & 1874 & \((707) 527\) \\
Ferguson (Calculator) & 1947 & 808 \\
\hline Reitwiesner et al. (ENIAC) & 1949 & 2,037 \\
Genuys & 1958 & 10,000 \\
D. Shanks and Wrench (IBM) & 1961 & 100,265 \\
Guilloud and Bouyer & 1973 & \(1,001,250\) \\
\hline
\end{tabular}
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Why a Serial God Should Not Play Dice}

Buffon (1707-78) \& Ulam (1909-84)


Share the count to speed the process

An early vegetarian (who misused needles) next to the inventor of Monte Carlo methods.
1. Draw a unit square and inscribe a circle within: the area of the circle is \(\frac{\pi}{4}\).
2. Uniformly scatter objects of uniform size throughout the square (e.g., grains of rice or sand): they should fall inside the circle with probability
3. Count the number of grains in the circle and divide by the total number of grains in the square: yielding an approximation to

\section*{Why a Serial God Should Not Play Dice}

Buffon (1707-78) \& Ulam (1909-84)


Share the count to speed the process

An early vegetarian (who misused needles) next to the inventor of Monte Carlo methods.
1. Draw a unit square and inscribe a circle within: the area of the circle is \(\frac{\pi}{4}\).
2. Uniformly scatter objects of uniform size throughout the square (e.g., grains of rice or sand): they should fall inside the circle with probability
3. Count the number of grains in the circle and divide by the total number of grains in the square: yielding an approximation to

\section*{Why a Serial God Should Not Play Dice}

Buffon (1707-78) \& Ulam (1909-84)


Share the count to speed the process

An early vegetarian (who misused needles) next to the inventor of Monte Carlo methods.
1. Draw a unit square and inscribe a circle within: the area of the circle is \(\frac{\pi}{4}\).
2. Uniformly scatter objects of uniform size throughout the square (e.g., grains of rice or sand): they should fall inside the circle with probability \(\frac{\pi}{4}\).
3. Count the number of grains in the circle and divide by the total number of grains in the square: yielding an approximation to \(\frac{\pi}{4}\).
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Why a Serial God Should Not Play Dice}

Buffon (1707-78) \& Ulam (1909-84)


Share the count to speed the process

An early vegetarian (who misused needles) next to the inventor of Monte Carlo methods.
1. Draw a unit square and inscribe a circle within: the area of the circle is \(\frac{\pi}{4}\).
2. Uniformly scatter objects of uniform size throughout the square (e.g., grains of rice or sand): they should fall inside the circle with probability \(\frac{\pi}{4}\).
3. Count the number of grains in the circle and divide by the total number of grains in the square: yielding an approximation to \(\frac{\pi}{4}\).

\section*{Monte Carlo Methods}
- This is a Monte Carlo estimate (MC) for \(\pi\).
- MC simulation: slow \((\sqrt{n})\) convergence - but great in parallel on Beowulf clusters.
- Used in Manhattan project ... the atomic-bomb predates digital computers!

Frank and Ernest


\section*{Gauss (1777-1855), Johan Dase and William Shanks}


In his teens, Viennese computer and 'kopfrechner' Dase (1824
-1861) publicly demonstrated his skill by multiplying
\[
79532853 \times 93758479=7456879327810587
\]
- in 54 seconds; 20-digits in 6 min; 40-digits in 40 min; 100-digit numbers in \(8 \frac{3}{4}\) hours etc.
- Gauss was not impressed
- 1844. Calculated \(\pi\) to \(\mathbf{2 0 0}\) places on learning Euler's


\section*{Gauss (1777-1855), Johan Dase and William Shanks}


In his teens, Viennese computer and 'kopfrechner' Dase (1824
-1861) publicly demonstrated his skill by multiplying
\[
79532853 \times 93758479=7456879327810587
\]
- in 54 seconds; 20-digits in 6 min ; 40-digits in 40 min ; 100-digit numbers in \(8 \frac{3}{4}\) hours etc.
- Gauss was not impressed.
- 1844. Calculated \(\pi\) to 200 places on learning Euler's

from Strassnitsky - in his head correctly in 2 months.

\section*{Gauss (1777-1855), Johan Dase and William Shanks}


In his teens, Viennese computer and 'kopfrechner' Dase (1824
-1861) publicly demonstrated his skill by multiplying
\[
79532853 \times 93758479=7456879327810587
\]
- in 54 seconds; 20-digits in 6 min ; 40-digits in 40 min ; 100-digit numbers in \(8 \frac{3}{4}\) hours etc.
- Gauss was not impressed.
- 1844. Calculated \(\pi\) to 200 places on learning Euler's
\[
\frac{\pi}{4}=\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{8}\right)
\]
from Strassnitsky - in his head correctly in 2 months.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Dase and Experimental Mathematics}

In 1849-50 Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between \(\mathbf{7}\) and \(\mathbf{1 0}\) million (evidence for the Prime Number Theorem).


Now Gauss was impressed and recommended Dase be funded.
1861. When Dase died he had only reached 8,000,000

One motivation for computations of \(\pi\) was very much in the spirit of modern experimental mathematics: to see if
- the decimal expansion of \(\pi\) repeats, meaning \(\pi\) was the ratio of two integers (a rational number),
- if \(\pi\) was the root of an integer polynomial (an algebraic number). CARMA
J.M. Borwein Life of Pi (CARMA)
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Dase and Experimental Mathematics}

In 1849-50 Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between \(\mathbf{7}\) and \(\mathbf{1 0}\) million (evidence for the Prime Number Theorem).


Now Gauss was impressed and recommended
Dase be funded.
1861 When Dase died he had only reached 8,000,000

One motivation for computations of \(\pi\) was very much in the spirit of modern experimental mathematics: to see if
the decimal expansion of \(\pi\) repeats, meaning \(\pi\) was the ratio of two integers (a rational number),

\footnotetext{
if \(\pi\) was the root of an integer polynomial (an algebraic number). CCARMA
}
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Dase and Experimental Mathematics}

In 1849-50 Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between \(\mathbf{7}\) and \(\mathbf{1 0}\) million (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
1861. When Dase died he had only reached 8,000,000.

One motivation for computations of \(\pi\) was very much in the spirit of modern experimental mathematics: to see if
the decimal expansion of \(\pi\) repeats, meaning \(\pi\) was the ratio of two integers (a rational number),

\footnotetext{
if \(\pi\) was the root of an integer polynomial (an algebraic number). CCARMA
}
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Dase and Experimental Mathematics}

In 1849-50 Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between \(\mathbf{7}\) and \(\mathbf{1 0}\) million (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had only reached 8,000,000.

One motivation for computations of \(\pi\) was very much in the spirit of modern experimental mathematics: to see if
the decimal expansion of \(\pi\) repeats, meaning \(\pi\) was the ratio of two integers (a rational number),

\footnotetext{
if \(\pi\) was the root of an integer polynomial (an algebraic number). ©CARMA
}

\section*{Dase and Experimental Mathematics}

In 1849-50 Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between \(\mathbf{7}\) and \(\mathbf{1 0}\) million (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had only reached 8,000,000.

One motivation for computations of \(\pi\) was very much in the spirit of modern experimental mathematics: to see if
the decimal expansion of \(\pi\) repeats, meaning \(\pi\) was the ratio of two integers (a rational number),
if \(\pi\) was the root of an integer polynomial (an algebraic number). CARMA

\section*{Dase and Experimental Mathematics}

In 1849-50 Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between \(\mathbf{7}\) and \(\mathbf{1 0}\) million (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had only reached 8,000,000.

One motivation for computations of \(\pi\) was very much in the spirit of modern experimental mathematics: to see if
- the decimal expansion of \(\pi\) repeats, meaning \(\pi\) was the ratio of two integers (a rational number),
- if \(\pi\) was the root of an integer polynomial (an algebraic number).
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II

\section*{William Shanks (1812-82): "A Human Computer" (1853)}

CONTRIBUTIONS TO MATHBMATICS,
cospurana cumbix
Tw
RECTIFICATION OF THE CIRCLE

TO \(60 \%\) PLACBS OF DECMMLS.
\({ }^{18}\)

WILLIAM SHANKS,

\author{
movinus.IE maw, buriat
}

\section*{LONDON:}
G. BELL ieq yiget.ethert; machillan \& Ca, cambudee; axdagwe, durans.
1853.
raxicid yot mint atruac.

Towands the close of the year 1850, the Author first formed the design of rectifying the Circle to upwards of 300 places of decimals. He was fully aware, at that time, that the accomplishment of his purpose would add little or nothing to his fame as a Mathematician, though it might as a Computer; nor would it be productive of anything in the shape of pecuniary recompense at all adequate to the labour of such lengthy computations. He was anxious to fill up scanty intervals of leisure with the achievement of something original, and which, at the same time, should not subject him either to great tension of thought, or to consult books. He is aware that works on nearly every branch of Mathematics are being published almost weekly, both in Europe and America; and that it has therefore become no easy task to ascertain what really is original matter, even in the pure science itself. Beautiful speculations, especially in both Plane and Curved

\section*{wiii}

A few of the higher powers of 2 , as far as \(2^{m r}\), haring been obtained in the calculation of \(\tan -1 \frac{1}{3}\), coreclude the rolume.

It only remalts to add, that Machin's formuls, vis., \(\div=\) \(4 \tan ^{-1 \frac{1}{8}}-\tan ^{-1} \frac{1}{\text { D }}\), vas employed in finding \(\pi:-\) and that the values of tan \({ }^{-1} \frac{1}{5}\), asd of tan \({ }^{-1} \frac{1}{25}\) aro found and given separately; as also the nafiue of ench term of the nerice employed in determining thess two arces.

\section*{Houghton-le-Siving.}

Fch. 28, 1853.

Sines the sbore date, and while the following sheets were in the Press, the Author has extenibed the raloss of \(\tan \frac{2-\frac{1}{6} \text { and }}{}\) of \(\tan\) " \(\frac{1}{\mathrm{z}}\) to 609 , and the value of \(\pi\) to 607 decimals; which extenkions are given in the proper place. Should Matbematicinns erince a wish to possess the extemded tohues of each term of the series used in fiuding these ares, a fer supplementary sheets might soon be flornished.
- 30 Subscribers: Rutherford, De Morgan, Herschel (1792-1871) Master of the Mint, whose father discovered Uranus, Airy (1801-1892) Astronomer Royal,

\section*{William Shanks (1812-82): "A Human Computer" (1853)}

Towards the close of the year 1850, the Author first formed the design of rectifying the Circle to upwards of 300 places of decimals. He was fully aware, at that time, that the accomplishment of his purpose would add little or nothing to his fame as a Mathematician, though it might as a Computer; nor would it be productive of anything in the shape of pecuniary recompense at all adequate to the labour of such lengthy computations. He was anxious to fill up scanty intervals of
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{William Shanks (1812-82): "A Human Computer" (1853)}

CONTRIBUTIONS TO MATHEMATICS,

Tw
REGTIFICATION OF THE CIRCLE

TO \(60 \%\) PLACBS OF DECTMALS.

WILLIAM SHANKS,
\(\qquad\)

LONDON:
 axdnews, dunuam.
1853.
raxisid yot mint altruac

Towands the close of the year 1850, the Author first formed the design of rectifying the Circle to upwards of 300 places of decimals. He was fully aware, at that time, that the accomplishment of his purpose would add little or nothing to his fame as a Mathematician, though it might as a Computer; nor would it be productive of anything in the shape of pecuniary recompense at all adequate to the labour of such lengthy computations. He was anxious to fill up scanty intervals of leisure with the achievement of something original, and which, at the same time, should not subject him either to great tension of thought, or to consult books. He is aware that works on nearly every branch of Mathematics are being published almost weekly, both in Earope and America; and that it has therefore become no easy task to ascertain what really is original matter, even in the pure science itself. Beautiful speculations, especially in both Plane and Curved

\section*{vifi}

A few of the higher powers of 2 , as far as \(2^{\text {rit }}\), haring been obtained in the calculation of \(\tan -1 \frac{1}{3}\), coreclude the rolume.

It only remalva to add, that Machin's formuls, viz., \(\div=\) \(4 \tan ^{-1 \frac{1}{8}}-\tan ^{-1} \frac{1}{\text { D }}\), vas employed in fidding \(\pi\), -and that the values of tan \({ }^{-1} \frac{1}{5}\), asd of tan \({ }^{-1} \frac{1}{25}\) aro found and given separately; as also the tufure of ench ferm of the revirs em ploged in determining these two sres.

\section*{Houghton-le-Spring,}

Fch. 28, 1853.

Sines the sbore date, and while the following sheets were in the Press, the Author has extenibed the raloss of \(\tan \frac{x \frac{1}{6}}{}\) and of tan "t to 609 , and the value of \(\pi\) to 607 decimals; which extenkions are given in the proper place. Should Matbematicinns erince a wish to possess the extemded tohues of each term of the series wsed in fixding these arce, a fer supplementary sheets might soon be formished.

Ayril 30, 1553.
- 30 Subscribers : Rutherford, De Morgan, Herschel (1792-1871) Master of the Mint, whose father discovered Uranus, Airy (1801-1892) Astronomer Royal, ...
- In error after 527 places - occurred in the "rush to publish"? CARMA - He also calculated \(e\) and \(\gamma\).

\section*{Some Things are only Coincidences}


DURING A COMPETTITON, I TOL THE PROGRAMMERS ON OUR TEAM THAT \(e^{\pi}-\pi\) WAS A STANDARD TEST O F FLOATNGPOINT HANDLERS -- IT WOULD COME OUT TO 20 UNLESS THEY HAD ROUNDING ERRORS.


- This was weirder on an 8-digit calculator!

\section*{Some Things are only Coincidences}


DURING A COMPETTTION, I TOL THE PROGRAMMERS ON OUR TEAM THAT \(e^{\pi}-\pi\) WAS A STANDARD TEST O F FLOATNGPOINT HANDLERS -- IT WOULD COME OUT TO 20 UNLESS THEY HAD ROUNDING ERRORS.


- This was weirder on an 8-digit calculator!

\section*{Number Theoretic Consequences}


Lambert (1728-77)


Legendre (1752-1833)


Lindemann (1852-1939)
- Irrationality of \(\pi\) was established by Lambert (1766) and then Legendre.

Lambert showed \(\arctan (x)\) is irrational when \(x\) is rational. Now set \(x=1 / 2\).
- The question of whether \(\pi\) is algebraic was answered in 1882, when Lindemann proved that \(\pi\) is transcendental.

\section*{Number Theoretic Consequences}


Lambert (1728-77)


Legendre (1752-1833)


Lindemann (1852-1939)
- Irrationality of \(\pi\) was established by Lambert (1766) and then Legendre. Using the continued fraction for \(\arctan (x)\)
\[
\frac{x}{1+\frac{x^{2}}{3+\frac{4 x^{2}}{5+\frac{9 x^{2}}{7+\frac{16 x^{2}}{9+\ldots}}}}}
\]

Lambert showed \(\arctan (x)\) is irrational when \(x\) is rational. Now set \(x=1 / 2\).
- The question of whether \(\pi\) is algebraic was answered in 1882, when Lindemann proved that \(\pi\) is transcendental.

\section*{Number Theoretic Consequences}


Lambert (1728-77)


Legendre (1752-1833)


Lindemann (1852-1939)
- Irrationality of \(\pi\) was established by Lambert (1766) and then Legendre. Using the continued fraction for \(\arctan (x)\)
\[
\frac{x}{1+\frac{x^{2}}{3+\frac{4 x^{2}}{5+\frac{9 x^{2}}{7+\frac{16 x^{2}}{9+\ldots}}}}}
\]

Lambert showed \(\arctan (x)\) is irrational when \(x\) is rational.
- The question of whether \(\pi\) is algebraic was answered in 1882, when Lindemann proved that \(\pi\) is transcendental.

\section*{Number Theoretic Consequences}


Lambert (1728-77)


Legendre (1752-1833)


Lindemann (1852-1939)
- Irrationality of \(\pi\) was established by Lambert (1766) and then Legendre. Using the continued fraction for \(\arctan (x)\)
\[
\frac{x}{1+\frac{x^{2}}{3+\frac{4 x^{2}}{5+\frac{9 x^{2}}{7+\frac{16 x^{2}}{9+\ldots}}}}}
\]

Lambert showed \(\arctan (x)\) is irrational when \(x\) is rational. Now set \(x=1 / 2\).
- The question of whether \(\pi\) is algebraic was answered in 1882, when Lindemann proved that \(\pi\) is transcendental.

\section*{Number Theoretic Consequences}


Lambert (1728-77)


Legendre (1752-1833)


Lindemann (1852-1939)
- Irrationality of \(\pi\) was established by Lambert (1766) and then Legendre. Using the continued fraction for \(\arctan (x)\)
\[
\frac{x}{1+\frac{x^{2}}{3+\frac{4 x^{2}}{5+\frac{9 x^{2}}{7+\frac{16 x^{2}}{9+\ldots}}}}}
\]

Lambert showed \(\arctan (x)\) is irrational when \(x\) is rational. Now set \(x=1 / 2\).
- The question of whether \(\pi\) is algebraic was answered in 1882, when Lindemann proved that \(\pi\) is transcendental.
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{The Three Construction Problems of Antiquity}

The other two are doubling the cube and trisecting the angle

This settled once and for all, the
ancient Greek question of whether thecircle could be squared with ruler andcompass.
It cannot, because lengths of lines thatcan be constructed using ruler andcompasses (constructible numbers) arenecessarily algebraic, and squaring thecircle is equivalent to constructing thevalue of \(\pi\).
Aristophanes (448-380 BCE) 'knewthis and derided all 'circle-squarers' inhis play The Birds of 414 BCE.

\section*{The Three Construction Problems of Antiquity}

The other two are doubling the cube and trisecting the angle

```

This settled once and for all, the
ancient Greek question of whether the
circle could be squared with ruler and
compass.None

```

> It cannot, because lengths of lines that can be constructed using ruler and compasses (constructible numbers) are necessarily algebraic, and squaring the circle is equivalent to constructing the value of \(\pi\).

> Aristophanes (448-380 BCE) 'knew' this and derided all 'circle-squarers' in his play The Birds of 414 BCE.

\section*{The Three Construction Problems of Antiquity}

The other two are doubling the cube and trisecting the angle
- This settled once and for all, the ancient Greek question of whether the circle could be squared with ruler and compass.
- It cannot, because lengths of lines that can be constructed using ruler and compasses (constructible numbers) are necessarily algebraic, and squaring the circle is equivalent to constructing the value of \(\pi\).
- Aristophanes (448-380 BCE) 'knew' this and derided all 'circle-squarers' in his play The Birds of 414 BCE.

\section*{The Irrationality of \(\pi\), II}

Ivan Niven's 1947 proof that \(\pi\) is irrational. Let \(\pi=a / b\), the quotient of positive integers. We define the polynomials
\[
\begin{gathered}
f(x)=\frac{x^{n}(a-b x)^{n}}{n!} \\
F(x)=f(x)-f^{(2)}(x)+f^{(4)}(x)-\cdots+(-1)^{n} f^{(2 n)}(x)
\end{gathered}
\]
the positive integer being specified later. Since \(n!f(x)\) has integral coefficients and terms in \(x\) of degree not less than \(n, f(x)\) and its derivatives \(f^{(j)}(x)\) have integral values for \(x=0\); also for \(x=\pi=a / b\), since \(f(x)=f(a / b-x)\). By elementary calculus we have
\[
\begin{aligned}
& \frac{d}{d x}\left\{F^{\prime}(x) \sin x-F(x) \cos x\right\} \\
= & F^{\prime \prime}(x) \sin x+F(x) \sin x=f(x) \sin x
\end{aligned}
\]

\section*{The Irrationality of \(\pi\), II}
and
\[
\begin{align*}
\int_{0}^{\pi} f(x) \sin x d x & =\left[F^{\prime}(x) \sin x-F(x) \cos x\right]_{0}^{\pi} \\
& =F(\pi)+F(0) \tag{10}
\end{align*}
\]

Now \(F(\pi)+F(0)\) is an integer, since \(f^{(j)}(0)\) and \(f^{(j)}(\pi)\) are integers. But for \(0<x<\pi\),
\[
0<f(x) \sin x<\frac{\pi^{n} a^{n}}{n!}
\]
so that the integral in (10) is positive but arbitrarily small for \(n\) sufficiently large. Thus (10) is false, and so is our assumption that \(\pi\) is rational.

\section*{The Irrationality of \(\pi\), II}
and
\[
\begin{align*}
\int_{0}^{\pi} f(x) \sin x d x & =\left[F^{\prime}(x) \sin x-F(x) \cos x\right]_{0}^{\pi} \\
& =F(\pi)+F(0) \tag{10}
\end{align*}
\]

Now \(F(\pi)+F(0)\) is an integer, since \(f^{(j)}(0)\) and \(f^{(j)}(\pi)\) are integers. But for \(0<x<\pi\),
\[
0<f(x) \sin x<\frac{\pi^{n} a^{n}}{n!}
\]
so that the integral in (10) is positive but arbitrarily small for \(n\) sufficiently large. Thus (10) is false, and so is our assumption that \(\pi\) is rational.
- This, exact transcription of Niven's proof, is an excellent intimation of more sophisticated irrationality and transcendence proofs.

\section*{Life of Pi}
- At the end of his story, Piscine ( Pi ) Molitor writes


Richard Parker (L) and Pi Molitor Ang Lee's 2012 film Life of Pi

I am a person who believes in form, in harmony of order. Where we can, we must give things a meaningful shape. For example - I wonder - could you tell my jumbled story in exactly one hundred chapters, not one more, not one less? I'll tell you, that's one thing I hate about my nickname, the way that number runs on forever. It's important in life to conclude things properly. Only then can you let go.
- We may not share the sentiment, but we should celebrate that Pi knows Pi to be irrational.

\section*{Life of Pi}
- At the end of his story, Piscine ( Pi ) Molitor writes


Richard Parker (L) and Pi Molitor Ang Lee's 2012 film Life of Pi

I am a person who believes in form, in harmony of order. Where we can, we must give things a meaningful shape. For example - I wonder - could you tell my jumbled story in exactly one hundred chapters, not one more, not one less? I'll tell you, that's one thing I hate about my nickname, the way that number runs on forever. It's important in life to conclude things properly. Only then can you let go.
- We may not share the sentiment, but we should celebrate that Pi knows Pi to be irrational.
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Summation. Why Pi? "Pi is Mount Everest."}

What motivates modern computations of \(\pi\) - given that irrationality and transcendence of \(\pi\) were settled a century ago?
- One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.


Programming is quite hard - especially on
large, distributed memory computer systems:
load balancing, communication needs, etc.
Substantial practical spin-offs accrue:
Accelerating computations of \(\pi\) sped up the fast Fourier
transform (FFT) - heavily used in science and engineering
Also to bench-marking and proofing computers, since brittle
algorithms make better tests.

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Summation. Why Pi? "Pi is Mount Everest."}

What motivates modern computations of \(\pi\) - given that irrationality and transcendence of \(\pi\) were settled a century ago?
- One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.


Programming is quite hard - especially on
large, distributed memory computer systems:
load balancing, communication needs, etc.

Substantial practical spin-offs accrue:
Accelerating computations of \(\pi\) sped up the fast Fourier transform (FFT) - heavily used in science and engineering. Also to bench-marking and proofing computers, since brittle algorithms make better tests.

\section*{Summation. Why Pi? "Pi is Mount Everest."}

What motivates modern computations of \(\pi\) - given that irrationality and transcendence of \(\pi\) were settled a century ago?
- One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.


Programming is quite hard - especially on large, distributed memory computer systems: load balancing, communication needs, etc.

Substantial practical spin-offs accrue:
Accelerating computations of \(\pi\) sped up the fast Fourier transform (FFT) - heavily used in science and engineering Also to bench-marking and proofing computers, since brittle algorithms make better tests.

\section*{Summation. Why Pi? \\ "Pi is Mount Everest."}

What motivates modern computations of \(\pi\) - given that irrationality and transcendence of \(\pi\) were settled a century ago?
- One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.


Programming is quite hard - especially on large, distributed memory computer systems: load balancing, communication needs, etc.

Substantial practical spin-offs accrue:


\section*{Summation. Why Pi? "Pi is Mount Everest."}

What motivates modern computations of \(\pi\) - given that irrationality and transcendence of \(\pi\) were settled a century ago?
- One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.


Programming is quite hard - especially on large, distributed memory computer systems: load balancing, communication needs, etc.

Substantial practical spin-offs accrue:
- Accelerating computations of \(\pi\) sped up the fast Fourier transform (FFT) - heavily used in science and engineering.

Also to bench-marking and proofing computers, since brittle
algorithms make better tests.

\section*{Summation. Why Pi? \\ "Pi is Mount Everest."}

What motivates modern computations of \(\pi\) - given that irrationality and transcendence of \(\pi\) were settled a century ago?
- One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.


Programming is quite hard - especially on large, distributed memory computer systems: load balancing, communication needs, etc.

Substantial practical spin-offs accrue:
- Accelerating computations of \(\pi\) sped up the fast Fourier transform (FFT) - heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle

\section*{Summation. Why Pi? \\ "Pi is Mount Everest."}

What motivates modern computations of \(\pi\) - given that irrationality and transcendence of \(\pi\) were settled a century ago?
- One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.


Programming is quite hard - especially on large, distributed memory computer systems: load balancing, communication needs, etc.

Substantial practical spin-offs accrue:
- Accelerating computations of \(\pi\) sped up the fast Fourier transform (FFT) - heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.
113. Computing Individual Digits of \(\pi\)

\section*{Why Pi?}
- Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of \(\pi\).

- Kanada, e.g., made detailed statistical analysis - without success - hoping some test suggests \(\pi\) is not normal. The 10 decimal digits ending in position one trillion are
6680122702 , while the 10 hexadecimal digits ending in
position one trillion are 3F89341CD5.
- We still know very little about the decimal expansion or continued fraction of \(\pi\). We can not prove half of the bits of \(\sqrt{2}\) are zero.
113. Computing Individual Digits of \(\pi\)

\section*{Why Pi?}
- Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of \(\pi\).

John von Neumann so prompted ENIAC computation of \(\pi\) and \(e\) - and \(e\) showed anomalies.

- Kanada, e.g., made detailed statistical analysis - without success - hoping some test suggests \(\pi\) is not normal. The 10 decimal digits ending in position one trillion are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5
- We still know very little about the decimal expansion or continued fraction of \(\pi\). We can not prove half of the bits of \(\sqrt{2}\) are zero

\section*{Why Pi?}
- Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of \(\pi\).

John von Neumann so prompted ENIAC computation of \(\pi\) and \(e\) - and \(e\) showed anomalies.
\[
\begin{aligned}
& \pi=\frac{31145265}{352777565 / 2} \\
& \text { imtrapped in } \\
& \text { a universe fac } \\
& \text { tory } 7108914 .
\end{aligned}
\]
- Kanada, e.g., made detailed statistical analysis - without success - hoping some test suggests \(\pi\) is not normal.

> The 10 decimal digits ending in position one trillion are 6680122702 , while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.
- We still know very little about the decimal expansion or continued fraction of \(\pi\). We can not prove half of the bits of \(\sqrt{2}\) are zero

\section*{Why Pi?}
- Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of \(\pi\).

John von Neumann so prompted ENIAC computation of \(\pi\) and \(e\) - and \(e\) showed anomalies.

- Kanada, e.g., made detailed statistical analysis - without success - hoping some test suggests \(\pi\) is not normal.
- The 10 decimal digits ending in position one trillion are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.
- We still know very little about the decimal expansion or continued fraction of \(\pi\). We can not prove half of the bits of \(\sqrt{2}\) are zero.

\section*{Why Pi?}
- Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of \(\pi\).

John von Neumann so prompted ENIAC computation of \(\pi\) and \(e\) - and \(e\) showed anomalies.

- Kanada, e.g., made detailed statistical analysis - without success - hoping some test suggests \(\pi\) is not normal.
- The 10 decimal digits ending in position one trillion are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.
- We still know very little about the decimal expansion or continued fraction of \(\pi\). We can not prove half of the bits of \(\sqrt{2}\) are zero.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi Seems Normal: Things we sort of know about Pi}

A walk on a billion hex digits of Pi with box dimension 1.85343...

- A 100 Gb 100 billion step walk is at http://carma.newcastle.edu.au/walks/
- A Poisson inter-arrival time model applied to 15.925 trillion bits gives: probability Pi is not normal \(<1 / 10^{3600}\)
D. Bailey, J. Borwein, C. Calude, M. Dinneen, M. Dumitrescu, and A. Yee, "An empirical approach to the normality of pi." Exp. Math. 21(4) (2012), 375-384. DOI 10.1080/10586458.2012.665333.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi Seems Normal: Things we sort of know about Pi}

A walk on a billion hex digits of Pi with box dimension 1.85343...

- A 100 Gb 100 billion step walk is at http://carma.newcastle.edu.au/walks/
- A Poisson inter-arrival time model applied to 15.925 trillion bits gives: probability Pi is not normal \(<1 / 10^{3600}\)
D. Bailey, J. Borwein, C. Calude, M. Dinneen, M. Dumitrescu, and A. Yee, "An empirical approach to the normality of pi." Exp. Math. 21(4) (2012), 375-384. DOI 10.1080/10586458.2012.665333.

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi Seems Normal: Things we sort of know about Pi}

A walk on a billion hex digits of Pi with box dimension 1.85343...

- A 100 Gb 100 billion step walk is at http://carma.nencastle.edu.au/walks/
- A Poisson inter-arrival time model applied to 15.925 trillion bits gives: probability Pi is not normal \(<1 / 10^{3600}\).
D. Bailey, J. Borwein, C. Calude, M. Dinneen, M. Dumitrescu, and A. Yee, "An empirical approach to the
normality of pi." Exp. Math. 21(4) (2012), 375-384. DOI 10.1080/10586458.2012.665333.
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Pi Seems Normal: Some million bit comparisons}


Euler's constant and a pseudo-random number


43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi Seems Normal: Comparisons to Stoneham's number \(\sum_{k>1} 1 /\left(3^{k} 2^{3^{k}}\right)\), ।}

In base 2 Stoneham's number is provably normal. It may be normal base 3 .

43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi Seems Normal: Comparisons to Stoneham's number \(\sum_{k>1} 1 /\left(3^{k} 2^{3^{k}}\right)\), ।}

In base 2 Stoneham's number is provably normal. It may be normal base 3 .

24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi Seems Normal: Comparisons to Stoneham's number, II}

Stoneham's number is provably abnormal base 6 (too many zeros).



S23 in base 6


1

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi Seems Normal: Comparisons to Stoneham's number, II}

Stoneham's number is provably abnormal base 6 (too many zeros).

24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi Seems Normal: Comparisons to Human Genomes - we are base 4 no's}

Chromosome X
\[
\begin{aligned}
c & =[1,0] \\
g & =[0,1] \\
t & =[-1,0] \\
a & =[0,-1]
\end{aligned}
\]





The X Chromosome (34K) and Chromosome One (10K).

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi Seems Normal: Comparisons to Human Genomes - we are base 4 no's}

Chromosome X
\[
\begin{aligned}
c & =[1,0] \\
g & =[0,1] \\
t & =[-1,0] \\
a & =[0,-1]
\end{aligned}
\]





The X Chromosome (34K) and Chromosome One (10K).
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi Seems Normal: Comparisons to other provably normal numbers}
\(E C_{2}=0 \cdot \underbrace{10}_{2} \underbrace{11}_{3} \underbrace{101}_{5} \underbrace{111}_{7} \underbrace{1011}_{11} \underbrace{1101}_{13} \underbrace{10001}_{17} \underbrace{10011}_{19}\)




Erdös-Copeland number (base 2) and Champernowne number (base 10).
All pictures are thanks to Fran Aragon and Jake Fountain
http://www.carma.newcastle.edu.au/numberwalks.pdf

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi Seems Normal: Comparisons to other provably normal numbers}
\(E C_{2}=0 . \underbrace{10}_{2} \underbrace{11} \underbrace{101} \underbrace{111} 1011 \underbrace{1101}_{10} \underbrace{10001}_{17} \underbrace{10011}_{19}\)


Erdös-Copeland number (base 2) and Champernowne number (base 10 ).

\section*{Pi Seems Normal: Comparisons to other provably normal numbers}
\(E C_{2}=0 . \underbrace{10}_{2} \underbrace{11} \underbrace{101} \underbrace{1011}_{11} \underbrace{1101} \underbrace{10011}_{10001}\)




Erdös-Copeland number (base 2) and Champernowne number (base 10 ).
All pictures are thanks to Fran Aragon and Jake Fountain http://www.carma.newcastle.edu.au/numberwalks.pdf

\section*{Pi is Still Mysterious: Things we don't know about Pi}

We do not 'know' (in the sense of being able to prove) whether ....
- The simple continued fraction for Pi
is unbounded
- Euler found the 292.
- There are infinitely many sevens in the decimal expansion of Pi .
- There are infinitely many ones in the ternary expansion of Pi
- There are equally many zeroes and ones in the binary expansion of Pi
- Or pretty much anything I have not told you.


\section*{Pi is Still Mysterious: Things we don't know about Pi}

We do not 'know' (in the sense of being able to prove) whether ....
- The simple continued fraction for Pi is unbounded.
- Euler found the 292.
- There are infinitely many sevens in the decimal expansion of Pi .
- There are infinitely many ones in the ternary expansion of Pi .
- There are equally many zeroes and ones in the binary expansion of Pi
Or pretty much anything I have not


\section*{Pi is Still Mysterious: Things we don't know about Pi}

We do not 'know' (in the sense of being able to prove) whether ....
- The simple continued fraction for Pi is unbounded.
- Euler found the 292.
- There are infinitely many sevens in the decimal expansion of Pi .
- There are infinitely many ones in the ternary expansion of Pi .
- There are equally many zeroes and ones in the binary expansion of Pi .
- Or pretty much anything I have not


\section*{Pi is Still Mysterious: Things we don't know about Pi}

We do not 'know' (in the sense of being able to prove) whether ....
- The simple continued fraction for Pi is unbounded.
- Euler found the 292.
- There are infinitely many sevens in the decimal expansion of Pi .
- There are infinitely many ones in the ternary expansion of Pi .
- There are equally many zeroes and ones in the binary expansion of Pi .
- Or pretty much anything I have not told you.



24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Decimal Digit Frequency: and "Johnny" von Neumann}

1st von Neumann architecture machine


JvN (1903-57) at the Institute for Advanced Study


Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Decimal Digit Frequency: and "Johnny" von Neumann}


JvN (1903-57) at the Institute for Advanced Study

\section*{Decimal Occurrences}
\begin{tabular}{lr}
0 & 99999485134 \\
1 & 99999945664 \\
2 & 100000480057 \\
3 & 99999787805 \\
4 & 100000357857 \\
5 & 99999671008 \\
6 & 99999807503 \\
7 & 99999818723 \\
8 & 100000791469 \\
9 & 99999854780
\end{tabular}

\section*{Total 1000000000000}
43. Pi's Adolescence 48. Adulthood of Pi 79. Pi in the Digital Age 113. Computing Individual Digits of \(\pi\)

\section*{Hexadecimal Digit Frequency: and Richard Crandall (Apple HPC)}
\begin{tabular}{ll}
0 & 62499881108 \\
1 & 62500212206 \\
2 & 62499924780 \\
3 & 62500188844 \\
4 & 62499807368 \\
5 & 62500007205 \\
6 & 62499925426 \\
7 & 62499878794 \\
8 & \(\underline{62500216752}\) \\
9 & 62500120671 \\
A & 62500266095 \\
B & 62499955595 \\
C & 62500188610 \\
D & 62499613666 \\
E & 62499875079 \\
F & 62499937801 \\
\hline
\end{tabular}

(1947-2012)

\section*{Changing Cognitive Tastes}


\section*{Why in antiquity \(\pi\) was not measured to greater accuracy than \(22 / 7\) (with rope)?}


It reflects not an inability, but rather a very different mindset to a modern (Baconian) experimental one - see Francis Bacon's De augmentis scientiarum (1623).
- Gauss and Ramanujan did not exploit their identities for \(\pi\). An algorithm, as opposed to a closed form, was unsatisfactory to them - especially Ramanujan. He preferred \(\frac{3}{\sqrt{163}} \log (640320) \approx \pi \quad\) and \(\quad \frac{3}{\sqrt{67}} \log (5280) \approx \pi\) correct to 15 and 9 decimal places respectively.

\section*{Changing Cognitive Tastes}

\section*{Why in antiquity \(\pi\) was not measured to greater accuracy than \(22 / 7\) (with rope)?}


It reflects not an inability, but rather a very different mindset to a modern (Baconian) experimental one - see Francis Bacon's De augmentis scientiarum (1623).
- Gauss and Ramanujan did not exploit their identities for \(\pi\). An algorithm, as opposed to a closed form, was unsatisfactory
to them - especially Ramanujan. He preferred


\section*{Changing Cognitive Tastes}


Why in antiquity \(\pi\) was not measured to greater accuracy than \(22 / 7\) (with rope)?


It reflects not an inability, but rather a very different mindset to a modern (Baconian) experimental one - see Francis Bacon's De augmentis scientiarum (1623).
- Gauss and Ramanujan did not exploit their identities for \(\pi\).
- An algorithm, as opposed to a closed form, was unsatisfactory to them - especially Ramanujan. He preferred


\section*{Changing Cognitive Tastes}

Why in antiquity \(\pi\) was not measured to greater accuracy than \(22 / 7\) (with rope)?


It reflects not an inability, but rather a very different mindset to a modern (Baconian) experimental one - see Francis Bacon's De augmentis scientiarum (1623).
- Gauss and Ramanujan did not exploit their identities for \(\pi\).
- An algorithm, as opposed to a closed form, was unsatisfactory to them - especially Ramanujan. He preferred
\[
\frac{3}{\sqrt{163}} \log (640320) \approx \pi \quad \text { and } \quad \frac{3}{\sqrt{67}} \log (5280) \approx \pi
\]
correct to 15 and 9 decimal places respectively.
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Changing Cognitive Tastes: Truth without Proof}

Gourevich used integer relation computer methods to find the Ramanujan-type series - discussed below - in (11):
\[
\begin{equation*}
\frac{4}{\pi^{3}} \stackrel{?}{=} \sum_{n=0}^{\infty} r(n)^{7}\left(1+14 n+76 n^{2}+168 n^{3}\right)\left(\frac{1}{8}\right)^{2 n+1} \tag{11}
\end{equation*}
\]
where \(r(n):=\frac{1}{2} \cdot \frac{3}{4} \cdots \cdot \frac{2 n-1}{2 n}\).
- I can "discover" it using 30-digit arithmetic. and check it to 1,000 digits in \(\mathbf{0 . 7 5} \mathrm{sec}, \mathbf{1 0 , 0 0 0}\) digits in \(\mathbf{4 . 0 1} \mathrm{min}\) with two naive command-line instructions in Maple.

No one has any inkling of how to prove it.
I "know" the beautiful identity is true - it would be more remarkable were it eventually to fail.
It may be true for no good reason - it might just have no proof and be a very concrete Gödel-like statement.
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Changing Cognitive Tastes: Truth without Proof}

Gourevich used integer relation computer methods to find the Ramanujan-type series - discussed below - in (11):
\[
\begin{equation*}
\frac{4}{\pi^{3}} \stackrel{?}{=} \sum_{n=0}^{\infty} r(n)^{7}\left(1+14 n+76 n^{2}+168 n^{3}\right)\left(\frac{1}{8}\right)^{2 n+1} \tag{11}
\end{equation*}
\]
where \(r(n):=\frac{1}{2} \cdot \frac{3}{4} \cdots \cdot \frac{2 n-1}{2 n}\).
- I can "discover" it using 30-digit arithmetic. and check it to \(\mathbf{1 , 0 0 0}\) digits in \(\mathbf{0 . 7 5} \mathrm{sec}, \mathbf{1 0 , 0 0 0}\) digits in \(\mathbf{4 . 0 1} \mathrm{min}\) with two naive command-line instructions in Maple.

> No one has any inkling of how to prove it.
> I "know" the beautiful identity is true - it would be more
> remarkable were it eventually to fail.
> It may be true for no good reason - it might just have no proof and be a very concrete Gödel-like statement.

\section*{Changing Cognitive Tastes: Truth without Proof}

Gourevich used integer relation computer methods to find the Ramanujan-type series - discussed below - in (11):
\[
\begin{equation*}
\frac{4}{\pi^{3}} \stackrel{?}{=} \sum_{n=0}^{\infty} r(n)^{7}\left(1+14 n+76 n^{2}+168 n^{3}\right)\left(\frac{1}{8}\right)^{2 n+1} \tag{11}
\end{equation*}
\]
where \(r(n):=\frac{1}{2} \cdot \frac{3}{4} \ldots \cdot \frac{2 n-1}{2 n}\).
- I can "discover" it using \(\mathbf{3 0}\)-digit arithmetic. and check it to \(\mathbf{1 , 0 0 0}\) digits in \(\mathbf{0 . 7 5} \mathrm{sec}, \mathbf{1 0 , 0 0 0}\) digits in \(\mathbf{4 . 0 1} \mathrm{min}\) with two naive command-line instructions in Maple.
- No one has any inkling of how to prove it.
- I "know" the beautiful identity is true - it would be more remarkable were it eventually to fail.
- It may be true for no good reason - it might just have no proof and be a very concrete Gödel-like statement.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Pi in High Culture (1993)}
```

The admirable number pi:
three point one four one.
All the following digits are also initial,
five nine two because it never ends.
It can't be comprehended six five three five at a glance
eight nine by calculation
seven nine or imagination,
not even three two three eight by wit, that is, by
comparison
four six to anything else
two six four three in the world.
The longest snake on earth calls it quits at about forty
feet.
Likewise, snakes of myth and legend, though they may
hold out a bit longer.
The pageant of digits comprising the number pi
doesn't stop at the page's edge
It goes on across the table, through the air,
over a wall, a leaf, a bird's nest, clouds, straight into the
through all the bottomless, bloated heavens.
1 9 9 6 Nobel Wislawa Szymborska (2-7-1923 1-2-2012)

```

Oh how brief - a mouse tail, a pigtail - is the tail of a
comet!
How feeble the star's ray, bent by bumping up against
space!
While here we have two three fifteen three hundred
nineteen
my phone number your shirt size the year
nineteen hundred and seventy-three the sixth floor
the number of inhabitants sixty-five cents
hip measurement two fingers a charade, a code,
in which we find hail to thee, blithe spirit, bird thou never
wert
alongside ladies and gentlemen, no cause for alarm,
as well as heaven and earth shall pass away,
but not the number pi, oh no, nothing doing,
it keeps right on with its rather remarkable five,
its uncommonly fine eight,
its far from final seven,
nudging, always nudging a sluggish eternity to continue.

24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi in High Culture (1993)}

The admirable number pi:
three point one four one.
All the following digits are also initial,
five nine two because it never ends.
It can't be comprehended six five three five at a glance, eight nine by calculation,
seven nine or imagination,
not even three two three eight by wit, that is, by comparison
four six to anything else
two six four three in the world.
The longest snake on earth calls it quits at about forty feet.
Likewise, snakes of myth and legend, though they may hold out a bit longer.
The pageant of digits comprising the number pi doesn't stop at the page's edge.
It goes on across the table, through the air, over a wall, a leaf, a bird's nest, clouds, straight into the sky,
through all the bottomless, bloated heavens.

1996 Nobel Wislawa Szymborska (2-7-1923 1-2-2012)

Oh how brief - a mouse tail, a pigtail - is the tail of a comet!
How feeble the star's ray, bent by bumping up against space!
While here we have two three fifteen three hundred nineteen
my phone number your shirt size the year
nineteen hundred and seventy-three the sixth floor
the number of inhabitants sixty-five cents
hip measurement two fingers a charade, a code,
in which we find hail to thee, blithe spirit, bird thou never wert
alongside ladies and gentlemen, no cause for alarm, as well as heaven and earth shall pass away.
but not the number pi, oh no, nothing doing,
it keeps right on with its rather remarkable five,
its uncommonly fine eight,
its far from final seven,
nudging, always nudging a sluggish eternity to continue.

113. Computing Individual Digits of \(\pi\)

Machin Formulas
Newton and Pi
Calculus Calculation Records
Mathematical Interlude, II
Why Pi? Utility and Normality

\section*{Pi in High Culture (1993)}

The admirable number pi:
three point one four one.
All the following digits are also initial,
five nine two because it never ends.
It can't be comprehended six five three five at a glance,
eight nine by calculation,
seven nine or imagination,
not even three two three eight by wit, that is, by comparison
four six to anything else
two six four three in the world.
The longest snake on earth calls it quits at about forty
feet.
Likewise, snakes of myth and legend, though they may hold out a bit longer.
The pageant of digits comprising the number pi doesn't stop at the page's edge.
It goes on across the table, through the air, over a wall, a leaf, a bird's nest, clouds, straight into the sky,
through all the bottomless, bloated heavens.

1996 Nobel Wislawa Szymborska (2-7-1923 1-2-2012)

Oh how brief - a mouse tail, a pigtail - is the tail of a comet!
How feeble the star's ray, bent by bumping up against space!
While here we have two three fifteen three hundred nineteen
my phone number your shirt size the year nineteen hundred and seventy-three the sixth floor the number of inhabitants sixty-five cents hip measurement two fingers a charade, a code, in which we find hail to thee, blithe spirit, bird thou never wert
alongside ladies and gentlemen, no cause for alarm, as well as heaven and earth shall pass away, but not the number pi, oh no, nothing doing, it keeps right on with its rather remarkable five, its uncommonly fine eight,
its far from final seven,
nudging, always nudging a sluggish eternity to continue.

24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Computers Cease Being Human}

1950s. Commercial computers - and discovery of advanced algorithms for arithmetic - unleashed \(\pi\). 1965. The new fast Fourier transform (FFT) performed high-precision multiplications much faster than conventional methods - viewing numbers as polynomials in

Newton methods helped reduce time for computing \(\pi\) to ultra-precision from millennia to weeks or days.
converts \(1 / b\) to 4 converts \(1 / \sqrt{a}\) to \(\mathbf{6} \times(\mathbf{7}\) for \(\sqrt{a})\)

But until the 1980s all computer evaluations of \(\pi\) employed classical formulas, usually of Machin-type.

\section*{Computers Cease Being Human}

1950s. Commercial computers - and discovery of advanced algorithms for arithmetic - unleashed \(\pi\).
1965. The new fast Fourier transform (FFT) performed high-precision multiplications much faster than conventional methods - viewing numbers as polynomials in \(\frac{1}{10}\).

\section*{Newton methods helped reduce time for computing \(\pi\) to \\ ultra-precision from millennia to weeks or days.}

\section*{Computers Cease Being Human}

1950s. Commercial computers - and discovery of advanced algorithms for arithmetic - unleashed \(\pi\).
1965. The new fast Fourier transform (FFT) performed high-precision multiplications much faster than conventional methods - viewing numbers as polynomials in \(\frac{1}{10}\).
- Newton methods helped reduce time for computing \(\pi\) to ultra-precision from millennia to weeks or days.
converts \(1 / b\) to \(4 \times\) converts \(1 / \sqrt{a}\) to \(\mathbf{6} \times(\mathbf{7}\) for \(\sqrt{a})\)
\(\nabla\) But until the 1980s all computer evaluations of \(\pi\) employed classical formulas, usually of Machin-type.

\section*{Computers Cease Being Human}

1950s. Commercial computers - and discovery of advanced algorithms for arithmetic - unleashed \(\pi\).
1965. The new fast Fourier transform (FFT) performed high-precision multiplications much faster than conventional methods - viewing numbers as polynomials in \(\frac{1}{10}\).
- Newton methods helped reduce time for computing \(\pi\) to ultra-precision from millennia to weeks or days.
\[
x \hookleftarrow x+x(1-b x)
\]
converts \(1 / b\) to \(4 \times\)

> But until the 1980 s all computer evaluations of \(\pi\) employed
> classical formulas, usually of Machin-type.

\section*{Computers Cease Being Human}

1950s. Commercial computers - and discovery of advanced algorithms for arithmetic - unleashed \(\pi\).
1965. The new fast Fourier transform (FFT) performed high-precision multiplications much faster than conventional methods - viewing numbers as polynomials in \(\frac{1}{10}\).
- Newton methods helped reduce time for computing \(\pi\) to ultra-precision from millennia to weeks or days.
\[
x \hookleftarrow x+x(1-b x)
\]
\[
x \hookleftarrow x+x\left(1-a x^{2}\right) / 2
\]
converts \(1 / b\) to \(4 \times\) converts \(1 / \sqrt{a}\) to \(\mathbf{6} \times(\mathbf{7}\) for \(\sqrt{a})\)

But until the 1980s all computer evaluations of \(\pi\) employed
classical formulas, usually of Machin-type.

\section*{Computers Cease Being Human}

1950s. Commercial computers - and discovery of advanced algorithms for arithmetic - unleashed \(\pi\).
1965. The new fast Fourier transform (FFT) performed high-precision multiplications much faster than conventional methods - viewing numbers as polynomials in \(\frac{1}{10}\).
- Newton methods helped reduce time for computing \(\pi\) to ultra-precision from millennia to weeks or days.
\[
x \hookleftarrow x+x(1-b x)
\]
\[
x \hookleftarrow x+x\left(1-a x^{2}\right) / 2
\]
converts \(1 / b\) to \(4 \times\) converts \(1 / \sqrt{a}\) to \(\mathbf{6} \times(\mathbf{7}\) for \(\sqrt{a})\)
\(\nabla\) But until the 1980s all computer evaluations of \(\pi\) employed classical formulas, usually of Machin-type.

\section*{Computers Cease Being Human}

1950s. Commercial computers - and discovery of advanced algorithms for arithmetic - unleashed \(\pi\).
1965. The new fast Fourier transform (FFT) performed high-precision multiplications much faster than conventional methods - viewing numbers as polynomials in \(\frac{1}{10}\).
- Newton methods helped reduce time for computing \(\pi\) to ultra-precision from millennia to weeks or days.
\[
x \hookleftarrow x+x(1-b x)
\]
\[
x \hookleftarrow x+x\left(1-a x^{2}\right) / 2
\]
converts \(1 / b\) to \(4 \times\) converts \(1 / \sqrt{a}\) to \(\mathbf{6} \times(\mathbf{7}\) for \(\sqrt{a})\)
\(\nabla\) But until the 1980s all computer evaluations of \(\pi\) employed classical formulas, usually of Machin-type.

Happily, MRI and FFT were discovered at the same time.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Newton Method Illustrated in Maple for 1/7}
> restart:Digits:=100:N:=x->x+x*(1-7*x);
\[
N:=x \rightarrow x+x(1-7 x)
\]
> Digits:=64:x:=.142; for \(k\) from 1 to 6 do \(x:=e v a l f\left(N(x), 2^{\wedge}(k)+2\right) ; o d ;\)
\[
x:=0.142
\]
\[
x:=0.1429
\]
\[
x:=0.142857
\]
\[
x:=0.1428571429
\]
\[
x:=0.142857142857142857
\]
\[
x:=0.1428571428571428571428571428571429
\]


Newton's method
(1) Newton's method is self-correcting and quadratically convergent.
(2) So we start close (to the left); and
(3) We keep only the first half of each answer.

\section*{J.M. Borwein}

\section*{Newton Method Illustrated in Maple for 1/7}
```

> restart:Digits:=100:N:=x->x+x*(1-7*x);

$$
N:=x \rightarrow x+x(1-7 x)
$$

```
> Digits:=64:x:=.142; for \(k\) from 1 to 6 do \(x:=e v a l f\left(N(x), 2^{\wedge}(k)+2\right)\); od;
\[
x:=0.142
\]
\[
x:=0.1429
\]
\[
x:=0.142857
\]
\[
x:=0.1428571429
\]
\[
x:=0.142857142857142857
\]
\[
x:=0.1428571428571428571428571428571429
\]


Newton's method
(1) Newton's method is self-correcting and quadratically convergent.
(2) So we start close (to the left); and
(3) We keep only the first half of each answer.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series The ENIACalculator
Reduced Complexity Algorithms Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Pi in the Digital Age}


Ramanujan's Seventy-Fifth Birthday Stamp.
- Truly new infinite series formulas were discovered by the self-taught Indian genius Srinivasa Ramanujan around 1910

Based on theory of elliptic integrals or modular functions, they
were not well known (nor fully proven) until recently when his
writings were finally fully published by Bruce Berndt.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Pi in the Digital Age}


Ramanujan's Seventy-Fifth Birthday Stamp.
- Truly new infinite series formulas were discovered by the self-taught Indian genius Srinivasa Ramanujan around 1910.

\section*{Based on theory of elliptic integrals or modular functions, they \\ were not well known (nor fully proven) until recently when his writings were finally fully published by Bruce Berndt.}

\section*{Pi in the Digital Age}


Ramanujan's Seventy-Fifth Birthday Stamp.
- Truly new infinite series formulas were discovered by the self-taught Indian genius Srinivasa Ramanujan around 1910.
- Based on theory of elliptic integrals or modular functions, they were not well known (nor fully proven) until recently when his writings were finally fully published by Bruce Berndt.
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Ramanujan-type Series}

The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Ramanujan Series for \(1 / \pi \quad\) See "Ramanujan at 125", Notices 2012-13}

One of these series is the remarkable:
\[
\begin{equation*}
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(\mathbf{1 1 0 3}+26390 k)}{(k!)^{4} 396^{4 k}} \tag{12}
\end{equation*}
\]
- Each term adds an additional eight correct digits.
1985. 'Hacker' Bill Gosper used (12) to compute 17 million digits of (the continued fraction for) \(\pi\); and so the first proof of (12) !
1987. David and Gregory Chudnovsky found a variant:


\section*{Ramanujan Series for \(1 / \pi\)}

One of these series is the remarkable:
\[
\begin{equation*}
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(\mathbf{1 1 0 3}+26390 k)}{(k!)^{4} 396^{4 k}} \tag{12}
\end{equation*}
\]
- Each term adds an additional eight correct digits.
\(\diamond\) 1985. 'Hacker' Bill Gosper used (12) to compute 17 million digits of (the continued fraction for) \(\pi\); and so the first proof of (12) !
1987. David and Gregory Chudnovsky found a variant:


Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Ramanujan Series for \(1 / \pi \quad\) See "Ramanujan at 125", Notices 2012-13}

One of these series is the remarkable:
\[
\begin{equation*}
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(\mathbf{1 1 0 3}+26390 k)}{(k!)^{4} 396^{4 k}} \tag{12}
\end{equation*}
\]
- Each term adds an additional eight correct digits.
\(\diamond\) 1985. 'Hacker' Bill Gosper used (12) to compute 17 million digits of (the continued fraction for) \(\pi\); and so the first proof of (12) !
1987. David and Gregory Chudnovsky found a variant:
\[
\begin{equation*}
\frac{1}{\pi}=12 \sum_{k=0}^{\infty} \frac{(-1)^{k}(6 k)!(13591409+545140134 k)}{(3 k)!(k!)^{3} 640320^{3 k+3 / 2}} \tag{13}
\end{equation*}
\]

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Ramanujan Series for \(1 / \pi \quad\) See "Ramanujan at 125", Notices 2012-13}

One of these series is the remarkable:
\[
\begin{equation*}
\frac{1}{\pi}=\frac{2 \sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4 k)!(\mathbf{1 1 0 3}+26390 k)}{(k!)^{4} 396^{4 k}} \tag{12}
\end{equation*}
\]
- Each term adds an additional eight correct digits.
\(\diamond\) 1985. 'Hacker' Bill Gosper used (12) to compute 17 million digits of (the continued fraction for) \(\pi\); and so the first proof of (12) !
1987. David and Gregory Chudnovsky found a variant:
\[
\begin{equation*}
\frac{1}{\pi}=12 \sum_{k=0}^{\infty} \frac{(-1)^{k}(6 k)!(13591409+545140134 k)}{(3 k)!(k!)^{3} 640320^{3 k+3 / 2}} \tag{13}
\end{equation*}
\]
- Each term adds an additional 14 correct digits.

\section*{The Chudnovsky Brothers}

- The Chudnovskys implemented (13) with a clever scheme so results at one precision could be reused for higher precision.

> They used this in several large calculations of \(\pi\), culminating with a then record computation to over four billion decimal digits in 1994

\section*{The Chudnovsky Brothers}

- The Chudnovskys implemented (13) with a clever scheme so results at one precision could be reused for higher precision.
- They used this in several large calculations of \(\pi\), culminating with a then record computation to over four billion decimal digits in 1994.

\section*{Some Series Can Save Significant Work}
- Relatedly, the Ramanujan-type series:
\[
\begin{equation*}
\frac{1}{\pi}=\sum_{n=0}^{\infty}\left(\frac{\binom{2 n}{n}}{16^{n}}\right)^{3} \frac{42 n+5}{16} \tag{14}
\end{equation*}
\]
allows one to compute the billionth binary digit of \(1 / \pi\), or the like, without computing the first half of the series.

> Conjecture (Moore's Law in Electronics Magazine 19 April, 1965)
> "The complexity for minimum component costs has increased at a rate of roughly a factor of two per year"... [revised to "every 18 months"]

\section*{Some Series Can Save Significant Work}
- Relatedly, the Ramanujan-type series:
\[
\begin{equation*}
\frac{1}{\pi}=\sum_{n=0}^{\infty}\left(\frac{\binom{2 n}{n}}{16^{n}}\right)^{3} \frac{42 n+5}{16} \tag{14}
\end{equation*}
\]
allows one to compute the billionth binary digit of \(1 / \pi\), or the like, without computing the first half of the series.

Conjecture (Moore's Law in Electronics Magazine 19 April, 1965)
"The complexity for minimum component costs has increased at a rate of roughly a factor of two per year" ... [revised to "every 18 months"]

\section*{ENIAC: Electronic Numerical Integrator and Calculator, I}

SIZE/WEIGHT: ENIAC had 18,000 vacuum tubes, 6,000 switches, 10,000 capacitors, 70,000 resistors, 1,500 relays, was 10 feet tall, occupied 1,800 square feet and weighed 30 tons.


The ENIAC in the Smithsonian
- This Smithsonian 20Mb picture would require 100,000

\section*{ENIAC: Electronic Numerical Integrator and Calculator, I}

SIZE/WEIGHT: ENIAC had 18,000 vacuum tubes, 6,000 switches, 10,000 capacitors, 70,000 resistors, 1,500 relays, was 10 feet tall, occupied 1,800 square feet and weighed 30 tons.


The ENIAC in the Smithsonian
- This Smithsonian \(\mathbf{2 0 M b}\) picture would require \(\mathbf{1 0 0 , 0 0 0}\) ENIACs to store. [Moore's Law!]

\section*{ENIAC: Integrator and Calculator, II}

SPEED/MEMORY: A 1.5 GHz Pentium does 3 million adds \(/ \mathrm{sec}\). ENIAC did 5,000-1,000 times faster than any earlier machine. The first stored-memory computer, ENIAC could store 200 digits.



Programming ENIAC in 1946

ARCHITECTURE: Data flowed from one accumulator to the next, and after each accumulator finished a calculation, it communicated its results to the next in line. The accumulators

\section*{ENIAC: Integrator and Calculator, II}

SPEED/MEMORY: A 1.5 GHz Pentium does 3 million adds \(/ \mathrm{sec}\). ENIAC did 5,000-1,000 times faster than any earlier machine. The first stored-memory computer, ENIAC could store 200 digits.

1949 'skunk-works' computation of \(\pi\) - suggested by von Neumann - to 2,037 places in \(\mathbf{7 0} \mathbf{~ h r s}\).



Programming ENIAC in 1946

ARCHITECTURE: Data flowed from one accumulator to the next, and after each accumulator finished a calculation, it communicated its results to the next in line. The accumulators

\section*{ENIAC: Integrator and Calculator, II}

SPEED/MEMORY: A 1.5 GHz Pentium does 3 million adds \(/ \mathrm{sec}\). ENIAC did 5,000 - 1,000 times faster than any earlier machine. The first stored-memory computer, ENIAC could store 200 digits.

1949 'skunk-works' computation of \(\pi\) - suggested by von Neumann - to 2,037 places in 70 hrs.

Origin of the term 'bug' ?


Programming ENIAC in 1946

ARCHITECTURE: Data flowed from one accumulator to the next, and after each accumulator finished a calculation, it communicated its results to the next in line. The accumulators were connected to each other manually.

\section*{ENIAC: Integrator and Calculator, II}

SPEED/MEMORY: A 1.5 GHz Pentium does 3 million adds \(/ \mathrm{sec}\). ENIAC did 5,000 - 1,000 times faster than any earlier machine. The first stored-memory computer, ENIAC could store 200 digits.

1949 'skunk-works' computation of \(\pi\) - suggested by von Neumann - to 2,037 places in 70 hrs.

Origin of the term 'bug' ?


Programming ENIAC in 1946

ARCHITECTURE: Data flowed from one accumulator to the next, and after each accumulator finished a calculation, it communicated its results to the next in line. The accumulators were connected to each other manually.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{ENIAC: Integrator and Calculator, III}



Presper Eckert and John Mauchly (Feb 1946)
- Eckert-Mauchly Computer Corp. bought by Remington Rand which became Sperry Rand (Unisys).

Honeywell, Inc. v. Sperry Rand Corp., et al. 180 USPQ 673
(D. Minn. 1973) changed the world
- Search for: IBM, Atanasoff-Berry Co.

\section*{ENIAC: Integrator and Calculator, III}



Presper Eckert and John Mauchly (Feb 1946)
- Eckert-Mauchly Computer Corp. bought by Remington Rand which became Sperry Rand (Unisys).

Honeywell, Inc. v. Sperry Rand Corp., et al. 180 USPQ 673
(D. Minn.
1973) changed the world

Search for: IEM, Atanasoff-Berry Co.

\section*{ENIAC: Integrator and Calculator, III}



Presper Eckert and John Mauchly (Feb 1946)
- Eckert-Mauchly Computer Corp. bought by Remington Rand which became Sperry Rand (Unisys).
- Honeywell, Inc. v. Sperry Rand Corp., et al. 180 USPQ 673 (D. Minn. 1973) changed the world
- Search for: IBM, Atanasoff-Berry Co.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series The ENIACalculator
Reduced Complexity Algorithms Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Ballantine's (1939) Series for \(\pi\)}

Another formula of Euler for arccot is:
\[
x \sum_{n=0}^{\infty} \frac{(n!)^{2} 4^{n}}{(2 n+1)!\left(x^{2}+1\right)^{n+1}}=\arctan \left(\frac{1}{x}\right)
\]

As \(10\left(18^{2}+1\right)=57^{2}+1=3250\) we may rewrite the formula

used by Shanks and Wrench in 1961 for 100,000 digits, and by
Guilloud and Boyer in 1973 for a million digits of Pi in the efficient
form


\section*{Ballantine's (1939) Series for \(\pi\)}

Another formula of Euler for arccot is:
\[
x \sum_{n=0}^{\infty} \frac{(n!)^{2} 4^{n}}{(2 n+1)!\left(x^{2}+1\right)^{n+1}}=\arctan \left(\frac{1}{x}\right)
\]

As \(10\left(18^{2}+1\right)=57^{2}+1=3250\) we may rewrite the formula
\[
\frac{\pi}{4}=\arctan \left(\frac{1}{18}\right)+8 \arctan \left(\frac{1}{57}\right)-5 \arctan \left(\frac{1}{239}\right)
\]
used by Shanks and Wrench in 1961 for \(\mathbf{1 0 0 , 0 0 0}\) digits, and by Guilloud and Boyer in 1973 for a million digits of Pi in the efficient form
\(\pi=864 \sum_{n=0}^{\infty} \frac{(n!)^{2} 4^{n}}{(2 n+1)!\mathbf{3 2 5}^{n+1}}+1824 \sum_{n=0}^{\infty} \frac{(n!)^{2} 4^{n}}{(2 n+1)!\mathbf{3 2 5 0}}-20 \arctan \left(\frac{1}{239}\right)\)
CARMA
where terms of the second series are just decimal shifts of the first.
24. Pi's Childhood
43. Pi's Adolescence 48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series

\section*{The ENIACalculator \\ Reduced Complexity Algorithms}

Modern Calculation Records

\section*{A Few Trillion Digits of Pi}

\section*{Shanks (the 2nd) and Wrench: "A Million Decimals?" (1961)}

\section*{Calculation of \(\pi\) to 100,000 Decimals}

\section*{By Daniel Shanks and John W. Wrench, Jr.}
1. Introduction. The following comparison of the previous calculations of \(\pi\) performed on electronic computers shows the rapid increase in computational speeds which has taken place.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Asthor} & Maching & Date & Precision & Time \\
\hline Reitwiesuer & [1] & ENIAC & 1949 & 2037D & 70 hours \\
\hline Nicholson \& Jeenel & (2) & NORC & 1954 & 3089 D & 13 min . \\
\hline Felton & [3] & Pegasus & 1958 & 10000D & 33 hours \\
\hline Genuys & [4] & IBM 704 & 1958 & 10000 D & 100 min . \\
\hline Unpublished & (5) & IBM 704 & 1959 & 16167D & 4.3 hours \\
\hline
\end{tabular}

All these computations, except Felton's, used Machin's formula:
(1)
\[
\pi=16 \tan ^{-1} \frac{1}{8}-4 \tan ^{-1} \frac{1}{235} .
\]

Other things being equal, that is, assuming the use of the same machine and the same program, an increase in precision by a factor \(f\) requires \(f\) times as much memory, and \(f^{2}\) times as much machine time. For example, a hypothetical computation of \(\pi\) to \(100,000 \mathrm{D}\) using Genuys' program would require 167 hours on an IBM 704 system and more than 38,000 words of core memory. However, since the latter is not available, the program would require modification, and this would extend the running time. Further, since the probability of a machine error would be more than 100 times that during Genuys' computation, prudence would require still other program modifications, and, therefore, stiil more machine time.
5. A Million Decimals? Can \(\pi\) be computed to \(1,000,000\) decimals with the computers of today? From the remarks in the first section we see that the program which we have described would require times of the order of months. But since the memory of a 7090 is too small, by a factor of ten, a modified program, which writes and reads partial results, would take longer still. One would really want a computer 100 times as fast, 100 times as reliable, and with a memory 10 times as large. No such machine now exists.

There are, of course, many other formulas similar to (1), (2), and (5), and other programming devices are also possible, but it seems unlikely that any such modification can lead to more than a rather small improvement.

Are there entirely different procedures? This is, of course, possible. We cite the following: compute \(1 / \pi\) and then take its reciprocal. This sounds fantastic, but, in fact, it can be faster than the use of equation (2). One can compute \(1 / \pi\) by Ramanujan's formula (8):
(6) \(\frac{1}{\pi}=\frac{1}{4}\left(\frac{1123}{882}-\frac{22583}{882^{3}} \frac{1}{2} \cdot \frac{1 \cdot 3}{4^{2}}+\frac{44043}{882^{5}} \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1 \cdot 3 \cdot 5 \cdot 7}{4^{2} \cdot 8^{2}}-\cdots\right)\).

The first factors here are given by \((-1)^{k}(1123+21460 k)\). A binary value of \(1 / \pi\) equivalent to \(100,000 \mathrm{D}\), can be computed on a 7090 using equation (6) in 6 hours instead of the 8 hours required for the application of equation (2).* To reciprocate this value of \(1 / \pi\) would take about 1 hour. Thus, we can reduce the time required by (2) by an hour. But unfortunately we lose our overlapping check, and, in any case, this small gain is quite inadequate for the present question.
One could hope for a theoretical approach to this question of optimization-a theory of the "depth" of numbers-but no such theory now exists. One can guess that \(e\) is not as "deep" as \(\pi, \dagger\) but try to prove it!

Such a theory would, of course, take years to develop. In the meantime-say, in 5 to 7 years-such a computer as we suggested above ( 100 times as fast, 100 times as reliable, and with 10 times the memory) will, no doubt, become a reality. At that time a computation of \(\pi\) to \(1,000,000 \mathrm{D}\) will not be difficult.

\footnotetext{
* We have computed \(1 / \pi\) by (6) to over 5000D in less than a minute.

We have computed \(e\) on a 7090 to \(100,265 \mathrm{D}\) by the obvious program. This takes 2.5 hours instead of the 8 -hour run for \(\pi\) by (2).
}
24. Pi's Childhood
43. Pi's Adolescence 48. Adulthood of Pi
79. Pi in the Digital Age 113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series

\author{
The ENIACalculator \\ Reduced Complexity Algorithms \\ Modern Calculation Records \\ A Few Trillion Digits of Pi
}

\section*{Shanks (the 2nd) and Wrench: "A Million Decimals?" (1961)}

\section*{By Daniel Shanks and John W. Wrench, Jr.}
1. Introduction. The following comparison of the previous calculations of \(\pi\) performed on electronic computers shows the rapid increase in computational speeds which has taken place.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Author} & Machine & Date & Precision & Tinue \\
\hline Reitwiesner & [1] & ENIAC & 1949 & 2037 D & 70 hours \\
\hline Nicholson \& Jeenel & [2] & NORC & 1954 & 3089 D & 13 min . \\
\hline Felton & [3] & Pegasus & 1958 & 10000 D & 33 hours \\
\hline Genuys & [4] & IBM 704 & 1958 & 10000 D & 100 min . \\
\hline Unpublished & [5] & IBM 704 & 1959 & 16167 D & 4.3 hours \\
\hline
\end{tabular}

All these computations, except Felton's, used Machin's formula:
\[
\begin{equation*}
\pi=16 \tan ^{-1} \frac{1}{5}-4 \tan ^{-1} \frac{1}{23} \frac{1}{3} . \tag{1}
\end{equation*}
\]

Other things being equal, that is, assuming the use of the same machine and the same program, an increase in precision by a factor \(f\) requires \(f\) times as much memory, and \(j^{2}\) times as much machine time. For example, a hypothetical computation of \(\pi\) to \(100,000 \mathrm{D}\) using Genuys' program would require 167 hours on an IBM 704 system and more than 38,000 words of core memory. However, since the latter is not available, the program would require modification, and this would extend the running time. Further, since the probability of a machine error would be more than 100 times that during Genuys' computation, prudence would require still other program modifications, and, therefore, still more machine time.

There are, of course, many other formulas similar to (1), (2 programming devices are also possible, but it seems unlikely tl tion can lead to more than a rather small improvement.

Are there entirely different procedures? This is, of course, following: compute \(1 / \pi\) and then take its reciprocal. This in fact, it can be faster than the use of equation (2). One Ramanujan's formula [8]:
\[
\begin{equation*}
\frac{1}{\pi}=\frac{1}{4}\left(\frac{1123}{882}-\frac{22583}{882^{3}} \frac{1}{2} \cdot \frac{1 \cdot 3}{4^{2}}+\frac{44043}{882^{5}} \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1 \cdot 3 \cdot}{4^{2} \cdot}\right. \tag{6}
\end{equation*}
\]

The first factors here are given by \((-1)^{k}(1123+21460 k)\). equivalent to \(100,000 \mathrm{D}\), can be computed on a 7090 using e instead of the 8 hours required for the application of equatio this value of \(1 / \pi\) would take about 1 hour. Thus, we can re by (2) by an hour. But unfortunately we lose our overlapp case, this small gain is quite inadequate for the present ques

One could hope for a theoretical approach to this quest theory of the "depth" of numbers-but no such theory nov that \(e\) is not as "deep" as \(\pi, \dagger\) but try to prove it!

Such a theory would, of course, take years to develop. I in 5 to 7 years-such a computer as we suggested above ( times as reliable, and with 10 times the memory) will, no do At that time a computation of \(\pi\) to \(1,000,000 \mathrm{D}\) will not be
*We have computed \(1 / \pi\) by (6) to over 5000D in less than a \(m\)
\(\dagger\) We have computed \(e\) on a 7090 to \(100,265 \mathrm{D}\) by the obvious hours instead of the 8 -hour run for \(\pi\) by (2).
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{The First Million Digits of \(\pi\)}


A random walk on \(\pi\) (courtesy David and Gregory Chudnovsky)
- See Richard Preston's: "The Mountains of Pi", New Yorker, March 2, 1992 (AAAS-Westinghouse Award for Science Journalism);

\section*{The First Million Digits of \(\pi\)}


A random walk on \(\pi\) (courtesy David and Gregory Chudnovsky)
- See Richard Preston's: "The Mountains of Pi", New Yorker, March 2, 1992 (AAAS-Westinghouse Award for Science Journalism);
- A marvellous "Chasing the Unicorn" and 2005 NOVA program. CARMA

\section*{Reduced Complexity Methods}

These series are much faster than classical ones, but the number of terms needed still increases linearly with the number of digits.

\section*{fanstein Simplified}

Twice as many digits correct requires twice as many terms of the series.

1976. Richard Brent of ANU-CARMA and Eugene Salamin independently found a reduced complexity algorithm for \(\pi\) - It takes \(O(\log N)\) operations for \(N\) digits.
- Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa 1800

Gauss - and others - missed connection to computing \(\pi\)

\section*{Reduced Complexity Methods}

These series are much faster than classical ones, but the number of terms needed still increases linearly with the number of digits.

\section*{Kanstein Simplified}

Twice as many digits correct requires twice as many terms of the series.

1976. Richard Brent of ANU-CARMA and Eugene Salamin independently found a reduced complexity algorithm for \(\pi\) - It takes \(O(\log N)\) operations for \(N\) digits.
- Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa 1800

Gauss - and others - missed connection to computing \(\pi\)

\section*{Reduced Complexity Methods}

These series are much faster than classical ones, but the number of terms needed still increases linearly with the number of digits.

\section*{fanstein Simplufied}

Twice as many digits correct requires twice as many terms of the series.

1976. Richard Brent of ANU-CARMA and Eugene Salamin independently found a reduced complexity algorithm for \(\pi\).
- It takes \(O(\log N)\) operations for \(N\) digits.

Uses arithmetic-geometric mean iteration (AGM) and other
elliptic integral ideas due to Gauss and Legendre circa 1800
Gauss - and others - missed connection to computing \(\pi\).

\section*{Reduced Complexity Methods}

These series are much faster than classical ones, but the number of terms needed still increases linearly with the number of digits.

Twice as many digits correct requires twice as many terms of the series.

1976. Richard Brent of ANU-CARMA and Eugene Salamin independently found a reduced complexity algorithm for \(\pi\).
- It takes \(O(\log N)\) operations for \(N\) digits.
- Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa 1800.

\section*{Reduced Complexity Methods}

These series are much faster than classical ones, but the number of terms needed still increases linearly with the number of digits.

Twice as many digits correct requires twice as many terms of the series.

1976. Richard Brent of ANU-CARMA and Eugene Salamin independently found a reduced complexity algorithm for \(\pi\).
- It takes \(O(\log N)\) operations for \(N\) digits.
- Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa 1800.
- Gauss - and others - missed connection to computing \(\pi\).

\section*{A Reduced Complexity Algorithm}

\section*{Algorithm (Brent-Salamin AGM iteration)}

Set \(a_{0}=1, b_{0}=1 / \sqrt{2}\) and \(s_{0}=1 / 2\). Calculate
\[
\begin{align*}
a_{k}=\frac{a_{k-1}+b_{k-1}}{2} \quad(A) & b_{k} & =\sqrt{a_{k-1} b_{k-1}}  \tag{G}\\
c_{k}=a_{k}^{2}-b_{k}^{2}, & s_{k} & =s_{k-1}-2^{k} c_{k} \\
\text { and compute } & p_{k} & =\frac{2 a_{k}^{2}}{s_{k}} . \tag{15}
\end{align*}
\]

Then \(p_{k}\) converges quadratically to \(\pi\).
- Each step doubles the correct digits - successive steps produce 1 , \(4,9,20,42,85,173,347\) and 697 digits of \(\pi\). - 25 steps compute \(\pi\) to 45 million digits. But, steps must be CARMA performed to the desired precision.

\section*{A Reduced Complexity Algorithm}

\section*{Algorithm (Brent-Salamin AGM iteration)}

Set \(a_{0}=1, b_{0}=1 / \sqrt{2}\) and \(s_{0}=1 / 2\). Calculate
\[
\begin{align*}
a_{k}=\frac{a_{k-1}+b_{k-1}}{2} \quad(A) & b_{k}
\end{aligned}=\sqrt{a_{k-1} b_{k-1}}, \begin{aligned}
c_{k}=a_{k}^{2}-b_{k}^{2}, & s_{k} \tag{G}
\end{align*}=s_{k-1}-2^{k} c_{k} .
\]

Then \(p_{k}\) converges quadratically to \(\pi\).
- Each step doubles the correct digits - successive steps produce 1 , \(4,9,20,42,85,173,347\) and 697 digits of \(\pi\).

\section*{A Reduced Complexity Algorithm}

\section*{Algorithm (Brent-Salamin AGM iteration)}

Set \(a_{0}=1, b_{0}=1 / \sqrt{2}\) and \(s_{0}=1 / 2\). Calculate
\[
\begin{align*}
a_{k}=\frac{a_{k-1}+b_{k-1}}{2} \quad(A) & b_{k} & =\sqrt{a_{k-1} b_{k-1}}  \tag{G}\\
c_{k}=a_{k}^{2}-b_{k}^{2}, & s_{k} & =s_{k-1}-2^{k} c_{k} \\
\text { and compute } & p_{k} & =\frac{2 a_{k}^{2}}{s_{k}} . \tag{15}
\end{align*}
\]

Then \(p_{k}\) converges quadratically to \(\pi\).
- Each step doubles the correct digits - successive steps produce 1 , \(4,9,20,42,85,173,347\) and 697 digits of \(\pi\).
- 25 steps compute \(\pi\) to 45 million digits. But, steps must be CARMA performed to the desired precision.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Four Famous Pi Guys: Salamin, Kanada, Bailey and Gosper in 1987}

- To appear in Donald Knuth's book of mathematics pictures.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{And Some Others: Niven, Shanks (1917-96), Brent, Zudilin (〕)}


\section*{The Borwein Brothers}
1985. Peter and I discovered algebraic algorithms of all orders:

\section*{Algorithm (Cubic Algorithm)}

Set \(a_{0}=1 / 3\) and \(s_{0}=(\sqrt{3}-1) / 2\). Iterate
\[
\begin{aligned}
r_{k+1} & =\frac{3}{1+2\left(1-s_{k}^{3}\right)^{1 / 3}}, \quad s_{k+1}=\frac{r_{k+1}-1}{2} \\
\text { and } a_{k+1} & =r_{k+1}^{2} a_{k}-3^{k}\left(r_{k+1}^{2}-1\right) .
\end{aligned}
\]

Then \(1 / a_{k}\) converges cubically to \(\pi\).
- The number of digits correct more than triples with each step.
- There are like algorithms of all orders: quintic, septic, nonic,

\section*{The Borwein Brothers}
1985. Peter and I discovered algebraic algorithms of all orders:

\section*{Algorithm (Cubic Algorithm)}

Set \(a_{0}=1 / 3\) and \(s_{0}=(\sqrt{3}-1) / 2\). Iterate
\[
\begin{aligned}
r_{k+1} & =\frac{3}{1+2\left(1-s_{k}^{3}\right)^{1 / 3}}, \quad s_{k+1}=\frac{r_{k+1}-1}{2} \\
\text { and } a_{k+1} & =r_{k+1}^{2} a_{k}-3^{k}\left(r_{k+1}^{2}-1\right) .
\end{aligned}
\]

Then \(1 / a_{k}\) converges cubically to \(\pi\).
- The number of digits correct more than triples with each step.
- There are like algorithms of all orders: quintic, septic, nonic,

\section*{The Borwein Brothers}
1985. Peter and I discovered algebraic algorithms of all orders:

\section*{Algorithm (Cubic Algorithm)}

Set \(a_{0}=1 / 3\) and \(s_{0}=(\sqrt{3}-1) / 2\). Iterate
\[
\begin{aligned}
r_{k+1} & =\frac{3}{1+2\left(1-s_{k}^{3}\right)^{1 / 3}}, \quad s_{k+1}=\frac{r_{k+1}-1}{2} \\
\text { and } a_{k+1} & =r_{k+1}^{2} a_{k}-3^{k}\left(r_{k+1}^{2}-1\right) .
\end{aligned}
\]

Then \(1 / a_{k}\) converges cubically to \(\pi\).
- The number of digits correct more than triples with each step.
- There are like algorithms of all orders: quintic, septic, nonic,
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{A Fourth Order Algorithm}

\section*{Algorithm (Quartic Algorithm)}

Set \(a_{0}=6-4 \sqrt{2}\) and \(y_{0}=\sqrt{2}-1\). Iterate
\[
\begin{aligned}
y_{k+1} & =\frac{1-\left(1-y_{k}^{4}\right)^{1 / 4}}{1+\left(1-y_{k}^{4}\right)^{1 / 4}} \quad \text { and } \\
a_{k+1} & =a_{k}\left(1+y_{k+1}\right)^{4}-2^{2 k+3} y_{k+1}\left(1+y_{k+1}+y_{k+1}^{2}\right)
\end{aligned}
\]

Then \(1 / a_{k}\) converges quartically to \(\pi\)


\section*{A Fourth Order Algorithm}

\section*{Algorithm (Quartic Algorithm)}

Set \(a_{0}=6-4 \sqrt{2}\) and \(y_{0}=\sqrt{2}-1\). Iterate
\[
\begin{aligned}
& y_{k+1}=\frac{1-\left(1-y_{k}^{4}\right)^{1 / 4}}{1+\left(1-y_{k}^{4}\right)^{1 / 4}} \quad \text { and } \\
& a_{k+1}=a_{k}\left(1+y_{k+1}\right)^{4}-2^{2 k+3} y_{k+1}\left(1+y_{k+1}+y_{k+1}^{2}\right)
\end{aligned}
\]

Then \(1 / a_{k}\) converges quartically to \(\pi\)
- Using \(\mathbf{4} \times\) 'plus' \(\mathbf{1} \div\) 'plus' \(\mathbf{2} 1 / \sqrt{ }\). \(=\mathbf{1 9}\) full precision \(\times\) per step. So 20 steps costs out at around 400 full precision

\section*{multiplications.}
(This assumes intermediate storage. Additions are cheap) (CARMA

\section*{A Fourth Order Algorithm}

\section*{Algorithm (Quartic Algorithm)}

Set \(a_{0}=6-4 \sqrt{2}\) and \(y_{0}=\sqrt{2}-1\). Iterate
\[
\begin{aligned}
& y_{k+1}=\frac{1-\left(1-y_{k}^{4}\right)^{1 / 4}}{1+\left(1-y_{k}^{4}\right)^{1 / 4}} \quad \text { and } \\
& a_{k+1}=a_{k}\left(1+y_{k+1}\right)^{4}-2^{2 k+3} y_{k+1}\left(1+y_{k+1}+y_{k+1}^{2}\right)
\end{aligned}
\]

Then \(1 / a_{k}\) converges quartically to \(\pi\)
- Using \(\mathbf{4} \times\) 'plus' \(\mathbf{1} \div\) 'plus' \(\mathbf{2} 1 / \sqrt{ }\). \(=\mathbf{1 9}\) full precision \(\times\) per step. So 20 steps costs out at around \(\mathbf{4 0 0}\) full precision multiplications.
(This assumes intermediate storage. Additions are cheap)
24. Pi's Childhood
43. Pi's Adolescence 48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Modern Calculation Records: and IBM Blue Gene/L at Argonne}
\begin{tabular}{|c|c|c|}
\hline Name & Year & Correct Digits \\
\hline Miyoshi and Kanada & 1981 & 2,000,036 \\
\hline Kanada-Yoshino-Tamura & 1982 & 16,777,206 \\
\hline Gosper & 1985 & 17,526,200 \\
\hline Bailey & Jan. 1986 & 29,360,111 \\
\hline Kanada and Tamura & Sep. 1986 & 33,554,414 \\
\hline Kanada and Tamura & Oct. 1986 & 67,108,839 \\
\hline Kanada et. al & Jan. 1987 & 134,217,700 \\
\hline Kanada and Tamura & Jan. 1988 & 201,326,551 \\
\hline Chudnovskys & May 1989 & 480,000,000 \\
\hline Kanada and Tamura & Jul. 1989 & 536,870,898 \\
\hline Kanada and Tamura & Nov. 1989 & 1,073,741,799 \\
\hline Chudnovskys & Aug. 1991 & 2,260,000,000 \\
\hline Chudnovskys & May 1994 & 4,044,000,000 \\
\hline Kanada and Takahashi & Oct. 1995 & 6,442,450,938 \\
\hline Kanada and Takahashi & Jul. 1997 & 51,539,600,000 \\
\hline Kanada and Takahashi & Sep. 1999 & 206,158,430,000 \\
\hline Kanada-Ushiro-Kuroda & Dec. 2002 & 1,241,100,000,000 \\
\hline Takahashi & Jan. 2009 & 1,649,000,000,000 \\
\hline Takahashi & April. 2009 & 2,576,980,377,524 \\
\hline Bellard & Dec. 2009 & 2,699,999,990,000 \\
\hline Kondo and Yee & Aug. 2010 & 5,000,000,000,000 \\
\hline Kondo and Yee & Oct. 2011 & 10,000,000,000,000 \\
\hline Kondo and Yee & Dec. 2013 & 12,200,000,000,000 \\
\hline
\end{tabular}

24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Moore's Law Marches On}


Computation of \(\pi\) since 1975 plotted vs. Moore's law predicted increase \({ }_{\text {CARMA }}\)

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{An Amazing Algebraic Approximation to \(\pi\)}

The transcendental number \(\pi\) and the algebraic number \(1 / a_{20}\) actually agree for more than 1.5 trillion decimal places. - \(\pi\) and \(1 / a_{21}\) agree for more than six trillion decimal places.

1984. I found these on a 16 K upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- 1986. A 29 million digit calculation at NASA Ames - just after the shuttle disaster - uncovered CRAY hardware and software faults.

Took 6 months to convince Seymour Cray; then ran on every CRAY before it left the factory.
This iteration still gives me goose bumps. Especially when

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{An Amazing Algebraic Approximation to \(\pi\)}

The transcendental number \(\pi\) and the algebraic number \(1 / a_{20}\) actually agree for more than 1.5 trillion decimal places.
- \(\pi\) and \(1 / a_{21}\) agree for more than six trillion decimal places.

1984. I found these on a 16 K upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- 1986. A 29 million digit calculation at NASA Ames - just after the shuttle disaster - uncovered CRAY hardware and software faults.

Took 6 months to convince Seymour Cray; then ran on every CRAY before it left the factory.

This iteration still gives me goose bumps. Especially when

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{An Amazing Algebraic Approximation to \(\pi\)}

The transcendental number \(\pi\) and the algebraic number \(1 / a_{20}\) actually agree for more than 1.5 trillion decimal places.
- \(\pi\) and \(1 / a_{21}\) agree for more than six trillion decimal places.

1984. I found these on a 16 K upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- 1986. A 29 million digit calculation at NASA Ames - just after the shuttle disaster - uncovered CRAY hardware and software faults.


Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{An Amazing Algebraic Approximation to \(\pi\)}

The transcendental number \(\pi\) and the algebraic number \(1 / a_{20}\) actually agree for more than 1.5 trillion decimal places.
- \(\pi\) and \(1 / a_{21}\) agree for more than six trillion decimal places.

1984. I found these on a 16 K upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- 1986. A 29 million digit calculation at NASA Ames - just after the shuttle disaster - uncovered CRAY hardware and software faults.
- Took 6 months to convince Seymour Cray; then ran on every CRAY before it left the factory.


\section*{An Amazing Algebraic Approximation to \(\pi\)}

The transcendental number \(\pi\) and the algebraic number \(1 / a_{20}\) actually agree for more than 1.5 trillion decimal places.
- \(\pi\) and \(1 / a_{21}\) agree for more than six trillion decimal places.

1984. I found these on a 16 K upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- 1986. A 29 million digit calculation at NASA Ames - just after the shuttle disaster - uncovered CRAY hardware and software faults.
- Took 6 months to convince Seymour Cray; then ran on every CRAY before it left the factory.
- This iteration still gives me goose bumps. Especially when written out in full...
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
\(a_{0}=6-4 \sqrt[1]{2}\),
Computing Individual Digits of \(\pi\)

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi
\[
\begin{aligned}
& y_{1}=\frac{1-\sqrt[4]{1-y_{0}{ }^{4}}}{1+\sqrt[4]{1-y_{0}{ }^{4}}}, a_{1}=a_{0}\left(1+y_{1}\right)^{4}-2^{3} y_{1}\left(1+y_{1}+y_{1}{ }^{2}\right) \\
& y_{2}=\frac{1-\sqrt[4]{1-y_{1}{ }^{4}}}{1+\sqrt[4]{1-y_{1}{ }^{4}}}, a_{2}=a_{1}\left(1+y_{2}\right)^{4}-2^{5} y_{2}\left(1+y_{2}+y_{2}^{2}\right) \\
& y_{3}=\frac{1-\sqrt[4]{1-y_{2}{ }^{4}}}{1+\sqrt[4]{1-y_{2}{ }^{4}}}, a_{3}=a_{2}\left(1+y_{3}\right)^{4}-2^{7} y_{3}\left(1+y_{3}+y_{3}{ }^{2}\right) \\
& y_{4}=\frac{1-\sqrt[4]{1-y_{3}{ }^{4}}}{1+\sqrt[4]{1-y_{3}{ }^{4}}}, a_{4}=a_{3}\left(1+y_{4}\right)^{4}-2^{9} y_{4}\left(1+y_{4}+y_{4}{ }^{2}\right) \\
& y_{5}=\frac{1-\sqrt[4]{1-y_{4}{ }^{4}}}{1+\sqrt[4]{1-y_{4}{ }^{4}}}, a_{5}=a_{4}\left(1+y_{5}\right)^{4}-2^{11} y_{5}\left(1+y_{5}+y_{5}{ }^{2}\right) \\
& y_{6}=\frac{1-\sqrt[4]{1-y_{5}{ }^{4}}}{1+\sqrt[4]{1-y_{5}{ }^{4}}}, a_{6}=a_{5}\left(1+y_{6}\right)^{4}-2^{13} y_{6}\left(1+y_{6}+y_{6}{ }^{2}\right) \\
& y_{7}=\frac{1-\sqrt[4]{1-y_{6}{ }^{4}}}{1+\sqrt[4]{1-y_{6}{ }^{4}}}, a_{7}=a_{6}\left(1+y_{7}\right)^{4}-2^{15} y_{7}\left(1+y_{7}+y_{7}{ }^{2}\right) \\
& y_{8}=\frac{1-\sqrt[4]{1-y_{7}{ }^{4}}}{1+\sqrt[4]{1-y_{7}{ }^{4}}}, a_{8}=a_{7}\left(1+y_{8}\right)^{4}-2^{17} y_{8}\left(1+y_{8}+y_{8}{ }^{2}\right) \\
& y_{9}=\frac{1-\sqrt[4]{1-y_{8}{ }^{4}}}{1+\sqrt[4]{1-y_{8}{ }^{4}}}, a_{9}=a_{8}\left(1+y_{9}\right)^{4}-2^{19} y_{9}\left(1+y_{9}+y_{9}{ }^{2}\right) \\
& y_{10}=\frac{1-\sqrt[4]{1-y_{9}{ }^{4}}}{1+\sqrt[4]{1-y_{9}{ }^{4}}}, a_{10}=a_{9}\left(1+y_{10}\right)^{4}-2^{21} y_{10}\left(1+y_{10}+y_{10}{ }^{2}\right)
\end{aligned}
\]
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Ramanujan-type Series}

The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi
\[
\begin{aligned}
& y_{11}=\frac{1-\sqrt[4]{1-y_{10}{ }^{4}}}{1+\sqrt[4]{1-y_{10}{ }^{4}}}, a_{11}=a_{10}\left(1+y_{11}\right)^{4}-2^{23} y_{11}\left(1+y_{11}+y_{11}^{2}\right) \\
& y_{12}=\frac{1-\sqrt[4]{1-y_{11} 4}}{1+\sqrt[4]{1-y_{11}{ }^{4}}}, a_{12}=a_{11}\left(1+y_{12}\right)^{4}-2^{25} y_{12}\left(1+y_{12}+y_{12}^{2}\right) \\
& y_{13}=\frac{1-\sqrt[4]{1-y_{12}{ }^{4}}}{1+\sqrt[4]{1-y_{12}{ }^{4}}}, a_{13}=a_{12}\left(1+y_{13}\right)^{4}-2^{27} y_{13}\left(1+y_{13}+y_{13}{ }^{2}\right) \\
& y_{14}=\frac{1-\sqrt[4]{1-y_{13}{ }^{4}}}{1+\sqrt[4]{1-y_{13}{ }^{4}}}, a_{14}=a_{13}\left(1+y_{14}\right)^{4}-2^{29} y_{14}\left(1+y_{14}+y_{14}{ }^{2}\right) \\
& y_{15}=\frac{1-\sqrt[4]{1-y_{14}{ }^{4}}}{1+\sqrt[4]{1-y_{14}{ }^{4}}}, a_{15}=a_{14}\left(1+y_{15}\right)^{4}-2^{31} y_{15}\left(1+y_{15}+y_{15}{ }^{2}\right) \\
& y_{16}=\frac{1-\sqrt[4]{1-y_{15^{4}}}}{1+\sqrt[4]{1-y_{15}{ }^{4}}}, a_{16}=a_{15}\left(1+y_{16}\right)^{4}-2^{33} y_{16}\left(1+y_{16}+y_{16}{ }^{2}\right) \\
& y_{17}=\frac{1-\sqrt[4]{1-y_{16}{ }^{4}}}{1+\sqrt[4]{1-y_{16}{ }^{4}}}, a_{17}=a_{16}\left(1+y_{17}\right)^{4}-2^{35} y_{17}\left(1+y_{17}+y_{17}{ }^{2}\right) \\
& y_{18}=\frac{1-\sqrt[4]{1-y_{17}{ }^{4}}}{1+\sqrt[4]{1-y_{17}{ }^{4}}}, a_{18}=a_{17}\left(1+y_{18}\right)^{4}-2^{37} y_{18}\left(1+y_{18}+y_{18}{ }^{2}\right) \\
& y_{19}=\frac{1-\sqrt[4]{1-y_{18}{ }^{4}}}{1+\sqrt[4]{1-y_{18}{ }^{4}}}, a_{19}=a_{18}\left(1+y_{19}\right)^{4}-2^{39} y_{19}\left(1+y_{19}+y_{19}{ }^{2}\right)
\end{aligned}
\]
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Ramanujan-type Series}

The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi
\[
\begin{aligned}
& y_{11}=\frac{1-\sqrt[4]{1-y_{10}{ }^{4}}}{1+\sqrt[4]{1-y_{10}{ }^{4}}}, a_{11}=a_{10}\left(1+y_{11}\right)^{4}-2^{23} y_{11}\left(1+y_{11}+y_{11}^{2}\right) \\
& y_{12}=\frac{1-\sqrt[4]{1-y_{11} 4}}{1+\sqrt[4]{1-y_{11} 4}}, a_{12}=a_{11}\left(1+y_{12}\right)^{4}-2^{25} y_{12}\left(1+y_{12}+y_{12}{ }^{2}\right) \\
& y_{13}=\frac{1-\sqrt[4]{1-y_{12}{ }^{4}}}{1+\sqrt[4]{1-y_{12}{ }^{4}}}, a_{13}=a_{12}\left(1+y_{13}\right)^{4}-2^{27} y_{13}\left(1+y_{13}+y_{13}{ }^{2}\right) \\
& y_{14}=\frac{1-\sqrt[4]{1-y_{13}{ }^{4}}}{1+\sqrt[4]{1-y_{13}{ }^{4}}}, a_{14}=a_{13}\left(1+y_{14}\right)^{4}-2^{29} y_{14}\left(1+y_{14}+y_{14}{ }^{2}\right) \\
& y_{15}=\frac{1-\sqrt[4]{1-y_{14}{ }^{4}}}{1+\sqrt[4]{1-y_{14}{ }^{4}}}, a_{15}=a_{14}\left(1+y_{15}\right)^{4}-2^{31} y_{15}\left(1+y_{15}+y_{15}{ }^{2}\right) \\
& y_{16}=\frac{1-\sqrt[4]{1-y_{15}{ }^{4}}}{1+\sqrt[4]{1-y_{15}{ }^{4}}}, a_{16}=a_{15}\left(1+y_{16}\right)^{4}-2^{33} y_{16}\left(1+y_{16}+y_{16}{ }^{2}\right) \\
& y_{17}=\frac{1-\sqrt[4]{1-y_{16^{4}}}}{1+\sqrt[4]{1-y_{16}{ }^{4}}}, a_{17}=a_{16}\left(1+y_{17}\right)^{4}-2^{35} y_{17}\left(1+y_{17}+y_{17}{ }^{2}\right) \\
& y_{18}=\frac{1-\sqrt[4]{1-y_{17}{ }^{4}}}{1+\sqrt[4]{1-y_{17}{ }^{4}}}, a_{18}=a_{17}\left(1+y_{18}\right)^{4}-2^{37} y_{18}\left(1+y_{18}+y_{18}{ }^{2}\right) \\
& y_{19}=\frac{1-\sqrt[4]{1-y_{18}{ }^{4}}}{1+\sqrt[4]{1-y_{18}{ }^{4}}}, a_{19}=a_{18}\left(1+y_{19}\right)^{4}-2^{39} y_{19}\left(1+y_{19}+y_{19}{ }^{2}\right) \\
& y_{20}=\frac{1-\sqrt[4]{1-y_{19}{ }^{4}}}{1+\sqrt[4]{1-y_{19}{ }^{4}}}, \mathbf{a}_{20}=a_{19}\left(1+y_{20}\right)^{4}-2^{41} y_{20}\left(1+y_{20}+y_{20}{ }^{2}\right) \text {. }
\end{aligned}
\]

Ramanujan-type Series

\section*{"A Billion Digits is Impossible"}
- Since 1988 used, with Salamin-Brent, by Kanada's Tokyo team. Including: \(\pi\) to 200 billion decimal digits in 1999 and records in 2009.
1963. Dan Shanks told Phil Davis he was sure a billionth digit
computation was forever impossible. We 'wimps' told \(L A\)
Times \(10^{10^{2}}\) impossible. This led to an editorial on unicorns.
- In 1997 the first occurrence of the sequence 0123456789 was found (late) in the decimal expansion of \(\pi\) starting at the \(17,387,594,880\)-th digit after the decimal point.

In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

\section*{"A Billion Digits is Impossible"}
- Since 1988 used, with Salamin-Brent, by Kanada's Tokyo team. Including: \(\pi\) to 200 billion decimal digits in \(1999 \ldots\) and records in 2009.
- 1963. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. Times \(10^{10^{2}}\) impossible. This led to an editorial on unicorns.
- In 1997 the first occurrence of the sequence 0123456789 was found (late) in the decimal expansion of \(\pi\) starting at the \(17,387,594,880\)-th digit after the decimal point.

In consequence the status of several famous intuitionistic examnles due to Brouwer and Hevting has changed

\section*{"A Billion Digits is Impossible"}
- Since 1988 used, with Salamin-Brent, by Kanada's Tokyo team. Including: \(\pi\) to 200 billion decimal digits in \(1999 \ldots\) and records in 2009.
- 1963. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told LA Times \(10^{10^{2}}\) impossible.
- In 1997 the first occurrence of the sequence 0123456789 was found (late) in the decimal expansion of \(\pi\) starting at the \(17,387,594,880\)-th digit after the decimal point.

In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

\section*{"A Billion Digits is Impossible"}
- Since 1988 used, with Salamin-Brent, by Kanada's Tokyo team. Including: \(\pi\) to 200 billion decimal digits in 1999 and records in 2009.
- 1963. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told LA Times \(10^{10^{2}}\) impossible. This led to an editorial on unicorns.
- In 1997 the first occurrence of the sequence 0123456789 was found (late) in the decimal expansion of \(\pi\) starting at the \(17,387,594,880\)-th digit after the decimal point.

In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

\section*{"A Billion Digits is Impossible"}
- Since 1988 used, with Salamin-Brent, by Kanada's Tokyo team. Including: \(\pi\) to 200 billion decimal digits in \(1999 \ldots\) and records in 2009.
- 1963. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told LA Times \(10^{10^{2}}\) impossible. This led to an editorial on unicorns.
- In 1997 the first occurrence of the sequence \(\mathbf{0 1 2 3 4 5 6 7 8 9}\) was found (late) in the decimal expansion of \(\pi\) starting at the \(17,387,594,880\)-th digit after the decimal point.
- In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series

\section*{Billions and Billions}

24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Star Trek}


Kirk asks:
"Aren't there some mathematical problems that simply can't be solved?"

And Spock 'fries the brains' of a rogue computer by telling it: "Compute to the last digit the value of ... Pi."

\section*{Star Trek}


Kirk asks:
"Aren't there some mathematical problems that simply can't be solved?"

And Spock 'fries the brains' of a rogue computer by telling it: "Compute to the last digit the value of ... Pi."

\section*{Pi the Song: from the album Aerial}

2005 Influential Singer-songwriter Kate Bush sings "Pi" on Aerial.
Sweet and gentle and sensitive man With an obsessive nature and deep fascination for numbers
And a complete infatuation with the calculation of Pi
Chorus: Oh he love, he love, he love He does love his numbers
And they run, they run, they run him In a great big circle In a circle of infinity

\footnotetext{
"a sentimental ode to a mathematician, audacious in both subject matter and treatment. The chorus is the number sung to many, many decimal places." [150 - wrong after 50] Observer Review
}

\section*{Back to the Future}
2002. Kanada computed \(\pi\) to over 1.24 trillion decimal digits. His team first computed \(\pi\) in hex (base 16) to \(\mathbf{1 , 0 3 0 , 7 0 0 ,}\) \(\mathbf{0 0 0}, \mathbf{0 0 0}\) places, using good old Machin type relations:
\[
\begin{aligned}
\pi & =48 \tan ^{-1} \frac{1}{49}+128 \tan ^{-1} \frac{1}{\mathbf{5 7}}-20 \tan ^{-1} \frac{1}{\mathbf{2 3 9}} \\
& +48 \tan ^{-1} \frac{1}{110443} \quad \text { (Takano, pop-song writer 1982) } \\
\pi & =176 \tan ^{-1} \frac{1}{\mathbf{5 7}}+28 \tan ^{-1} \frac{1}{239}-48 \tan ^{-1} \frac{1}{682} \\
& +96 \tan ^{-1} \frac{1}{12943} \quad \text { (Störmer, mathematician, 1896) }
\end{aligned}
\]

\section*{Back to the Future}
2002. Kanada computed \(\pi\) to over 1.24 trillion decimal digits. His team first computed \(\pi\) in hex (base 16) to \(\mathbf{1 , 0 3 0 , 7 0 0 ,}\) \(\mathbf{0 0 0}, \mathbf{0 0 0}\) places, using good old Machin type relations:
\[
\begin{aligned}
\pi & =48 \tan ^{-1} \frac{1}{49}+128 \tan ^{-1} \frac{1}{\mathbf{5 7}}-20 \tan ^{-1} \frac{1}{\mathbf{2 3 9}} \\
& +48 \tan ^{-1} \frac{1}{110443} \quad \text { (Takano, pop-song writer 1982) } \\
\pi & =176 \tan ^{-1} \frac{1}{\mathbf{5 7}}+28 \tan ^{-1} \frac{1}{\mathbf{2 3 9}}-48 \tan ^{-1} \frac{1}{682} \\
& +96 \tan ^{-1} \frac{1}{12943} \quad \text { (Störmer, mathematician, 1896) }
\end{aligned}
\]
- The computations agreed and were converted to decimal.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

\section*{Yasumasa Kanada}
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068 \(\leftrightarrow\)
11.00100100001111110110101010001000100001011010001100001000110100110001001100011001100010100010111000
- The decimal expansion was checked by converting it back to hex. Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi - at roughly 1 Tflop/sec (2002)
- 2002 hex-pi computation record broken 3 times in 2009 - quite spectacularly. We will see that:

Advances in \(\pi\)-computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

The mathematics has not really changed.

\section*{Yasumasa Kanada}
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068 \(\leftrightarrow\)
11.00100100001111110110101010001000100001011010001100001000110100110001001100011001100010100010111000
- The decimal expansion was checked by converting it back to hex.
- Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi - at roughly 1 Tflop/sec (2002)
- 2002 hex-pi computation record broken 3 times in 2009 - quite spectacularly. We will see that:

Advances in \(\pi\)-computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

The mathematics has not really changed.

\section*{Yasumasa Kanada}
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068 \(\leftrightarrow\)
11.00100100001111110110101010001000100001011010001100001000110100110001001100011001100010100010111000
- The decimal expansion was checked by converting it back to hex.
- Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi - at roughly 1 Tflop/sec (2002)
- 2002 hex-pi computation record broken 3 times in 2009 - quite spectacularly. We will see that:

Advances in \(\pi\)-computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

The mathematics has not really changed.

\section*{Yasumasa Kanada}
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068 \(\leftrightarrow\)
11.00100100001111110110101010001000100001011010001100001000110100110001001100011001100010100010111000
- The decimal expansion was checked by converting it back to hex.
- Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi - at roughly 1 Tflop/sec (2002)
- 2002 hex-pi computation record broken 3 times in 2009 - quite spectacularly. We will see that:

Advances in \(\pi\)-computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

The mathematics has not really changed.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Yasumasa Kanada}
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068 \(\leftrightarrow\)
11.00100100001111110110101010001000100001011010001100001000110100110001001100011001100010100010111000
- The decimal expansion was checked by converting it back to hex.
- Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran \(\mathbf{6 0 0}\) hrs on same 64 -node Hitachi - at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 - quite spectacularly. We will see that:

Advances in \(\pi\)-computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

The mathematics has not really changed.

\section*{Yasumasa Kanada}
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068 \(\leftrightarrow\)
11.00100100001111110110101010001000100001011010001100001000110100110001001100011001100010100010111000
- The decimal expansion was checked by converting it back to hex.
- Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran \(\mathbf{6 0 0}\) hrs on same 64 -node Hitachi - at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 - quite spectacularly.

Advances in \(\pi\)-computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

\section*{Yasumasa Kanada}
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117068
11.00100100001111110110101010001000100001011010001100001000110100110001001100011001100010100010111000
- The decimal expansion was checked by converting it back to hex.
- Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran \(\mathbf{6 0 0}\) hrs on same 64 -node Hitachi - at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 - quite spectacularly. We will see that:

Advances in \(\pi\)-computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

The mathematics has not really changed.
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Daisuke Takahashi}

A 29.36 million digit record by Bailey in 1986 had soared to 1.649 trillion by Takahashi in January 2009.

- 1986. 28 hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs .
2009. On 1024 core Appro Xtreme-X3 system, 1.649 trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB . They differed only in last \(\mathbf{1 3 9}\) places.
- April 2009. Takahashi produced 2,576,980,377,524 places.

\section*{Daisuke Takahashi}

A 29.36 million digit record by Bailey in 1986 had soared to 1.649 trillion by Takahashi in January 2009.

- 1986. 28 hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs .
- 2009. On 1024 core Appro Xtreme-X3 system, 1.649 trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB . They differed only in last 139 places.
- April 2009. Takahashi produced 2,576,980,377,524 places.

\section*{Daisuke Takahashi}

A 29.36 million digit record by Bailey in 1986 had soared to 1.649 trillion by Takahashi in January 2009.

- 1986. 28 hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs .
- 2009. On 1024 core Appro Xtreme-X3 system, \(\mathbf{1 . 6 4 9}\) trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB .
- April 2009. Takahashi produced 2,576,980,377,524 places.

\section*{Daisuke Takahashi}

A 29.36 million digit record by Bailey in 1986 had soared to 1.649 trillion by Takahashi in January 2009.

- 1986. 28 hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs .
- 2009. On 1024 core Appro Xtreme-X3 system, \(\mathbf{1 . 6 4 9}\) trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB . They differed only in last 139 places.
- April 2009. Takahashi produced 2,576,980,377,524 places.

\section*{Daisuke Takahashi}

A 29.36 million digit record by Bailey in 1986 had soared to 1.649 trillion by Takahashi in January 2009.

- 1986. 28 hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs .
- 2009. On 1024 core Appro Xtreme-X3 system, \(\mathbf{1 . 6 4 9}\) trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB . They differed only in last 139 places.
- April 2009. Takahashi produced 2,576,980,377,524 places.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age 113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Fabrice Bellard: What Price Certainty?}

Dec. 2009. Bellard computed 2.7 trillion decimal digits of Pi .
- First in hexadecimal using the Chudnovsky series;
- He tried a complete verification computation, but it failed;
- He had used hexadecimal and so the first could be 'partially' checked using his BBP series (17) below.

This took 131 days but he only used a single 4-core workstation with a lot of storage and even more human intelligence!
- For full details of this feat and of Takahashi's most recent computation one can look at Wikipedia /wiki/Chronology_of_computation_of_pi

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Fabrice Bellard: What Price Certainty?}

Dec. 2009. Bellard computed 2.7 trillion decimal digits of Pi .
- First in hexadecimal using the Chudnovsky series;
- He tried a complete verification computation, but it failed;
- He had used hexadecimal and so the first could be 'partially' checked using his BBP series (17) below.

This took 131 days but he only used a single 4-core workstation
with a lot of storage and even more human intelligence!
- For full details of this feat and of Takahashi's most recent computation one can look at Wikipedia
/wiki/Chronology_of_computation_of_pi

\section*{Fabrice Bellard: What Price Certainty?}

Dec. 2009. Bellard computed 2.7 trillion decimal digits of Pi .
- First in hexadecimal using the Chudnovsky series;
- He tried a complete verification computation, but it failed;
- He had used hexadecimal and so the first could be 'partially' checked using his BBP series (17) below.

This took 131 days but he only used a single 4-core workstation with a lot of storage and even more human intelligence!
- For full details of this feat and of Takahashi's most recent computation one can look at Wikipedia
/wiki/Chronology_of_computation_of_pi

\section*{Fabrice Bellard: What Price Certainty?}

Dec. 2009. Bellard computed 2.7 trillion decimal digits of Pi .
- First in hexadecimal using the Chudnovsky series;
- He tried a complete verification computation, but it failed;
- He had used hexadecimal and so the first could be 'partially' checked using his BBP series (17) below.

This took 131 days but he only used a single 4-core workstation with a lot of storage and even more human intelligence!
- For full details of this feat and of Takahashi's most recent computation one can look at Wikipedia /wiki/Chronology_of_computation_of_pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Shiguro Kendo and Alex Yee: What is the Limit?}
- August 2010. On a home built \$18,000 machine, Kondo (hardware engineer, below) and Yee (undergrad software) nearly doubled this to \(\mathbf{5 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}\) places. The last 30 are

\section*{749712037440238264219484283852}

- The Chudnovsky-Ramanujan series took 90 days: including 64hrs BBP hex-confirmation and 8 days for base-conversion A very fine online account is available at www.numberworld.org/misc_runs/pi-5t/details.html CARMA - October 2011. Extension to 10 trillion places.

\section*{Shiguro Kendo and Alex Yee: What is the Limit?}
- August 2010. On a home built \(\mathbf{\$ 1 8 , 0 0 0}\) machine, Kondo (hardware engineer, below) and Yee (undergrad software) nearly doubled this to \(\mathbf{5 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}\) places.

749712037440238264219484283852

- The Chudnovsky-Ramanujan series took 90 days: including 64hrs BBP hex-confirmation and 8 days for base-conversion A very fine online account is available at
www.numberworld.org/misc_runs/pi-5t/details.html CARMA

\section*{Shiguro Kendo and Alex Yee: What is the Limit?}
- August 2010. On a home built \(\mathbf{\$ 1 8 , 0 0 0}\) machine, Kondo (hardware engineer, below) and Yee (undergrad software) nearly doubled this to \(\mathbf{5 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}, 000\) places. The last 30 are

749712037440238264219484283852

- The Chudnovsky-Ramanujan series took 90 days: including 64hrs BBP hex-confirmation and 8 days for base-conversion A very fine online account is available at

\section*{Shiguro Kendo and Alex Yee: What is the Limit?}
- August 2010. On a home built \(\mathbf{\$ 1 8 , 0 0 0}\) machine, Kondo (hardware engineer, below) and Yee (undergrad software) nearly doubled this to \(\mathbf{5 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}, 000\) places. The last 30 are

749712037440238264219484283852

- The Chudnovsky-Ramanujan series took 90 days: including 64hrs BBP hex-confirmation and 8 days for base-conversion.
A very fine online account is available at

\section*{Shiguro Kendo and Alex Yee: What is the Limit?}
- August 2010. On a home built \(\mathbf{\$ 1 8 , 0 0 0}\) machine, Kondo (hardware engineer, below) and Yee (undergrad software) nearly doubled this to \(\mathbf{5 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}, 000\) places. The last 30 are

749712037440238264219484283852

- The Chudnovsky-Ramanujan series took 90 days: including 64hrs BBP hex-confirmation and \(\mathbf{8}\) days for base-conversion.
A very fine online account is available at
www.numberworld.org/misc_runs/pi-5t/details.html ©ARMA
- October 2011. Extension to \(\mathbf{1 0}\) trillion places.
24. Pi's Childhood
43. Pi's Adolescence 48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Two New Pi Guys: Alex Yee and his Elephant}

. The elephant may have provided extra memory?
CARMA
J.M. Borwein

Life of Pi (CARMA)
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Two New Pi Guys: Alex Yee and his Elephant}

© The elephant may have provided extra memory?
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Two New Pi Guys:}

\section*{Mario Livio (JPL) in 01-31-2013 HuffPost}

\section*{Mario Livio}

Astrophyolist, Space Teliascope
Science Instinte

GET UPDATES FROM MARIO LIVIO
DFAN RSS: DEMAI Y Follow TLike 45

\section*{As Easy as Pi}


There is probably no number in mathematics (with the possible exception of o) that is more celebrated than the one equal to the ratio of a circle's circumference to its diameter. This number is denoted by the Greek letter \(\boldsymbol{\pi}\) (pi). Pi is approximately equal to 3.14159 , but its decimal representation neither ends nor settles into a repeating pattern. In fact, on Oct. 16, 2011, Alexander J. Yee and Shigeru Kondo completed the task of using a custom-built computer (shown in Fig. 1 ) for 371 days, to calculate \(\pi\) to 10 trillion digits! To appreciate this accuracy, let me note that if we wanted to express the radius of the observable universe in terms of the radius of the hydrogen atom, about 40 digits would have sufficed.

(reproduced by pernission from Alexander Yee)

\section*{J.M. Borwein Life of Pi (CARMA)}
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

Ramanujan-type Series
The ENIACalculator
Reduced Complexity Algorithms
Modern Calculation Records
A Few Trillion Digits of Pi

\section*{Two New Pi Guys:}

\section*{Mario Livio (JPL) in 01-31-2013 HuffPost}

\section*{Mario Livio}

Astrophyolist, Space Teliascope
Science Instinte

GET UPDATES FROM MARIO LIVIO
DFAN RSS: DEMAI Y Follow TLike 45

\section*{As Easy as Pi}


There is probably no number in mathematics (with the possible exception of o) that is more celebrated than the one equal to the ratio of a circle's circumference to its diameter. This number is denoted by the Greek letter \(\boldsymbol{\pi}\) (pi). Pi is approximately equal to 3.14159 , but its decimal representation neither ends nor settles into a repeating pattern. In fact, on Oct. 16, 2011, Alexander J. Yee and Shigeru Kondo completed the task of using a custom-built computer (shown in Fig. 1 ) for 371 days, to calculate \(\pi\) to 10 trillion digits! To appreciate this accuracy, let me note that if we wanted to express the radius of the observable universe in terms of the radius of the hydrogen atom, about 40 digits would have sufficed.

(reproduced by pernission from Alexander Yee)

\section*{J.M. Borwein Life of Pi (CARMA)}

\section*{Computing Individual Digits of \(\pi\)}
1971. One might think everything of interest about computing \(\pi\) has been discovered. This was Beckmann's view in A History of \(\pi\)

Yet, the Salamin-Brent quadratic iteration was found only five years later. Higher-order algorithms followed in the 1980s

1990. Rabinowitz and Wagon found a 'spigot' algorithm for \(\pi\) : It 'drins' individual digits (of \(\pi\) in any desired base) using all previous digits.

But even insiders are sometimes surprised by a new discovery: in this case \(B\) BP series.

\title{
24. Pi's Childhood \\ 43. Pi's Adolescence \\ 48. Adulthood of Pi \\ 79. Pi in the Digital Age
}
113. Computing Individual Digits of \(\pi\)

BBP Digit Algorithms

\section*{Computing Individual Digits of \(\pi\)}
1971. One might think everything of interest about computing \(\pi\) has been discovered. This was Beckmann's view in A History of \(\pi\)

Yet, the Salamin-Brent quadratic iteration was found only five years later. Higher-order algorithms followed in the 1980s.

1990. Rabinowitz and Wagon found a 'spigot' algorithm for \(\pi\) : It 'drips' individual digits (of \(\pi\) in any desired base) using all previous digits.

But even insiders are sometimes surprised by a new discovery: in this case BBP series.

\title{
24. Pi's Childhood \\ 43. Pi's Adolescence \\ 48. Adulthood of Pi \\ 79. Pi in the Digital Age
}
113. Computing Individual Digits of \(\pi\)

BBP Digit Algorithms

\section*{Computing Individual Digits of \(\pi\)}
1971. One might think everything of interest about computing \(\pi\) has been discovered. This was Beckmann's view in A History of \(\pi\)
Yet, the Salamin-Brent quadratic iteration was found only five years later. Higher-order algorithms followed in the 1980s.

1990. Rabinowitz and Wagon found a 'spigot' algorithm for \(\pi\) : It 'drips' individual digits (of \(\pi\) in any desired base) using all previous digits.

But even insiders are sometimes surprised by a new discovery: in this case BBP series.
113. Computing Individual Digits of \(\pi\)

\section*{Computing Individual Digits of \(\pi\)}
1971. One might think everything of interest about computing \(\pi\) has been discovered. This was Beckmann's view in A History of \(\pi\)

Yet, the Salamin-Brent quadratic iteration was found only five years later. Higher-order algorithms followed in the 1980s.

1990. Rabinowitz and Wagon found a 'spigot' algorithm for \(\pi\) : It 'drips' individual digits (of \(\pi\) in any desired base) using all previous digits.

But even insiders are sometimes surprised by a new discovery: in this case BBP series.
113. Computing Individual Digits of \(\pi\)

\section*{What BBP Does?}

Prior to 1996, most folks thought to compute the \(d\)-th digit of \(\pi\), you had to generate the (order of) the entire first \(d\) digits.
- This is not true, at least for hex (base 16) or binary (base 2) digits of \(\pi\). In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of \(\pi\). It produces:
a modest-length string hex or binary digits of \(\pi\), beginning at an any position, using no prior bits;
(1) is implementable on any modern computer;
(2) requires no multiple precision software;
(3) requires very little memory; and has
(4) a computational cost growing only slightly faster than the digit position.

\section*{What BBP Does?}

Prior to 1996, most folks thought to compute the \(d\)-th digit of \(\pi\), you had to generate the (order of) the entire first \(d\) digits.
- This is not true, at least for hex (base 16) or binary (base 2) digits of \(\pi\). In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of \(\pi\). It produces:
- a modest-length string hex or binary digits of \(\pi\), beginning at an any position, using no prior bits;
(1) is implementable on any modern computer;
(2) requires no multiple precision software;
(3) requires very little memory; and has
4) a computational cost growing only slightly faster than the digit position.

\section*{What BBP Does?}

Prior to 1996, most folks thought to compute the \(d\)-th digit of \(\pi\), you had to generate the (order of) the entire first \(d\) digits.
- This is not true, at least for hex (base 16) or binary (base 2) digits of \(\pi\). In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of \(\pi\). It produces:
- a modest-length string hex or binary digits of \(\pi\), beginning at an any position, using no prior bits;
(1) is implementable on any modern computer;
(2) requires no multiple precision software;
(3) requires very little memory; and has
4) a computational cost growing only slightly faster than the digit position.

\section*{What BBP Does?}

Prior to 1996, most folks thought to compute the \(d\)-th digit of \(\pi\), you had to generate the (order of) the entire first \(d\) digits.
- This is not true, at least for hex (base 16) or binary (base 2) digits of \(\pi\). In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of \(\pi\). It produces:
- a modest-length string hex or binary digits of \(\pi\), beginning at an any position, using no prior bits;
(1) is implementable on any modern computer;
(2) requires no multiple precision software;
(3) requires very little memory: and has
4) a computational cost growing only slightly faster than the digit position.

\section*{What BBP Does?}

Prior to 1996, most folks thought to compute the \(d\)-th digit of \(\pi\), you had to generate the (order of) the entire first \(d\) digits.
- This is not true, at least for hex (base 16) or binary (base 2) digits of \(\pi\). In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of \(\pi\). It produces:
- a modest-length string hex or binary digits of \(\pi\), beginning at an any position, using no prior bits;
(1) is implementable on any modern computer;
(2) requires no multiple precision software;
(3) requires very little memory; and has
(4) a computational cost growing only slightly faster than the digit position.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{BBP Digit Algorithms}

Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{What BBP Is? Reverse Engineered Mathematics}

This is based on the following then new formula for \(\pi\) :
\[
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{16}
\end{equation*}
\]
- The millionth hex digit (four millionth binary digit) of \(\pi\) can be found in under 30 secs on a fairly new computer in Maple (not \(C++\) ) and the billionth in 10 hrs.

Equation (16) was discovered numerically using integer relation methods over months in our Vancouver lab, CECM. It arrived in the coded form


\section*{What BBP Is? Reverse Engineered Mathematics}

This is based on the following then new formula for \(\pi\) :
\[
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{16}
\end{equation*}
\]
- The millionth hex digit (four millionth binary digit) of \(\pi\) can be found in under \(\mathbf{3 0}\) secs on a fairly new computer in Maple (not \(\mathrm{C}++\) ) and the billionth in \(\mathbf{1 0}\) hrs.
Equation (16) was discovered numerically using integer relation
methods over months in our Vancouver lab, CECM. It arrived in
the coded form:


\section*{What BBP Is? Reverse Engineered Mathematics}

This is based on the following then new formula for \(\pi\) :
\[
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{16}
\end{equation*}
\]
- The millionth hex digit (four millionth binary digit) of \(\pi\) can be found in under \(\mathbf{3 0}\) secs on a fairly new computer in Maple (not \(\mathbf{C}++\) ) and the billionth in \(\mathbf{1 0}\) hrs.
Equation (16) was discovered numerically using integer relation methods over months in our Vancouver lab, CECM. It arrived in the coded form:

\section*{What BBP Is? Reverse Engineered Mathematics}

This is based on the following then new formula for \(\pi\) :
\[
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{16}
\end{equation*}
\]
- The millionth hex digit (four millionth binary digit) of \(\pi\) can be found in under \(\mathbf{3 0}\) secs on a fairly new computer in Maple (not \(\mathrm{C}++\) ) and the billionth in \(\mathbf{1 0}\) hrs.
Equation (16) was discovered numerically using integer relation methods over months in our Vancouver lab, CECM. It arrived in the coded form:
\[
\pi=4{ }_{2} \mathrm{~F}_{1}\left(1, \frac{1}{4} ; \frac{5}{4},-\frac{1}{4}\right)+2 \tan ^{-1}\left(\frac{1}{2}\right)-\log 5
\]
where \({ }_{2} \mathrm{~F}_{1}(1,1 / 4 ; 5 / 4,-1 / 4)=0.955933837 \ldots\) is a Gauss hypergeometric function.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{BBP Digit Algorithms} Mathematical Interlude, III Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{Edge of Computation Prize Finalist}

\section*{Edge The Third Culture}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Home & \begin{tabular}{l} 
About \\
Edge
\end{tabular} & Features & Edge Editions & Press & \begin{tabular}{c} 
The Reality \\
Club
\end{tabular} & \begin{tabular}{c} 
Third \\
Culture
\end{tabular} & Digerati
\end{tabular} \begin{tabular}{c}
\begin{tabular}{l} 
Edge \\
Search
\end{tabular} \\
\hline
\end{tabular}

\section*{THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE}

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a \(\$ 100,000\) prize initiated and funded by science philanthropist Jeffrey Epstein.
- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize Along with founders of Google, Netscape, Celera and many brilliant thinkers,
- Won by David Deutsch - discoverer of Quantum Computin CARMA

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{Edge of Computation Prize Finalist}

\section*{EdgeThe Third Culture}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Home & \begin{tabular}{l} 
About \\
Edge
\end{tabular} & Features & Edge Editions & Press & \begin{tabular}{c} 
The Reality \\
Club
\end{tabular} & \begin{tabular}{c} 
Third \\
Culture
\end{tabular} & Digerati
\end{tabular} \begin{tabular}{|}
\begin{tabular}{c} 
Edge \\
Search
\end{tabular} \\
\hline
\end{tabular}

\section*{THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE}

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a \(\$ 100,000\) prize initiated and funded by science philanthropist Jeffrey Epstein.
- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize

- Won by David Deutsch - discoverer of Quantum Computin CARMA

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{Edge of Computation Prize Finalist}

\section*{EdgeThe Third Culture}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Home & \begin{tabular}{c} 
About \\
Edge
\end{tabular} & Features & Edge Editions & Press & \begin{tabular}{c} 
The Reality \\
Club
\end{tabular} & \begin{tabular}{c} 
Third \\
Culture
\end{tabular} & Digerati
\end{tabular} \begin{tabular}{|l}
\begin{tabular}{c} 
Edge \\
Search
\end{tabular} \\
\hline
\end{tabular}

\section*{THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE}

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a \(\$ 100,000\) prize initiated and funded by science philanthropist Jeffrey Epstein.
- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize
- Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...

\section*{Edge of Computation Prize Finalist}

\section*{EdgeThe Third Culture}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Home & \begin{tabular}{c} 
About \\
Edge
\end{tabular} & Features & Edge Editions & Press & \begin{tabular}{c} 
The Reality \\
Club
\end{tabular} & \begin{tabular}{c} 
Third \\
Culture
\end{tabular} & Digerati
\end{tabular} \begin{tabular}{|l}
\begin{tabular}{c} 
Edge \\
Search
\end{tabular} \\
\hline
\end{tabular}

\section*{THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE}

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a \(\$ 100,000\) prize initiated and funded by science philanthropist Jeffrey Epstein.
- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize
- Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...
- Won by David Deutsch - discoverer of Quantum Computing \({ }^{\text {CARMA }}\)
24. Pi's Childhood
43. Pi's Adolescence 48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{BBP Digit Algorithms}

Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{BBP Formula Database http://carma.newcastle.edu.au/bbp}

\section*{Matthew Tam has built an interactive website.}
(1) It includes most known BBP formulas.
2. It allows digit computation, is searchable, updatable and more.


CARMA

\section*{J.M. Borwein}
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{BBP Digit Algorithms}

Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{BBP Formula Database http://carma.newcastle.edu.au/bbp}

\section*{Matthew Tam has built an interactive website.}
(1) It includes most known BBP formulas.

2 It allows digit computation, is searchable, updatable and more

24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{BBP Formula Database http://carma.newcastle.edu.au/bbp}

Matthew Tam has built an interactive website.
(1) It includes most known BBP formulas.
(2) It allows digit computation, is searchable, updatable and more.

48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Mathematical Interlude: III. (Maple, Mathematica and Human)}

Proof of (16). For \(0<k<8\),
\[
\int_{0}^{1 / \sqrt{2}} \frac{x^{k-1}}{1-x^{8}} d x=\int_{0}^{1 / \sqrt{2}} \sum_{i=0}^{\infty} x^{k-1+8 i} d x=\frac{1}{2^{k / 2}} \sum_{i=0}^{\infty} \frac{1}{16^{i}(8 i+k)}
\]

\section*{Thus, one can write}

which on substituting \(y:=\sqrt{2} x\) becomes

113. Computing Individual Digits of \(\pi\)

\section*{Mathematical Interlude: III. (Maple, Mathematica and Human)}

Proof of (16). For \(0<k<8\),
\[
\int_{0}^{1 / \sqrt{2}} \frac{x^{k-1}}{1-x^{8}} d x=\int_{0}^{1 / \sqrt{2}} \sum_{i=0}^{\infty} x^{k-1+8 i} d x=\frac{1}{2^{k / 2}} \sum_{i=0}^{\infty} \frac{1}{16^{i}(8 i+k)}
\]

Thus, one can write
\[
\begin{aligned}
\sum_{i=0}^{\infty} & \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \\
& =\int_{0}^{1 / \sqrt{2}} \frac{4 \sqrt{2}-8 x^{3}-4 \sqrt{2} x^{4}-8 x^{5}}{1-x^{8}} d x
\end{aligned}
\]
which on substituting \(y:=\sqrt{2} x\) becomes

113. Computing Individual Digits of \(\pi\)

\section*{Mathematical Interlude: III. (Maple, Mathematica and Human)}

Proof of (16). For \(0<k<8\),
\[
\int_{0}^{1 / \sqrt{2}} \frac{x^{k-1}}{1-x^{8}} d x=\int_{0}^{1 / \sqrt{2}} \sum_{i=0}^{\infty} x^{k-1+8 i} d x=\frac{1}{2^{k / 2}} \sum_{i=0}^{\infty} \frac{1}{16^{i}(8 i+k)}
\]

Thus, one can write
\[
\begin{aligned}
\sum_{i=0}^{\infty} & \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \\
& =\int_{0}^{1 / \sqrt{2}} \frac{4 \sqrt{2}-8 x^{3}-4 \sqrt{2} x^{4}-8 x^{5}}{1-x^{8}} d x
\end{aligned}
\]
which on substituting \(y:=\sqrt{2} x\) becomes
\(\int_{0}^{1} \frac{16 y-16}{y^{4}-2 y^{3}+4 y-4} d y=\int_{0}^{1} \frac{4 y}{y^{2}-2} d y-\int_{0}^{1} \frac{4 y-8}{y^{2}-2 y+2} d y=\pi\).
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{Tuning BBP Computation}
- 1997. Fabrice Bellard of INRIA computed 152 bits of \(\pi\) starting at the trillionth position;
- in 12 days on 20 workstations working in parallel over the Internet.

Bellard used the following variant of (16)


This frequently-used formula is a little faster than (16).

113. Computing Individual Digits of \(\pi\)

\section*{Tuning BBP Computation}
- 1997. Fabrice Bellard of INRIA computed 152 bits of \(\pi\) starting at the trillionth position;
- in 12 days on 20 workstations working in parallel over the Internet.

Bellard used the following variant of (16):
\[
\begin{equation*}
\pi=4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{4^{k}(2 k+1)}-\frac{1}{64} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1024^{k}}\left(\frac{32}{4 k+1}+\frac{8}{4 k+2}+\frac{1}{4 k+3}\right) \tag{17}
\end{equation*}
\]

This frequently-used formula is a little faster than (16).


Colin Percival (L) and Fabrice Bellard (R)

\section*{Hexadecimal Digits}
1998. Colin Percival, a 17 -year-old at Simon Fraser, found the five trillionth and ten trillionth hex digits on 25 machines. 2000. He then found the quadrillionth binary digit is \(\mathbf{0}\).
- He used 250 CPU-years, on 1734 machines in 56 countries.
- The largest calculation ever done before Toy Story Two.
\begin{tabular}{|l|r|}
\hline Position & Hex Digits \\
\hline & \\
\(10^{6}\) & 26C65E52CB4593 \\
\(10^{7}\) & 17AF5863EFED8D \\
\(10^{8}\) & ECB840E21926EC \\
\(10^{9}\) & 85895585A0428B \\
\(10^{10}\) & 921C73C6838FB2 \\
\(10^{11}\) & 9C381872D27596 \\
\(1.25 \times 10^{12}\) & 07E45733CC790B \\
\(2.5 \times 10^{14}\) & E6216B069CB6C1 \\
\hline
\end{tabular}

\section*{Hexadecimal Digits}
1998. Colin Percival, a 17 -year-old at Simon Fraser, found the five trillionth and ten trillionth hex digits on 25 machines. 2000. He then found the quadrillionth binary digit is 0 .
- He used 250 CPU-years, on 1734 machines in 56 countries.
- The largest calculation ever done before Toy Story Two.
\begin{tabular}{|l|r|}
\hline Position & Hex Digits \\
\hline & \\
\(10^{6}\) & 26C65E52CB4593 \\
\(10^{7}\) & 17AF5863EFED8D \\
\(10^{8}\) & ECB840E21926EC \\
\(10^{9}\) & 85895585A0428B \\
\(10^{10}\) & 921C73C6838FB2 \\
\(10^{11}\) & 9C381872D27596 \\
\(1.25 \times 10^{12}\) & 07E45733CC790B \\
\(2.5 \times 10^{14}\) & E6216B069CB6C1 \\
\hline
\end{tabular}

\section*{Hexadecimal Digits}
1998. Colin Percival, a 17 -year-old at Simon Fraser, found the five trillionth and ten trillionth hex digits on 25 machines. 2000. He then found the quadrillionth binary digit is 0 .
- He used 250 CPU-years, on 1734 machines in 56 countries.
- The largest calculation ever done before Toy Story Two.
\begin{tabular}{|l|r|}
\hline Position & Hex Digits \\
\hline & \\
\(10^{6}\) & 26C65E52CB4593 \\
\(10^{7}\) & 17AF5863EFED8D \\
\(10^{8}\) & ECB840E21926EC \\
\(10^{9}\) & 85895585A0428B \\
\(10^{10}\) & 921C73C6838FB2 \\
\(10^{11}\) & 9C381872D27596 \\
\(1.25 \times 10^{12}\) & 07E45733CC790B \\
\(2.5 \times 10^{14}\) & E6216B069CB6C1 \\
\hline
\end{tabular}

\section*{Everything Doubles Eventually}


July 2010. Tsz-Wo Sz of Yahoo!/Cloud computing found the two quadrillionth bit.
tion took 23 real days and 503 CPU years; and involved as many as 4000 machines.

\section*{Abstract}

We present a new record on computing specific bits of \(\pi\), the
mathematical constant, and discuss performing such computations on
Apache Hadoop clusters. The new record represented in hexadecimal is
0 E6C1294A ED40403F 56D2D764 026265BC A98511D0 FCFFAA10 F4D28B1B B5392B8
which has 256 bits ending at the \(2,000,000,000,000,000,252^{\text {th }}\) bit position. The position of the first bit is \(1,999,999,999,999,997\) and the value of the two quadrillionth bit is 0 .

\section*{Everything Doubles Eventually}


July 2010. Tsz-Wo Sz of Yahoo!/Cloud computing found the two quadrillionth bit. The computation took 23 real days and 503 CPU years; and involved as many as \(\mathbf{4 0 0 0}\) machines.

\section*{Abstract}

We present a new record on computing specific bits of \(\pi\), the mathematical constant, and discuss performing such computations on Apache Hadoop clusters. The new record represented in hexadecimal is

0 E6C1294A ED40403F 56D2D764 026265BC A98511D0
FCFFAA10 F4D28B1B B5392B8
which has 256 bits ending at the \(2,000,000,000,000,000,252^{\text {th }}\) bit position. The position of the first bit is \(1,999,999,999,999,997\) and the value of the two quadrillionth bit is 0 .

\section*{Everything Doubles Eventually}

August 27, 2012 Ed Karrel found 25 hex digits of \(\pi\) starting after the \(10^{15}\) position
```

- They are 353CB3F7F0C9ACCF A9AA215F2
- Using BBP on CUDA (too 'hard' for Blue Gene)
- All processing done on four NVIDIA GTX 690 graphics cards
(GPUs) installed in CUDA. Yahoo's run took 23 days; this
took 37 days.
See www.karrels.org/pi/
http://en.wikipedia.org/wiki/CUDA

```

    OCTOPI

\section*{Everything Doubles Eventually}

August 27, 2012 Ed Karrel found 25 hex digits of \(\pi\) starting after the \(10^{15}\) position
- They are \(353 C B 3 F 7 F 0 C 9 A C C F A 9 A A 215 F 2\)
- Using BBP on CUDA (too 'hard' for Blue Gene)
- All processing done on four NVIDIA GTX 690 graphics cards (GPUs) installed in CUDA. Yahoo's run took 23 days; this took 37 days.
See www.karrels.org/pi/
http://en.wikipedia.org/wiki/CUDA

\title{
T
}

OCTOPI
113. Computing Individual Digits of \(\pi\)

\section*{Everything Doubles Eventually}

August 27, 2012 Ed Karrel found 25 hex digits of \(\pi\) starting after the \(10^{15}\) position
- They are 353CB3F7F0C9ACCFA9AA215F2
- Using BBP on CUDA (too 'hard' for Blue Gene)
- All processing done on four NVIDIA GTX 690 graphics cards (GPUs) installed in CUDA. Yahoo's run took 23 days; this took 37 days.
See www.karrels.org/pi/,
http://en.wikipedia.org/wiki/CUDA
CIINונונו
OCTOPI
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{BBP Formulas Explained}

Base- \(b\) BBP numbers are constants of the form
\[
\begin{equation*}
\alpha=\sum_{k=0}^{\infty} \frac{p(k)}{q(k) b^{k}}, \tag{18}
\end{equation*}
\]
where \(p(k)\) and \(q(k)\) are integer polynomials and \(b=2,3, \ldots\).
- I illustrate why this works in binary for \(\log 2\). We start with:
as discovered by Euler.
- We wish to compute digits beginning at position \(d+1\).
- Equivalently, we need \(\left\{2^{d} \log 2\right\}\) ( \(\{\cdot\}\) is the fractional part).
113. Computing Individual Digits of \(\pi\)

\section*{BBP Formulas Explained}

Base- \(b\) BBP numbers are constants of the form
\[
\begin{equation*}
\alpha=\sum_{k=0}^{\infty} \frac{p(k)}{q(k) b^{k}} \tag{18}
\end{equation*}
\]
where \(p(k)\) and \(q(k)\) are integer polynomials and \(b=2,3, \ldots\).
- I illustrate why this works in binary for \(\log 2\). We start with:
\[
\begin{equation*}
\log 2=\sum_{k=0}^{\infty} \frac{1}{k 2^{k}} \tag{19}
\end{equation*}
\]
as discovered by Euler.
- We wish to compute digits beginning at position \(d+1\).
- Equivalently, we need \(\left\{2^{d} \log 2\right\}(\{\cdot\}\) is the fractional part).
113. Computing Individual Digits of \(\pi\)

\section*{BBP Formulas Explained}

Base- \(b\) BBP numbers are constants of the form
\[
\begin{equation*}
\alpha=\sum_{k=0}^{\infty} \frac{p(k)}{q(k) b^{k}} \tag{18}
\end{equation*}
\]
where \(p(k)\) and \(q(k)\) are integer polynomials and \(b=2,3, \ldots\).
- I illustrate why this works in binary for \(\log 2\). We start with:
\[
\begin{equation*}
\log 2=\sum_{k=0}^{\infty} \frac{1}{k 2^{k}} \tag{19}
\end{equation*}
\]
as discovered by Euler.
- We wish to compute digits beginning at position \(d+1\).
- Equivalently, we need \(\left\{2^{d} \log 2\right\}(\{\cdot\}\) is the fractional part).
113. Computing Individual Digits of \(\pi\)

\section*{BBP Formula for \(\log 2\)}

We can write
\[
\begin{align*}
\left\{2^{d} \log 2\right\} & =\left\{\left\{\sum_{k=0}^{d} \frac{2^{d-k}}{k}\right\}+\left\{\sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k}\right\}\right\} \\
& =\left\{\left\{\sum_{k=0}^{d} \frac{2^{\mathbf{d}-\mathbf{k}} \bmod \mathbf{k}}{k}\right\}+\left\{\sum_{k=d+1}^{\infty} \frac{2^{\mathbf{d}-\mathbf{k}}}{\mathbf{k}}\right\}\right\} . \tag{20}
\end{align*}
\]
- The key: the numerator in (20), \(2^{d-k} \bmod k\), can be found rapidly by binary exponentiation, performed modulo \(k\).
uses only 5 multiplications, not the usual 16 . Moreover, \(3^{17}\) \(\bmod 10\) is done as \(3^{2}=9: 9^{2}=1: 1^{2}=1: 1^{2}=1: 1 \times 3=3\)
113. Computing Individual Digits of \(\pi\)

\section*{BBP Formula for \(\log 2\)}

We can write
\[
\begin{align*}
\left\{2^{d} \log 2\right\} & =\left\{\left\{\sum_{k=0}^{d} \frac{2^{d-k}}{k}\right\}+\left\{\sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k}\right\}\right\} \\
& =\left\{\left\{\sum_{k=0}^{d} \frac{\mathbf{2}^{\mathbf{d}-\mathbf{k}} \bmod \mathbf{k}}{k}\right\}+\left\{\sum_{k=d+1}^{\infty} \frac{\mathbf{2}^{\mathbf{d}-\mathbf{k}}}{\mathbf{k}}\right\}\right\} . \tag{20}
\end{align*}
\]
- The key: the numerator in (20), \(2^{d-k} \bmod k\), can be found rapidly by binary exponentiation, performed modulo \(k\). So,
\[
3^{17}=\left(\left(\left(\left(3^{2}\right)^{2}\right)^{2}\right)^{2}\right) \cdot 3
\]
uses only 5 multiplications, not the usual 16. Moreover,
113. Computing Individual Digits of \(\pi\)

\section*{BBP Formula for \(\log 2\)}

We can write
\[
\begin{align*}
\left\{2^{d} \log 2\right\} & =\left\{\left\{\sum_{k=0}^{d} \frac{2^{d-k}}{k}\right\}+\left\{\sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k}\right\}\right\} \\
& =\left\{\left\{\sum_{k=0}^{d} \frac{2^{\mathbf{d}-\mathbf{k}} \bmod \mathbf{k}}{k}\right\}+\left\{\sum_{k=d+1}^{\infty} \frac{2^{\mathbf{d}-\mathbf{k}}}{\mathbf{k}}\right\}\right\} . \tag{20}
\end{align*}
\]
- The key: the numerator in (20), \(2^{d-k} \bmod k\), can be found rapidly by binary exponentiation, performed modulo \(k\). So,
\[
3^{17}=\left(\left(\left(\left(3^{2}\right)^{2}\right)^{2}\right)^{2}\right) \cdot 3
\]
uses only 5 multiplications, not the usual 16. Moreover, \(3^{17}\) \(\bmod 10\) is done as \(3^{2}=9 ; 9^{2}=1 ; 1^{2}=1 ; 1^{2}=1 ; 1 \times 3=3\)

\section*{Catalan's Constant \(G\) : and BBP for \(G\) in Binary}

The simplest number not proven irrational is
\[
G:=1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\cdots, \quad \frac{\pi^{2}}{12}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots
\]
2009. \(G\) is calculated to 31.026 billion digits. Records often use

\[
\begin{aligned}
G=\sum_{k=0}^{\infty} \frac{1}{4^{6 k+5}} & \left(\frac{3072}{(24 k+1)^{2}}-\frac{3072}{(24 k+2)^{2}}-\frac{23040}{(24 k+3)^{2}}+\frac{12288}{(24 k+4)^{2}}\right. \\
& -\frac{768}{(24 k+5)^{2}}+\frac{9216}{(24 k+6)^{2}}+\frac{10368}{(24 k+8)^{2}}+\frac{2496}{(24 k+9)^{2}}-\frac{192}{(24 k+10)^{2}} \\
& +\frac{768}{(24 k+12)^{2}}-\frac{48}{(24 k+13)^{2}}+\frac{360}{(24 k+15)^{2}}+\frac{648}{(24 k+16)^{2}} \\
& \left.+\frac{12}{(24 k+17)^{2}}+\frac{168}{(24 k+18)^{2}}+\frac{48}{(24 k+20)^{2}}-\frac{39}{(24 k+21)^{2}}\right)
\end{aligned}
\]

\section*{Catalan's Constant \(G\) : and BBP for \(G\) in Binary}

The simplest number not proven irrational is
\[
G:=1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\cdots, \quad \frac{\pi^{2}}{12}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots
\]
2009. \(G\) is calculated to 31.026 billion digits.
Records often use:


CARMA

BBP Digit Algorithms
Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{Catalan's Constant \(G\) : and BBP for \(G\) in Binary}

The simplest number not proven irrational is
\[
G:=1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\cdots, \quad \frac{\pi^{2}}{12}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots
\]
2009. \(G\) is calculated to 31.026 billion digits. Records often use:
\[
\begin{equation*}
G=\frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2 n}{n}(2 n+1)^{2}}+\frac{\pi}{8} \log (2+\sqrt{3})(\text { Ramanujan }) \tag{21}
\end{equation*}
\]
- holds since \(G=-T\left(\frac{\pi}{4}\right)=-\frac{3}{2} T\left(\frac{\pi}{12}\right)\) where \(T(\theta):=\int_{0}^{\theta} \log \tan \sigma d \sigma\).


BBP Digit Algorithms
Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{Catalan's Constant \(G\) : and BBP for \(G\) in Binary}

The simplest number not proven irrational is
\[
G:=1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\cdots, \quad \frac{\pi^{2}}{12}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots
\]
2009. \(G\) is calculated to 31.026 billion digits. Records often use:
\[
\begin{equation*}
G=\frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2 n}{n}(2 n+1)^{2}}+\frac{\pi}{8} \log (2+\sqrt{3}) \text { (Ramanujan) } \tag{21}
\end{equation*}
\]
- holds since \(G=-T\left(\frac{\pi}{4}\right)=-\frac{3}{2} T\left(\frac{\pi}{12}\right)\) where \(T(\theta):=\int_{0}^{\theta} \log \tan \sigma d \sigma\).


CARMA

BBP Digit Algorithms
Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{Catalan's Constant \(G\) : and BBP for \(G\) in Binary}

The simplest number not proven irrational is
\[
G:=1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\cdots, \quad \frac{\pi^{2}}{12}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots
\]
2009. \(G\) is calculated to 31.026 billion digits. Records often use:
\[
\begin{equation*}
G=\frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2 n}{n}(2 n+1)^{2}}+\frac{\pi}{8} \log (2+\sqrt{3}) \text { (Ramanujan) } \tag{21}
\end{equation*}
\]
- holds since \(G=-T\left(\frac{\pi}{4}\right)=-\frac{3}{2} T\left(\frac{\pi}{12}\right)\) where \(T(\theta):=\int_{0}^{\theta} \log \tan \sigma d \sigma\).
- An 18 term binary BBP formula for \(G=0.9159655941772190 \ldots\) is:


CARMA

\section*{A Better Formula for \(G\)}

A 16 term formula in concise BBP notation is:
\[
\begin{aligned}
G= & P(2, \mathbf{4 0 9 6}, 24, \vec{v}) \quad \text { where } \\
\vec{v}:= & (6144,-6144,-6144,0,-1536,-3072,-768,0,-768, \\
& -384,192,0,-96,96,96,0,24,48,12,0,12,6,-3,0)
\end{aligned}
\]

It takes almost exactly 8/9th the time of \(\mathbf{1 8}\) term formula for \(G\).
- This makes for a very cool calculation
- Since we can not prove \(G\) is irrational, Who can say what might turn up?
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{What About Base Ten?}
- The first integer logarithm with no known binary BBP formula is \(\log 23\) (since \(23 \times 89=2^{10}-1\) ).

Searches conducted by numerous researchers for base-ten formulas have been unfruitful. Indeed


- Bailey and Crandall have shown connections between the existence of a \(b\)-ary BBP formula for \(\alpha\) and its base \(b\) normality (via a dynamical system conjecture)

\section*{What About Base Ten?}
- The first integer logarithm with no known binary BBP formula is \(\log 23\) (since \(23 \times 89=2^{10}-1\) ).

Searches conducted by numerous researchers for base-ten formulas have been unfruitful. Indeed:
 and I showed there are no BBP formulas of the Machin-type of (16) for \(\pi\) if base is not a power of two.

- Bailey and Crandall have shown connections between the existence of a \(b\)-ary BBP formula for \(\alpha\) and its base \(b\) normality (via a dynamical system conjecture)

\section*{What About Base Ten?}
- The first integer logarithm with no known binary BBP formula is \(\log 23\) (since \(23 \times 89=2^{10}-1\) ).

Searches conducted by numerous researchers for base-ten formulas have been unfruitful. Indeed:

2004. D. Borwein (my father), W. Gallway and I showed there are no BBP formulas of the Machin-type of (16) for \(\pi\) if base is not a power of two.

- Bailey and Crandall have shown connections between the existence of a \(b\)-ary BBP formula for \(\alpha\) and its base \(b\) normality (via a dynamical system conjecture)
113. Computing Individual Digits of \(\pi\)

\section*{What About Base Ten?}
- The first integer logarithm with no known binary BBP formula is \(\log 23\) (since \(23 \times 89=2^{10}-1\) ).

Searches conducted by numerous researchers for base-ten formulas have been unfruitful. Indeed:

2004. D. Borwein (my father), W. Gallway and I showed there are no BBP formulas of the Machin-type of (16) for \(\pi\) if base is not a power of two.

- Bailey and Crandall have shown connections between the existence of a \(b\)-ary BBP formula for \(\alpha\) and its base \(b\) normality (via a dynamical system conjecture).
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

BBP Digit Algorithms
Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{Pi Photo-shopped: a 2010 PiDay Contest}

"Noli Credere Pictis"
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{\(\pi^{2}\) in Binary and Ternary}

Bailey and Pi on a bus. Only in Berkeley?

24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

BBP Digit Algorithms
Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{\(\pi^{2}\) in Binary and Ternary}

Bailey and Pi on a bus. Only in Berkeley?

\section*{did you ever}
wonder
...why the digits of pi look random?


Thanks to Dave Broadhurst, a ternary BBP formula exists for \(\pi^{2}\) (unlike \(\pi\) ):
\[
\begin{aligned}
\pi^{2}=\frac{2}{27} \sum_{k=0}^{\infty} \frac{1}{3^{6 k}} & \times\left\{\frac{243}{(12 k+1)^{2}}-\frac{405}{(12 k+2)^{2}}-\frac{81}{(12 k+4)^{2}}\right. \\
& -\frac{27}{(12 k+5)^{2}}-\frac{72}{(12 k+6)^{2}}-\frac{9}{(12 k+7)^{2}} \\
& \left.-\frac{9}{(12 k+8)^{2}}-\frac{5}{(12 k+10)^{2}}+\frac{1}{(12 k+11)^{2}}\right\}
\end{aligned}
\]
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

BBP Digit Algorithms
Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{A Partner Binary BBP Formula for \(\pi^{2}\)}
\[
\pi^{2}=\frac{9}{8} \sum_{k=0}^{\infty} \frac{1}{2^{6 k}}\left\{\frac{16}{(6 k+1)^{2}}-\frac{24}{(6 k+2)^{2}}-\frac{8}{(6 k+3)^{2}}-\frac{6}{(6 k+4)^{2}}+\frac{1}{(6 k+5)^{2}}\right\}
\]
- We do not fully understand why \(\pi^{2}\) allows BBP formulas in two distinct bases.

- \(4 \pi^{2}\) is the area of a sphere in three-space (L).
- \(\frac{1}{2} \pi^{2}\) is the volume inside a sphere in four-space (R). So in binary we are computing these fundamental physical constants.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

BBP Digit Algorithms
Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{A Partner Binary BBP Formula for \(\pi^{2}\)}
\[
\pi^{2}=\frac{9}{8} \sum_{k=0}^{\infty} \frac{1}{2^{6 k}}\left\{\frac{16}{(6 k+1)^{2}}-\frac{24}{(6 k+2)^{2}}-\frac{8}{(6 k+3)^{2}}-\frac{6}{(6 k+4)^{2}}+\frac{1}{(6 k+5)^{2}}\right\}
\]
- We do not fully understand why \(\pi^{2}\) allows BBP formulas in two distinct bases.

- \(4 \pi^{2}\) is the area of a sphere in three-space (L)
- \(\frac{1}{2} \pi^{2}\) is the volume inside a sphere in four-space (R).

So in binary we are computing these fundamental physical

\title{
24. Pi's Childhood \\ 43. Pi's Adolescence \\ 48. Adulthood of Pi \\ 79. Pi in the Digital Age
}
113. Computing Individual Digits of \(\pi\)

BBP Digit Algorithms
Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{A Partner Binary BBP Formula for \(\pi^{2}\)}
\[
\pi^{2}=\frac{9}{8} \sum_{k=0}^{\infty} \frac{1}{2^{6 k}}\left\{\frac{16}{(6 k+1)^{2}}-\frac{24}{(6 k+2)^{2}}-\frac{8}{(6 k+3)^{2}}-\frac{6}{(6 k+4)^{2}}+\frac{1}{(6 k+5)^{2}}\right\}
\]
- We do not fully understand why \(\pi^{2}\) allows BBP formulas in two distinct bases.

- \(4 \pi^{2}\) is the area of a sphere in three-space ( L ).
- \(\frac{1}{2} \pi^{2}\) is the volume inside a sphere in four-space ( R ).
- So in binary we are computing these fundamental physical constants.
113. Computing Individual Digits of \(\pi\)

\section*{IBM's New Record Results}


\section*{IBM \({ }^{\oplus}\) SYSTEM BLUE GENE \({ }^{\oplus} / \mathrm{P}\)}

\section*{SOLUTION}

Expanding the limits of
breakthrough science

\section*{Algorithm (What We Did)}

Dave Bailey, Andrew Mattingly (L) and Glenn Wightwick (R) of IBM Australia, and I, have obtained and (nearly) confirmed:
(1) 106 digits of \(\pi^{2}\) base 2 at the ten trillionth place base 64
(2) 94 digits of \(\pi^{2}\) base 3 at the ten trillionth place base 729
(3) 150 digits of \(G\) base 2 at the ten trillionth place base 4096 on a 4-rack BlueGene/P system at IBM's Benchmarking Centre in Rochester, Minn, USA.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

BBP Digit Algorithms Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{The 3 Records Use Over 1380 CPU Years ( 135 rack days)}

An enormous amount of delicate computation: \(\mathbf{1 3 8 0}\) years is a long time.
went back

\section*{1381 years}
- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated \(\pi\) nonstop
- Through the Crusades, black plague, Moguls, Renaissance,
discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,
- With no breaks or break-downs:
- It would have finished in 2012.
- August 2013, Notices of the AMS
http://wWw.ams.org/notices/201307/rnoti-p844.pdf CARMA
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

\section*{The 3 Records Use Over 1380 CPU Years ( 135 rack days)}

An enormous amount of delicate computation: \(\mathbf{1 3 8 0}\) years is a long time. Suppose a spanking new IBM single-core PC went back 1381 years.
- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated \(\pi\) nonstop:
- Through the Crusades, black plague, Moguls, Renaissance,
discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,
- With no breaks or break-downs:
- It would have finished in 2012
- August 2013, Notices of the AMS
http://WWW.ams.org/notices/201307/rnoti-p844.pdf(CARMA
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

BBP Digit Algorithms

\section*{The 3 Records Use Over 1380 CPU Years ( 135 rack days)}

An enormous amount of delicate computation: \(\mathbf{1 3 8 0}\) years is a long time. Suppose a spanking new IBM single-core PC went back 1381 years.
- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated \(\pi\) nonstop:
- Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,
- With no breaks or break-downs:
- It would have finished in 2012.
- August 2013, Notices of the \(\triangle M S\)
http://WWW.ams.org/notices/201307/rnoti-p844.pdf(CARMA

\section*{The 3 Records Use Over 1380 CPU Years ( 135 rack days)}

An enormous amount of delicate computation: 1380 years is a long time. Suppose a spanking new IBM single-core PC went back 1381 years.
- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated \(\pi\) nonstop:
- Through the Crusades, black plague, Moguls, Renaissance,
discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,
- With no breaks or break-downs:
- It mould have finished in 2012
- August 2013, Notices of the AMS
http://WWW.ams.org/notices/201307/rnoti-p844.pdf(CARMA

\section*{The 3 Records Use Over 1380 CPU Years ( 135 rack days)}

An enormous amount of delicate computation: \(\mathbf{1 3 8 0}\) years is a long time. Suppose a spanking new IBM single-core PC went back 1381 years.
- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated \(\pi\) nonstop:
- Through the Crusades, black plague, Moguls, Renaissance
discovery of America, Gutenberg, Reformation, invention of steam. Napoleon, electricity. WW2, the transistor, fiber optics,
- With no breaks or break-downs:
- It would have finished in 2012
- August 2013, Notices of the AMS
http://WWW.ams.org/notices/201307/rnoti-p844.pdf(CARMA

\section*{The 3 Records Use Over 1380 CPU Years ( 135 rack days)}

An enormous amount of delicate computation: 1380 years is a long time. Suppose a spanking new IBM single-core PC went back 1381 years.
- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated \(\pi\) nonstop:
- Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in 2012
- August 2013, Notices of the AMS
http://wWw. ams.org/notices/201307/rnoti-p844.pdf(CARMA

\section*{The 3 Records Use Over 1380 CPU Years ( 135 rack days)}

An enormous amount of delicate computation: 1380 years is a long time. Suppose a spanking new IBM single-core PC went back 1381 years.
- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated \(\pi\) nonstop:
- Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in 2012
- August 2013, Notices of the AMS
http://T.TT.T. ams.org/notices/201307/rnoti-p844.pdf(CARMA

\section*{The 3 Records Use Over 1380 CPU Years ( 135 rack days)}

An enormous amount of delicate computation: 1380 years is a long time. Suppose a spanking new IBM single-core PC went back 1381 years.
- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated \(\pi\) nonstop:
- Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in 2012.
- August 2013, Notices of the AMS
http://WWW.ams.org/notices/201307/rnoti-p844.pdf CARMA

\section*{The 3 Records Use Over 1380 CPU Years ( 135 rack days)}

An enormous amount of delicate computation: 1380 years is a long time. Suppose a spanking new IBM single-core PC went back 1381 years.
- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated \(\pi\) nonstop:
- Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in 2012.
- August 2013, Notices of the AMS http://www.ams.org/notices/201307/rnoti-p844.pdf. CARMA

\section*{IBM's New Results: \(\pi^{2}\) base 2}

Algorithm (10 trillionth digits of \(\pi^{2}\) in base 64 - in 230 years)
(1) The calculation took, on average, 253529 seconds per thread. It was broken into 7 "partitions" of 2048 threads each. For a total of \(7 \cdot 2048 \cdot 253529=3.6 \cdot 10^{9} \mathrm{CPU}\) seconds.
(2) On a single Blue Gene/P CPU it would take 115 years! Each rack of BG/P contains 4096 threads (or cores). Thus, we used \(\frac{7 \cdot 2048 \cdot 253529}{4096 \cdot 60 \cdot 60 \cdot 24}=\mathbf{1 0 . 3}\) "rack days".
(3) The verification run took the same time (within a few minutes): \(\mathbf{1 0 6}\) base \(\mathbf{2}\) digits are in agreement.

\section*{IBM's New Results: \(\pi^{2}\) base 3}

Algorithm ( 10 trillionth digits of \(\pi^{2}\) in base 729 - in 414 years)
(1) The calculation took, on average, 795773 seconds per thread. It was broken into 4 "partitions" of 2048 threads each. For a total of \(4 \cdot 2048 \cdot 795773=6.5 \cdot 10^{9} \mathrm{CPU}\) seconds.
(2) On a single Blue Gene/P CPU it would take 207 years! Each rack of BG/P contains 4096 threads (or cores). Thus, we used \(\frac{4 \cdot 2048 \cdot 795773}{4096 \cdot 60 \cdot 60 \cdot 24}=\mathbf{1 8 . 4}\) "rack days".
(3) The verification run took the same time (within a few minutes): \(\mathbf{9 4}\) base \(\mathbf{3}\) digits are in agreement.

\section*{IBM's New Results: \(G\) base 2}

\section*{Algorithm (10 trillionth digits of \(G\) in base 4096 - in 735 years)}
(1) The calculation took, on average, 707857 seconds per thread. It was broken into 8 "partitions" of 2048 threads each. For a total of \(8 \cdot 2048 \cdot 707857=1.2 \cdot 10^{10} \mathrm{CPU}\) seconds.
(2) On a single Blue Gene/P CPU it would take 368 years!

Each rack of BG/P contains 4096 threads (or cores). Thus, we used \(\frac{8 \cdot 2048 \cdot 707857}{4096 \cdot 60 \cdot 60 \cdot 24}=32.8\) "rack days".
(3) The verification run will take the same time (within a few minutes): \(\mathbf{x x x}\) base \(\mathbf{2}\) digits will be in agreement.
24. Pi's Childhood
43. Pi's Adolescence
48. Adulthood of Pi
79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

BBP Digit Algorithms
Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{Thank You, One and All, and Happy Birthday, Albert}


Albert Einstein 3.14.1879-18.04.1955
24. Pi's Childhood
43. Pi's Adolescence 48. Adulthood of Pi 79. Pi in the Digital Age
113. Computing Individual Digits of \(\pi\)

BBP Digit Algorithms
Mathematical Interlude, III
Hexadecimal Digits
BBP Formulas Explained
BBP for Pi squared - in base 2 and base 3

\section*{138. Links and References}

1 The Pi Digit site: http://carma.newcastle.edu.au/bbp
\((2\) Dave Bailey's Pi Resources: http://crd.lbl.gov/~dhbailey/pi/
(3) The Life of Pi: http://carma.newcastle.edu.au/jon/pi-2010.pdf.

4 Experimental Mathematics: http://www.experimentalmath.info/.
(5) Dr Pi's brief Bio: http://carma.newcastle.edu.au/jon/bio_short.html.

1 D.H. Bailey and J.M. Borwein, "On Pi Day 2014, Pi's normality is still in question." American Mathematical Monthly, 121 March (2014), 191-204 (and Huffington Post 3.14.14 Blog)
2 D.H. Bailey, and J.M. Borwein, Mathematics by Experiment: Plausible Reasoning in the 21st Century, AK Peters Ltd, 2003, ISBN: 1-56881-136-5. See http://www.experimentalmath.info/
3 J.M. Borwein, "Pi: from Archimedes to ENIAC and beyond," in Mathematics and Culture, Einaudi, 2006. Updated 2012: http://carma.newcastle.edu.au/jon/pi-2012.pdf.
4 J.M. \& P.B. Borwein, and D.A. Bailey, "Ramanujan, modular equations and pi or how to compute a billion digits of pi," MAA Monthly, 96 (1989), 201-219. Reprinted in Organic Mathematics, www. cecm.sfu.ca/organics, 1996, CMS/AMS Conference Proceedings, 20 (1997), ISSN: 0731-1036.
5 J.M. Borwein and P.B. Borwein, "Ramanujan and Pi," Scientific American, February 1988, 112-117. Also pp. 187-199 of Ramanujan: Essays and Surveys, Bruce C. Berndt and Robert A. Rankin Eds., AMS-LMS History of Mathematics, vol. 22, 2001.
6 Jonathan M. Borwein and Peter B. Borwein, Selected Writings on Experimental and Computational Mathematics, PsiPress. October 2010. \({ }^{4}\)
7 L. Berggren, J.M. Borwein and P.B. Borwein, Pi: a Source Book, Springer-Verlag, (1997), (2000), (2004)CARMA Fourth Edition, in Press.```

