The Life of π : History and Computation A Talk for Pi Day or Other Days

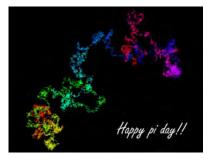
Jonathan M. Borwein FRSC FAA FAAAS

Laureate Professor & Director of CARMA University of Newcastle

http://carma.newcastle.edu.au/jon/piday-16.pdf

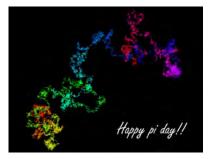
3.14 pm, March 14, 2016

Revised 28.01.16 for Western 08.04.16



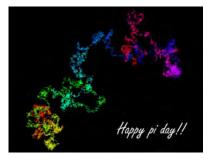
J.M. Borwein Life of Pi (CARMA)

The Life of Pi: From this extended on line presentation we shall sample



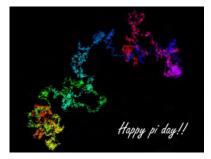
- Pi in popular culture: Pi Day 3.14 (.15 in 2015)
- Why Pi? From utility to ... normality.
- Recent computations and digit extraction methods.

The Life of Pi: From this extended on line presentation we shall sample



- Pi in popular culture: Pi Day 3.14 (.15 in 2015)
- Why Pi? From utility to ... normality.
- Recent computations and digit extraction methods.

The Life of Pi: From this extended on line presentation we shall sample



- Pi in popular culture: Pi Day 3.14 (.15 in 2015)
- Why Pi? From utility to ... normality.
- Recent computations and digit extraction methods.

The Life of Pi: From this extended on line presentation we shall sample

CARMA

- Pi in popular culture: Pi Day 3.14 (.15 in 2015)
- Why Pi? From utility to ... normality.
- Recent computations and digit extraction methods.

Outline. We will cover Some of:

25. Pi's Childhood

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BC Precalculus Calculation Records The Parry Dark Ages

- 44. Pi Adolescence Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic
- 49. Adulthood of Pi

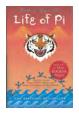
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

80. Pi in the Digital Age

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

5 114. Computing Individual Digits of BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi guared — in base 2 and base 3

J.M. Borwein

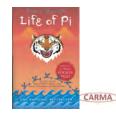

Life of Pi (CARMA)

IBM

Introduction: Pi is ubiquitous

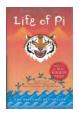
- The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians — great and less great — for eons.
- And, especially recently, π has provided compelling examples of computational mathematics.

Pi, uniquely in mathematics, is pervasive in popular culture and the popular imagination.

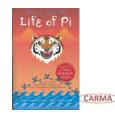


Introduction: Pi is ubiquitous

- The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians — great and less great — for eons.
- And, especially recently, π has provided compelling examples of computational mathematics.



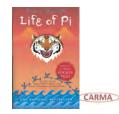
Pi, uniquely in mathematics, is pervasive in popular culture and the popular imagination.



Introduction: Pi is ubiquitous

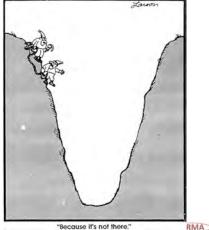
- The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians — great and less great — for eons.
- And, especially recently, π has provided compelling examples of computational mathematics.

Pi, uniquely in mathematics, is pervasive in popular culture and the popular imagination.



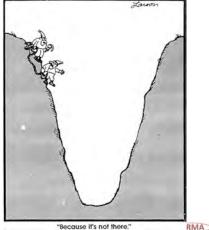
Introduction: Pi is ubiquitous

- The desire to understand π, the challenge, and originally the need, to calculate ever more accurate values of π, the ratio of the circumference of a circle to its diameter, has captured mathematicians — great and less great — for eons.
- And, especially recently, π has provided compelling examples of computational mathematics.



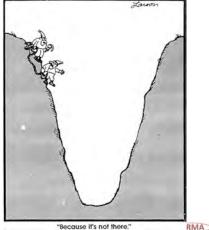
Pi, uniquely in mathematics, is pervasive in popular culture and the popular imagination.

The Life of Pi Teaches a Great Deal:

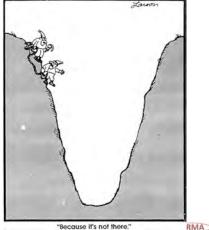

We shall learn that scientists are humans and see a lot:

The Life of Pi Teaches a Great Deal:

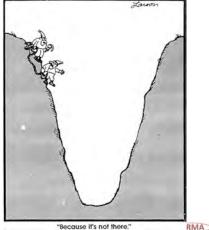
We shall learn that scientists are humans and see a lot:


- of important mathematics;

The Life of Pi Teaches a Great Deal:

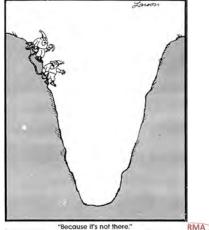

We shall learn that scientists are humans and see a lot:

- of important mathematics;

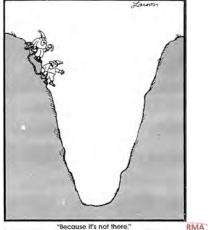

The Life of Pi Teaches a Great Deal:

- of important mathematics;
- of its history and philosophy;

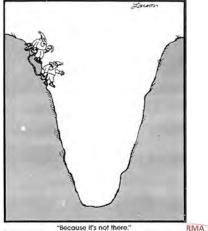
The Life of Pi Teaches a Great Deal:


- of important mathematics;
- of its history and philosophy;

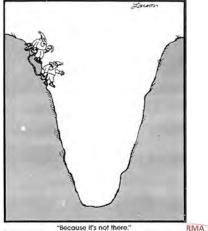
The Life of Pi Teaches a Great Deal:


We shall learn that scientists are humans and see a lot:

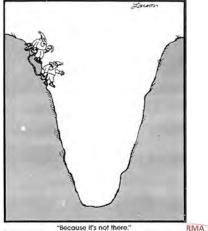
- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;


The Life of Pi Teaches a Great Deal:

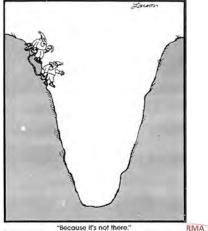
- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;


The Life of Pi Teaches a Great Deal:

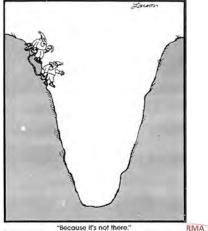
- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;


The Life of Pi Teaches a Great Deal:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;


The Life of Pi Teaches a Great Deal:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty) and likelihood);


The Life of Pi Teaches a Great Deal:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty) and likelihood);

The Life of Pi Teaches a Great Deal:

- of important mathematics;
- of its history and philosophy;
- about the evolution of computers and computation;
- of general history, philosophy and science;
- proof and truth (certainty) and likelihood);
- of just plain interesting sometimes *weird* — stuff.

Mnemonics for Pi Abound: Piems — Word lengths give digits

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."

low I, even I, would celebrate (3 1 4 1 5 9) In rhymes inapt, the great (2 6 5 3 5) Immortal Syracusan, rivaled nevermore, Who in his wondrous lore, Passed on before Left men for guidance How to circles mensurate.

punctuation is always ignored

Mnemonics for Pi Abound: Piems — Word lengths give digits

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."

Now I, even I, would celebrate (3 1 4 1 5 9)

In rhymes inapt, the great (2 6 5 3 5) Immortal Syracusan, rivaled nevermore, Who in his wondrous lore, Passed on before Left men for guidance How to circles mensurate.

punctuation is always ignored

Mnemonics for Pi Abound: Piems — Word lengths give digits

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."

Now I, even I, would celebrate (3 1 4 1 5 9) In rhymes inapt, the great (2 6 5 3 5) Immortal Syracusan, rivaled nevermore, Who in his wondrous lore, Passed on before Left men for guidance How to circles mensurate.

– punctuation is always ignored

Mnemonics for Pi Abound: Piems — Word lengths give digits

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."

Now I, even I, would celebrate (3 1 4 1 5 9) In rhymes inapt, the great (2 6 5 3 5) Immortal Syracusan, rivaled nevermore, Who in his wondrous lore, Passed on before Left men for guidance How to circles mensurate.

– punctuation is always ignored

Mnemonics for Pi Abound: Piems — Word lengths give digits

"When you're young, it comes naturally, but when you get a little older, you have to rely on mnemonics."

Now I, even I, would celebrate (3 1 4 1 5 9) In rhymes inapt, the great (2 6 5 3 5) Immortal Syracusan, rivaled nevermore, Who in his wondrous lore, Passed on before Left men for guidance How to circles mensurate.

- punctuation is always ignored

Life of Pi (2001):

Yann Martel's 2002 Booker Prize novel starts

''My name is <u>Pi</u>scine Molitor Patel known to all as Pi Patel For good measure I added $\pi = 3.14$ and I then drew a large circl which I sliced in two with a diameter, to evoke that basic lesson of geometry.''

2013 Ang Lee's movie version (4 Oscars)

- 1706. Notation of π introduced by William Jones.
- 1737. Leonhard Euler (1707-83) popularized π .
 - One of the three or four greatest mathematicians of all times:
 - He introduced much of our modern notation: $\int, \Sigma, \phi, e, \Gamma, \ldots$

Life of Pi (2001):

Yann Martel's 2002 Booker Prize novel starts

''My name is <u>Pi</u>scine Molitor Patel known to all as Pi Patel For good measure I added $\pi = 3.14$ and I then drew a large circle which I sliced in two with a diameter, to evoke that basic lesson of geometry.''

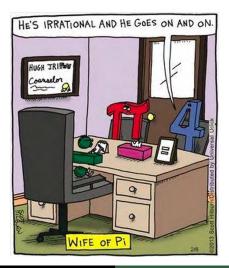
2013 Ang Lee's movie version (4 Oscars)

- **1706**. Notation of π introduced by William Jones.
- 1737. Leonhard Euler (1707-83) popularized π .
 - One of the three or four greatest mathematicians of all times:
 - He introduced much of our modern notation: $\int, \Sigma, \phi, e, \Gamma, \ldots$

Life of Pi (2001):

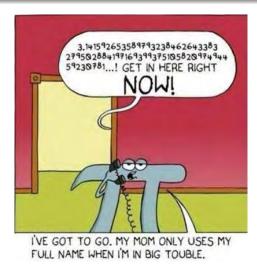
Yann Martel's 2002 Booker Prize novel starts

''My name is <u>Pi</u>scine Molitor Patel known to all as Pi Patel For good measure I added $\pi = 3.14$ and I then drew a large circle which I sliced in two with a diameter, to evoke that basic lesson of geometry.''

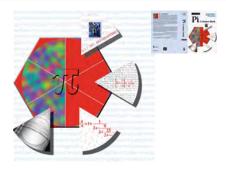

2013 Ang Lee's movie version (4 Oscars)

- 1706. Notation of π introduced by William Jones.
- 1737. Leonhard Euler (1707-83) popularized π .
 - One of the three or four greatest mathematicians of all times:
 - He introduced much of our modern notation: $\int, \Sigma, \phi, e, \Gamma, \ldots$

 $\begin{array}{c} 25. \ \mathrm{Pi's} \ \mathrm{Childhood} \\ 44. \ \ \mathrm{Pi's} \ \mathrm{Adolescence} \\ 49. \ \mathrm{Adulthood} \ \mathrm{of} \ \mathrm{Pi} \\ 80. \ \mathrm{Pi} \ \mathrm{in} \ \mathrm{the} \ \mathrm{Digital} \ \mathrm{Age} \\ 114. \ \ \mathrm{Computing} \ \mathrm{Individual} \ \mathrm{Digits} \ \mathrm{of} \ \pi \end{array}$

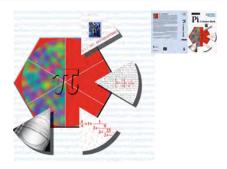

Wife of Pi (2013)

J.M. Borwein Life of Pi (CARMA)


Life of Pi (2014)

J.M. Borwein Life of Pi (CARMA)

Pi: the Source Book (1997)



- Berggren, Borwein and Borwein, 3rd Ed, Springer, **2004**. (3,650 years of copyright releases. *E-rights* for Ed. 4 are in process.)
 - MacTutor at www-gap.dcs.st-and.ac.uk/~history (my home town) is a good informal mathematical history source.

CARMA

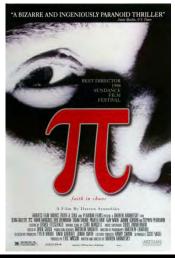
Pi: the Source Book (1997)

- Berggren, Borwein and Borwein, 3rd Ed, Springer, **2004**. (3,650 years of copyright releases. *E-rights* for Ed. 4 are in process.)
 - MacTutor at www-gap.dcs.st-and.ac.uk/~history (my home town) is a good informal mathematical history source.

CARMA

See also www.cecm.sfu.ca/~jborwein/pi_cover.html.

Pi: in The Matrix (1999)

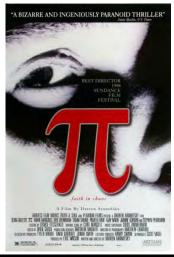

Keanu Reeves, Neo, only has **314** seconds to enter "The Source." (Do we need Parts 4 and 5?)

From http://www.freakingnews.com/Pi-Day-Pictures--1860.asp

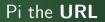
J.M. Borwein Life of Pi (CARMA)

CARMA

Pi the Movie (1998): a Sundance screenplay winner


Roger Ebert gave the film 3.5 stars out of 4: "Pi is a thriller. I am not very thrilled these days by whether the bad guys will get shot or the chase scene will end one way instead of another. You have to make a movie like that pretty skillfully before I care.

"But I am thrilled when a man risks his mind in the pursuit of a dangerous obsession."


 $\begin{array}{c} \mbox{25. Pi's Childhood} \\ \mbox{44. Pi's Adolescence} \\ \mbox{49. Adulthood of Pi} \\ \mbox{80. Pi in the Digital Age} \\ \mbox{114. Computing Individual Digits of } \pi \end{array}$

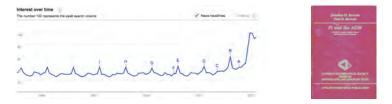
Pi the Movie (1998): a Sundance screenplay winner

Roger Ebert gave the film 3.5 stars out of 4: "Pi is a thriller. I am not very thrilled these days by whether the bad guys will get shot or the chase scene will end one way instead of another. You have to make a movie like that pretty skillfully before I care.

"But I am thrilled when a man risks his mind in the pursuit of a dangerous obsession."

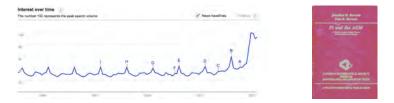
Pi to 1,000,000 places

Pi to one MILLION decimal places

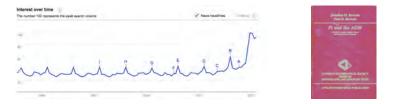

3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

file://C/Document/s2tual%205ettings/Jor%20Bocuein/My%20DocumentsLe_%20Opt%20TalkeLife%20of%20File/Unit/%20Fi%20File/Unit/%20File/Unit

From 3.141592653589793238462643383279502884197169399375105820974944592.com/ This 2005 URL seems to have disappeared.


J.M. Borwein Life

- From www.google.com/trends?q=Pi+
 - H, E, D, C: "Pi Day March 14 (3.14, get it?)"
 - G,F: A 'PI', and the Seattle PI dies
 - A,B: 'Life of Pi' (Try looking for Pi now: 2014!)
- 1988. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- **2003**. Schools running our award-winning applet nearly crashed SFU. It recites Pi *fast* in many languages
 - http://oldweb.cecm.sfu.ca/pi/yapPing.html.


 $\begin{array}{c} 25. \ \mathrm{Pi's} \ \mathrm{Childhood} \\ 44. \ \mathrm{Pi's} \ \mathrm{Adolescence} \\ 49. \ \mathrm{Adulthood} \ \mathrm{of} \ \mathrm{Pi} \\ 80. \ \mathrm{Pi} \ \mathrm{in} \ \mathrm{the} \ \mathrm{Digital} \ \mathrm{Age} \\ 114. \ \mathrm{Computing} \ \mathrm{Individual} \ \mathrm{Digits} \ \mathrm{of} \ \pi \end{array}$

- From www.google.com/trends?q=Pi+
 - H, E, D, C: "Pi Day March 14 (3.14, get it?)"
 - G,F: A 'PI', and the Seattle PI dies
 - A,B: 'Life of Pi' (Try looking for Pi now: 2014!)
- 1988. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- **2003**. Schools running our award-winning applet nearly crashed SFU. It recites Pi *fast* in many languages
 - http://oldweb.cecm.sfu.ca/pi/yapPing.html.

 $\begin{array}{c} 25. \ \mathrm{Pi's} \ \mathrm{Childhood} \\ 44. \ \mathrm{Pi's} \ \mathrm{Adolescence} \\ 49. \ \mathrm{Adulthood} \ \mathrm{of} \ \mathrm{Pi} \\ 80. \ \mathrm{Pi} \ \mathrm{in} \ \mathrm{the} \ \mathrm{Digital} \ \mathrm{Age} \\ 114. \ \mathrm{Computing} \ \mathrm{Individual} \ \mathrm{Digits} \ \mathrm{of} \ \pi \end{array}$

- From www.google.com/trends?q=Pi+
 - H, E, D, C: "Pi Day March 14 (3.14, get it?)"
 - G,F: A 'PI', and the Seattle PI dies
 - A,B: 'Life of Pi' (Try looking for Pi now: 2014!)
- 1988. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- **2003**. Schools running our award-winning applet nearly crashed SFU. It recites Pi *fast* in many languages
 - http://oldweb.cecm.sfu.ca/pi/yapPing.html.

 $\begin{array}{c} 25. \ \mathrm{Pi's} \ \mathrm{Childhood} \\ 44. \ \mathrm{Pi's} \ \mathrm{Adolescence} \\ 49. \ \mathrm{Adulthood} \ \mathrm{of} \ \mathrm{Pi} \\ 80. \ \mathrm{Pi} \ \mathrm{in} \ \mathrm{the} \ \mathrm{Digital} \ \mathrm{Age} \\ 114. \ \mathrm{Computing} \ \mathrm{Individual} \ \mathrm{Digits} \ \mathrm{of} \ \pi \end{array}$

- From www.google.com/trends?q=Pi+
 - H, E, D, C: "Pi Day March 14 (3.14, get it?)"
 - G,F: A 'PI', and the Seattle PI dies
 - A,B: 'Life of Pi' (Try looking for Pi now: 2014!)
- 1988. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- **2003**. Schools running our award-winning applet nearly crashed SFU. It recites Pi *fast* in many languages
 - http://oldweb.cecm.sfu.ca/pi/yapPing.html.

2014: π Day turns **26**: Our book Pi and the AGM is **27**

- From www.google.com/trends?q=Pi+
 - H, E, D, C: "Pi Day March 14 (3.14, get it?)"
 - G,F: A 'PI', and the Seattle PI dies
 - A,B: 'Life of Pi' (Try looking for Pi now: 2014!)
- 1988. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- **2003**. Schools running our award-winning applet nearly crashed SFU. It recites Pi *fast* in many languages

- http://oldweb.cecm.sfu.ca/pi/yapPing.html.

- From www.google.com/trends?q=Pi+
 - H, E, D, C: "Pi Day March 14 (3.14, get it?)"
 - G,F: A 'PI', and the Seattle PI dies
 - A,B: 'Life of Pi' (Try looking for Pi now: 2014!)
- 1988. Pi Day was Larry Shaw's gag at the Exploratorium (SF).
- **2003**. Schools running our award-winning applet nearly crashed SFU. It recites Pi *fast* in many languages
 - http://oldweb.cecm.sfu.ca/pi/yapPing.html.

 $\begin{array}{c} 25. \ \mathrm{Pi's} \ \mathrm{Childhood} \\ 44. \ \ \mathrm{Pi's} \ \mathrm{Adolescence} \\ 49. \ \mathrm{Adulthood} \ \mathrm{of} \ \mathrm{Pi} \\ 80. \ \mathrm{Pi} \ \mathrm{in} \ \mathrm{the Digital} \ \mathrm{Age} \\ 114. \ \ \mathrm{Computing} \ \mathrm{Individual} \ \mathrm{Digits} \ \mathrm{of} \ \pi \end{array}$

Google Search for "Pi Day 2013"

345,000 hits (13-3-13)

<u>Pi Day</u> www.timeanddate.com > Calendar > Holidays

Pi Day 2013. Thursday, March 14, 2013. Monday, July 22, 2013. Pi Day 2014. Friday, March 14, 2014. Tuesday, July 22, 2014. List of dates for other years ...

- 2. News for "Pi day 2013"
- 3. Celebrate Pi Day 2013 -- with Pie

Patch.com - 8 hours ago

A perfect day for math geeks, Einstein lovers, and admirers of pie.

4. Celebrate Pi Day 2013 with Fredericksburg Pizza

Patch.com - 22 hours ago

5. Pi Day 2013: A Celebration of the Mathematical Constant 3.1415926535..

Patch.com - 1 day ago

 Celebrate Pi Day 2013 --- with Pie - Millburn-Short Hills, NJ Patch millburn.patch.com/.../celebrate-pi-day-2013-wit... - United State:

9 hours ago - A perfect day for math geeks, Einstein lovers, and admirers of pie.

 Pi Day 2013: A Celebration of the Mathematical Constant ..., manassas.patch.com/.../pi-day-2013-a-celebration... - United States

2 days ago - March 14, or 3-14, is Pi Day - a day to celebrate the mathematical constant 3.14. What Pi Day activities do you have planned?

 "Pi" Day 2013 - FunCheapSF.com sf.funcheap.com > City Guide

2 days ago - Pi Day 2013 Any day can be a holiday, so why not look to math for some inspiration. Pi day (March 14th... 3/14... 3.14) seeks to celebrate π ...

 Pi Day 2013 | Facebook www.facebook.com/events/181240568664057/

Thu, 14 Mar - Everywhere, ,

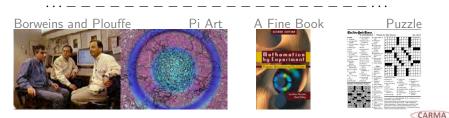
Celebrate mathematics by celebrating Pi Dayl Pi is the ratio of the circumference of a circle to its diameter (3.14159265...) For more info see: http://www.piday.org ...

 Pi Day 2013: Events. Activities. & History | Exploratorium www.exploratorium.edu/learning_studio/pi/

Welcome to our twenty-fifth annual Pi Day! Help us celebrate this never-ending number (3.14159 . . .) and Einstein's birthday as well. On the afternoon of March ...

Crossword Pi — NYT March 14, 2007

- To solve the puzzle, first note that the clue for 28 DOWN is March 14, to Mathematicians, to which the answer is PIDAY. Moreover, roughly a dozen other characters in the puzzle are π=PI.
- For example, the clue for 5 down was More pleased with the six character answer HAP π ER.



Crossword Pi — NYT March 14, 2007

• To solve the puzzle, first note that the clue for 28 DOWN is March 14, to Mathematicians,

to which the answer is PIDAY. Moreover, roughly a dozen other characters in the puzzle are $\pi = PI$.

• For example, the clue for 5 down was More pleased with the six character answer HAP π ER.

(MSNBC Thanksgiving 1997)

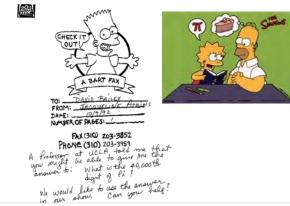
The Puzzle (By Permission)

Across	as Vice president	its it details began with	y V	1.			1.	-			1		-				to.	
Enlahan	other Hubbert	en la dese institue se	1	1	r.	r .	ľ.		۰.	ľ	Ľ.	ľ		**	"		ľ	
A couple CBIS	as Patient wite of	AN "HOAD YOU!"	14						15				12	16			Г	
private.	the Decimi	TUTTANI,C	17	+	t	-	t	1	18	+	+	H	12	iπ.		-	t	
0 1972 Broating	28 Admin to an	de EuropolAsia		+	+	+	+	11	-	+	+	+-			-	-	⊦	
A MALE DIRA	an Dain	tasyster man	10	-	-	-	24	4	4	-	-	-		1	_		11	
 Evid 	AB French Artist	er Sufix with	~				1	1					r .					
Arite	Collere	Add Landstor				27		Г	1	-		-		1	1	81	P	
Surface agains, ind is road?	Az Grape Io-	40 Browntance, and	33	*	10		1	1	t		37	1	34	t			t	
Peaky or Paker.	All Single-chilt Install	Elpaine # d	-	+	+	-		R.	t	-	-	41		42			t	
soelly	At Broad valley	PB FROM with the	43	+	-	-			1.	+	+	+		-	-	-	÷	
Carmona Assimume . Namacheli	49 Seo 21-D/min	1078-81 HI	47	-	-	-	-	5	-	-	-	1		-	-		ł.	
amon	AP Amery staarts	"Dece Doub" 71 Yeau's targette	Ľ					_		Γ.	1		Ľ.	11				
perfusiv	49 Officiality	Co. Leaders margane				5)			14		**				н	44	r	
WVW/ No Imp.	91 Mukloin mildee	Down	87	-			۳	-	T	81			F	**			t	
ing namenty	At Manical	1 Mantodon trop	44	+	+	+	1	μ.	t	1	-	1	61	t		-	t	
the l	procedure, mo	-iconino	-	+	+	-		17	+	+	+		-	+		-	÷	
point (kul lo) phr	As "White of	a Mistishave	5	Ŀ	-	-		No.	1	1	-		÷.	-	1	1	1	
St Louis	Fortune" uplace	a Peri		1					1				~	1.		1.1	Ŀ	
	\$2 America and h	a More pleased	T-max	i hy t	and a	120			-	-	_	2		_		_		
Neen	Writing willing	T Enterprise	as Nove perf. as Powder, e.g.				as fivety					NE Same in 17 Symphony re						
Given peak	40 Edinou																	
ANSWER TO PREVIOUS PUZZLE		Brighte Meder	as 007 and others					44 Gapteen's another better					possila ;					
		 Many a meteoral 	Auto 20 Diarrei 31 Diarrei 32 Fileri per antorio e gi 37 Tuden (ance					Ave pilvet					bormed n.W.					
ARFS AC CORK TR	HE ORGAN	10 Adustryum. Its						el Tocked owny						1 Mar 10				
DDAYLA	IT BTATS	0.0						as Shanny fighters as Disates										
		12 Uniteduciale						RE Sociative Re Lattic Autom Ré Jam					64 Religious anti-car					
BOCTORK	SISTA	Store Street																
TRONTP		ta Diarity filer	5			40		-4	-	-				~	1,44			
AUCOMALITICS INPHOLUTHEMAYO BAABAAORE INFILICUNTIES		21 Convert Igans with 40 Aarmut 26 Foar sharrpion Ungin 27 Self medicating	10	in in	NOT I	00	114	20	205	401	6. F	1.20	1.4	in/	é, a	D WI	łh	
			create card; 1-800-816-5554 Annual managements for the heat of Sureny comments from the last to yours; 1-866 1-ACHOSS															
																ä		
ARMEDT	extentionly			Online subscriptions. Today's puzzle and more than 2,000 past puzzles. (vymes now conversion (\$24, 85, s. year).														
LABE	TENDOWN	28 March 14, 81 -														1.00		

CARMA

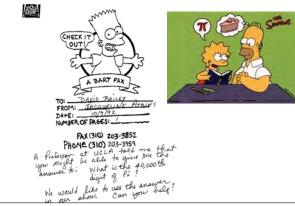
J.M. Borwein

Life of Pi (CARMA)


The Puzzle Answered

ANSWER TO PREVIOUS PUZZLE

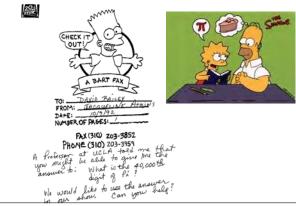
The Simpsons (Permission refused by Fox)



Apu: I can recite pi to 40,000 places. The last digit is 1. Homer: Mmm... pie. ("Marge in Chains." May 6, 1993"

 See also "Springfield Theory." (Science News, June 10, 2006) at vww.aarms.math.ca/ACMN/links, Mouthful of Pi, http://tvtropes.org/pmwiki/pmwiki.php/Main/Mouthful0fPi and http://www.recordholders.org/en/list/memory.html#pi. The record is now over 80,000.

The Simpsons (Permission refused by Fox)



Apu: I can recite pi to 40,000 places. The last digit is 1. Homer: Mmm... pie. ("Marge in Chains." May 6, 1993)

 See also "Springfield Theory." (Science News, June 10, 2006) at www.aarms.math.ca/AGMN/links, Mouthful of Pi, http://tvtropes.org/pmwiki/pmwiki.php/Main/Mouthful0fPi and http://www.recordholders.org/en/list/memory.html#pi. The record is now over 80,000.

The Simpsons (Permission refused by Fox)

Apu: I can recite pi to 40,000 places. The last digit is 1. Homer: Mmm... pie. ("Marge in Chains." May 6, 1993)

 See also "Springfield Theory." (Science News, June 10, 2006) at uww.aarms.math.ca/ACMN/links, Mouthful of Pi, http://tvtropes.org/pmwiki/pmwiki.php/Main/MouthfulOfPi and http://www.recordholders.org/en/list/memory.html#pi. The record is now over 80,000.

National Pi Day 3.12.2009: The first successful Pi Law

H.RES.224

Latest Title: Supporting the designation of Pi Day, and for other purposes.

Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)

Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: (2/3 required): 391 - 10 (Roll no. 124).

1985-2011. Gordon in Congress **2007- 2011.** Chairman of House Committee on Science and Technology.

1897. Indiana Bill 246 was fortunately shelved. Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Caption. To unlearable Pr Day 2008, the San Francesco Explorationum made a Pr string with more than 4,000 solored basis on it, excl, solve representing a digit tion (15:19) (ched): Dareer Freetman/Cast (1)

Washingtoh politicians took time from bailevide and earmark-laden spending packages on Wednesday for what might seemilike an unspulk act officially designating a National Pi Day

That's Pi as in ratio of a circle's-circumference-to-diameter, befor known as the mathematical constant beginning with 3 14159.

J.M. Borwein

National Pi Day 3.12.2009: The first successful Pi Law

H.RES.224

Latest Title: Supporting the designation of Pi Day, and for other purposes.

Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)

Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: (2/3 required): 391 - 10 (Roll no. 124).

1985-2011. Gordon in Congress

2007- 2011. Chairman of House Committee on Science and Technology.

1897. Indiana Bill 246 was fortunately shelved. Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Caption. To unlearable Pri Day 2005, the San Francesco Explorationum made a Pri sting with more than 4,000 solored badds on it, excl, color aspensariling a digit toos 0 to 9 (ched): Darees Prestmar/Cast B1

Washingtoh politicians took time from bailevide and earmark-laden spending packages on Wednesday for what might seemilike an unspulk act officially designating a National Pi Day

That's Pi as in ratio of a-circle's-circumference-to-diameter, befler known as the mathematical constant beginning with 3 14159.

J.M. Borwein

National Pi Day 3.12.2009: The first successful Pi Law

H.RES.224

Latest Title: Supporting the designation of Pi Day, and for other purposes.

Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)

Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: (2/3 required): 391 - 10 (Roll no. 124).

1985-2011. Gordon in Congress 2007- 2011. Chairman of House Committee on Science and Technology.

1897. Indiana Bill 246 was fortunately shelved. Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Caption. To unlearable Pr Day 2008, the San Francesco Explorationum made a Pr string with more than 4,000 solored basis on it, excl, solve representing a digit tion (15:19) (ched): Dareer Freetman/Call (1)

Washingtoh politicians took time from bailevide and earmark-laden spending packages on Wednesday for what might seemilike an unspulk act officially designating a National Pi Day

That's Pi as in ratio of a circle's-circumference-to-diameter, befor known as the mathematical constant beginning with 3 14159.

J.M. Borwein

National Pi Day 3.12.2009: The first successful Pi Law

H.RES.224

Latest Title: Supporting the designation of Pi Day, and for other purposes.

Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)

Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: (2/3 required): 391 - 10 (Roll no. 124).

1985-2011. Gordon in Congress 2007- 2011. Chairman of House Committee on Science and Technology.

1897. Indiana Bill 246 was fortunately shelved.

Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Caption. To unlearable Pr Day 2008, the San Francesco Explorationum made a Pr string with more than 4,000 solored basis on it, excl, solve aspensarizing a digit tool 0 to 10 (cond). Darees PrestmaryCast Pr 1

Washingtoh politicians took time from bailevide and earmark-laden spending packages on Wednesday for what might seemilike an unspulk act officially designating a National Pi Day

That's Pi as in ratio of a-circle's-circumference-to-diameter, befler known as the mathematical constant beginning with 3 14159.

J.M. Borwein

National Pi Day 3.12.2009: The first successful Pi Law

H.RES.224

Latest Title: Supporting the designation of Pi Day, and for other purposes.

Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)

Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: (2/3 required): 391 - 10 (Roll no. 124).

1985-2011. Gordon in Congress 2007- 2011. Chairman of House Committee on Science and Technology.

1897. Indiana Bill 246 was fortunately shelved. Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Caption. To unlearable Pr Day 2008, the San Francesco Explorationum made a Pr string with more than 4,000 solored basis on it, excl, solve representing a digit tion (15:19) (ched): Dareer Freetman/Call (1)

Washingtoh politicians took time from bailevide and earmark-laden spending packages on Wednesday for what might seemilike an unspulk act officially designating a National Pi Day

That's Pi as in ratio of a-circle's-circumference-to-diameter, befler known as the mathematical constant beginning with 3 14159.

J.M. Borwein

National Pi Day 3.12.2009: The first successful Pi Law

H.RES.224

Latest Title: Supporting the designation of Pi Day, and for other purposes.

Sponsor: Rep Gordon, Bart [TN-6] (introduced 3/9/2009) Cosponsors (15)

Latest Major Action: 3/12/2009 Passed/agreed to in House. Status: On motion to suspend the rules and agree to the resolution Agreed to by the Yeas and Nays: (2/3 required): 391 - 10 (Roll no. 124).

1985-2011. Gordon in Congress 2007- 2011. Chairman of House Committee on Science and Technology.

1897. Indiana Bill 246 was fortunately shelved. Attempt to legislate value(s) of Pi and charge royalties started in the 'Committee on Swamps'.

Caption. To unlearable Pr Day 2008, the San Francesco Explorationum made a Pr string with more than 4,000 solored basis on it, excl, solve representing a digit tion (15:19) (ched): Dareer Freetman/Call (1)

Washingtoh politicians took time from bailevide and earmark-laden spending packages on Wednesday for what might seemilike an unspulk act officially designating a National Pi Day

That's Pi as in ratio of a circle's-circumference-to-diameter, befor known as the mathematical constant beginning with 3 14159.

J.M. Borwein

CNN Pi Day 3.13.2010: and Google (in North America)

On Pi Day, one number 'reeks of mystery'

By Elizabeth Landau, CNN

March 12, 2010 12:36 p.m. ESTMarch 12, 2010 12:36 p.m. EST

Sunday is Pi Day, on which math geeks celebrate the number representing the ratio of circumference to diameter of a circle.

STORY HIGHLIGHTS

Pi Day falls on March 14, which breaths or gentle humming. For Marc Umile, it's is also Abert Einstein's birthday "3.14159285358979..."

The true "randomness" of pis digits - 3.14 and so on - has W

The U.S. House passed a resolution supporting Pi Day in March 2009

Whether in the shower, driving to work, or walking down the street, he'll mentally ratted off digits of pi to pass the time. Holding 10th place in the world for pi memorization ~ he typed out 15,314 digits from memory in 2007 ~ Umile meditates through one of the most beloved and mysterious numbers in all of mathematics.

(CNN) -- The sound of meditation for some people is full of deep

Google's homage to 3.14.10

CNN Pi Day 3.13.2010: and Google (in North America)

On Pi Day, one number 'reeks of mystery'

By Elizabeth Landau, CNN

March 12, 2010 12:36 p.m. ESTMarch 12, 2010 12:36 p.m. EST

Sunday is Pi Day, on which math geeks celebrate the number representing the ratio of circumference to diameter of a circle.

STORY HIGHLIGHTS

Pi Day falls on March 14, which breaths or gentle humming. For Marc Umile, it's is also Albert Einsein's birthday "3.14159265358979..."

The true "randomness" of pis digits - 3.14 and so on - has W

The U.S. House passed a resolution supporting Pi Day in March 2009

Whether in the shower, driving to work, or walking down the street, he'll mentally ratted off digits of pi to pass the time. Holding 10th place in the world for pi memorization ~ he typed out 15,314 digits from memory in 2007 ~ Umile meditates through one of the most beloved and mysterious numbers in all of mathematics.

(CNN) -- The sound of meditation for some people is full of deep

Google's homage to 3.14.10

CNN Pi Day 3.13.2010: and Google (in North America)

On Pi Day, one number 'reeks of mystery'

By Elizabeth Landau, CNN

March 12, 2010 12:36 p.m. ESTMarch 12, 2010 12:36 p.m. EST

Sunday is Pi Day, on which math geaks celebrate the number representing the ratio of circumference to diameter of a circle.

STORY HIGHLIGHTS

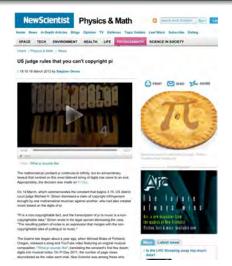
Pi Day falls on March 14, which breaths or gentle humming. For Marc Umile, it's is also Abert Einsein's birthday "3.14159285358979..."

The true "randomness" of pils digits - 3.14 and so on -- has Whet

The U.S. House passed a resolution supporting Pi Day in March 2009

Whether in the shower, driving to work, or walking down the street, he'll mentally ratted off digits of pi to pass the time. Holding 10th place in the world for pi memorization ~ he typed out 15,314 digits from memory in 2007 ~ Umile meditates through one of the most beloved and mysterious numbers in all of mathematics.

(CNN) -- The sound of meditation for some people is full of deep

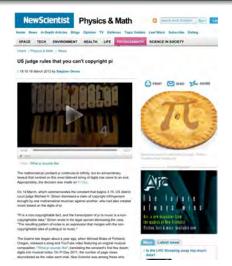


Google's homage to 3.14.10

 $\begin{array}{c} \mbox{25. Pi's Childhood} \\ \mbox{44. Pi's Adolescence} \\ \mbox{49. Adulthood of Pi} \\ \mbox{80. Pi in the Digital Age} \\ \mbox{114. Computing Individual Digits of } \pi \end{array}$

Judge rules "Pi is a non-copyrightable fact" on **3.14.2012**

Two of many cartoons



J.M. Borwein

 $\begin{array}{c} \mbox{25. Pi's Childhood} \\ \mbox{44. Pi's Adolescence} \\ \mbox{49. Adulthood of Pi} \\ \mbox{80. Pi in the Digital Age} \\ \mbox{114. Computing Individual Digits of } \pi \end{array}$

Judge rules "Pi is a non-copyrightable fact" on **3.14.2012**

Two of many cartoons

J.M. Borwein

 $\begin{array}{c} 25. \ \mathrm{Pi's} \ \mathrm{Childhood} \\ 44. \ \ \mathrm{Pi's} \ \mathrm{Adolescence} \\ 49. \ \mathrm{Adulthood} \ \mathrm{of} \ \mathrm{Pi} \\ 80. \ \mathrm{Pi} \ \mathrm{in} \ \mathrm{the Digital} \ \mathrm{Age} \\ 114. \ \ \mathrm{Computing} \ \mathrm{Individual} \ \mathrm{Digits} \ \mathrm{of} \ \pi \end{array}$

Judge rules "Pi is a non-copyrightable fact" on **3.14.2012**

Two of many cartoons

J.M. Borwein

Google (29-1-13) and US Gov't (14-8-12) still both love π

Google rounds up Pwnie prize to π million for Chrome OS hacks

Google shoves Chrome US in to the hucker epolight.

U.S. Population Reaches 314,159,265, Or Pi Times 100 Million: Census

The Huffington Post | By Borean Karoussi Posted 08/14/2012 4 02 pm Updates 08/14/2012 5 55 pm

The U.S. population has reached a nerdy and delightful milestone

Shortly after 2.29 p.m. on Tuesday, August 14, 2012, the U.S. population was exactly 314,159,265, or Pi (n) times 100 million, the U.S. Census Euredu records.

Fi (th) is a unique number in multiple ways. For one, it is the ratio of a citcle's circumference to its diameter. It is also an introlonal number, meaning it goes on foreiver without ever repeating itset. Ave you remembering how much you loved geometry class? You can check out Pi to one million places hum.

Contestants will be offered \$110,000 for a successful exploit delivered by a well page that achieves a browser, or system level compromise 'n qualit mode or its a bigged in user'. A \$150,000 proze will be offered for a 'compromes with device presistance - qualit by qualit with instrum redout, delivered via a web page'.

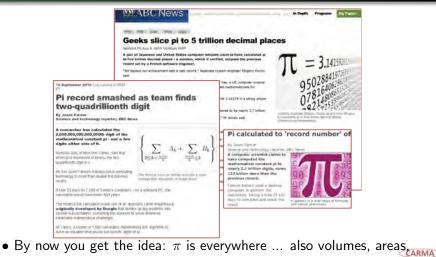
Each year brings more π -trivia

and serious stuff

 September 2014. Pencil, Paper and Pi or where Shanks computation went wrong

http://www.americanscientist.org/issues/pub/2014/5/pencil-paper-and-pi

- March 2015. J.M. Borwein and Scott T. Chapman, "I Prefer Pi: A Brief History and Anthology of Articles in the American Mathematical Monthly." 122 (2015), 195–216.
- 3 22.10.14. A mile of Pi on one piece of paper


http://www.youtube.com/watch?v=Or3cEKZiLmg&feature=youtu.be

π Records Always Make The News

More later

lengths, probabilities, everywhere.

J.M. Borwein

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

26. Links and References

- The Pi Digit site: http://carma.newcastle.edu.au/bbp
- 2 Dave Bailey's Pi Resources: http://crd.lbl.gov/~dhbailey/pi/
- 3 The Life of Pi: http://carma.newcastle.edu.au/jon/pi-2012.pdf.
- Experimental Mathematics: http://www.experimentalmath.info/.
- Dr Pi's brief Bio: http://carma.newcastle.edu.au/jon/bio_short.html.
- D.H. Bailey and J.M. Borwein, "On Pi Day 2014, Pi's normality is still in question." American Mathematical Monthly, 121 March (2014), 191–204. (and Huffington Post 3.14.14 Blog)
- D.H. Bailey, and J.M. Borwein, Mathematics by Experiment: Plausible Reasoning in the 21st Century, AK Peters Ltd, Ed 2, 2008, ISBN: 1-56881-136-5. See http://www.experimentalmath.info/
- J.M. Borwein, "Pi: from Archimedes to ENIAC and beyond," in *Mathematics and Culture*, Einaudi, 2006. Updated 2012: http://carma.newcastle.edu.au/jon/pi-2012.pdf.
- J.M. & P.B. Borwein, and D.A. Bailey, "Ramanujan, modular equations and pi or how to compute a billion digits of pi," MAA Monthly, 96 (1989), 201–219. Reprinted in Organic Mathematics, www.cecm.sfu.ca/organics, 1996, CMS/AMS Conference Proceedings, 20 (1997), ISSN: 0731-1036.
- J.M. Borwein and P.B. Borwein, "Ramanujan and Pi," Scientific American, February 1988, 112–117. Also pp. 187-199 of Ramanujan: Essays and Surveys, Bruce C. Berndt and Robert A. Rankin Eds., AMS-LMS History of Mathematics, vol. 22, 2001.
- (6) Jonathan M. Borwein and Peter B. Borwein, Selected Writings on Experimental and Computational Mathematics, PsiPress. October 2010.¹
 - L. Berggren, J.M. Borwein and P.B. Borwein, *Pi: a Source Book*, Springer-Verlag, (1997), (2000), (2004). Fourth Edition, in Press.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3\frac{1}{8} = 3.125$.

1650 BCE. Rhind papyrus: a circle of diameter *nine* has the area of a square of side *eight*: $\pi = \frac{256}{81} = 3.1604...$

 Pi is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi = 3$: Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about. (I Kings 7:23; 2 Chron. 4:2)

 More interesting is that Moses ben Maimon Maimonedes (the 'Rambam') (1135-1204) writes in *The true perplexity* that because of its nature "nor will it ever be possible to express it [π] exactly."

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3\frac{1}{8} = 3.125$.

1650 BCE. Rhind papyrus: a circle of diameter *nine* has the area of a square of side *eight*: $\pi = \frac{256}{91} = 3.1604...$

 Pi is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi = 3$: Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about. (I Kings 7:23; 2 Chron. 4:2)

 More interesting is that Moses ben Maimon Maimonedes (the 'Rambam') (1135-1204) writes in *The true perplexity* that because of its nature "nor will it ever be possible to express it [π] exactly."

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3\frac{1}{8} = 3.125$.

1650 BCE. Rhind papyrus: a circle of diameter *nine* has the area of a square of side *eight*: $\pi = \frac{256}{91} = 3.1604...$

 Pi is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi = 3$: Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about. (I Kings 7:23; 2 Chron. 4:2)

More interesting is that Moses ben Maimon Maimonedes (the 'Rambam') (1135-1204) writes in *The true perplexity* that because of its nature "nor will it ever be possible to express it [π] exactly."

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3\frac{1}{8} = 3.125$.

1650 BCE. Rhind papyrus: a circle of diameter *nine* has the area of a square of side *eight*: $\pi = \frac{256}{81} = 3.1604...$

 Pi is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi = 3$:

Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about. (I Kings 7:23; 2 Chron. 4:2)

- More interesting is that Moses ben Maimon Maimonedes (the 'Rambam') (**1135-1204**) writes in *The true perplexity* that because of its nature "nor will it ever be possible to express it $[\pi]$ exactly."

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Infancy of Pi: Babylon, Egypt and Israel

2000 BCE. Babylonians used the approximation $3\frac{1}{8} = 3.125$.

1650 BCE. Rhind papyrus: a circle of diameter *nine* has the area of a square of side *eight*: $\pi = \frac{256}{91} = 3.1604...$

 Pi is the only topic from the earliest strata of mathematics being actively researched today.

Some argue ancient Hebrews used $\pi = 3$:

Also, he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about. (I Kings 7:23; 2 Chron. 4:2)

More interesting is that Moses ben Maimon Maimonedes (the 'Rambam') (1135-1204) writes in *The true perplexity* that because of its nature "nor will it ever be possible to express it [*π*] exactly."

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

There are two Pi(es): Did they tell you?

Archimedes of Syracuse (c.287 – 212 BCE) was first to show that the "two Pi's" are one in *Measurement of the Circle* (c.250 BCE):

Area = $\pi_1 r^2$ and Perimeter = $2 \pi_2 r$.

The area of any virile is equal to a right-angled triangle in which are of the rides about the right angle is equal to the rathing and the other to the virus/fermer, of the circle Let ABOD be the piren circle, R the triangle described.

ST S	
a st	

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825 3421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596 is accurate enough to compute the volume of the known universe to the accuracy of a hydrogen nucleus.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

There are two Pi(es): Did they tell you?

Archimedes of Syracuse (c.287 – 212 BCE) was first to show that the "two Pi's" are one in *Measurement of the Circle* (c.250 BCE):

Area $= \pi_1 r^2$ and Perimeter $= 2 \pi_2 r$.

The area of any tirds is equal to a right-angled triangle in which are of the ride wheat the right angle is equal to the rathing and the other to the virus/remon, of the circle Lat ABOD be the pirm circle, R the triangle described.

. And	
12 A	

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825 3421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596 is accurate enough to compute the volume of the known universe to the accuracy of a hydrogen nucleus.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

There are two Pi(es): Did they tell you?

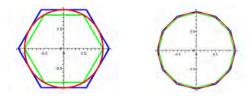
Archimedes of Syracuse (c.287 – 212 BCE) was first to show that the "two Pi's" are one in *Measurement of the Circle* (c.250 BCE):

Area $= \pi_1 r^2$ and Perimeter $= 2 \pi_2 r$.

The area of any virile is speak to a right-angled triangle in which are of the rides about the right angle is pound to the various, and the other to the virous/ermone, of the circle. Let ABOD be the pires circle, R the triangle described.

-	
 a all	

 $\frac{3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596 is accurate enough to compute the volume of the known universe to the accuracy of a hydrogen nucleus.$


Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

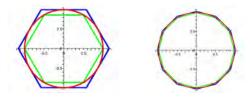
Archimedes Method circa 250 BCE

The first rigorous mathematical calculation of π was also due to Archimedes, who used a brilliant scheme based on doubling inscribed and circumscribed polygons

$\mathbf{6} \mapsto \mathbf{12} \mapsto 24 \mapsto 48 \mapsto \mathbf{96}$

to obtain the bounds $3rac{10}{71} < \pi < 3rac{1}{7}.$

 Archimedes' scheme is the *first true algorithm for* π, in that it is capable of producing an arbitrarily accurate value for π.


Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

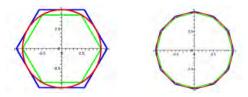
Archimedes Method circa 250 BCE

The first rigorous mathematical calculation of π was also due to Archimedes, who used a brilliant scheme based on doubling inscribed and circumscribed polygons

$\mathbf{6}\mapsto\mathbf{12}\mapsto24\mapsto48\mapsto\mathbf{96}$

to obtain the bounds $3rac{10}{71} < \pi < 3rac{1}{7}.$

 Archimedes' scheme is the *first true algorithm for* π, in that it is capable of producing an arbitrarily accurate value for π.


Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

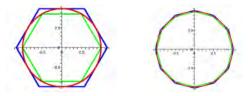
Archimedes Method circa 250 BCE

The first rigorous mathematical calculation of π was also due to Archimedes, who used a brilliant scheme based on doubling inscribed and circumscribed polygons

$\mathbf{6}\mapsto\mathbf{12}\mapsto24\mapsto48\mapsto\mathbf{96}$

to obtain the bounds $3\frac{10}{71} < \pi < 3\frac{1}{7}$.

 Archimedes' scheme is the *first true algorithm for* π, in that it is capable of producing an arbitrarily accurate value for π.


Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Method circa 250 BCE

The first rigorous mathematical calculation of π was also due to Archimedes, who used a brilliant scheme based on doubling inscribed and circumscribed polygons

 $\mathbf{6}\mapsto\mathbf{12}\mapsto24\mapsto48\mapsto\mathbf{96}$

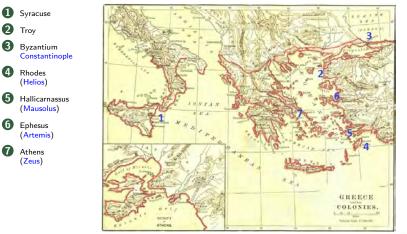
to obtain the bounds $3\frac{10}{71} < \pi < 3\frac{1}{7}$.

• Archimedes' scheme is the *first true algorithm for* π , in that it is capable of producing an arbitrarily accurate value for π .

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Where Greece Was: Magna Graecia

The others of the Seven Wonders: Lighthouse of Alexandria, Pyramids of Giza, Gardens of Babylon



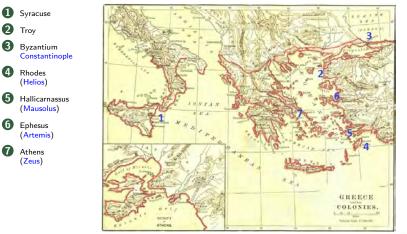
SKIP

J.M. Borwein Life of Pi (CARMA)

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Where Greece Was: Magna Graecia

The others of the Seven Wonders: Lighthouse of Alexandria, Pyramids of Giza, Gardens of Babylon



SKIP

J.M. Borwein Life of Pi (CARMA)

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Where Greece Was: Magna Graecia

The others of the Seven Wonders: Lighthouse of Alexandria, Pyramids of Giza, Gardens of Babylon

SKIP

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.
 - Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
 - After **1929.** Painted over with gold icons and left in a wet bucket in a garden.
 - 1998. Bought at auction for \$2 million.
 - 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
 - Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.

"Archimedes used knowledge of levers and centres of gravity to envision ways of balancing geometric figures against one another which allowed him to compare their areas or volumes. He then used rigorous geometric argument to prove *Method* discoveries."

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.
 - Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
 - After **1929.** Painted over with gold icons and left in a wet bucket in a garden.
 - 1998. Bought at auction for \$2 million.
 - 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
 - Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.

"Archimedes used knowledge of levers and centres of gravity to envision ways of balancing geometric figures against one another which allowed him to compare their areas or volumes. He then used rigorous geometric argument to prove *Method* discoveries."

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.
 - Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
 - After 1929. Painted over with gold icons and left in a wet bucket in a garden.
 - **1998.** Bought at auction for **\$2** million.
 - 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
 - Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.

"Archimedes used knowledge of levers and centres of gravity to envision ways of balancing geometric figures against one another which allowed him to compare their areas or volumes. He then used rigorous geometric argument to prove *Method* discoveries."

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.
 - Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
 - After 1929. Painted over with gold icons and left in a wet bucket in a garden.
 - **1998.** Bought at auction for \$2 million.
 - 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
 - Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.

"Archimedes used knowledge of levers and centres of gravity to envision ways of balancing geometric figures against one another which allowed him to compare their areas or volumes. He then used rigorous geometric argument to prove *Method* discoveries."

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.
 - Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
 - After 1929. Painted over with gold icons and left in a wet bucket in a garden.
 - **1998.** Bought at auction for \$2 million.
 - 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
 - Contained bits of 7 texts including Archimedes On Floating Bodies and Method of Mechanical Theorems, thought lost.

"Archimedes used knowledge of levers and centres of gravity to envision ways of balancing geometric figures against one another which allowed him to compare their areas or volumes. He then used rigorous geometric argument to prove *Method* discoveries."

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Palimpsest (Codex C)

- 1906. Discovery of a 10th-C palimpsest in Constantinople.
 - Sometime before April 14 1229, partially erased, cut up, and overwritten by religious text.
 - After 1929. Painted over with gold icons and left in a wet bucket in a garden.
 - **1998.** Bought at auction for \$2 million.
 - 1998-2008. "Reconstructed" using very high-end mathematical imaging techniques.
 - Contained bits of 7 texts including Archimedes *On Floating Bodies* and *Method of Mechanical Theorems*, thought lost.

"Archimedes used knowledge of levers and centres of gravity to envision ways of balancing geometric figures against one another which allowed him to compare their areas or volumes. He then used rigorous geometric argument to prove *Method* discoveries."

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes from *The Method*

"... certain things first became clear to me by a mechanical method, although they had to be proved by geometry afterwards because their investigation by the said method did not furnish an actual proof. But it is of course easier, when we have previously acquired, by the method, some knowledge of the questions, to supply the proof than it is to find it without any previous knowledge."

J.M. Borwein Life of Pi (CARMA)

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Let's be Clear: π Really is not $\frac{22}{7}$

Even Maple or Mathematica 'knows' this since

$$0 < \int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} dx = \frac{22}{7} - \pi, \qquad (1)$$

though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on (0,1), and the answer in (1) is an area and so strictly positive, despite millennia of claims that π is 22/7.

• Accidentally, 22/7 is one of the early continued fraction approximation to π . These commence:

$$3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \dots$$

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Let's be Clear: π Really is not $\frac{22}{7}$

Even Maple or Mathematica 'knows' this since

$$0 < \int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} dx = \frac{22}{7} - \pi, \qquad (1)$$

though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on (0, 1), and the answer in (1) is an area and so strictly positive, despite millennia of claims that π is 22/7.

• Accidentally, 22/7 is one of the early continued fraction approximation to π . These commence:

$$3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \dots$$

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Let's be Clear: π Really is not $\frac{22}{7}$

Even Maple or Mathematica 'knows' this since

$$0 < \int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} dx = \frac{22}{7} - \pi, \qquad (1)$$

though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on (0, 1), and the answer in (1) is an area and so strictly positive, despite millennia of claims that π is 22/7.

• Accidentally, 22/7 is one of the early continued fraction approximation to π . These commence:

$$3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \dots$$

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Method circa 1800 CE

As discovered — by Schwabb, Pfaff, Borchardt, Gauss — in the 19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set $a_0 := 2\sqrt{3}, b_0 := 3$. Compute

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n} \tag{H}$$
$$b_{n+1} = \sqrt{a_{n+1} b_n} \tag{G}$$

These tend to π , error decreasing by a *factor of four* at each step.

 The greatest mathematician (scientist) to live before the *Enlightenment*. To compute π Archimedes had to *invent many subjects* — including numerical and interval analysis.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Method circa 1800 CE

As discovered — by Schwabb, Pfaff, Borchardt, Gauss — in the 19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set $a_0 := 2\sqrt{3}, b_0 := 3$. Compute

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n} \tag{H}$$
$$b_{n+1} = \sqrt{a_{n+1} b_n} \tag{G}$$

These tend to π , error decreasing by a *factor of four* at each step.

 The greatest mathematician (scientist) to live before the Enlightenment. To compute π Archimedes had to invent many subjects — including numerical and interval analysis.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Method circa 1800 CE

As discovered — by Schwabb, Pfaff, Borchardt, Gauss — in the 19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set $a_0 := 2\sqrt{3}, b_0 := 3$. Compute

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n} \tag{H}$$
$$b_{n+1} = \sqrt{a_{n+1} b_n} \tag{G}$$

These tend to π , error decreasing by a *factor of four* at each step.

 The greatest mathematician (scientist) to live before the *Enlightenment*. To compute π Archimedes had to *invent many subjects* — including numerical and interval analysis.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Archimedes Method circa 1800 CE

As discovered — by Schwabb, Pfaff, Borchardt, Gauss — in the 19th century, this becomes a simple recursion:

Algorithm (Archimedes)

Set $a_0 := 2\sqrt{3}, b_0 := 3$. Compute

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n} \tag{H}$$
$$b_{n+1} = \sqrt{a_{n+1} b_n} \tag{G}$$

These tend to π , error decreasing by a *factor of four* at each step.

 The greatest mathematician (scientist) to live before the *Enlightenment*. To compute π Archimedes had to *invent many subjects* — including numerical and interval analysis.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

CARMA

Proving π is not $\frac{22}{7}$

In this case, the indefinite integral provides immediate reassurance. We obtain

$$\int_{0}^{\mathbf{t}} \frac{x^{4} \left(1-x\right)^{4}}{1+x^{2}} \, dx = \frac{1}{7} t^{7} - \frac{2}{3} t^{6} + t^{5} - \frac{4}{3} t^{3} + 4t - 4 \arctan\left(t\right)$$

as differentiation easily confirms, and the fundamental theorem of calculus proves (1). QED

One can take this idea a bit further. Note that

$$\int_0^1 x^4 \left(1 - x\right)^4 dx = \frac{1}{630}.$$

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Proving π is not $\frac{22}{7}$

In this case, the indefinite integral provides immediate reassurance. We obtain

$$\int_{0}^{t} \frac{x^{4} (1-x)^{4}}{1+x^{2}} dx = \frac{1}{7} t^{7} - \frac{2}{3} t^{6} + t^{5} - \frac{4}{3} t^{3} + 4t - 4 \arctan(t)$$

as differentiation easily confirms, and the fundamental theorem of calculus proves (1). QED

One can take this idea a bit further. Note that

$$\int_0^1 x^4 \left(1 - x\right)^4 dx = \frac{1}{630}.$$
 (2)

CARMA

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

... Going Further

Hence $\frac{1}{2} \int_0^1 x^4 (1-x)^4 dx < \int_0^1 \frac{(1-x)^4 x^4}{1+x^2} dx < \int_0^1 x^4 (1-x)^4 dx.$

Combine this with (1) and (2) to derive:

 $223/71 < 22/7 - 1/630 < \pi < 22/7 - 1/1260 < 22/7$

and so re-obtain Archimedes' famous

$$3rac{10}{71} < \pi < 3rac{10}{70}.$$

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Never Trust Secondary References

See Dalziel in *Eureka* (1971), a Cambridge student journal.
Integral (1) was on the 1968 *Putnam*, an early 60's Sydney exam, and traces back to **1944** (Dalziel).

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.—Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Never Trust Secondary References

- See Dalziel in *Eureka* (1971), a Cambridge student journal.
- Integral (1) was on the 1968 *Putnam*, an early 60's Sydney exam, and traces back to **1944** (Dalziel).

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.—Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Never Trust Secondary References

- See Dalziel in *Eureka* (1971), a Cambridge student journal.
- Integral (1) was on the 1968 *Putnam*, an early 60's Sydney exam, and traces back to **1944** (Dalziel).

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.—Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Never Trust Secondary References

- See Dalziel in *Eureka* (1971), a Cambridge student journal.
- Integral (1) was on the 1968 *Putnam*, an early 60's Sydney exam, and traces back to **1944** (Dalziel).

Leonhard Euler (1737-1787), William Kelvin (1824-1907) and Augustus De Morgan (1806-1871)

I have no satisfaction in formulas unless I feel their arithmetical magnitude.—Baron William Thomson Kelvin

In Lecture 7 (7 Oct 1884), of his Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Kuhnian 'Paradigm Shifts' and Normal Science

Variations of Archimedes' method were used for all calculations of π for **1800** years — well beyond its 'best before' date.

- **480CE**. In China Tsu Chung-Chih got π to seven digits.

1429. A millennium later, Al-Kashi in Samarkand — on the silk road — "who could calculate as eagles can fly" computed 2π in sexagecimal:

$$2\pi = 6 + \frac{16}{60^1} + \frac{59}{60^2} + \frac{28}{60^3} + \frac{01}{60^4} + \frac{34}{60^5} + \frac{51}{60^6} + \frac{46}{60^7} + \frac{14}{60^8} + \frac{50}{60^9}$$

good to ${f 16}$ decimal places (using $3\cdot 2^{28}$ -gons).

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Kuhnian 'Paradigm Shifts' and Normal Science

Variations of Archimedes' method were used for all calculations of π for **1800** years — well beyond its 'best before' date.

- **480CE**. In China Tsu Chung-Chih got π to seven digits.

1429. A millennium later, Al-Kashi in Samarkand — on the silk road — "*who could calculate as eagles can fly*" computed 2*π* in sexagecimal:

$$2\pi = 6 + \frac{16}{60^1} + \frac{59}{60^2} + \frac{28}{60^3} + \frac{01}{60^4} + \frac{34}{60^5} + \frac{51}{60^6} + \frac{46}{60^7} + \frac{14}{60^8} + \frac{50}{60^9}$$

good to ${f 16}$ decimal places (using $3\cdot 2^{28}$ -gons).

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Kuhnian 'Paradigm Shifts' and Normal Science

Variations of Archimedes' method were used for all calculations of π for **1800** years — well beyond its 'best before' date.

- **480CE**. In China Tsu Chung-Chih got π to seven digits.

1429. A millennium later, Al-Kashi in Samarkand — on the silk road — "who could calculate as eagles can fly" computed 2π in sexagecimal:

$$2\pi = 6 + \frac{16}{60^1} + \frac{59}{60^2} + \frac{28}{60^3} + \frac{01}{60^4} + \frac{34}{60^5} + \frac{51}{60^6} + \frac{46}{60^7} + \frac{14}{60^8} + \frac{50}{60^9},$$

good to **16 decimal places** (using $3 \cdot 2^{28}$ -gons).

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE **Precalculus Calculation Records** The Fairly Dark Ages

Precalculus π Calculations

Name	Year	Digits
Babylonians	2000? BCE	1
Egyptians	2000? BCE	1
Hebrews (1 Kings 7:23)	550? BCE	1
Archimedes	250? BCE	3
Ptolemy	150	3
Liu Hui	263	5
Tsu Ch'ung Chi	480?	7
Al-Kashi	1429	14
Romanus	1593	15
Van Ceulen (Ludolph's number*)	1615	35

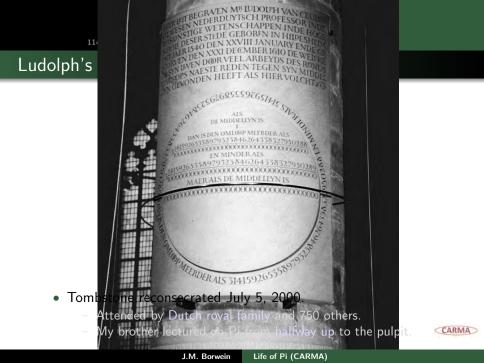
* Used 2^{62} -gons for 39 places/35 correct — published posthumously.

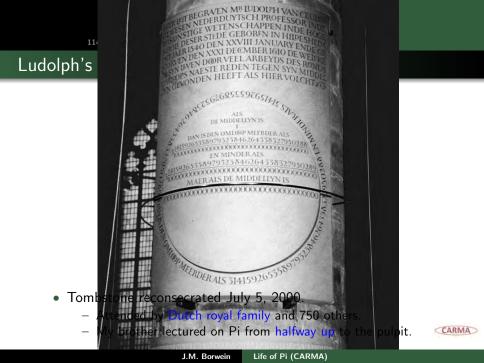
CARMA

25. Pi's Childhood

44. Pi's Adolescence 49. Adulthood of Pi 80. Pi in the Digital Age 114. Computing Individual Digits of π Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE **Precalculus Calculation Records** The Fairly Dark Ages

Ludolph's Rebuilt Tombstone in Leiden




Ludolph van Ceulen (1540-1610)

• Destroyed several centuries ago; the plans remained.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Fairly Dark Ages

Europe stagnated during the 'dark ages'. A significant advance arose in India (450 CE): *modern positional, zero-based decimal arithmetic* — the "Indo-Arabic" system.

- Came to Europe between 1000 (Gerbert/Sylvester) and 1202
 CE (Fibonacci's Liber Abaci) see Devlin's 2011 The Man of Numbers: Fibonacci's Arithmetic Revolution.
- Still underestimated, this greatly enhanced arithmetic and mathematics in general, and computing π in particular.
 - Resistance ranged from accountants who feared for their livelihood to clerics who saw the system as 'diabolical' — they incorrectly assumed its origin was Islamic.
 - European commerce resisted until 18th century, and even in scientific circles usage was limited into 17th century.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Fairly Dark Ages

Europe stagnated during the 'dark ages'. A significant advance arose in India (450 CE): *modern positional, zero-based decimal arithmetic* — the "Indo-Arabic" system.

- Came to Europe between 1000 (Gerbert/Sylvester) and 1202
 CE (Fibonacci's Liber Abaci) see Devlin's 2011 The Man of Numbers: Fibonacci's Arithmetic Revolution.
- Still underestimated, this greatly enhanced arithmetic and mathematics in general, and computing π in particular.
 - Resistance ranged from accountants who feared for their livelihood to clerics who saw the system as 'diabolical' — they incorrectly assumed its origin was Islamic.
 - European commerce resisted until 18th century, and even in scientific circles usage was limited into 17th century.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

The Fairly Dark Ages

Europe stagnated during the 'dark ages'. A significant advance arose in India (450 CE): *modern positional, zero-based decimal arithmetic* — the "Indo-Arabic" system.

- Came to Europe between 1000 (Gerbert/Sylvester) and 1202
 CE (Fibonacci's Liber Abaci) see Devlin's 2011 The Man of Numbers: Fibonacci's Arithmetic Revolution.
- Still underestimated, this greatly enhanced arithmetic and mathematics in general, and computing π in particular.
 - Resistance ranged from accountants who feared for their livelihood to clerics who saw the system as 'diabolical' — they incorrectly assumed its origin was Islamic.
 - European commerce resisted until 18th century, and even in scientific circles usage was limited into 17th century.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Arithmetic was Hard

- See DHB & JMB, "Ancient Indian Square Roots: An Exercise in Forensic Paleo-Mathematics," *MAA Monthly.* 2012.
- The prior difficulty of arithmetic² is shown by 'college placement' advice to a wealthy 16C German merchant:

If you only want him to be able to cope with addition and subtraction, then any French or German university will do. But if you are intent on your son going on to multiplication and division — assuming that he has sufficient gifts — then you will have to send him to Italy. — George Ifrah or Tobias Danzig

²Claude Shannon (**1913-2006**) had 'Throback 1' built to compute in CARMAC Roman, at Bell Labs in 1953.

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Arithmetic was Hard

- See DHB & JMB, "Ancient Indian Square Roots: An Exercise in Forensic Paleo-Mathematics," *MAA Monthly.* 2012.
- The prior difficulty of arithmetic² is shown by 'college placement' advice to a wealthy 16C German merchant:

If you only want him to be able to cope with addition and subtraction, then any French or German university will do. But if you are intent on your son going on to multiplication and division — assuming that he has sufficient gifts — then you will have to send him to Italy. — George Ifrah or Tobias Danzig

²Claude Shannon (**1913-2006**) had 'Throback 1' built to compute in CARMAN Roman, at Bell Labs in 1953.

25. Pi's Childhood 44. Pi's Adolescence 49. Adulthood of Pi 80. Pi in the Digital Age

114. Computing Individual Digits of π

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Google Buys (Pi-3) \times 100,000,000 Shares

The New Hork Times nytimes.com

August 19, 2005

14,159,265 New Slices of Rich Technology

By JOHN MARKOFF

SAN FRANCISCO, Aug. 18 - <u>Google</u> said in a surprise move on Thursday that it would raise a \$4 billion war chest with a new stock offering. The announcement stirred widespread speculation in Silicon Valley that Google, the premier online search site, would move aggressively into businesses well beyond Web searching and search-based advertising.

Google, which raised \$1.67 billion in its initial public offering last August, expects to collect \$4.04 billion by selling 14,159,265 million Class A shares, based on Wednesday's closing price of \$285.10. In Google's whimsical fashion, the number of shares offered is the same as the first eight digits after the decimal point in pi, the ratio of the circumference of a circle to its diameter, which starts with 3.14159265.

• Why did Google want precisely this many pieces of the Pie?

J.M. Borwein Life of Pi (CARMA)

25. Pi's Childhood 44. Pi's Adolescence 49. Adulthood of Pi 80. Pi in the Digital Age

114. Computing Individual Digits of π

Links and References Babylon, Egypt and Israel Archimedes Method circa 250 BCE Precalculus Calculation Records The Fairly Dark Ages

Google Buys (Pi-3) \times 100,000,000 Shares

The New Hork Times nytimes.com

August 19, 2005

14,159,265 New Slices of Rich Technology

By JOHN MARKOFF

SAN FRANCISCO, Aug. 18 - <u>Google</u> said in a surprise move on Thursday that it would raise a \$4 billion war chest with a new stock offering. The announcement stirred widespread speculation in Silicon Valley that Google, the premier online search site, would move aggressively into businesses well beyond Web searching and search-based advertising.

Google, which raised \$1.67 billion in its initial public offering last August, expects to collect \$4.04 billion by selling 14,159,265 million Class A shares, based on Wednesday's closing price of \$285.10. In Google's whimsical fashion, the number of shares offered is the same as the first eight digits after the decimal point in pi, the ratio of the circumference of a circle to its diameter, which starts with 3.14159265.

• Why did Google want precisely this many pieces of the Pie? CARMAN

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

45. Pi's (troubled) Adolescence

1579. Modern mathematics dawns in Viéte's product

$$\frac{\sqrt{2}}{2} \frac{\sqrt{2+\sqrt{2}}}{2} \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdots = \frac{2}{\pi}$$
(4)

— considered to be the *first truly infinite formula* — and in the *first continued fraction* given by Lord Brouncker (**1620-1684**):

$$\frac{2}{\pi} = \frac{1}{1 + \frac{9}{2 + \frac{25}{2 + \frac{49}{2 + \dots}}}}$$

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Wallis Product

Eqn. (4) was based on John Wallis' (**1613-1706**) 'interpolated' product:

$$\frac{1\cdot 3}{2\cdot 2} \cdot \frac{3\cdot 5}{4\cdot 4} \cdot \frac{5\cdot 7}{6\cdot 6} \cdots = \prod_{k=1}^{\infty} \frac{4k^2 - 1}{4k^2} = \frac{2}{\pi}$$
(5)

which led to discovery of the Gamma function and much more.

• Christiaan Huygens (**1629-1695**) did not believe (5) before he checked it numerically.

lt's a clue.

A never repeating or ending chain, the total timeless catalogue, elusive sequences, sum of the universe. This riddle of nature begs: Can the totality see no pattern, revealing order as reality's disguise?

Self-referent mnemonic from http://www.newscientist.com/blogs/culturelab/2010/03/happy-pi-day.phr

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Wallis Product

Eqn. (4) was based on John Wallis' (**1613-1706**) 'interpolated' product:

$$\frac{1\cdot 3}{2\cdot 2} \cdot \frac{3\cdot 5}{4\cdot 4} \cdot \frac{5\cdot 7}{6\cdot 6} \dots = \prod_{k=1}^{\infty} \frac{4k^2 - 1}{4k^2} = \frac{2}{\pi}$$
(5)

which led to discovery of the Gamma function and much more.

• Christiaan Huygens (**1629-1695**) did not believe (5) before he checked it numerically.

It's a clue.

A never repeating or ending chain, the total timeless catalogue, elusive sequences, sum of the universe. This riddle of nature begs: Can the totality see no pattern, revealing order as reality's disguise?

Self-referent mnemonic from http://www.newscientist.com/blogs/culturelab/2010/03/happv-pi-dav.php

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Wallis Product

Eqn. (4) was based on John Wallis' (**1613-1706**) 'interpolated' product:

$$\frac{1\cdot 3}{2\cdot 2} \cdot \frac{3\cdot 5}{4\cdot 4} \cdot \frac{5\cdot 7}{6\cdot 6} \dots = \prod_{k=1}^{\infty} \frac{4k^2 - 1}{4k^2} = \frac{2}{\pi}$$
(5)

which led to discovery of the Gamma function and much more.

• Christiaan Huygens (**1629-1695**) did not believe (5) before he checked it numerically.

It's a clue.

A never repeating or ending chain, the total timeless catalogue, elusive sequences, sum of the universe. This riddle of nature begs: Can the totality see no pattern, revealing order as reality's disguise?

Self-referent mnemonic from http://www.newscientist.com/blogs/culturelab/2010/03/happy-pi-day.php

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Wallis Product

Eqn. (4) was based on John Wallis' (**1613-1706**) 'interpolated' product:

$$\frac{1\cdot 3}{2\cdot 2} \cdot \frac{3\cdot 5}{4\cdot 4} \cdot \frac{5\cdot 7}{6\cdot 6} \dots = \prod_{k=1}^{\infty} \frac{4k^2 - 1}{4k^2} = \frac{2}{\pi}$$
(5)

CARMA

which led to discovery of the Gamma function and much more.

• Christiaan Huygens (**1629-1695**) did not believe (5) before he checked it numerically.

It's a clue. A never repeating or ending chain, the total timeless catalogue, elusive sequences, sum of the universe. This riddle of nature begs: Can the totality see no pattern, revealing order as reality's disguise?

Self-referent mnemonic from http://www.newscientist.com/blogs/culturelab/2010/03/happy-pi-day.php J.M. Borwein Life of Pi (CARMA)

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Mathematical Interlude I: the Zeta Function

Formula (5) follows from Euler's product formula for π ,

$$\frac{\sin(\pi x)}{x} = c \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right)$$
(6)

with x = 1/2, or by integrating $\int_0^{\pi/2} \sin^{2n}(t) dt$ by parts.

One may divine (6) — as Euler did — by considering $\sin(\pi x)$ as an 'infinite' polynomial and obtaining a product in terms of the roots 0, $\{1/n^2\}$. Euler argued that, like a polynomial, $c = \pi$ is the value at 0. The coefficient of x^2 in the Taylor series is the sum of the roots: $\zeta(2) := \sum_n \frac{1}{n^2} = \frac{\pi^2}{6}$. Hence, $\zeta(2n) =$ rational $\times \pi^{2n}$: so $\zeta(4) = \pi^4/90, \zeta(6) = \pi^6/945$ (using Bernoulli numbers)

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Mathematical Interlude I: the Zeta Function

Formula (5) follows from Euler's product formula for π ,

$$\frac{\sin(\pi x)}{x} = c \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right)$$
(6)

with x = 1/2, or by integrating $\int_0^{\pi/2} \sin^{2n}(t) dt$ by parts.

One may divine (6) — as Euler did — by considering $\sin(\pi x)$ as an 'infinite' polynomial and obtaining a product in terms of the roots $0, \{1/n^2\}$. Euler argued that, like a polynomial, $c = \pi$ is the value at 0. The coefficient of x^2 in the Taylor series is the sum of the roots: $\zeta(2) := \sum_n \frac{1}{n^2} = \frac{\pi^2}{6}$. Hence, $\zeta(2n) =$ rational $\times \pi^{2n}$: so $\zeta(4) = \pi^4/90, \zeta(6) = \pi^6/945$ (using Bernoulli numbers)

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Mathematical Interlude I: the Zeta Function

Formula (5) follows from Euler's product formula for π ,

$$\frac{\sin(\pi x)}{x} = c \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right) \tag{6}$$

with x = 1/2, or by integrating $\int_0^{\pi/2} \sin^{2n}(t) dt$ by parts.

One may divine (6) — as Euler did — by considering $\sin(\pi x)$ as an 'infinite' polynomial and obtaining a product in terms of the roots $0, \{1/n^2\}$. Euler argued that, like a polynomial, $c = \pi$ is the value at 0. The coefficient of x^2 in the Taylor series is the sum of the roots: $\zeta(2) := \sum_n \frac{1}{n^2} = \frac{\pi^2}{6}$. Hence, $\zeta(2n) =$ rational $\times \pi^{2n}$: so $\zeta(4) = \pi^4/90, \zeta(6) = \pi^6/945$ (using Bernoulli numbers)

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Mathematical Interlude I: the Zeta Function

Formula (5) follows from Euler's product formula for π ,

$$\frac{\sin(\pi x)}{x} = c \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right) \tag{6}$$

with x = 1/2, or by integrating $\int_0^{\pi/2} \sin^{2n}(t) dt$ by parts.

One may divine (6) — as Euler did — by considering $\sin(\pi x)$ as an 'infinite' polynomial and obtaining a product in terms of the roots $0, \{1/n^2\}$. Euler argued that, like a polynomial, $c = \pi$ is the value at 0. The coefficient of x^2 in the Taylor series is the sum of the roots: $\zeta(2) := \sum_n \frac{1}{n^2} = \frac{\pi^2}{6}$. Hence, $\zeta(2n) =$ rational $\times \pi^{2n}$: so $\zeta(4) = \pi^4/90, \zeta(6) = \pi^6/945$ (using Bernoulli numbers)

CARM

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Mathematical Interlude I: the Zeta Function

Formula (5) follows from Euler's product formula for π ,

$$\frac{\sin(\pi x)}{x} = c \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right) \tag{6}$$

with x = 1/2, or by integrating $\int_0^{\pi/2} \sin^{2n}(t) dt$ by parts.

One may divine (6) — as Euler did — by considering $\sin(\pi x)$ as an 'infinite' polynomial and obtaining a product in terms of the roots $0, \{1/n^2\}$. Euler argued that, like a polynomial, $c = \pi$ is the value at 0. The coefficient of x^2 in the Taylor series is the sum of the roots: $\zeta(2) := \sum_n \frac{1}{n^2} = \frac{\pi^2}{6}$. Hence, $\zeta(2n) =$ rational $\times \pi^{2n}$: so $\zeta(4) = \pi^4/90, \zeta(6) = \pi^6/945$ (using Bernoulli numbers)

CARM

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

François (Vieta) Viéte (1540-1603)

Arithmetic is absolutely as much science as geometry [is]. Rational magnitudes are conveniently designated by rational numbers, and irrational by irrational [numbers]. If someone measures magnitudes with numbers and by his calculation get them different from what they really are, it is not the reckoning's fault but the reckoner's.

- The inventor of 'x' and 'y', he did not believe in negative numbers.
- Geometry had ruled for two millennia before Vieta and Descartes.

J.M. Borwein Life of Pi (CARMA)

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

François (Vieta) Viéte (1540-1603)

Arithmetic is absolutely as much science as geometry [is]. Rational magnitudes are conveniently designated by rational numbers, and irrational by irrational [numbers]. If someone measures magnitudes with numbers and by his calculation get them different from what they really are, it is not the reckoning's fault but the reckoner's.

- The inventor of 'x' and 'y', he did not believe in negative numbers.
- Geometry had ruled for two millennia before Vieta and Descartes.

J.M. Borwein Life of Pi (CARMA)

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Final Jeopardy! 20 Sept 2005: Mnemonics are valuable

CATEGORY: By the numbers. **CLUE:** The phrase "**How I want** a drink, alcoholic of course" is often used to help memorize this. **ANSWER: What is Pi? FINAL SCORES:**

Ray: \$7,200 + \$7,000 = \$14,200 (What is Pi) (New champion: \$14,200) Stacey: \$11,400 - \$3,001 = \$8,399 (What is no clue!?) (2nd place: \$2,000) Victoria: \$12,900 - \$9,901 = \$2,999 (What is quadratic for) (3rd place: \$1,000)

2.14-2.16.2011 IBM *Watson* query system (now an on-cologist) *routed* Jeopardy champs Jennings & Rutter:

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Final Jeopardy! 20 Sept 2005: Mnemonics are valuable

CATEGORY: By the numbers. **CLUE:** The phrase "**How I want** a **drink**, **alcoholic of course**" is often used to help memorize this.

ANSWER: What is Pi? FINAL SCORES:

Ray: \$7,200 + \$7,000 = \$14,200 (What is Pi) (New champion: \$14,200) Stacey: \$11,400 - \$3,001 = \$8,399 (What is no clue!?) (2nd place: \$2,000) Victoria: \$12,900 - \$9,901 = \$2,999 (What is quadratic for) (3rd place: \$1,000)

2.14-2.16.2011 IBM *Watson* query system (now an on-cologist) *routed* Jeopardy champs Jennings & Rutter:

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Final Jeopardy! 20 Sept 2005: Mnemonics are valuable

CATEGORY: By the numbers. **CLUE:** The phrase "**How I want** a drink, alcoholic of course" is often used to help memorize this. **ANSWER: What is Pi? FINAL SCORES:**

Ray: \$7,200 + \$7,000 = \$14,200 (What is Pi) (New champion: \$14,200) Stacey: \$11,400 - \$3,001 = \$8,399 (What is no clue!?) (2nd place: \$2,000) Victoria: \$12,900 - \$9,901 = \$2,999 (What is quadratic for) (3rd place: \$1,000)

2.14-2.16.2011 IBM *Watson* query system (now an on-cologist) *routed* Jeopardy champs Jennings & Rutter:

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Final Jeopardy! 20 Sept 2005: Mnemonics are valuable

CATEGORY: By the numbers. **CLUE:** The phrase "**How I want** a **drink, alcoholic of course**" is often used to help memorize this.

ANSWER: What is Pi? FINAL SCORES:

 $\begin{array}{l} \mbox{Ray: $7,200 + $7,000 = $14,200 (What is Pi) \\ (New champion: $14,200) \\ \mbox{Stacey: $11,400 - $3,001 = $8,399 (What is no clue!?) \\ (2nd place: $2,000) \\ \mbox{Victoria: $12,900 - $9,901 = $2,999 (What is quadratic for) \\ (3rd place: $1,000) \\ \end{array}$

2.14-2.16.2011 IBM *Watson* query system (now an on-cologist) *routed* Jeopardy champs Jennings & Rutter:

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Final Jeopardy! 20 Sept 2005: Mnemonics are valuable

CATEGORY: By the numbers. **CLUE:** The phrase "**How I want** a **drink, alcoholic of course**" is often used to help memorize this.

ANSWER: What is Pi? FINAL SCORES:

 $\begin{array}{l} \mbox{Ray: $7,200 + $7,000 = $14,200 (What is Pi) \\ (New champion: $14,200) \\ \mbox{Stacey: $11,400 - $3,001 = $8,399 (What is no clue!?) \\ (2nd place: $2,000) \\ \mbox{Victoria: $12,900 - $9,901 = $2,999 (What is quadratic for) \\ (3rd place: $1,000) \\ \end{array}$

2.14-2.16.2011 IBM *Watson* query system (now an on-cologist) *routed* Jeopardy champs Jennings & Rutter:

Infinite Expressions Mathematical Interlude, I Geometry and Arithmetic

Final Jeopardy! 20 Sept 2005: Mnemonics are valuable

CATEGORY: By the numbers. **CLUE:** The phrase "How I want a drink, alcoholic of course" is often used to help memorize this.

ANSWER: What is Pi? FINAL SCORES:

 $\begin{array}{l} \textbf{Ray: $7,200 + $7,000 = $14,200 (What is Pi) \\ (New champion: $14,200) \\ \textbf{Stacey: $11,400 - $3,001 = $8,399 (What is no clue!?) \\ (2nd place: $2,000) \\ \textbf{Victoria: $12,900 - $9,901 = $2,999 (What is quadratic for) \\ (3rd place: $1,000) \\ \end{array}$

2.14-2.16.2011 IBM *Watson* query system (now an oncologist) *routed* Jeopardy champs Jennings & Rutter: http://camma

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi's Adult Life with Calculus

I am ashamed to tell you to how many figures I carried these computations, having no other business at the time. Isaac Newton, **1666**

- **17C** Newton and Leibnitz discovered calculus ... and fought over priority (Machin adjudicated).
- It was instantly exploited to find formulas for π .

One early use comes from the arctan integral and series:³

$$\tan^{-1} x = \int_0^x \frac{dt}{1+t^2} = \int_0^x (1-t^2+t^4-t^6+\cdots) dt$$
$$= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \cdots$$

³Known to Madhava of Sangamagrama (c. 1350 – c. 1425) near Kerala. CARMAN He probably computed 13 digits of Pi.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi's Adult Life with Calculus

I am ashamed to tell you to how many figures I carried these computations, having no other business at the time. Isaac Newton, **1666**

- **17C** Newton and Leibnitz discovered calculus ... and fought over priority (Machin adjudicated).
- It was instantly exploited to find formulas for π .

One early use comes from the arctan integral and series:³

$$\tan^{-1} x = \int_0^x \frac{dt}{1+t^2} = \int_0^x (1-t^2+t^4-t^6+\cdots) dt$$
$$= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \cdots$$

³Known to Madhava of Sangamagrama (c. 1350 – c. 1425) near Kerala. CARMAN He probably computed 13 digits of Pi.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi's Adult Life with Calculus

I am ashamed to tell you to how many figures I carried these computations, having no other business at the time. Isaac Newton, **1666**

- 17C Newton and Leibnitz discovered calculus ... and fought over priority (Machin adjudicated).
- It was instantly exploited to find formulas for π .

One early use comes from the arctan integral and series:³

$$\tan^{-1} x = \int_0^x \frac{dt}{1+t^2} = \int_0^x (1-t^2+t^4-t^6+\cdots) dt$$
$$= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \cdots$$

³Known to Madhava of Sangamagrama (c. 1350 – c. 1425) near Kerala. He probably computed 13 digits of Pi.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Madahava–Gregory–Leibniz formula

Formally x := 1 gives the Gregory–Leibniz formula (1671–74) $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$

- Naively, this is useless hundreds of terms produce two digits.
- Sharp guided by Edmund Halley (1656-1742) used $an^{-1}(1/\sqrt{3})$
- By contrast, Euler's (1738) trigonometric identity

$$\tan^{-1}(1) = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$$
(7)

produces the geometrically convergent:

$$\frac{\pi}{4} = \frac{1}{2} - \frac{1}{3 \cdot 2^3} + \frac{1}{5 \cdot 2^5} - \frac{1}{7 \cdot 2^7} + \cdots + \frac{1}{3} - \frac{1}{3 \cdot 3^3} + \frac{1}{5 \cdot 3^5} - \frac{1}{7 \cdot 3^7} + \cdots$$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Madahava–Gregory–Leibniz formula

Formally x := 1 gives the Gregory–Leibniz formula (1671–74) $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$

- Naively, this is useless hundreds of terms produce two digits.
- Sharp guided by Edmund Halley (1656-1742) used $an^{-1}(1/\sqrt{3})$
- By contrast, Euler's (1738) trigonometric identity

$$\tan^{-1}(1) = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$$
 (7)

produces the geometrically convergent:

$$\frac{\pi}{4} = \frac{1}{2} - \frac{1}{3 \cdot 2^3} + \frac{1}{5 \cdot 2^5} - \frac{1}{7 \cdot 2^7} + \cdots + \frac{1}{3} - \frac{1}{3 \cdot 3^3} + \frac{1}{5 \cdot 3^5} - \frac{1}{7 \cdot 3^7} + \cdots$$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Madahava–Gregory–Leibniz formula

Formally x := 1 gives the Gregory–Leibniz formula (1671–74) $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$

- Naively, this is useless hundreds of terms produce two digits.
- Sharp guided by Edmund Halley (1656-1742) used $an^{-1}(1/\sqrt{3})$
- By contrast, Euler's (1738) trigonometric identity

$$\tan^{-1}(1) = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$$
 (7)

produces the geometrically convergent:

$$\frac{\pi}{4} = \frac{1}{2} - \frac{1}{3 \cdot 2^3} + \frac{1}{5 \cdot 2^5} - \frac{1}{7 \cdot 2^7} + \cdots + \frac{1}{3} - \frac{1}{3 \cdot 3^3} + \frac{1}{5 \cdot 3^5} - \frac{1}{7 \cdot 3^7} + \cdots$$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

John Machin (1680-1751) and Brook Taylor (1685-1731)

An even faster formula, found earlier by John Machin — Brook Taylor's teacher — lies in the identity

$$\frac{\pi}{4} = 4\tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{1}{239}\right).$$
 (9)

Taylor

ARMA

• Used in numerous computations of π (starting in **1706**) culminating with Shanks' computation of π to **707** decimals in **1873**.

- 1945. Found to be wrong by Ferguson — after 527 decimal places
 — as De Morgan had suspected. (A Guinness record?)

Machi

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

John Machin (1680-1751) and Brook Taylor (1685-1731)

An even faster formula, found earlier by John Machin — Brook Taylor's teacher — lies in the identity

$$\frac{\pi}{4} = 4\tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{1}{239}\right).$$
 (9)

Taylor

- Used in numerous computations of π (starting in **1706**) culminating with Shanks' computation of π to **707** decimals in **1873**.
- 1945. Found to be wrong by Ferguson after 527 decimal places
 as De Morgan had suspected. (A Guinness record?)

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Isaac Newton's arcsin

Newton discovered a different (disguised \arcsin) formula. He considered the area A of the red region to the right:

Now $A := \int_0^{1/4} \sqrt{x - x^2} \, dx$ equals the circular sector, $\pi/24$, less the triangle, $\sqrt{3}/32$. His new binomial theorem gave:

$$A = \int_0^{\frac{1}{4}} x^{1/2} (1-x)^{1/2} dx = \int_0^{\frac{1}{4}} x^{1/2} \left(1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} - \frac{5x^4}{128} - \cdots \right) dx$$
$$= \int_0^{\frac{1}{4}} \left(x^{1/2} - \frac{x^{3/2}}{2} - \frac{x^{5/2}}{8} - \frac{x^{7/2}}{16} - \frac{5x^{9/2}}{128} \cdots \right) dx.$$

Integrating term-by-term and combining the above:

$$\pi = \frac{3\sqrt{3}}{4} + 24\left(\frac{2}{3\cdot 8} - \frac{1}{5\cdot 32} - \frac{1}{7\cdot 512} - \frac{1}{9\cdot 4096}\cdots\right)$$

 $\begin{array}{c} \text{25. Pi's Childhood} \\ \text{44. Pi's Adolescence} \\ \text{49. Adulthood of Pi} \\ \text{80. Pi in the Digital Age} \\ \text{114. Computing Individual Digits of } \pi \end{array}$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Isaac Newton's arcsin

Newton discovered a different (disguised \arcsin) formula. He considered the area A of the red region to the right:

Now $A := \int_0^{1/4} \sqrt{x - x^2} \, dx$ equals the circular sector, $\pi/24$, less the triangle, $\sqrt{3}/32$. His new binomial theorem gave:

$$A = \int_0^{\frac{1}{4}} x^{1/2} (1-x)^{1/2} dx = \int_0^{\frac{1}{4}} x^{1/2} \left(1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} - \frac{5x^4}{128} - \cdots \right) dx$$
$$= \int_0^{\frac{1}{4}} \left(x^{1/2} - \frac{x^{3/2}}{2} - \frac{x^{5/2}}{8} - \frac{x^{7/2}}{16} - \frac{5x^{9/2}}{128} \cdots \right) dx.$$

Integrating term-by-term and combining the above:

$$\pi = \frac{3\sqrt{3}}{4} + 24\left(\frac{2}{3\cdot 8} - \frac{1}{5\cdot 32} - \frac{1}{7\cdot 512} - \frac{1}{9\cdot 4096}\cdots\right)$$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Isaac Newton's arcsin

Newton discovered a different (disguised \arcsin) formula. He considered the area A of the red region to the right:

Now $A := \int_0^{1/4} \sqrt{x - x^2} \, dx$ equals the circular sector, $\pi/24$, less the triangle, $\sqrt{3}/32$. His new binomial theorem gave:

$$A = \int_0^{\frac{1}{4}} x^{1/2} (1-x)^{1/2} dx = \int_0^{\frac{1}{4}} x^{1/2} \left(1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} - \frac{5x^4}{128} - \cdots \right) dx$$
$$= \int_0^{\frac{1}{4}} \left(x^{1/2} - \frac{x^{3/2}}{2} - \frac{x^{5/2}}{8} - \frac{x^{7/2}}{16} - \frac{5x^{9/2}}{128} \cdots \right) dx.$$

Integrating term-by-term and combining the above:

$$\pi = \frac{3\sqrt{3}}{4} + 24\left(\frac{2}{3\cdot 8} - \frac{1}{5\cdot 32} - \frac{1}{7\cdot 512} - \frac{1}{9\cdot 4096}\cdots\right)$$

 $\begin{array}{c} \text{25. Pi's Childhood} \\ \text{44. Pi's Adolescence} \\ \text{49. Adulthood of Pi} \\ \text{80. Pi} \text{ in the Digital Age} \\ \text{114. Computing Individual Digits of } \pi \end{array}$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Newton's (1643-1727) Annus Mirabilis

Newton used his formula to find 15 digits of π .

 As noted, he 'apologized' for "having no other business at the time." A standard 1951 MAA chronology said, condescendingly, "Newton never tried to compute π."

Newton, Gregory (1638-1675) and Leibniz (1646-1716)

The fire of London ended the plague in September **1666**. The plague closed Cambridge and left Newton free at his country home to think. Wikipedia: Newton made revolutionary inventions and discoveries in calculus, motion, optics and gravitation. As such, it has later been called Isaac Newton' $\begin{array}{c} \text{25. Pi's Childhood} \\ \text{44. Pi's Adolescence} \\ \text{49. Adulthood of Pi} \\ \text{80. Pi} \text{ in the Digital Age} \\ \text{114. Computing Individual Digits of } \pi \end{array}$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Newton's (1643-1727) Annus Mirabilis

Newton used his formula to find 15 digits of π .

• As noted, he 'apologized' for "having no other business at the time." A standard **1951** MAA chronology said, condescendingly, "Newton never tried to compute π ."

Newton, Gregory (1638-1675) and Leibniz (1646-1716)

The fire of London ended the plague in September **1666**. The plague closed Cambridge and left Newton free at his country home to think.

Wikipedia: Newton made revolutionary inventions and discoveries in calculus, motion, optics and gravitation. As such, it has later been called Isaac Newton's ARMA "Annus Mirabilis."

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Calculus π Calculations: and an IBM 7090

Name	Year	Digits
Sharp (and Halley)	1699	71
Machin	1706	100
Strassnitzky and Dase	1844	200
Rutherford	1853	440
W. Shanks	1874	(707) 527
Ferguson (Calculator)	1947	808
Reitwiesner et al. (ENIAC)	1949	2,037
Genuys	1958	10,000
D. Shanks and Wrench (IBM)	1961	100,265
Guilloud and Bouyer	1973	1,001,250

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Why a Serial God Should Not Play Dice

Buffon (1707-78) & Ulam (1909-84)

Share the count to speed the process

An early vegetarian (who misused needles) next to the inventor of Monte Carlo methods.

1. Draw a unit square and inscribe a circle within: the area of the circle is $\frac{\pi}{4}$.

2. Uniformly scatter objects of uniform size throughout the square (e.g., grains of rice or sand): they *should* fall inside the circle with probability $\frac{\pi}{4}$.

3. Count the number of grains in the circle and divide by the total number of grains in the square: yielding an approximation to $\frac{\pi}{4}$.

ARMA

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Why a Serial God Should Not Play Dice

Buffon (1707-78) & Ulam (1909-84)

Share the count to speed the process

An early vegetarian (who misused needles) next to the inventor of Monte Carlo methods.

1. Draw a unit square and inscribe a circle within: the area of the circle is $\frac{\pi}{4}$.

2. Uniformly scatter objects of uniform size throughout the square (e.g., grains of rice or sand): they should fall inside the circle with probability $\frac{\pi}{4}$.

3. Count the number of grains in the circle and divide by the total number of grains in the square: yielding an approximation to $\frac{\pi}{4}$.

ARMA

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Why a Serial God Should Not Play Dice

Buffon (1707-78) & Ulam (1909-84)

Share the count to speed the process

An early vegetarian (who misused needles) next to the inventor of Monte Carlo methods.

1. Draw a unit square and inscribe a circle within: the area of the circle is $\frac{\pi}{4}$.

2. Uniformly scatter objects of uniform size throughout the square (e.g., grains of rice or sand): they *should* fall inside the circle with probability $\frac{\pi}{4}$.

3. Count the number of grains in the circle and divide by the total number of grains in the square: yielding an approximation to $\frac{\pi}{4}$.

ARMA

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Why a Serial God Should Not Play Dice

Buffon (1707-78) & Ulam (1909-84)

Share the count to speed the process

An early vegetarian (who misused needles) next to the inventor of Monte Carlo methods.

1. Draw a unit square and inscribe a circle within: the area of the circle is $\frac{\pi}{4}$.

2. Uniformly scatter objects of uniform size throughout the square (e.g., grains of rice or sand): they *should* fall inside the circle with probability $\frac{\pi}{4}$.

3. Count the number of grains in the circle and divide by the total number of grains in the square: yielding an approximation to $\frac{\pi}{4}$.

CARMA

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Monte Carlo Methods

- This is a Monte Carlo estimate (MC) for π.
- MC simulation: slow (√n) convergence but great in parallel on *Beowulf clusters*.
- Used in Manhattan project ... the atomic-bomb predates digital computers!

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Gauss (1777-1855), Johan Dase and William Shanks

In his teens, Viennese *computer* and 'kopfrechner' Dase (1824 -1861) publicly demonstrated his skill by multiplying $79532853 \times 93758479 = 7456879327810587$

- in 54 seconds; 20-digits in 6 min; 40-digits in 40 min; 100-digit numbers in 8³/₄ hours etc.
 – Gauss was not impressed.
- 1844. Calculated π to 200 places on learning Euler's

$$\frac{\pi}{4} = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{8}\right)$$

from Strassnitsky — in his head correctly in 2 months.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Gauss (1777-1855), Johan Dase and William Shanks

In his teens, Viennese *computer* and 'kopfrechner' Dase (1824 -1861) publicly demonstrated his skill by multiplying $79532853 \times 93758479 = 7456879327810587$

• in **54 seconds**; 20-digits in 6 min; 40-digits in 40 min; **100-digit** numbers in $8\frac{3}{4}$ hours etc.

- Gauss was not impressed.

• 1844. Calculated π to 200 places on learning Euler's

$$\frac{\pi}{4} = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{8}\right)$$

from Strassnitsky — in his head correctly in 2 months.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Gauss (1777-1855), Johan Dase and William Shanks

In his teens, Viennese *computer* and 'kopfrechner' Dase (1824 -1861) publicly demonstrated his skill by multiplying $79532853 \times 93758479 = 7456879327810587$

• in **54 seconds**; 20-digits in 6 min; 40-digits in 40 min; **100-digit** numbers in $8\frac{3}{4}$ hours etc.

- Gauss was not impressed.

• 1844. Calculated π to 200 places on learning Euler's

$$\frac{\pi}{4} = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{8}\right)$$

from Strassnitsky — in his head correctly in 2 months.

J.M. Borwein

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Dase and Experimental Mathematics

▶ SKIP

In **1849-50** Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between **7 and 10 million** (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had *only* reached 8,000,000.

- the decimal expansion of π repeats, meaning π was the ratio of two integers (a rational number),
- if π was the root of an integer polynomial (an algebraic number).

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

SKIP

Dase and Experimental Mathematics

In **1849-50** Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between **7 and 10 million** (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had *only* reached 8,000,000.

- the decimal expansion of π repeats, meaning π was the ratio of two integers (a rational number),
- if π was the root of an integer polynomial (an algebraic number).

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Dase and Experimental Mathematics

▶ SKIP

In **1849-50** Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between **7 and 10 million** (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- **1861**. When Dase died he had *only* reached **8,000,000**.

- the decimal expansion of π repeats, meaning π was the ratio of two integers (a rational number),
- if π was the root of an integer polynomial (an algebraic number). CARMAD

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

SKIP

Dase and Experimental Mathematics

In **1849-50** Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between **7 and 10 million** (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had *only* reached 8,000,000.

- the decimal expansion of π repeats, meaning π was the ratio of two integers (a rational number),
- if π was the root of an integer polynomial (an algebraic number). CARMAD

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

SKIP

Dase and Experimental Mathematics

In **1849-50** Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between **7 and 10 million** (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had *only* reached 8,000,000.

- the decimal expansion of π repeats, meaning π was the ratio of two integers (a rational number),
- if π was the root of an integer polynomial (an algebraic number).

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

SKIP

Dase and Experimental Mathematics

In **1849-50** Dase made a seven-digit Tafel der natürlichen Logarithmen der Zahlen, asking the Hamburg Academy to fund factorization of integers between **7 and 10 million** (evidence for the Prime Number Theorem).

- Now Gauss was impressed and recommended Dase be funded.
- 1861. When Dase died he had *only* reached 8,000,000.

- the decimal expansion of π repeats, meaning π was the ratio of two integers (a rational number),
- if π was the root of an integer polynomial (an algebraic number).

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

William Shanks (1812-82): "A Human Computer" (1853)

Towards the close of the year 1850, the Author first formed the design of rectifying the Circle to upwards of 300 places of decimals. He was fully aware, at that time, that the accomplishment of his purpose would add little or nothing to his fame as a Mathematician, though it might as a Computer; nor would it be productive of anything in the shape of pecuniary recompense at all adequate to the labour of such lengthy computations. He was anxious to fill up scanty intervals of leisure with the achievement of something original, and which, at the same time, should not subject him either to great tension of thought, or to consult books. He is aware that works on nearly every branch of Mathematics are being published almost weekly, both in Europe and America; and that it has therefore become no easy task to ascertain what really is original matter, even in the pure science itself. Beautiful speculations, especially in both Plane and Curved

A for of the higher power of 2, as for a 2^m, holing box obtained in the schedulen of the v_{2}^{n} , exclude the schedulen of the schedulen of the v_{2}^{n} , and the schedule the schedulen $\lambda_{1}^{n} = \lambda_{2}^{n} = \lambda_{2}^{n}$, we employed is finding or small the fluctuations of the schedule is finding or small the fluctuations of the schedule of the schedule of given employed is defined of and have of the schedule of given employed in the schedule of the schedule of the schedule of hypothesis defined on the schedule of the schedule of Hospitals-independence of the schedule of the schedule of Hospitals-independence of the schedule of the schedule of the Hospitals-independence of the schedule of the schedule of the Hospitals-independence of the schedule of the Hospitals-independence of the schedule of the schedule of the schedule of the Hospital of the schedule of the Hospital of the schedule o

Eiter the above date, and while the following sharts were in the Press, the Author has extended the values of tum λ_2^+ and of tum λ_{22}^+ in 0.00, and the values of ν to 0.07 determils; which extendsions are given in the preserv planes. Exhold Machine modifies extract a which to preserve these methods wakes of each form of the series used is finding these area, a few serguimentary sheets might some be formitabel.

April 30, 1853.

- 30 Subscribers : Rutherford, De Morgan, Herschel (1792-1871) Master of the Mint, whose father discovered Uranus, Airy (1801-1892) Astronomer Royal, ...
 - In error after 527 places occurred in the "rush to publish" CARMA
 - He also calculated e and γ

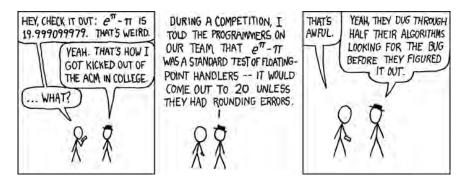
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

William Shanks (1812-82): "A Human Computer" (1853)

TOWARDS the close of the year 1850, the Author first formed the design of rectifying the Circle to upwards of 300 places of decimals. He was fully aware, at that time, that the accomplishment of his purpose would add little or nothing to his fame as a Mathematician, though it might as a Computer; nor would it be productive of anything in the shape of pecuniary recompense at all adequate to the labour of such lengthy computations. He was anxious to fill up scanty intervals of comething original and which. J.M. Borwein Life of Pi (CARMA)

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

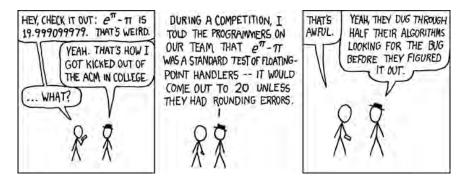
William Shanks (1812-82): "A Human Computer" (1853)


Towarps the close of the year 1850, the Author first formed the design of rectifying the Circle to upwards of 300 places of decimals. He was fully aware, at that time, that the accomplishment of his purpose would add little or nothing to his fame as a Mathematician, though it might as a Computer; nor would it be productive of anything in the shape of pecuniary recompense at all adequate to the labour of such lengthy computations. He was anxious to fill up scanty intervals of leisure with the achievement of something original, and which, at the same time, should not subject him either to great tension of thought, or to consult books. He is aware that works on nearly every branch of Mathematics are being published almost weekly, both in Europe and America; and that it has therefore become no easy task to ascertain what really is original matter, even in the pure science itself. Beautiful speculations, especially in both Plane and Curved

- 30 Subscribers : Rutherford, De Morgan, Herschel (1792-1871) Master of the Mint, whose father discovered Uranus, Airy (1801-1892) Astronomer Royal, ...
 - In error after 527 places occurred in the "rush to publish"? CARMA
 - He also calculated e and γ .

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Some Things are only Coincidences



• This was weirder on an 8-digit calculator!

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Some Things are only Coincidences

• This was weirder on an 8-digit calculator!

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Number Theoretic Consequences

Lambert (1728-77)

Legendre (1752-1833)

Lindemann (1852-1939)

• Irrationality of π was established by Lambert (1766) and then Legendre. Using the continued fraction for $\arctan(x)$

Lambert showed $\arctan(x)$ is irrational when x is rational. Now set x = 1/2.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Number Theoretic Consequences

Legendre (1752-1833)

Lindemann (1852-1939)

• Irrationality of π was established by Lambert (**1766**) and then Legendre. Using the continued fraction for $\arctan(x)$

Lambert showed $\arctan(x)$ is irrational when x is rational. Now set x = 1/2.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Number Theoretic Consequences

Legendre (1752-1833)

Lindemann (1852-1939)

• Irrationality of π was established by Lambert (**1766**) and then Legendre. Using the continued fraction for $\arctan(x)$

Lambert showed $\arctan(x)$ is irrational when x is rational. Now set x = 1/2.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Number Theoretic Consequences

Legendre (1752-1833)

Lindemann (1852-1939)

• Irrationality of π was established by Lambert (**1766**) and then Legendre. Using the continued fraction for $\arctan(x)$

Lambert showed $\arctan(x)$ is irrational when x is rational. Now set x = 1/2.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Number Theoretic Consequences



Lambert (1728-77)

Legendre (1752-1833)

Lindemann (1852-1939)

• Irrationality of π was established by Lambert (**1766**) and then Legendre. Using the continued fraction for $\arctan(x)$

Lambert showed $\arctan(x)$ is irrational when x is rational. Now set x = 1/2.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

The Three Construction Problems of Antiquity

The other two are doubling the cube and trisecting the angle

This settled once and for all, the ancient Greek question of whether the circle could be squared with ruler and compass.

- It cannot, because lengths of lines that can be constructed using ruler and compasses (constructible numbers) are necessarily algebraic, and squaring the circle is equivalent to constructing the value of π .
- Aristophanes (448-380 BCE) 'knew' this and derided all 'circle-squarers' in his play The Birds of 414 BCE.

τετραγωσιειν

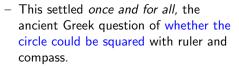
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

The Three Construction Problems of Antiquity

The other two are doubling the cube and trisecting the angle

- It cannot, because lengths of lines that can be constructed using ruler and compasses (constructible numbers) are necessarily algebraic, and squaring the circle is equivalent to constructing the value of π .
- Aristophanes (448-380 BCE) 'knew' this and derided all 'circle-squarers' in his play The Birds of 414 BCE.

τετραγωσιειν



Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

The Three Construction Problems of Antiquity

The other two are doubling the cube and trisecting the angle

- It cannot, because lengths of lines that can be constructed using ruler and compasses (constructible numbers) are necessarily algebraic, and squaring the circle is equivalent to constructing the value of π .
- Aristophanes (448-380 BCE) 'knew' this and derided all 'circle-squarers' in his play The Birds of 414 BCE.

 $\tau \varepsilon \tau \rho \alpha \gamma \omega \sigma \iota \varepsilon \iota \nu$

 $\begin{array}{c} \text{25. Pi's Childhood} \\ \text{44. Pi's Adolescence} \\ \text{49. Adulthood of Pi} \\ \text{80. Pi in the Digital Age} \\ \text{114. Computing Individual Digits of } \pi \end{array}$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

The Irrationality of π , II

Ivan Niven's 1947 proof that π is irrational. Let $\pi = a/b$, the quotient of positive integers. We define the polynomials

$$f(x) = \frac{x^n(a-bx)^n}{n!}$$

$$F(x) = f(x) - f^{(2)}(x) + f^{(4)}(x) - \dots + (-1)^n f^{(2n)}(x)$$

the positive integer being specified later. Since n!f(x) has integral coefficients and terms in x of degree not less than n, f(x) and its derivatives $f^{(j)}(x)$ have integral values for x = 0; also for $x = \pi = a/b$, since f(x) = f(a/b - x). By elementary calculus we have

$$\frac{d}{dx} \{ F'(x) \sin x - F(x) \cos x \}$$

= $F''(x) \sin x + F(x) \sin x = f(x) \sin x$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

The Irrationality of π , II

and

$$\int_0^{\pi} f(x) \sin x dx = [F'(x) \sin x - F(x) \cos x]_0^{\pi}$$

= $F(\pi) + F(0).$ (10)

Now $F(\pi) + F(0)$ is an *integer*, since $f^{(j)}(0)$ and $f^{(j)}(\pi)$ are integers. But for $0 < x < \pi$,

$$0 < f(x)\sin x < \frac{\pi^n a^n}{n!},$$

so that the integral in (10) is *positive but arbitrarily small* for n sufficiently large. Thus (10) is false, and so is our assumption that π is rational. QED

 This, exact transcription of Niven's proof, is an excellent intimation of more sophisticated irrationality and transcendence proofs.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

The Irrationality of π , II

and

$$\int_0^{\pi} f(x) \sin x dx = [F'(x) \sin x - F(x) \cos x]_0^{\pi}$$

= $F(\pi) + F(0).$ (10)

Now $F(\pi) + F(0)$ is an integer, since $f^{(j)}(0)$ and $f^{(j)}(\pi)$ are integers. But for $0 < x < \pi$,

$$0 < f(x)\sin x < \frac{\pi^n a^n}{n!},$$

so that the integral in (10) is *positive but arbitrarily small* for n sufficiently large. Thus (10) is false, and so is our assumption that π is rational. QED

• This, exact transcription of Niven's proof, is an excellent intimation of more sophisticated irrationality and transcendence proofs.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Life of Pi

• At the end of his story, Piscine (Pi) Molitor writes

Richard Parker (L) and Pi Molitor Ang Lee's 2012 film Life of Pi

I am a person who believes in form, in harmony of order. Where we can, we must give things a meaningful shape. For example — I wonder — could you tell my jumbled story in exactly one hundred chapters, not one more, not one less? I'll tell you, that's one thing I hate about my nickname, the way that number runs on forever. It's important in life to conclude things properly. Only then can you let go.

• We may not share the sentiment, but we should *celebrate* that Pi knows Pi to be irrational.

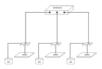
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Life of Pi

• At the end of his story, Piscine (Pi) Molitor writes

Richard Parker (L) and Pi Molitor Ang Lee's 2012 film Life of Pi

I am a person who believes in form, in harmony of order. Where we can, we must give things a meaningful shape. For example — I wonder — could you tell my jumbled story in exactly one hundred chapters, not one more, not one less? I'll tell you, that's one thing I hate about my nickname, the way that number runs on forever. It's important in life to conclude things properly. Only then can you let go.


• We may not share the sentiment, but we should *celebrate* that Pi knows Pi to be irrational.

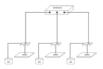
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.


- Accelerating computations of π sped up the fast Fourier transform (FFT) — heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

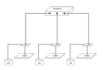
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.


- Accelerating computations of π sped up the fast Fourier transform (FFT) — heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

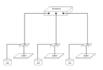
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.


- Accelerating computations of π sped up the fast Fourier transform (FFT) — heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

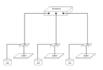
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.


- Accelerating computations of π sped up the fast Fourier transform (FFT) — heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

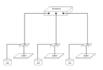
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.


- Accelerating computations of π sped up the fast Fourier transform (FFT) heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

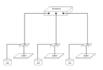
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.

Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.

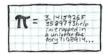

- Accelerating computations of π sped up the fast Fourier transform (FFT) heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Summation. Why Pi? "Pi is Mount Everest."

What motivates modern computations of π — given that irrationality and transcendence of π were settled a century ago?

• One motivation is the raw challenge of harnessing the stupendous power of modern computer systems.


Programming is quite hard — especially on large, distributed memory computer systems: load balancing, communication needs, etc.

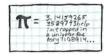
- Accelerating computations of π sped up the fast Fourier transform (FFT) heavily used in science and engineering.
- Also to bench-marking and proofing computers, since brittle algorithms make better tests.

25. Pi's Childhood Pi's Adolescence 49 Adulthood of Pi 80. Pi in the Digital Age 114. Computing Individual Digits of π Machin Formulas Newton and Pi Mathematical Interlude, II Why Pi? Utility and Normality

... Why Pi?

 Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of π .

- Kanada, e.g., made detailed statistical analysis without
- We still know very little about the decimal expansion or continued fraction of π . We can not prove half of the bits of $\sqrt{2}$ are zero.



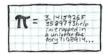
25. Pi's Childhood Pi's Adolescence 49 Adulthood of Pi 80. Pi in the Digital Age 114. Computing Individual Digits of π Machin Formulas Newton and Pi Mathematical Interlude, II Why Pi? Utility and Normality

... Why Pi?

 Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of π .

John von Neumann so prompted **ENIAC** computation of π and e — and e showed anomalies.

- Kanada, e.g., made detailed statistical analysis without
- We still know very little about the decimal expansion or continued fraction of π . We can not prove half of the bits of $\sqrt{2}$ are zero.



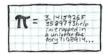
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

... Why Pi?

• Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of π .

John von Neumann so prompted **ENIAC** computation of π and e — and e showed anomalies.

- Kanada, e.g., made detailed statistical analysis without success — hoping some test suggests π is **not** normal.
 - The 10 decimal digits ending in position one trillion are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.
- We still know very little about the decimal expansion or continued fraction of π . We can not prove half of the bits of $\sqrt{2}$ are zero.



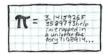
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

... Why Pi?

• Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of π .

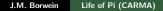
John von Neumann so prompted **ENIAC** computation of π and e — and e showed anomalies.

CARMA


- Kanada, e.g., made detailed statistical analysis without success — hoping some test suggests π is **not** normal.
 - The 10 decimal digits ending in position one trillion are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.
- We still know very little about the decimal expansion or continued fraction of π . We can not prove half of the bits of $\sqrt{2}$ are zero.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

... Why Pi?


• Beyond practical considerations are fundamental issues such as the normality (digit randomness and distribution) of π .

John von Neumann so prompted **ENIAC** computation of π and e — and e showed anomalies.

CARMA

- Kanada, e.g., made detailed statistical analysis without success — hoping some test suggests π is **not** normal.
 - The 10 decimal digits ending in position one trillion are 6680122702, while the 10 hexadecimal digits ending in position one trillion are 3F89341CD5.
- We still know very little about the decimal expansion or continued fraction of π . We can not prove half of the bits of $\sqrt{2}$ are zero.

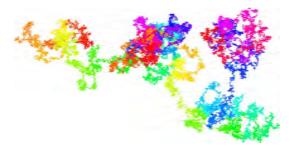
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi Seems Normal: Things we sort of know about Pi

A walk on a billion hex digits of Pi with box dimension 1.85343...

- A 100Gb 100 billion step walk is at http://carma.newcastle.edu.au/walks/
- A Poisson inter-arrival time model applied to 15.925 trillion bits gives: probability Pi is not normal $< 1/10^{3600}$.

D. Bailey, J. Borwein, C. Calude, M. Dinneen, M. Dumitrescu, and A. Yee, "An empirical approach to the

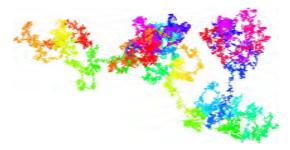

normality of pi." Exp. Math. 21(4) (2012), 375-384. DOI 10.1080/10586458.2012.665333.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi Seems Normal: Things we sort of know about Pi

A walk on a billion hex digits of Pi with box dimension 1.85343...

- A 100Gb 100 billion step walk is at http://carma.newcastle.edu.au/walks/
- A Poisson inter-arrival time model applied to 15.925 trillion bits gives: probability Pi is not normal $< 1/10^{3600}$.


D. Bailey, J. Borwein, C. Calude, M. Dinneen, M. Dumitrescu, and A. Yee, "An empirical approach to the

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

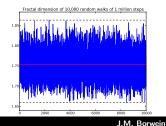
Pi Seems Normal: Things we sort of know about Pi

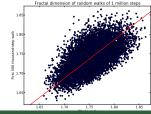
A walk on a billion hex digits of Pi with box dimension 1.85343...

- A 100Gb 100 billion step walk is at http://carma.newcastle.edu.au/walks/
- A Poisson inter-arrival time model applied to 15.925 trillion bits gives: probability Pi is not normal $< 1/10^{3600}$.

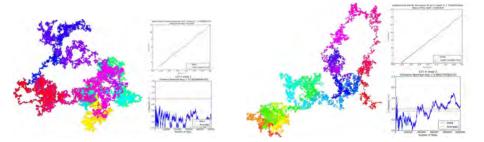
D. Bailey, J. Borwein, C. Calude, M. Dinneen, M. Dumitrescu, and A. Yee, "An empirical approach to the

normality of pi." Exp. Math. 21(4) (2012), 375-384. DOI 10.1080/10586458.2012.665333.


Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality


Pi Seems Normal: Some million bit comparisons

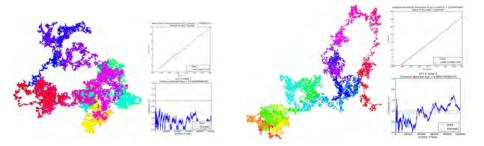
Euler's constant and a pseudo-random number


Life of Pi (CARMA)

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi Seems Normal: Comparisons to Stoneham's number $\sum_{k>1} 1/(3^k 2^{3^k})$, I

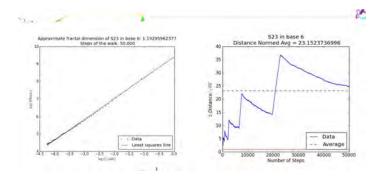
In base 2 Stoneham's number is provably normal. It may be normal base 3.



Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi Seems Normal: Comparisons to Stoneham's number $\sum_{k\geq 1} 1/(3^k 2^{3^k})$, I

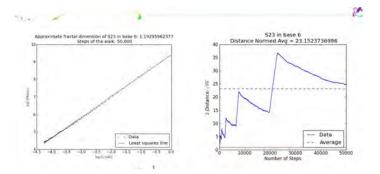
In base 2 Stoneham's number is provably normal. It may be normal base 3.



Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi Seems Normal: Comparisons to Stoneham's number, II

Stoneham's number is provably abnormal base 6 (too many zeros).



CARMA

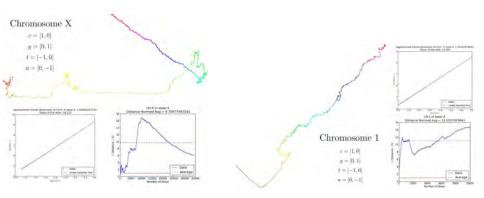
Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality


Pi Seems Normal: Comparisons to Stoneham's number, II

Stoneham's number is provably abnormal base 6 (too many zeros).

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

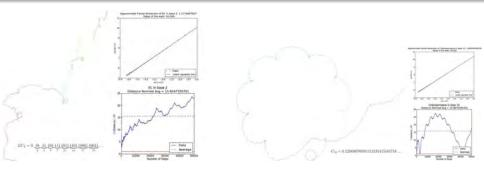
Pi Seems Normal: Comparisons to Human Genomes — we are base 4 no's



The X Chromosome (34K) and Chromosome One (10K).

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

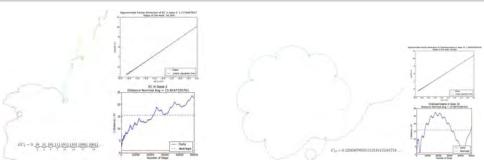
Pi Seems Normal: Comparisons to Human Genomes — we are base 4 no's



The X Chromosome (34K) and Chromosome One (10K).

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

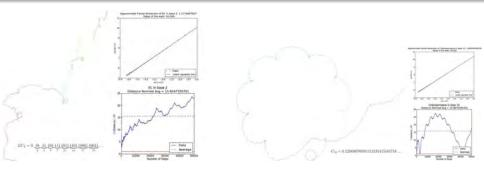
Pi Seems Normal: Comparisons to other provably normal numbers


Erdös-Copeland number (base 2) and Champernowne number (base 10).

All pictures are thanks to Fran Aragon and Jake Fountain http://www.carma.newcastle.edu.au/numberwalks.pdf

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi Seems Normal: Comparisons to other provably normal numbers


Erdös-Copeland number (base 2) and Champernowne number (base 10).

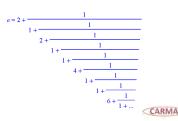
All pictures are thanks to Fran Aragon and Jake Fountain http://www.carma.newcastle.edu.au/numberwalks.pdf

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi Seems Normal: Comparisons to other provably normal numbers

Erdös-Copeland number (base 2) and Champernowne number (base 10).

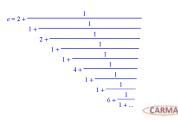
All pictures are thanks to Fran Aragon and Jake Fountain http://www.carma.newcastle.edu.au/numberwalks.pdf



Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi is Still Mysterious: Things we don't know about Pi

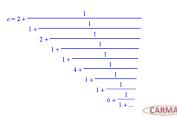
- The simple continued fraction for Pi is unbounded.
 - Euler found the 292.
- There are infinitely many sevens in the decimal expansion of Pi.
- There are infinitely many ones in the ternary expansion of Pi.
- There are equally many zeroes and ones in the binary expansion of Pi.
- Or pretty much anything I have not told you.



Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi is Still Mysterious: Things we don't know about Pi

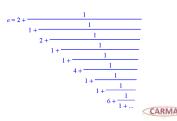
- The simple continued fraction for Pi is unbounded.
 - Euler found the 292.
- There are infinitely many sevens in the decimal expansion of Pi.
- There are infinitely many ones in the ternary expansion of Pi.
- There are equally many zeroes and ones in the binary expansion of Pi.
- Or pretty much anything I have not told you.



Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi is Still Mysterious: Things we don't know about Pi

- The simple continued fraction for Pi is unbounded.
 - Euler found the 292.
- There are infinitely many sevens in the decimal expansion of Pi.
- There are infinitely many ones in the ternary expansion of Pi.
- There are equally many zeroes and ones in the binary expansion of Pi.
- Or pretty much anything I have not told you.



Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Pi is Still Mysterious: Things we don't know about Pi

- The simple continued fraction for Pi is unbounded.
 - Euler found the 292.
- There are infinitely many sevens in the decimal expansion of Pi.
- There are infinitely many ones in the ternary expansion of Pi.
- There are equally many zeroes and ones in the binary expansion of Pi.
- Or pretty much anything I have not told you.



 $\begin{array}{c} 25. \ \mathrm{Pi's} \ \mathrm{Childhood} \\ 44. \ \ \mathrm{Pi's} \ \mathrm{Adolescence} \\ \mathbf{49.} \ \ \mathrm{Adulthood} \ \mathrm{of} \ \mathrm{Pi} \\ \mathbf{80.} \ \mathrm{Pi} \ \mathrm{in} \ \mathrm{the} \ \mathrm{Digital} \ \mathrm{Age} \\ \mathbf{114.} \ \ \mathrm{Computing} \ \mathrm{Individual} \ \mathrm{Digits} \ \mathrm{of} \ \pi \end{array}$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Decimal Digit Frequency: and "Johnny" von Neumann

JvN (1903-57) at the Institute for Advanced Study

Decimal	Occurrences
	99999485134
1	99999945664
2	100000480057
3	99999787805
4	100000357857
5	99999671008
6	99999807503
7	99999818723
	100000791469
9	99999854780

25. Pi's Childhood Machin Formulas Pi's Adolescence Newton and Pi Adulthood of Pi 49. 80. Pi in the Digital Age Mathematical Interlude, II 114. Computing Individual Digits of π Why Pi? Utility and Normality Decimal Digit Frequency: and "Johnny" von Neumann SKIP 1st von Neumann architecture machine Decimal Occurrences 99999485134 0

JvN (1903-57) at the Institute for Advanced Study

1 99999945664 2 100000480057 3 99999787805 100000357857 4 5 99999671008 6 99999807503 7 99999818723 8 100000791469 99999854780 9

Total 100000000000 4

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Hexadecimal Digit Frequency: and Richard Crandall (Apple HPC)

- 0 62499881108
- 1 62500212206
- 2 62499924780
- 3 62500188844
- 4 62499807368
- 5 62500007205
- 6 62499925426
- 7 62499878794
- 8 <u>62500</u>216752
- 9 62500120671
- A 62500266095
- B 62499955595
- C 62500188610
- D 62499613666
- E 62499875079
- F 62499937801

(1947-2012)

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Changing Cognitive Tastes

Why in antiquity π was not *measured* to greater accuracy than 22/7 (with rope)?

It reflects not an inability, but rather a very different mindset to a modern (Baconian) experimental one — see Francis Bacon's *De augmentis scientiarum* (1623).

ARMA

• Gauss and Ramanujan did not exploit their identities for π .

- An algorithm, as opposed to a closed form, was unsatisfactory to them — especially Ramanujan. He preferred

 $\frac{3}{\sqrt{163}} \log (640320) \approx \pi$ and $\frac{3}{\sqrt{67}} \log (5280) \approx \pi$

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Changing Cognitive Tastes

Why in antiquity π was not *measured* to greater accuracy than 22/7 (with rope)?

It reflects not an inability, but rather a very different mindset to a modern (Baconian) experimental one — see Francis Bacon's *De augmentis scientiarum* (1623).

ARMA

• Gauss and Ramanujan did not exploit their identities for π .

- An algorithm, as opposed to a closed form, was unsatisfactory to them — especially Ramanujan. He preferred

 $\frac{3}{\sqrt{163}} \log (640320) \approx \pi$ and $\frac{3}{\sqrt{67}} \log (5280) \approx \pi$ rect to 15 and 9 decimal places respectively.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Changing Cognitive Tastes

Why in antiquity π was not *measured* to greater accuracy than 22/7 (with rope)?

It reflects not an inability, but rather a very different mindset to a modern (Baconian) experimental one — see Francis Bacon's *De augmentis scientiarum* (1623).

ARMA

- Gauss and Ramanujan did not exploit their identities for π .
- An algorithm, as opposed to a closed form, was unsatisfactory to them especially Ramanujan. He preferred

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Changing Cognitive Tastes

Why in antiquity π was not *measured* to greater accuracy than 22/7 (with rope)?

It reflects not an inability, but rather a very different mindset to a modern (Baconian) experimental one — see Francis Bacon's *De augmentis scientiarum* (1623).

- Gauss and Ramanujan did not exploit their identities for π .
- An algorithm, as opposed to a closed form, was unsatisfactory to them especially Ramanujan. He preferred

 $\frac{3}{\sqrt{163}}\log(640320) \approx \pi$ and $\frac{3}{\sqrt{67}}\log(5280) \approx \pi$

correct to 15 and 9 decimal places respectively.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Changing Cognitive Tastes: Truth without Proof

Gourevich used integer relation computer methods to find the Ramanujan-type series — discussed below — in (11):

$$\frac{4}{\pi^3} \stackrel{?}{=} \sum_{n=0}^{\infty} r(n)^7 (1 + 14n + 76n^2 + 168n^3) \left(\frac{1}{8}\right)^{2n+1}$$
(11)

where
$$r(n) := \frac{1}{2} \cdot \frac{3}{4} \cdot \cdots \cdot \frac{2n-1}{2n}$$
.

- I can "discover" it using **30**-digit arithmetic. and check it to **1,000** digits in **0.75** sec, **10,000** digits in **4.01** min with two naive command-line instructions in *Maple*.
 - No one has any inkling of how to prove it.
 - I "know" the beautiful identity is true it would be more remarkable were it eventually to fail.
 - It may be true for no good reason it might just have no proof and be a very concrete Gödel-like statement.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Changing Cognitive Tastes: Truth without Proof

Gourevich used integer relation computer methods to find the Ramanujan-type series — discussed below — in (11):

$$\frac{4}{\pi^3} \stackrel{?}{=} \sum_{n=0}^{\infty} r(n)^7 (1 + 14n + 76n^2 + 168n^3) \left(\frac{1}{8}\right)^{2n+1}$$
(11)

where $r(n) := \frac{1}{2} \cdot \frac{3}{4} \cdot \cdots \cdot \frac{2n-1}{2n}$.

- I can "discover" it using **30**-digit arithmetic. and check it to **1,000** digits in **0.75** sec, **10,000** digits in **4.01** min with two naive command-line instructions in *Maple*.
 - No one has any inkling of how to prove it.
 - I "know" the beautiful identity is true it would be more remarkable were it eventually to fail.
 - It may be true for no good reason it might just have no proof and be a very concrete Gödel-like statement.

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Changing Cognitive Tastes: Truth without Proof

Gourevich used integer relation computer methods to find the Ramanujan-type series — discussed below — in (11):

$$\frac{4}{\pi^3} \stackrel{?}{=} \sum_{n=0}^{\infty} r(n)^7 (1 + 14n + 76n^2 + 168n^3) \left(\frac{1}{8}\right)^{2n+1}$$
(11)

where $r(n) := \frac{1}{2} \cdot \frac{3}{4} \cdot \cdots \cdot \frac{2n-1}{2n}$.

- I can "discover" it using **30**-digit arithmetic. and check it to **1,000** digits in **0.75** sec, **10,000** digits in **4.01** min with two naive command-line instructions in *Maple*.
 - No one has any inkling of how to prove it.
 - I "know" the beautiful identity is true it would be more remarkable were it eventually to fail.
 - It may be true for no good reason it might just have no proof and be a very concrete Gödel-like statement.

Pi in High Culture (1993)

1996 Nobel Wislawa Szymborska (2-7-1923 1-2-2012

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Oh how brief - a mouse tail, a pigtail - is the tail of a comet!

How feeble the star's ray, bent by bumping up against space!

While here we have two three fifteen three hundred nineteen

my phone number your shirt size the year

nineteen nundred and seventy-three the sixth fiol

in which we find hail to thee, blithe spirit, bird thou never

alongside *ladies and gentlemen, no cause for alarm,* as well as *heaven and earth shall pass away,* but not the number pi, oh no, nothing doing,

it keeps right on with its rather remarkable five,

its uncommonly fine eight

its far from final seven,

nudging, always nudging a sluggish eternity to continue.

Pi in High Culture (1993)

The admirable number pi: three point one four one. All the following digits are also initial, five nine two because it never ends. It can't be comprehended six five three five at a glance. eight nine by calculation. seven nine or imagination. not even three two three eight by wit, that is, by comparison four six to anything else two six four three in the world. The longest snake on earth calls it quits at about forty feet. Likewise, snakes of myth and legend, though they may hold out a bit longer. The pageant of digits comprising the number pi doesn't stop at the page's edge. It goes on across the table, through the air. over a wall, a leaf, a bird's nest, clouds, straight into the skv. through all the bottomless, bloated heavens.

1996 Nobel Wislawa Szymborska (2-7-1923 1-2-2012)

Machin Formulas Newton and Pi Calculus Calculation Records Mathematical Interlude, II Why Pi? Utility and Normality

Oh how brief - a mouse tail, a pigtail - is the tail of a comet!

How feeble the star's ray, bent by bumping up against space!

While here we have two three fifteen three hundred nineteen

my phone number your shirt size the year

nineteen hundred and seventy-three the sixth floor

the number of inhabitants sixty-five cents

hip measurement two fingers a charade, a code,

in which we find *hail to thee, blithe spirit, bird thou never* wert

alongside ladies and gentlemen, no cause for alarm,

as well as heaven and earth shall pass away,

but not the number pi, oh no, nothing doing,

it keeps right on with its rather remarkable five,

its uncommonly fine eight,

its far from final *seven*,

nudging, always nudging a sluggish eternity to continue.

Pi in High Culture (1993)

The admirable number pi: three point one four one. All the following digits are also initial, five nine two because it never ends. It can't be comprehended six five three five at a glance. eight nine by calculation. seven nine or imagination. not even three two three eight by wit, that is, by comparison four six to anything else two six four three in the world. The longest snake on earth calls it quits at about forty feet. Likewise, snakes of myth and legend, though they may hold out a bit longer. The pageant of digits comprising the number pi doesn't stop at the page's edge. It goes on across the table, through the air. over a wall, a leaf, a bird's nest, clouds, straight into the skv. through all the bottomless, bloated heavens.

1996 Nobel Wislawa Szymborska (2-7-1923 1-2-2012)

Machin Formulas Newton and Pi Mathematical Interlude, II Why Pi? Utility and Normality

Oh how brief - a mouse tail, a pigtail - is the tail of a comet!

How feeble the star's ray, bent by bumping up against spacel

While here we have two three fifteen three hundred nineteen

my phone number your shirt size the year

nineteen hundred and seventy-three the sixth floor

the number of inhabitants sixty-five cents

hip measurement two fingers a charade, a code,

in which we find hail to thee, blithe spirit, bird thou never wert

alongside ladies and gentlemen, no cause for alarm, as well as heaven and earth shall pass away.

but not the number pi, oh no, nothing doing,

it keeps right on with its rather remarkable five,

its uncommonly fine eight,

its far from final seven

nudging, always nudging a sluggish eternity to continue.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π .

1965. The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

$$x \leftrightarrow x + x(1 - bx)$$

converts 1/b to $4\times$

converts $1/\sqrt{a}$ to $\mathbf{6} imes$ (7 for \sqrt{a})

 ∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π . **1965.** The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

$$x \leftrightarrow x + x(1 - bx)$$

converts 1/b to $4 \times$

converts $1/\sqrt{a}$ to $\mathbf{6} imes$ (7 for \sqrt{a})

 ∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π . **1965.** The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

 $x \leftrightarrow x + x(1 - bx)$ $x \leftrightarrow$

converts 1/b to $4\times$

converts $1/\sqrt{a}$ to $\mathbf{6} imes$ (7 for \sqrt{a})

 ∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π . **1965.** The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

 $x \leftrightarrow x + x(1 - bx)$

converts 1/b to $4\times$

converts $1/\sqrt{a}$ to $\mathbf{6} imes$ (7 for \sqrt{a})

 ∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π . **1965.** The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

$$x \leftrightarrow x + x(1 - bx)$$

converts 1/b to $4\times$

converts $1/\sqrt{a}$ to **6**× (**7** for \sqrt{a})

 $x \leftrightarrow x + x(1 - ax^2)/2$

∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π . **1965.** The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

$$x \leftrightarrow x + x(1 - bx)$$
 $x \leftrightarrow x + x(1 - ax^2)/2$

converts 1/b to $4\times$

converts $1/\sqrt{a}$ to $\mathbf{6} imes$ (7 for \sqrt{a})

 ∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Computers Cease Being Human

1950s. Commercial computers — and discovery of advanced algorithms for arithmetic — unleashed π . **1965.** The *new* fast Fourier transform (**FFT**) performed high-precision multiplications much faster than conventional methods — viewing numbers as polynomials in $\frac{1}{10}$.

- <u>Newton methods</u> helped reduce time for computing π to ultra-precision from millennia to weeks or days.

$$x \leftrightarrow x + x(1 - bx)$$
 $x \leftrightarrow x + x(1 - ax^2)/2$

converts 1/b to $4\times$

converts $1/\sqrt{a}$ to $\mathbf{6} imes$ (7 for \sqrt{a})

∇ But until the **1980s** all computer evaluations of π employed classical formulas, usually of Machin-type.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Newton Method Illustrated in Maple for 1/7

>restart:Digits:=100:N:=x->x+x*(1-7*x);

 $N := x \rightarrow x + x (1 - 7 x)$

> convergent.

- So we start close (to the left); and
- 3 We keep only the first half of each answer.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Newton Method Illustrated in Maple for 1/7

>restart:Digits:=100:N:=x->x+x*(1-7*x);

 $N := x \rightarrow x + x (1 - 7 x)$

> Digits:=64:x:=.142;for k from 1 to 6 do x:=evalf(N(x), 2^(k)+2); od; x := 0.142 x := 0.1429 x := 0.142857x := 0.142857148571485718

●⁴Něwton's method is self-correcting and quadratically

convergent.

- O So we start close (to the left); and
- 3 We keep only the first half of each answer.

v = f(x)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Pi in the Digital Age



Ramanujan's Seventy-Fifth Birthday Stamp.

- Truly new infinite series formulas were discovered by the self-taught Indian genius Srinivasa Ramanujan around **1910**.
 - Based on theory of elliptic integrals or modular functions, they were not well known (nor fully proven) until *recently* when his writings were finally fully published by Bruce Berndt.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Pi in the Digital Age

Ramanujan's Seventy-Fifth Birthday Stamp.

- Truly new infinite series formulas were discovered by the self-taught Indian genius Srinivasa Ramanujan around **1910**.
 - Based on theory of elliptic integrals or modular functions, they were not well known (nor fully proven) until *recently* when his writings were finally fully published by Bruce Berndt.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Pi in the Digital Age

Ramanujan's Seventy-Fifth Birthday Stamp.

- Truly new infinite series formulas were discovered by the self-taught Indian genius Srinivasa Ramanujan around **1910**.
 - Based on theory of elliptic integrals or modular functions, they were not well known (nor fully proven) until *recently* when his writings were finally fully published by Bruce Berndt.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Ramanujan Series for $1/\pi$

See "Ramanujan at 125", Notices 2012-13

One of these series is the remarkable:

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)! \left(\mathbf{1103} + 26390k\right)}{(k!)^4 396^{4k}}$$
(12)

- Each term adds an additional eight correct digits.
- ♦ **1985**. 'Hacker' Bill Gosper used (12) to compute **17 million digits** of (the continued fraction for) π ; and so the first proof of (12) !

1987. David and Gregory Chudnovsky found a variant:

$$\frac{1}{\pi} = 12 \sum_{k=0}^{\infty} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)! (k!)^3 640320^{3k+3/2}}$$

itional **14** correct digits.

J.M. Borwein Life of Pi (CARMA)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Ramanujan Series for $1/\pi$

See "Ramanujan at 125", Notices 2012-13

One of these series is the remarkable:

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)! \left(\mathbf{1103} + 26390k\right)}{(k!)^4 396^{4k}}$$
(12)

- Each term adds an additional eight correct digits.
- \diamond **1985**. 'Hacker' Bill Gosper used (12) to compute **17 million digits** of (the continued fraction for) π ; and so the first proof of (12) !

1987. David and Gregory Chudnovsky found a variant:

$$\frac{1}{\pi} = 12 \sum_{k=0}^{\infty} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)! (k!)^3 640320^{3k+3/2}}$$

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Ramanujan Series for $1/\pi$

See "Ramanujan at 125", Notices 2012-13

One of these series is the remarkable:

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)! \left(\mathbf{1103} + 26390k\right)}{(k!)^4 396^{4k}}$$
(12)

- Each term adds an additional eight correct digits.
- ♦ **1985**. 'Hacker' Bill Gosper used (12) to compute **17 million digits** of (the continued fraction for) π ; and so the first proof of (12) !

1987. David and Gregory Chudnovsky found a variant:

$$\frac{1}{\pi} = 12 \sum_{k=0}^{\infty} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)! (k!)^3 \, 640320^{3k+3/2}} \quad (13)$$

Each term adds an additional 14 correct digits.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Ramanujan Series for $1/\pi$

See "Ramanujan at 125", Notices 2012-13

CARMA

One of these series is the remarkable:

$$\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)! \left(\mathbf{1103} + 26390k\right)}{(k!)^4 396^{4k}}$$
(12)

- Each term adds an additional eight correct digits.
- ♦ **1985**. 'Hacker' Bill Gosper used (12) to compute **17 million digits** of (the continued fraction for) π ; and so the first proof of (12) !

1987. David and Gregory Chudnovsky found a variant:

$$\frac{1}{\pi} = 12 \sum_{k=0}^{\infty} \frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)! (k!)^3 \, 640320^{3k+3/2}} \quad (13)$$

• Each term adds an additional 14 correct digits. J.M. Borwein Life of Pi (CARMA)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

The Chudnovsky Brothers

- The Chudnovskys implemented (13) with a clever scheme so results at one precision could be reused for higher precision.
 - They used this in several large calculations of π, culminating with a then record computation to over four billion decimal digits in 1994.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

The Chudnovsky Brothers

- The Chudnovskys implemented (13) with a clever scheme so results at one precision could be reused for higher precision.
 - They used this in several large calculations of π , culminating with a then record computation to over **four billion** decimal digits in **1994**.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Some Series Can Save Significant Work

• Relatedly, the Ramanujan-type series:

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \left(\frac{\binom{2n}{n}}{16^n}\right)^3 \frac{42n+5}{16}.$$
 (14)

MA

allows one to compute the billionth binary digit of $1/\pi$, or the like, without computing the first half of the series.

Conjecture (Moore's Law in *Electronics Magazine* 19 April, 1965) "The complexity for minimum component costs has increased at a rate of roughly a factor of two per year" ... [revised to "every 18 months"]

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Some Series Can Save Significant Work

• Relatedly, the Ramanujan-type series:

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} \left(\frac{\binom{2n}{n}}{16^n}\right)^3 \frac{42n+5}{16}.$$
 (14)

allows one to compute the billionth binary digit of $1/\pi$, or the like, without computing the first half of the series.

Conjecture (**Moore's Law** in *Electronics Magazine* 19 April, 1965) "The complexity for minimum component costs has increased at a rate of roughly a factor of two per year" ... [revised to "every 18 months"]

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Electronic Numerical Integrator and Calculator, I

SIZE/WEIGHT: ENIAC had 18,000 vacuum tubes, 6,000 switches, 10,000 capacitors, 70,000 resistors, 1,500 relays, was 10 feet tall, occupied 1,800 square feet and weighed 30 tons.

The ENIAC in the Smithsonian

• This Smithsonian 20Mb picture would require 100,000 ENIACs to store. [Moore's Law!]

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Electronic Numerical Integrator and Calculator, I

SIZE/WEIGHT: ENIAC had 18,000 vacuum tubes, 6,000 switches, 10,000 capacitors, 70,000 resistors, 1,500 relays, was 10 feet tall, occupied 1,800 square feet and weighed 30 tons.

The ENIAC in the Smithsonian

• This Smithsonian 20Mb picture would require 100,000 ENIACs to store. [Moore's Law!]

CARMA

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, II

SPEED/MEMORY: A 1.5GHz Pentium does 3 million adds/sec. ENIAC did 5,000 — 1,000 times faster than any earlier machine. The first stored-memory computer, ENIAC could store 200 digits.

1949 'skunk-works' computation of π — suggested by von Neumann — to **2,037 places** in **70 hrs**.

Origin of the term 'bug'?

Programming ENIAC in 1946

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, II

SPEED/MEMORY: A 1.5GHz Pentium does 3 million adds/sec. ENIAC did 5,000 — 1,000 times faster than any earlier machine. The first stored-memory computer, ENIAC could store 200 digits.

1949 'skunk-works' computation of π — suggested by von Neumann — to **2,037 places** in **70 hrs**.

Origin of the term 'bug'?

Programming ENIAC in 1946

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, II

SPEED/MEMORY: A 1.5GHz Pentium does 3 million adds/sec. ENIAC did 5,000 — 1,000 times faster than any earlier machine. The first stored-memory computer, ENIAC could store 200 digits.

1949 'skunk-works' computation of π — suggested by von Neumann — to **2,037 places** in **70 hrs**.

Origin of the term '*bug*'?

Programming ENIAC in 1946

CARMA

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, II

SPEED/MEMORY: A 1.5GHz Pentium does 3 million adds/sec. ENIAC did 5,000 — 1,000 times faster than any earlier machine. The first stored-memory computer, ENIAC could store 200 digits.

1949 'skunk-works' computation of π — suggested by von Neumann — to **2,037 places** in **70 hrs**.

Origin of the term '*bug*'?

Programming ENIAC in 1946

CARMA

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, III

Presper Eckert and John Mauchly (Feb 1946)

- Eckert-Mauchly Computer Corp. bought by Remington Rand which became Sperry Rand (Unisys).
 - Honeywell, Inc. v. Sperry Rand Corp., et al. 180 USPQ 673 (D. Minn. 1973) changed the world
 - Search for: IBM, Atanasoff-Berry Co.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, III

Presper Eckert and John Mauchly (Feb 1946)

- Eckert-Mauchly Computer Corp. bought by Remington Rand which became Sperry Rand (Unisys).
 - Honeywell, Inc. v. Sperry Rand Corp., et al. 180 USPQ 673 (D. Minn. 1973) changed the world
 - Search for: IBM, Atanasoff-Berry Co.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ENIAC: Integrator and Calculator, III

Presper Eckert and John Mauchly (Feb 1946)

- Eckert-Mauchly Computer Corp. bought by Remington Rand which became Sperry Rand (Unisys).
 - Honeywell, Inc. v. Sperry Rand Corp., et al. 180 USPQ 673 (D. Minn. 1973) changed the world
 - Search for: IBM, Atanasoff-Berry Co.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Ballantine's (1939) Series for π

Another formula of Euler for arccot is:

$$x \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! (x^2+1)^{n+1}} = \arctan\left(\frac{1}{x}\right).$$

As $10\left(18^2+1
ight)=57^2+1=3250$ we may rewrite the formula

$$\frac{\pi}{4} = \arctan\left(\frac{1}{18}\right) + 8\arctan\left(\frac{1}{57}\right) - 5\arctan\left(\frac{1}{239}\right)$$

used by Shanks and Wrench in 1961 for 100,000 digits, and by Guilloud and Boyer in 1973 for a million digits of Pi in the efficient form

$$\pi = 864 \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! \mathbf{325}^{n+1}} + 1824 \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! \mathbf{3250}^{n+1}} - 20 \arctan\left(\frac{1}{239}\right)$$

where terms of the second series are just *decimal shifts* of the first.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Ballantine's (1939) Series for π

Another formula of Euler for arccot is:

$$x \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! (x^2+1)^{n+1}} = \arctan\left(\frac{1}{x}\right).$$

As $10(18^2 + 1) = 57^2 + 1 = 3250$ we may rewrite the formula

$$\frac{\pi}{4} = \arctan\left(\frac{1}{18}\right) + 8\arctan\left(\frac{1}{57}\right) - 5\arctan\left(\frac{1}{239}\right)$$

used by Shanks and Wrench in 1961 for 100,000 digits, and by Guilloud and Boyer in 1973 for a million digits of Pi in the efficient form

$$\pi = 864 \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! \, \mathbf{325}^{n+1}} + 1824 \sum_{n=0}^{\infty} \frac{(n!)^2 4^n}{(2n+1)! \, \mathbf{3250}^{n+1}} - 20 \, \arctan\left(\frac{1}{239}\right)$$

where terms of the second series are just *decimal shifts* of the first.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shanks (the 2nd) and Wrench: "A Million Decimals?" (1961)

5. A Million Decimals? Can e be computed to 1,000,000 deminals with the toomputers of today? From the remarks in the first section rease that the program which we have described would require times of the order of monks. But since the memory of a 7000 is too small, by a factor of ten, a modified program, which writes and reads partial results, would take longer studie. One would really want a computer 100 times as fast, 100 times as reliable, and with a memory 10 times as large. No such machine now exists.

There are, of course, many other formulas similar to (1), (2), and (5), and other programming devices are also possible, but it seems unlikely that any such modification can lead to more than a rather small improvement.

Are there entirely different processioners? This is, of course, possible. We cite the following: compute 1/x and then take its reciprocal. This sounds fantasic, but, in fact, it can be faster than the use of equation (2). One can compute 1/x by Ramanian's formula [8]:

(6)
$$\frac{1}{\pi} = \frac{1}{4} \left(\frac{1123}{882} - \frac{22583}{882^4} \frac{1}{2} \cdot \frac{1\cdot3}{4^7} + \frac{44043}{882^6} \frac{1\cdot3}{2\cdot4} \cdot \frac{1\cdot3\cdot5\cdot7}{4^7\cdot8^6} - \cdots \right),$$

The first factors here are given by $(-1)^*(123 + 21406)$. A binary value of $1/\gamma$ equivalents to 10000D, on the securation as 7000 using potation (6) in 6 hears instead of the 8 hours required for the application of equation (2). To response this value of $1/\gamma$ would take about 1 hour. Thus, we can reduce the time required by (2) by an hour. But unfortunately we loss our overstapping check, and, in any case, this small gain is aquite inadequate for the present question.

One could hope for a theoretical approach to this question of optimization—a theory of the "depth" of numbers—but no such theory now exists. One can guess that ϵ is not as "deep" as π , | but try to prove it!

Such a theory would, of course, take years to develop. In the meantime—say, in 5 to 7 years—such a computer as we suggested above (100 times as fast, 100 times as reliable, and with 10 times the memory) will, no doubt, become a reality. At that time a computation of τ to 1,000,000D will not be difficult.

5. A Million Decimals? Can # be computed to 1,000,000 decimals with the computers of today? From the remarks in the first section we see that the program which whave described would require rimes of the order of smoth. But since the memory of a 7000 is too small, by a factor of ten, a modified program, which writes and made partial results, vould take longer still. One would really want a computer 100 times as find, and with a memory 10 times as large. No such machine move exist.

There are, of course, many other formulas similar to (1), (2), and (5), and other programming devices are also possible, but it seems utilicaly that any such modification can lead to more than a rather small improvement.

Are there entirely different procedures? This is, of course, possible. We site the following: compute $1/\pi$ and then take its reciprocal. This sounds fantastic, but, in fact, it can be faster than the use of equation (2). One can compute $1/\pi$ by Ramanujan's formula [8]

(6)
$$\frac{1}{\pi} = \frac{1}{4} \left(\frac{1123}{882} - \frac{22583}{882^8} \frac{1}{2} \cdot \frac{1 \cdot 3}{4^5} + \frac{44043}{882^8} \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1 \cdot 3 \cdot 5 \cdot 7}{4^3 \cdot 8^2} - \cdots \right).$$

The first factors here are given by $(-1)^4 (1123 + 21460k)$. A binary value of $1/\tau$ equivalent to 1000000, cm, be computed on a 7000 using equitation (d), in 6 hours instead of the 8 hours required for the application of equation (2). To response this value of 1/ τ would take about 1 hour. Thus, we can reduce the lines required by (2) by an hour. But unfortunately we lose our overlapping check, and, in any case, this small gain is quite inadequate for the present question.

One could hope for a theoretical approach to this question of optimization—a theory of the "depth" of numbers—but no such theory now exists. One can guess that e is not as "deep" as π_1^+ but try to prove it!

Such a theory would, of course, take years to develop. In the meantime-say, in 5 to 7 years-such a computer as we suggested above (100 times as fast, 100 times ar reliable, and with 10 times the memory) will, no doubt, become a reality. At that time a computation of π to 1,100,000D will not be difficult.

CARM

^{*} We have computed 1/e by (6) to over 5000D in less than a minute.

i We have computed e on a 7000 to 100,350D by the obvious program. This takes 2.5 hours instead of the 8-hour run for e by (2).

[&]quot;We have computed 1/+ by (6) to over 5000D in less than a minute.

t We have computed a so a 7050 to 100,355D by the abvious program. This takes 2.5 hours instead of the 3-hour run for e by (2).

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shanks (the 2nd) and Wrench: "A Million Decimals?" (1961)

now exists.

There are, of course, many other formulas similar to (1), (2), and (5), and other programming devices are also possible, but it seems unlikely that any such modification can lead to more than a rather small improvement.

Are there entirely different procedures? This is, of course, possible. We cite the following: compute $1/\pi$ and then take its reciprocal. This sounds fantastic, but, in fast, it can be faster than the use of equation (2). One can compute $1/\pi$ by Ramanujan's formula [8].

(6)	$\frac{1}{\pi} =$	1 /1123	22583 1	$\frac{1\cdot 3}{4^2} +$	44043 1-3	1-3-5-7	(
		4 882	8821 2		8829 2.4	42.82	· .

The first factors here are given by $(-1)^*$ (1123 + 2)460k). A binary value of $1/\pi$ equivalent to 100,000D, can be computed on a 7090 using equation (6) in 6 hours instead of the 8 hours required for the application of equation (2). To resprecate this value of $1/\pi$ would take about 1 hour. Thus, we can reduce the time required by (2) by an hour. But unfortunately we lose our overlapping check, and, in any case, this small gain is quite inadequate for the present question.

One could hope for a theoretical approach to this question of optimization—a theory of the "depth" of numbers—but no such theory now exists. One can guess that ϵ is not as "deep" as π .] but try to prove it!

Such a theory would, of course, take years to develop. In the meantime—say, in 5 to 7 years—such a computer as we suggested above (100 times as fast, 100 times as reliable, and with 10 times the memory) will, no doubt, become a reality. At that time a computation of τ to 1,000,000D will not be difficult. There are, of course, many other formulas similar to (1), (2) programming devices are also possible, but it seems unlikely the tion can lead to more than a rather small improvement.

Are there entirely different procedures? This is, of course, t following: compute 1/x and then take its reciprocal. This so in fact, it can be faster than the use of equation (2). One of Ramanujan's formula [8]

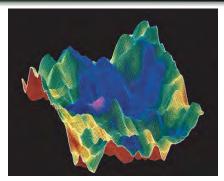
(6)	1 1	ï	/1123	22583 1		1.3	44043 1-3 8824 2-4		1.3.5	
	π=	r 4	882	8821 2	1	+=	+	8824	2.4	42.82

The first factors here are given by $(-1)^{*}$ (1123 + 21460k). A equivalent to 100,000D, can be computed on a 7090 using equinstead of the 8 hours required for the application of equation this value of $1/\tau$ would take about 1 hour. Thus, we can redt by (2) by an hour. But unfortunately we lose our overlappin case, this small gain is quite indequate for the present questi

One could hope for a theoretical approach to this question theory of the "depth" of numbers—but no such theory now that e is not as "deep" as π, \dagger but try to prove it!

Such a theory would, of course, take years to develop. In in 5 to 7 years—such a computer as we suggested above (10 times as reliable, and with 10 times the memory) will, no dou At that time a computation of σ to 1,000,000D will not be di

[†] We have computed s on a 7090 to 100,255D by the abvious phours instead of the S-hour run for e by (2).

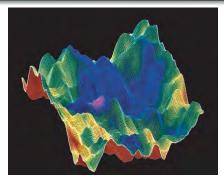

^{*} We have computed 1/e by (6) to over 5000D in less than a minute.

f We have computed e on a 7000 to 100,255D by the obvious program. This takes 2.5 hours instead of the 8-hour run for e by (2).

[&]quot;We have computed 1/r by (6) to over 5000D in lass than a min

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

The First Million Digits of π


A random walk on π (courtesy David and Gregory Chudnovsky)

- See Richard Preston's: "The Mountains of Pi", *New Yorker*, March 2, **1992** (AAAS-Westinghouse Award for Science Journalism);
- A marvellous "Chasing the Unicorn" and 2005 NOVA program. 🦔

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

The First Million Digits of π

A random walk on π (courtesy David and Gregory Chudnovsky)

- See Richard Preston's: "The Mountains of Pi", *New Yorker*, March 2, **1992** (AAAS-Westinghouse Award for Science Journalism);
- A marvellous "Chasing the Unicorn" and 2005 NOVA program.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Reduced Complexity Methods

These series are much faster than classical ones, *but* the number of terms needed *still* increases linearly with the number of digits.

Twice as many digits correct requires twice as many terms of the series. EINSTEIN SIMPLIFIED

1976. Richard Brent of **ANU-CARMA** and Eugene Salamin independently found a reduced complexity algorithm for π . – It takes $O(\log N)$ operations for N digits.

- Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa **1800**.

- Gauss — and others — missed connection to computing π .

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Reduced Complexity Methods

These series are much faster than classical ones, *but* the number of terms needed *still* increases linearly with the number of digits.

Twice as many digits correct requires twice as many terms of the series. EINSTEIN SIMPLIFIED

1976. Richard Brent of **ANU-CARMA** and Eugene Salamin independently found a reduced complexity algorithm for π . – It takes $O(\log N)$ operations for N digits.

- Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa **1800**.

- Gauss — and others — missed connection to computing π .

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Reduced Complexity Methods

These series are much faster than classical ones, *but* the number of terms needed *still* increases linearly with the number of digits.

Twice as many digits correct requires twice as many terms of the series. EINSTEIN SIMPLIFIED

1976. Richard Brent of **ANU-CARMA** and Eugene Salamin independently found a reduced complexity algorithm for π . – It takes $O(\log N)$ operations for N digits.

- It takes $O(\log N)$ operations for N digits.
- Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa 1800.
 - Gauss and others missed connection to computing π .

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Reduced Complexity Methods

These series are much faster than classical ones, *but* the number of terms needed *still* increases linearly with the number of digits.

Twice as many digits correct requires twice as many terms of the series. EINSTEIN SIMPLIFIED

1976. Richard Brent of **ANU-CARMA** and Eugene Salamin independently found a reduced complexity algorithm for π .

- It takes $O(\log N)$ operations for N digits.

 Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa 1800.

- Gauss — and others — missed connection to computing π .

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Reduced Complexity Methods

These series are much faster than classical ones, *but* the number of terms needed *still* increases linearly with the number of digits.

Twice as many digits correct requires twice as many terms of the series. EINSTEIN SIMPLIFIED

1976. Richard Brent of **ANU-CARMA** and Eugene Salamin independently found a reduced complexity algorithm for π .

– It takes $O(\log N)$ operations for N digits.

 Uses arithmetic-geometric mean iteration (AGM) and other elliptic integral ideas due to Gauss and Legendre circa 1800.

- Gauss — and others — missed connection to computing π .

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

A Reduced Complexity Algorithm

Algorithm (Brent-Salamin AGM iteration) Set $a_0 = 1, b_0 = 1/\sqrt{2}$ and $s_0 = 1/2$. Calculate $a_{k} = \frac{a_{k-1} + b_{k-1}}{2} \quad (A) \qquad b_{k} = \sqrt{a_{k-1}b_{k-1}}$ $c_{k} = a_{k}^{2} - b_{k}^{2}, \qquad s_{k} = s_{k-1} - 2^{k}c_{k}$ (G)and compute $p_k = \frac{2a_k^2}{\alpha_k}$. (15)Then p_k converges quadratically to π .

- Each step doubles the correct digits successive steps produce 1, 4, 9, 20, 42, 85, 173, 347 and 697 digits of π.
 - 25 steps compute π to 45 million digits. But, steps must be carma performed to the desired precision.

J.M. Borwein Life of Pi (CARMA)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

A Reduced Complexity Algorithm

Algorithm (Brent-Salamin AGM iteration) Set $a_0 = 1, b_0 = 1/\sqrt{2}$ and $s_0 = 1/2$. Calculate $a_k = \frac{a_{k-1} + b_{k-1}}{2}$ (A) $b_k = \sqrt{a_{k-1}b_{k-1}}$ (G) $c_k = a_k^2 - b_k^2, \quad s_k = s_{k-1} - 2^k c_k$ and compute $p_k = \frac{2a_k^2}{s_k}$. (15) Then p_k converges quadratically to π .

- Each step doubles the correct digits successive steps produce 1, 4, 9, 20, 42, 85, 173, 347 and 697 digits of π.
 - 25 steps compute π to 45 million digits. But, steps must be carma performed to the desired precision.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

A Reduced Complexity Algorithm

Algorithm (Brent-Salamin AGM iteration) Set $a_0 = 1, b_0 = 1/\sqrt{2}$ and $s_0 = 1/2$. Calculate $a_{k} = \frac{a_{k-1} + b_{k-1}}{2} \quad (A) \qquad b_{k} = \sqrt{a_{k-1}b_{k-1}}$ $c_{k} = a_{k}^{2} - b_{k}^{2}, \qquad s_{k} = s_{k-1} - 2^{k}c_{k}$ (G)and compute $p_k = \frac{2a_k^2}{c_k}$. (15)Then p_k converges quadratically to π .

- Each step doubles the correct digits successive steps produce 1, 4, 9, 20, 42, 85, 173, 347 and 697 digits of π .
 - 25 steps compute π to **45 million** digits. But, steps must be <u>carma</u> performed to the desired precision.

J.M. Borwein	Life of Pi	(CARMA)
--------------	------------	---------

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Four Famous Pi Guys: Salamin, Kanada, Bailey and Gosper in 1987

• To appear in Donald Knuth's book of mathematics pictures.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

And Some Others: Niven, Shanks (1917-96), Brent, Zudilin (O)

J.M. Borwein Life of Pi (CARMA)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

The Borwein Brothers

1985. Peter and I discovered algebraic algorithms of all orders:

Algorithm (Cubic Algorithm)

Set $a_0 = 1/3$ and $s_0 = (\sqrt{3} - 1)/2$. Iterate

$$\begin{aligned} r_{k+1} &=& \frac{3}{1+2(1-s_k^3)^{1/3}}, \qquad s_{k+1} = \frac{r_{k+1}-1}{2} \\ \text{and} \ a_{k+1} &=& r_{k+1}^2 a_k - 3^k (r_{k+1}^2 - 1). \end{aligned}$$

Then $1/a_k$ converges cubically to π .

- The number of digits correct more than triples with each step.
- There are like algorithms of all orders: quintic, septic, nonic,

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

The Borwein Brothers

1985. Peter and I discovered algebraic algorithms of all orders:

Algorithm (Cubic Algorithm)

Set $a_0 = 1/3$ and $s_0 = (\sqrt{3} - 1)/2$. Iterate

$$\begin{aligned} r_{k+1} &=& \frac{3}{1+2(1-s_k^3)^{1/3}}, \qquad s_{k+1} = \frac{r_{k+1}-1}{2} \\ \text{and} \ a_{k+1} &=& r_{k+1}^2 a_k - 3^k (r_{k+1}^2 - 1). \end{aligned}$$

Then $1/a_k$ converges cubically to π .

- The number of digits correct more than triples with each step.
- There are like algorithms of all orders: quintic, septic, nonic,

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

ARMA

The Borwein Brothers

. . .

1985. Peter and I discovered algebraic algorithms of all orders:

Algorithm (Cubic Algorithm)

Set $a_0 = 1/3$ and $s_0 = (\sqrt{3} - 1)/2$. Iterate

$$\begin{aligned} r_{k+1} &=& \frac{3}{1+2(1-s_k^3)^{1/3}}, \qquad s_{k+1} = \frac{r_{k+1}-1}{2} \\ \text{and} \ a_{k+1} &=& r_{k+1}^2 a_k - 3^k (r_{k+1}^2-1). \end{aligned}$$

Then $1/a_k$ converges cubically to π .

- The number of digits correct more than triples with each step.
- There are like algorithms of all orders: quintic, septic, nonic,

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

A Fourth Order Algorithm

Algorithm (Quartic Algorithm) Set $a_0 = 6 - 4\sqrt{2}$ and $y_0 = \sqrt{2} - 1$. Iterate $y_{k+1} = \frac{1 - (1 - y_k^4)^{1/4}}{1 + (1 - y_k^4)^{1/4}}$ and $a_{k+1} = a_k(1 + y_{k+1})^4 - 2^{2k+3}y_{k+1}(1 + y_{k+1} + y_{k+1}^2)$.

Then $1/a_k$ converges quartically to π

Using 4 × 'plus' 1 ÷ 'plus' 2 1/√ = 19 full precision × per step. So 20 steps costs out at around 400 full precision multiplications.
 (This assumes intermediate storage. Additions are cheap) <

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

A Fourth Order Algorithm

Algorithm (Quartic Algorithm) Set $a_0 = 6 - 4\sqrt{2}$ and $y_0 = \sqrt{2} - 1$. Iterate $y_{k+1} = \frac{1 - (1 - y_k^4)^{1/4}}{1 + (1 - y_k^4)^{1/4}}$ and $a_{k+1} = a_k(1 + y_{k+1})^4 - 2^{2k+3}y_{k+1}(1 + y_{k+1} + y_{k+1}^2)$.

Then $1/a_k$ converges quartically to π

Using 4 × 'plus' 1 ÷ 'plus' 2 1/√ = 19 full precision × per step. So 20 steps costs out at around 400 full precision multiplications.
 (This assumes intermediate storage. Additions are cheap)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

A Fourth Order Algorithm

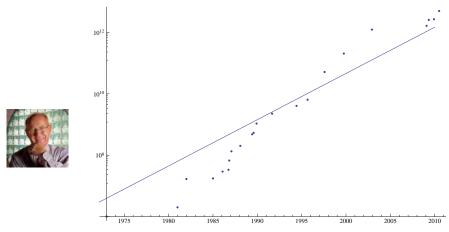
Algorithm (Quartic Algorithm) Set $a_0 = 6 - 4\sqrt{2}$ and $y_0 = \sqrt{2} - 1$. Iterate $y_{k+1} = \frac{1 - (1 - y_k^4)^{1/4}}{1 + (1 - y_k^4)^{1/4}}$ and $a_{k+1} = a_k(1 + y_{k+1})^4 - 2^{2k+3}y_{k+1}(1 + y_{k+1} + y_{k+1}^2)$.

Then $1/a_k$ converges quartically to π

Using 4 × 'plus' 1 ÷ 'plus' 2 1/√ = 19 full precision × per step. So 20 steps costs out at around 400 full precision multiplications.
 (This assumes intermediate storage. Additions are cheap)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Modern Calculation Records: and IBM Blue Gene/L at Argonne


Name	Year	Correct Digits		
Miyoshi and Kanada	1981	2,000,036		
Kanada-Yoshino-Tamura	1982	16,777,206		
Gosper	1985	17,526,200		
Bailey	Jan. 1986	29,360,111		
Kanada and Tamura	Sep. 1986	33,554,414		
Kanada and Tamura	Oct. 1986	67,108,839		
Kanada et. al	Jan. 1987	134,217,700		
Kanada and Tamura	Jan. 1988	201,326,551		
Chudnovskys	May 1989	480,000,000		
Kanada and Tamura	Jul. 1989	536,870,898		
Kanada and Tamura	Nov. 1989	1,073,741,799		
Chudnovskys	Aug. 1991	2,260,000,000		
Chudnovskys	May 1994	4,044,000,000		
Kanada and Takahashi	Oct. 1995	6,442,450,938		
Kanada and Takahashi	Jul. 1997	51,539,600,000		
Kanada and Takahashi	Sep. 1999	206,158,430,000		
Kanada-Ushiro-Kuroda	Dec. 2002	1,241,100,000,000		
Takahashi	Jan. 2009	1,649,000,000,000		
Takahashi	April. 2009	2,576,980,377,524		
Bellard	Dec. 2009	2,699,999,990,000		
Kondo and Yee	Aug. 2010	5,000,000,000,000		
Kondo and Yee	Oct. 2011	10,000,000,000,000		
Kondo and Yee	Dec. 2013	12,200,000,000,000		

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms **Modern Calculation Records** A Few Trillion Digits of Pi

Moore's Law Marches On

Computation of π since 1975 plotted vs. Moore's law predicted increase carma

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

An Amazing Algebraic Approximation to π

The transcendental number π and the algebraic number $1/a_{20}$ actually agree for more than **1.5 trillion decimal places**.

• π and $1/a_{21}$ agree for more than six trillion decimal places.

- **1984**. I found these on a **16K** upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- **1986**. A **29 million** digit calculation at NASA Ames just after the shuttle disaster uncovered CRAY hardware and software faults.
 - Took 6 months to convince Seymour Cray; then ran on every *CRAY* before it left the factory.
 - This iteration still gives me goose bumps. Especially when written out in full ...

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

An Amazing Algebraic Approximation to π

The transcendental number π and the algebraic number $1/a_{20}$ actually agree for more than **1.5 trillion decimal places**.

• π and $1/a_{21}$ agree for more than six trillion decimal places.

1984. I found these on a **16K** upgrade of an 8K double-precision TRS80-100 Radio Shack portable.

- **1986**. A **29 million** digit calculation at NASA Ames just after the shuttle disaster uncovered CRAY hardware and software faults.
 - Took 6 months to convince Seymour Cray; then ran on every *CRAY* before it left the factory.
 - This iteration still gives me goose bumps. Especially when written out in full ...

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

An Amazing Algebraic Approximation to π

The transcendental number π and the algebraic number $1/a_{20}$ actually agree for more than **1.5 trillion decimal places**.

• π and $1/a_{21}$ agree for more than six trillion decimal places.

- **1984**. I found these on a **16K** upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- 1986. A 29 million digit calculation at NASA Ames just after the shuttle disaster — uncovered CRAY hardware and software faults.
 - Took 6 months to convince Seymour Cray; then ran on every *CRAY* before it left the factory.
 - This iteration still gives me goose bumps. Especially when written out in full ...

J.M. Borwein

CARMA

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

An Amazing Algebraic Approximation to π

The transcendental number π and the algebraic number $1/a_{20}$ actually agree for more than **1.5 trillion decimal places**.

• π and $1/a_{21}$ agree for more than six trillion decimal places.

- **1984**. I found these on a **16K** upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- 1986. A 29 million digit calculation at NASA Ames just after the shuttle disaster — uncovered CRAY hardware and software faults.
 - Took 6 months to convince Seymour Cray; then ran on every CRAY before it left the factory.
 - This iteration still gives me goose bumps. Especially when written out in full ...

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

An Amazing Algebraic Approximation to π

The transcendental number π and the algebraic number $1/a_{20}$ actually agree for more than **1.5 trillion decimal places**.

• π and $1/a_{21}$ agree for more than six trillion decimal places.

- **1984**. I found these on a **16K** upgrade of an 8K double-precision TRS80-100 Radio Shack portable.
- 1986. A 29 million digit calculation at NASA Ames just after the shuttle disaster — uncovered CRAY hardware and software faults.
 - Took 6 months to convince Seymour Cray; then ran on every CRAY before it left the factory.
 - This iteration still gives me goose bumps. Especially when written out in full ...

25. Pi's Childhood 44. Pi's Adolescence 49. Adulthood of Pi 80. Pi in the Digital Age $a_0 = 6 - 4 \sqrt[1]{2}$. Computing Individual Digits of π

Ramanujan-type Series The ENIACalculator A Few Trillion Digits of Pi

$$1 = \frac{1 - \sqrt[3]{1 - y_0^4}}{1 + \sqrt[4]{1 - y_0^4}}, a_1 = a_0 (1 + y_1)^4 - 2^3 y_1 \left(1 + y_1 + y_1^2\right)$$

$$2 = \frac{1 - \sqrt[4]{1 - y_1^4}}{1 + \sqrt[4]{1 - y_1^4}}, a_2 = a_1 (1 + y_2)^4 - 2^5 y_2 \left(1 + y_2 + y_2^2\right)$$

$$3 = \frac{1 - \sqrt[4]{1 - y_2^4}}{1 + \sqrt[4]{1 - y_2^4}}, a_3 = a_2 (1 + y_3)^4 - 2^7 y_3 \left(1 + y_3 + y_3^2\right)$$

$$4 = \frac{1 - \sqrt[4]{1 - y_3^4}}{1 + \sqrt[4]{1 - y_3^4}}, a_4 = a_3 (1 + y_4)^4 - 2^9 y_4 \left(1 + y_4 + y_4^2\right)$$

$$= \frac{1 - \sqrt[4]{1 - y_4^4}}{1 + \sqrt[4]{1 - y_5^4}}, a_5 = a_4 (1 + y_5)^4 - 2^{11} y_5 \left(1 + y_5 + y_5^2\right)$$

$$= \frac{1 - \sqrt[4]{1 - y_5^4}}{1 + \sqrt[4]{1 - y_5^4}}, a_6 = a_5 (1 + y_6)^4 - 2^{13} y_6 \left(1 + y_6 + y_6^2\right)$$

$$= \frac{1 - \sqrt[4]{1 - y_6^4}}{1 + \sqrt[4]{1 - y_6^4}}, a_7 = a_6 (1 + y_7)^4 - 2^{15} y_7 \left(1 + y_7 + y_7^2\right)$$

$$= \frac{1 - \sqrt[4]{1 - y_7^4}}{1 + \sqrt[4]{1 - y_7^4}}, a_8 = a_7 (1 + y_8)^4 - 2^{17} y_8 \left(1 + y_8 + y_8^2\right)$$

$$= \frac{1 - \sqrt[4]{1 - y_7^4}}{1 - \sqrt[4]{1 - y_7^4}}, a_9 = a_8 (1 + y_9)^4 - 2^{19} y_9 \left(1 + y_9 + y_9^2\right)$$

25. Pi's Childhood 44. Pi's Adolescence 49. Adulthood of Pi 80. Pi in the Digital Age -4 1/24. Computing Individual Digits of π Reamanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

$$a_0 = 6 - 4\sqrt{2}$$

$$\begin{split} y_1 &= \frac{1 - \sqrt[4]{1 - y_0}^4}{1 + \sqrt[4]{1 - y_0}^4}, a_1 = a_0 \left(1 + y_1\right)^4 - 2^3 y_1 \left(1 + y_1 + y_1^2\right) \\ y_2 &= \frac{1 - \sqrt[4]{1 - y_1}^4}{1 + \sqrt[4]{1 - y_1}^4}, a_2 = a_1 \left(1 + y_2\right)^4 - 2^5 y_2 \left(1 + y_2 + y_2^2\right) \\ y_3 &= \frac{1 - \sqrt[4]{1 - y_2}^4}{1 + \sqrt[4]{1 - y_2}^4}, a_3 = a_2 \left(1 + y_3\right)^4 - 2^7 y_3 \left(1 + y_3 + y_3^2\right) \\ y_4 &= \frac{1 - \sqrt[4]{1 - y_3}^4}{1 + \sqrt[4]{1 - y_3}^4}, a_4 = a_3 \left(1 + y_4\right)^4 - 2^9 y_4 \left(1 + y_4 + y_4^2\right) \\ y_5 &= \frac{1 - \sqrt[4]{1 - y_4}^4}{1 + \sqrt[4]{1 - y_4}^4}, a_5 = a_4 \left(1 + y_5\right)^4 - 2^{11} y_5 \left(1 + y_5 + y_5^2\right) \\ y_6 &= \frac{1 - \sqrt[4]{1 - y_5}^4}{1 + \sqrt[4]{1 - y_5}^4}, a_6 = a_5 \left(1 + y_6\right)^4 - 2^{13} y_6 \left(1 + y_6 + y_6^2\right) \\ y_7 &= \frac{1 - \sqrt[4]{1 - y_6}^4}{1 + \sqrt[4]{1 - y_6}^4}, a_7 = a_6 \left(1 + y_7\right)^4 - 2^{15} y_7 \left(1 + y_7 + y_7^2\right) \\ y_8 &= \frac{1 - \sqrt[4]{1 - y_7}^4}{1 + \sqrt[4]{1 - y_7}^4}, a_8 = a_7 \left(1 + y_8\right)^4 - 2^{17} y_8 \left(1 + y_8 + y_8^2\right) \\ y_9 &= \frac{1 - \sqrt[4]{1 - y_8}^4}{1 + \sqrt[4]{1 - y_8}^4}, a_9 = a_8 \left(1 + y_9\right)^4 - 2^{19} y_9 \left(1 + y_9 + y_9^2\right) \end{split}$$

$$y_{10} = \frac{1 - \sqrt[4]{1 - y_9 4}}{1 + \sqrt[4]{1 - y_9 4}}, a_{10} = a_9 \left(1 + y_{10}\right)^4 - 2^{21} y_{10} \left(1 + y_{10} + y_{10}^2\right)$$

25. Pi's Childhood 44. Pi's Adolescence 49. Adulthood of Pi 80. Pi in the Digital Age A Few Trillion Digits of Pi

114. Computing Individual Digits of
$$\pi$$

$$\begin{aligned} y_{11} &= \frac{1 - \sqrt[4]{1 - y_{10}}^4}{1 + \sqrt[4]{1 - y_{10}}^4}, a_{11} = a_{10} \left(1 + y_{11}\right)^4 - 2^{23} y_{11} \left(1 + y_{11} + y_{11}^2\right) \\ y_{12} &= \frac{1 - \sqrt[4]{1 - y_{11}}^4}{1 + \sqrt[4]{1 - y_{11}}^4}, a_{12} = a_{11} \left(1 + y_{12}\right)^4 - 2^{25} y_{12} \left(1 + y_{12} + y_{12}^2\right) \\ y_{13} &= \frac{1 - \sqrt[4]{1 - y_{12}}^4}{1 + \sqrt[4]{1 - y_{12}}^4}, a_{13} = a_{12} \left(1 + y_{13}\right)^4 - 2^{27} y_{13} \left(1 + y_{13} + y_{13}^2\right) \\ y_{14} &= \frac{1 - \sqrt[4]{1 - y_{12}}^4}{1 + \sqrt[4]{1 - y_{13}}^4}, a_{14} = a_{13} \left(1 + y_{14}\right)^4 - 2^{29} y_{14} \left(1 + y_{14} + y_{14}^2\right) \\ y_{15} &= \frac{1 - \sqrt[4]{1 - y_{13}}^4}{1 + \sqrt[4]{1 - y_{14}}^4}, a_{15} = a_{14} \left(1 + y_{15}\right)^4 - 2^{31} y_{15} \left(1 + y_{15} + y_{15}^2\right) \\ y_{16} &= \frac{1 - \sqrt[4]{1 - y_{15}}^4}{1 + \sqrt[4]{1 - y_{15}}^4}, a_{16} = a_{15} \left(1 + y_{16}\right)^4 - 2^{33} y_{16} \left(1 + y_{16} + y_{16}^2\right) \\ y_{17} &= \frac{1 - \sqrt[4]{1 - y_{16}}^4}{1 + \sqrt[4]{1 - y_{16}}^4}, a_{17} = a_{16} \left(1 + y_{17}\right)^4 - 2^{35} y_{17} \left(1 + y_{17} + y_{17}^2\right) \\ y_{18} &= \frac{1 - \sqrt[4]{1 - y_{16}}^4}{1 + \sqrt[4]{1 - y_{17}}^4}, a_{18} = a_{17} \left(1 + y_{18}\right)^4 - 2^{37} y_{18} \left(1 + y_{18} + y_{18}^2\right) \\ y_{19} &= \frac{1 - \sqrt[4]{1 - y_{16}}^4}{1 + \sqrt[4]{1 - y_{16}}^4}, a_{19} = a_{18} \left(1 + y_{19}\right)^4 - 2^{39} y_{19} \left(1 + y_{19} + y_{19}^2\right) \\ 1 - \sqrt[4]{1 - y_{19}}^4 &= a_{18} \left(1 + y_{19}\right)^4 - 2^{39} y_{19} \left(1 + y_{19} + y_{19}^2\right) \\ y_{10} &= \frac{1 - \sqrt[4]{1 - y_{19}}^4}{1 + \sqrt[4]{1 - y_{19}}^4}, a_{19} = a_{18} \left(1 + y_{19}\right)^4 - 2^{39} y_{19} \left(1 + y_{19} + y_{19}^2\right) \\ y_{10} &= \frac{1 - \sqrt[4]{1 - y_{19}}^4}{1 + \sqrt[4]{1 - y_{19}}^4}, a_{19} = a_{18} \left(1 + y_{19}\right)^4 - 2^{39} y_{19} \left(1 + y_{19} + y_{19}^2\right) \\ y_{10} &= \frac{1 - \sqrt[4]{1 - y_{19}}^4}{1 + \sqrt[4]{1 - y_{19}}^4}, a_{19} = a_{18} \left(1 + y_{19}\right)^4 - 2^{39} y_{19} \left(1 + y_{19} + y_{19}^2\right) \\ y_{10} &= \frac{1 - \sqrt[4]{1 - y_{19}}^4}{1 + \sqrt[4]{1 - y_{19}}^4}, a_{19} = a_{18} \left(1 + y_{19}\right)^4 - 2^{39} y_{19} \left(1 + y_{19} + y_{19}^2\right) \\ y_{10} &= \frac{1 - \sqrt[4]{1 - y_{19}}^4}{1 + \sqrt[4]{1 - y_{19}}^4}, a_{19} &= a_{18} \left(1 + y_{19}\right)^4 - 2^{39} y_{19} \left(1 + y_{19}\right)^4 - 2^{39} y_{19} \left(1 + y_{1$$

CARMA

J.M. Borwein Life of Pi (CARMA)

$$\begin{split} y_{11} &= \frac{1 - \sqrt[4]{1 - y_{10}^4}}{1 + \sqrt[4]{1 - y_{10}^4}}, a_{11} = a_{10} \left(1 + y_{11}\right)^4 - 2^{23} y_{11} \left(1 + y_{11} + y_{11}^2\right) \\ y_{12} &= \frac{1 - \sqrt[4]{1 - y_{11}^4}}{1 + \sqrt[4]{1 - y_{11}^4}}, a_{12} = a_{11} \left(1 + y_{12}\right)^4 - 2^{25} y_{12} \left(1 + y_{12} + y_{12}^2\right) \\ y_{13} &= \frac{1 - \sqrt[4]{1 - y_{12}^4}}{1 + \sqrt[4]{1 - y_{12}^4}}, a_{13} = a_{12} \left(1 + y_{13}\right)^4 - 2^{27} y_{13} \left(1 + y_{13} + y_{13}^2\right) \\ y_{14} &= \frac{1 - \sqrt[4]{1 - y_{12}^4}}{1 + \sqrt[4]{1 - y_{13}^4}}, a_{14} = a_{13} \left(1 + y_{14}\right)^4 - 2^{29} y_{14} \left(1 + y_{14} + y_{14}^2\right) \\ y_{15} &= \frac{1 - \sqrt[4]{1 - y_{14}^4}}{1 + \sqrt[4]{1 - y_{14}^4}}, a_{15} = a_{14} \left(1 + y_{15}\right)^4 - 2^{31} y_{15} \left(1 + y_{15} + y_{15}^2\right) \\ y_{16} &= \frac{1 - \sqrt[4]{1 - y_{15}^4}}{1 + \sqrt[4]{1 - y_{15}^4}}, a_{16} = a_{15} \left(1 + y_{16}\right)^4 - 2^{33} y_{16} \left(1 + y_{16} + y_{16}^2\right) \\ y_{17} &= \frac{1 - \sqrt[4]{1 - y_{16}^4}}{1 + \sqrt[4]{1 - y_{16}^4}}, a_{17} = a_{16} \left(1 + y_{17}\right)^4 - 2^{35} y_{17} \left(1 + y_{17} + y_{17}^2\right) \\ y_{18} &= \frac{1 - \sqrt[4]{1 - y_{16}^4}}{1 + \sqrt[4]{1 - y_{17}^4}}, a_{18} = a_{17} \left(1 + y_{18}\right)^4 - 2^{37} y_{18} \left(1 + y_{18} + y_{18}^2\right) \\ y_{19} &= \frac{1 - \sqrt[4]{1 - y_{18}^4}}{1 + \sqrt[4]{1 - y_{18}^4}}, a_{19} = a_{18} \left(1 + y_{19}\right)^4 - 2^{39} y_{19} \left(1 + y_{19} + y_{19}^2\right) \\ y_{20} &= \frac{1 - \sqrt[4]{1 - y_{19}^4}}{1 + \sqrt[4]{1 - y_{19}^4}}, a_{20} = a_{19} \left(1 + y_{20}\right)^4 - 2^{41} y_{20} \left(1 + y_{20} + y_{20}^2\right). \end{split}$$

CARMA>

J.M. Borwein Life of Pi (CARMA)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

"A Billion Digits is Impossible"

• Since **1988** used, with Salamin-Brent, by Kanada's Tokyo team. Including: π to **200 billion** decimal digits in **1999** ... and records in **2009**.

- **1963**. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told *LA Times* 10^{10^2} impossible. This led to an editorial on unicorns.
- In **1997** the *first occurrence of the sequence* **0123456789** was found (late) in the decimal expansion of π starting at the **17**, **387**, **594**, **880**-th digit after the decimal point.
 - In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

"A Billion Digits is Impossible"

- **1963**. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told *LA Times* 10^{10^2} impossible. This led to an editorial on unicorns.
- In **1997** the *first occurrence of the sequence* **0123456789** was found (late) in the decimal expansion of π starting at the **17**, **387**, **594**, **880**-th digit after the decimal point.
 - In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

"A Billion Digits is Impossible"

- **1963**. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told *LA Times* 10^{10^2} impossible. This led to an editorial on unicorns.
- In **1997** the *first occurrence of the sequence* **0123456789** was found (late) in the decimal expansion of π starting at the **17**, **387**, **594**, **880**-th digit after the decimal point.
 - In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

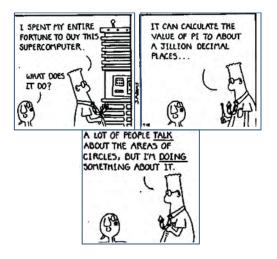
Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

"A Billion Digits is Impossible"

- **1963**. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told *LA Times* 10^{10^2} impossible. This led to an editorial on unicorns.
- In **1997** the *first occurrence of the sequence* **0123456789** was found (late) in the decimal expansion of π starting at the **17**, **387**, **594**, **880**-th digit after the decimal point.
 - In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

"A Billion Digits is Impossible"



- **1963**. Dan Shanks told Phil Davis he was sure a billionth digit computation was forever impossible. We 'wimps' told *LA Times* 10^{10^2} impossible. This led to an editorial on unicorns.
- In **1997** the *first occurrence of the sequence* **0123456789** was found (late) in the decimal expansion of π starting at the **17**, **387**, **594**, **880**-th digit after the decimal point.
 - In consequence the status of several famous intuitionistic examples due to Brouwer and Heyting has changed.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Billions and Billions

CARMA

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Kirk asks:

"Aren't there some mathematical problems that simply can't be solved?"

And Spock 'fries the brains' of a rogue computer by telling it: *"Compute to the last digit the value of ... Pi."*

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

CARMA

Kirk asks:

"Aren't there some mathematical problems that simply can't be solved?"

And Spock 'fries the brains' of a rogue computer by telling it: "Compute to the last digit the value of ... Pi."

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Pi the Song: from the album Aerial

2005 Influential Singer-songwriter Kate Bush sings "Pi" on Aerial.

Sweet and gentle and sensitive man With an obsessive nature and deep fascination for numbers And a complete infatuation with the calculation of Pi **Chorus:** Oh he love, he love, he love He does love his numbers And they run, they run, they run him In a great big circle In a circle of infinity

"a sentimental ode to a mathematician, audacious in both subject matter and treatment. The chorus is the number sung to many, many decimal places." [150 - wrong after 50] - Observer Review

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Back to the Future

2002. Kanada computed π to over **1.24 trillion decimal digits**. His team first computed π in **hex** (base 16) to **1,030,700**, **000,000** places, using good old Machin type relations:

$$\pi = 48 \tan^{-1} \frac{1}{49} + 128 \tan^{-1} \frac{1}{57} - 20 \tan^{-1} \frac{1}{239} + 48 \tan^{-1} \frac{1}{110443}$$
 (Takano, pop-song writer **1982**)

$$\pi = 176 \tan^{-1} \frac{1}{57} + 28 \tan^{-1} \frac{1}{239} - 48 \tan^{-1} \frac{1}{682} + 96 \tan^{-1} \frac{1}{12943}$$
 (Störmer, mathematician, **1896**)

The computations agreed and were converted to decimal.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Back to the Future

2002. Kanada computed π to over **1.24 trillion decimal digits**. His team first computed π in **hex** (base 16) to **1,030,700**, **000,000** places, using good old Machin type relations:

$$\pi = 48 \tan^{-1} \frac{1}{49} + 128 \tan^{-1} \frac{1}{57} - 20 \tan^{-1} \frac{1}{239} + 48 \tan^{-1} \frac{1}{110443}$$
 (Takano, pop-song writer **1982**)

$$\pi = 176 \tan^{-1} \frac{1}{57} + 28 \tan^{-1} \frac{1}{239} - 48 \tan^{-1} \frac{1}{682} + 96 \tan^{-1} \frac{1}{12943}$$
 (Störmer, mathematician, **1896**)

• The computations agreed and were converted to decimal.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Yasumasa Kanada

 \longleftrightarrow

- The decimal expansion was checked by converting it back to hex.
 - Base conversion require pretty massive computation.
- Six times as many digits as before: hex and decimal ran 600 hrs on same 64-node Hitachi at roughly 1 Tflop/sec (2002).
- 2002 hex-pi computation record broken 3 times in 2009 quite spectacularly. We will see that:

Advances in π -computation during the past decade have all involved sophisticated improvements in computational techniques and environments.

Ramanujan-type Series

Daisuke Takahashi

A **29.36 million** digit record by Bailey in **1986** had soared to **1.649 trillion** by Takahashi in **January 2009**.

- **1986. 28 hrs** on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs.
- 2009. On 1024 core Appro Xtreme-X3 system, 1.649 trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB. They differed only in last 139 places.
- April 2009. Takahashi produced 2,576,980,377,524 places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Daisuke Takahashi

A **29.36 million** digit record by Bailey in **1986** had soared to **1.649 trillion** by Takahashi in **January 2009**.

- **1986. 28** hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs.
- 2009. On 1024 core Appro Xtreme-X3 system, 1.649 trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB. They differed only in last 139 places.
- April 2009. Takahashi produced 2,576,980,377,524 places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Daisuke Takahashi

A **29.36 million** digit record by Bailey in **1986** had soared to **1.649 trillion** by Takahashi in **January 2009**.

- **1986. 28** hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs.
- 2009. On 1024 core Appro Xtreme-X3 system, 1.649 trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB. They differed only in last 139 places.
- April 2009. Takahashi produced 2,576,980,377,524 places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Daisuke Takahashi

A **29.36 million** digit record by Bailey in **1986** had soared to **1.649 trillion** by Takahashi in **January 2009**.

- **1986. 28** hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs.
- 2009. On 1024 core Appro Xtreme-X3 system, 1.649 trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB. They differed only in last 139 places.

April 2009. Takahashi produced 2,576,980,377,524 places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Daisuke Takahashi

A **29.36 million** digit record by Bailey in **1986** had soared to **1.649 trillion** by Takahashi in **January 2009**.

CARMA

- **1986. 28** hrs on 1 cpu of new CRAY-2 at NASA Ames via quartic algorithm. Confirmed with our quadratic in 40 hrs.
- 2009. On 1024 core Appro Xtreme-X3 system, 1.649 trillion digits via (BS) took 64 hrs 14 min with 6732 GB memory. The quartic method took 73 hrs 28 min with 6348 GB. They differed only in last 139 places.
- April 2009. Takahashi produced 2,576,980,377,524 places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Fabrice Bellard: What Price Certainty?

Dec. 2009. Bellard computed 2.7 trillion decimal digits of Pi.

- First in hexadecimal using the Chudnovsky series;
- He tried a complete verification computation, but it failed;
- He had used hexadecimal and so the first could be 'partially' checked using his BBP series (17) below.

This took **131 days** but he only used a single 4-core workstation with a lot of storage and even more human intelligence!

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Fabrice Bellard: What Price Certainty?

Dec. 2009. Bellard computed 2.7 trillion decimal digits of Pi.

- First in hexadecimal using the Chudnovsky series;
- He tried a complete verification computation, but it failed;
- He had used hexadecimal and so the first could be 'partially' checked using his BBP series (17) below.

This took **131 days** but he only used a single 4-core workstation with a lot of storage and even more human intelligence!

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Fabrice Bellard: What Price Certainty?

Dec. 2009. Bellard computed 2.7 trillion decimal digits of Pi.

- First in hexadecimal using the Chudnovsky series;
- He tried a complete verification computation, but it failed;
- He had used hexadecimal and so the first could be 'partially' checked using his BBP series (17) below.

This took **131 days** but he only used a single 4-core workstation with a lot of storage and even more human intelligence!

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

CARMA

Fabrice Bellard: What Price Certainty?

Dec. 2009. Bellard computed 2.7 trillion decimal digits of Pi.

- First in hexadecimal using the Chudnovsky series;
- He tried a complete verification computation, but it failed;
- He had used hexadecimal and so the first could be 'partially' checked using his BBP series (17) below.

This took **131 days** but he only used a single 4-core workstation with a lot of storage and even more human intelligence!

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shiguro Kendo and Alex Yee: What is the Limit?

 August 2010. On a home built \$18,000 machine, Kondo (hardware engineer, below) and Yee (undergrad software) nearly doubled this to 5,000,000,000,000 places. The last 30 are

7497120374 4023826421 9484283852

 The Chudnovsky-Ramanujan series took 90 days: including 64hrs BBP hex-confirmation and 8 days for base-conversion. A very fine online account is available at

www.numberworld.org/misc_runs/pi-5t/details.html

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shiguro Kendo and Alex Yee: What is the Limit?

 August 2010. On a home built \$18,000 machine, Kondo (hardware engineer, below) and Yee (undergrad software) nearly doubled this to 5,000,000,000,000 places. The last 30 are

7497120374 4023826421 9484283852

 The Chudnovsky-Ramanujan series took 90 days: including 64hrs BBP hex-confirmation and 8 days for base-conversion. A very fine online account is available at

www.numberworld.org/misc_runs/pi-5t/details.html

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shiguro Kendo and Alex Yee: What is the Limit?

 August 2010. On a home built \$18,000 machine, Kondo (hardware engineer, below) and Yee (undergrad software) nearly doubled this to 5,000,000,000,000 places. The last 30 are

7497120374 4023826421 9484283852

 The Chudnovsky-Ramanujan series took 90 days: including 64hrs BBP hex-confirmation and 8 days for base-conversion. A very fine online account is available at

www.numberworld.org/misc_runs/pi-5t/details.html

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shiguro Kendo and Alex Yee: What is the Limit?

• August **2010**. On a home built **\$18,000** machine, Kondo (hardware engineer, below) and Yee (undergrad software) nearly doubled this to **5,000,000,000,000** places. The last 30 are

7497120374 4023826421 9484283852

• The Chudnovsky-Ramanujan series took **90 days**: including **64hrs** BBP hex-confirmation and **8 days** for base-conversion.

A very fine online account is available at

www.numberworld.org/misc_runs/pi-5t/details.html

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Shiguro Kendo and Alex Yee: What is the Limit?

• August **2010**. On a home built **\$18,000** machine, Kondo (hardware engineer, below) and Yee (undergrad software) nearly doubled this to **5,000,000,000,000** places. The last 30 are

7497120374 4023826421 9484283852

The Chudnovsky-Ramanujan series took 90 days: including 64hrs BBP hex-confirmation and 8 days for base-conversion.
 A very fine online account is available at

• October **2011**. Extension to **10 trillion** places.

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Two New Pi Guys: Alex Yee and his Elephant

♠ The elephant may have provided extra memory?

25. Pi's Childhood Pi's Adolescence 44. Adulthood of Pi 49. 80. Pi in the Digital Age 114. Computing Individual Digits of π Ramanujan-type Series The ENIACalculator **Reduced Complexity Algorithms** Modern Calculation Records A Few Trillion Digits of Pi

Two New Pi Guys: Alex Yee and his Elephant

♠ The elephant may have provided extra memory?

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Two New Pi Guys:

Mario Livio (JPL) in 01-31-2013 HuffPost

These is probably no number is mathematics (with the possible comprises of e) that is more relational that the one angular to term of a calceled comparison to its dimensional processing of the Orack litter q_{12} , q_{12} , q_{12} , q_{12} , q_{12} , q_{13} ,

Figure 1. The computer used by Alexander Yee and Shipern Kundo to calculate 1t he of trillion digits (reproduced by permission/rom Alexander Yee)

J.M. Borwein Life of Pi (CARMA)

Ramanujan-type Series The ENIACalculator Reduced Complexity Algorithms Modern Calculation Records A Few Trillion Digits of Pi

Two New Pi Guys:

Mario Livio (JPL) in 01-31-2013 HuffPost

These is probably no number is mathematics (with the possible comprises of e) that is more relational that the one angular to term of a calceled comparison to its dimensional processing of the Orack litter q_{12} , q_{12} , q_{12} , q_{12} , q_{12} , q_{13} ,

Figure 1. The computer used by Alexander Yee and Shipern Kundo to calculate 1t he of trillion digits (reproduced by permission/rom Alexander Yee)

J.M. Borwein Life of Pi (CARMA)

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Computing Individual Digits of π

1971. One might think everything of interest about computing π has been discovered. This was Beckmann's view in *A History of* π

Yet, the Salamin-Brent quadratic iteration was found only five years later. Higher-order algorithms followed in the 1980s.

1990. Rabinowitz and Wagon found a 'spigot' algorithm for π : It 'drips' individual digits (of π in any desired base) using all previous digits.

But even insiders are sometimes surprised by a new discovery: in this case **BBP series**.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Computing Individual Digits of π

1971. One might think everything of interest about computing π has been discovered. This was Beckmann's view in *A History of* π

Yet, the Salamin-Brent quadratic iteration was found only five years later. Higher-order algorithms followed in the 1980s.

1990. Rabinowitz and Wagon found a 'spigot' algorithm for π : It 'drips' individual digits (of π in any desired base) using all previous digits.

But even insiders are sometimes surprised by a new discovery: in this case **BBP series**.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Computing Individual Digits of π

1971. One might think everything of interest about computing π has been discovered. This was Beckmann's view in *A History of* π

Yet, the Salamin-Brent quadratic iteration was found only five years later. Higher-order algorithms followed in the 1980s.

1990. Rabinowitz and Wagon found a 'spigot' algorithm for π : It 'drips' individual digits (of π in any desired base) using all previous digits.

But even insiders are sometimes surprised by a new discovery: in this case **BBP series**.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Computing Individual Digits of π

1971. One might think everything of interest about computing π has been discovered. This was Beckmann's view in *A History of* π

Yet, the Salamin-Brent quadratic iteration was found only five years later. Higher-order algorithms followed in the 1980s.

"ARMA

1990. Rabinowitz and Wagon found a 'spigot' algorithm for π : It 'drips' individual digits (of π in any desired base) using all previous digits.

But even insiders are sometimes surprised by a new discovery: in this case **BBP** series.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

What BBP Does?

- This is not true, at least for hex (base 16) or binary (base 2) digits of π. In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, *using no prior bits*;
 - **()** is implementable on any modern computer;
 - 2 requires no multiple precision software;
 - **3** requires very little memory; and has
 - a computational cost growing only slightly faster than the digit position.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

What BBP Does?

- This is not true, at least for hex (base 16) or binary (base 2) digits of π. In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, *using no prior bits*;
 - **()** is implementable on any modern computer;
 - Prequires no multiple precision software;
 - **3** requires very little memory; and has
 - a computational cost growing only slightly faster than the digit position.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

What BBP Does?

- **This is not true**, at least for hex (base 16) or binary (base 2) digits of π. In **1996**, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, *using no prior bits*;
 - **()** is implementable on any modern computer;
 - 2 requires no multiple precision software;
 - **3** requires very little memory; and has
 - a computational cost growing only slightly faster than the digit position.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

What BBP Does?

- **This is not true**, at least for hex (base 16) or binary (base 2) digits of π. In **1996**, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, *using no prior bits*;
 - is implementable on any modern computer;
 - Prequires no multiple precision software;
 - **3** requires very little memory; and has
 - a computational cost growing only slightly faster than the digit position.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

What BBP Does?

- **This is not true**, at least for hex (base 16) or binary (base 2) digits of π. In **1996**, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string hex or binary digits of π, beginning at an any position, *using no prior bits*;
 - 1 is implementable on any modern computer;
 - 2 requires no multiple precision software;
 - **③** requires very little memory; and has
 - a computational cost growing only slightly faster than the digit position.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$\pi = \sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
(16)

 The millionth hex digit (four millionth binary digit) of π can be found in under 30 secs on a fairly new computer in Maple (not C++) and the billionth in 10 hrs.

Equation (16) was discovered numerically using integer relation methods over months in our Vancouver lab, **CECM**. It arrived in the coded form:

$$\pi = 4 \,_2 F_1\left(1, \frac{1}{4}; \frac{5}{4}, -\frac{1}{4}\right) + 2 \tan^{-1}\left(\frac{1}{2}\right) - \log 5$$

where ${}_{2}F_{1}(1, 1/4; 5/4, -1/4) = 0.955933837...$ is a Gauss hypergeometric function.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$\pi = \sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
(16)

• The millionth hex digit (four millionth binary digit) of π can be found in under **30** secs on a fairly new computer in Maple (not C++) and the billionth in **10** hrs.

Equation (16) was discovered numerically using integer relation methods over months in our Vancouver lab, **CECM**. It arrived in the coded form:

$$\pi = 4 \,_2 F_1\left(1, \frac{1}{4}; \frac{5}{4}, -\frac{1}{4}\right) + 2 \tan^{-1}\left(\frac{1}{2}\right) - \log 5$$

where ${}_{2}F_{1}(1, 1/4; 5/4, -1/4) = 0.955933837...$ is a Gauss hypergeometric function.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$\pi = \sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
(16)

• The millionth hex digit (four millionth binary digit) of π can be found in under **30** secs on a fairly new computer in Maple (not C++) and the billionth in **10** hrs.

Equation (16) was discovered numerically using integer relation methods over months in our Vancouver lab, **CECM**. It arrived in the coded form:

$$\pi = 4_{2}F_{1}\left(1, \frac{1}{4}; \frac{5}{4}, -\frac{1}{4}\right) + 2\tan^{-1}\left(\frac{1}{2}\right) - \log 5$$

where ${}_{2}F_{1}(1, 1/4; 5/4, -1/4) = 0.955933837...$ is a Gauss hypergeometric function.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$\pi = \sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
(16)

• The millionth hex digit (four millionth binary digit) of π can be found in under **30** secs on a fairly new computer in Maple (not C++) and the billionth in **10** hrs.

Equation (16) was discovered numerically using integer relation methods over months in our Vancouver lab, **CECM**. It arrived in the coded form:

$$\pi = 4\,{}_2F_1\left(1,\frac{1}{4};\frac{5}{4},-\frac{1}{4}\right) + 2\tan^{-1}\left(\frac{1}{2}\right) - \log 5$$

where $_2F_1(1,1/4;5/4,-1/4)=0.955933837\ldots$ is a Gauss hypergeometric function.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Edge of Computation Prize Finalist

- BBP was the only mathematical finalist (of about 40) for the first **Edge of Computation Science Prize**
 - Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...
- Won by David Deutsch discoverer of Quantum Computing.

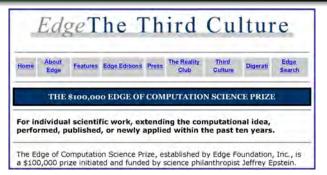
BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Edge of Computation Prize Finalist

- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize
 - Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...
- Won by David Deutsch discoverer of Quantum Computing.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Edge of Computation Prize Finalist



- BBP was the only mathematical finalist (of about 40) for the first **Edge of Computation Science Prize**
 - Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...

• Won by David Deutsch — discoverer of Quantum Computing.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Edge of Computation Prize Finalist

- BBP was the only mathematical finalist (of about 40) for the first **Edge of Computation Science Prize**
 - Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...
- Won by David Deutsch discoverer of Quantum Computing.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

CARMA

BBP Formula Database http://carma.newcastle.edu.au/bbp • sm

1atthew Tam has built an interactive website.**1** It includes most known BBP formulas.

It allows digit computation, is searchable,

Below are the results obtained using the interactive calculator.

CO	() logating - children ()			\$ 0
			U.	
		Submit at	2011-01-07 13:13:00 EST	
BBP-type Formula	$\frac{1}{4}P(1, 16, 8, (8, 8, 4, 0, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2$	Please enter à dig	git to calculate: 10000	Calculate
Extended Formula	$\frac{1}{4}\sum_{k=0}^{\infty}\frac{1}{16^4}\left(\frac{8}{8k+1}\pm\frac{8}{8k+2}\pm\frac{8}{8k+2}\right)$	Digits are [68AC8FCFB80]		
Reference	BBP-type Formula paper 3	Calculated in 1.033 seconds.		
Preef	Formal proof			
PSLQ Cherk	Formala verified			
Submit by	juborwein			
Submit at	2011-01-07 13:13:00 EST		/	
leane entres à disp	it to calculate: (10000	Canada		
Digits are (oit Ad	CAPCEBRO			
Calculated in 1.4				
Calculated in 1.5	10.0 seconds.			
		J.M. Borw	ein Life of Pi (C	

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

CARMA

BBP Formula Database http://carma.newcastle.edu.au/bbp 🕞

Matthew Tam has built an interactive website.

- It includes most known BBP formulas.
- It allows digit computation, is searchable,

Below are the results obtained using the interactive calculator.

	Discalment			0	0 4
			JL*		
		Submit at	2011-01-07 13:13:00 EST		
BRP-type Formula	$\frac{1}{4}P(1, 16, 8, (8, 8, 4, 0, -2, -2,$	Please enter a digit to calculate: 10000 Catoutate			
Extension Formula	$\frac{1}{4}\sum_{k=0}^{\infty}\frac{1}{16^4}\left(\frac{8}{8k+1}\pm\frac{8}{8k+2}+\right.$	Digits are [68AC8FCFB80]			
Reference	BBP-type Formula paper 3	Calculated in 1.033 seconds.			
Preef	Formal proof	Cardiaco in 1.052 Section.			
SLQCheck	Formula verified				
Submit by	jaborwein				
Submit at	2011-01-07 13:13:00 EST		· · · · · · · · · · · · · · · · · · ·		
isé etter à digit	to culculate: (10000	Canades			
igin are (oRAC	AFCFB80				-
	33 scoulds.				

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

CARMA

BBP Formula Database http://carma.newcastle.edu.au/bbp • skip

Matthew Tam has built an interactive website.

- 1 It includes most known BBP formulas.
- 2 It allows digit computation, is searchable,

Below are theurs data blesiand in more calculator.

	() issued to the set				10 ×
		1	U.		-
		Submit at	2011-01-07 13:13:00 EST		
BRP-type Formula	$\frac{1}{4}P(1, 16, 8, (8, 8, 4, 0, -2, -2,$	Please enter a digit to calculate: 10000 Calculate			
Extended Formula	$\frac{1}{4}\sum_{k=0}^{\infty}\frac{1}{16^4}\left(\frac{8}{8k+1}\pm\frac{8}{8k+2}\pm\frac{8}{8$	Digits are [68AC8FCFB80]			
Reference	BBP-type Formula paper 3	Calculated in 1.033 seconds.			
Preef	Formal proof	Concentration of 1992 Second			
SLQ Cherk	Formatia verifical				
Submit by	juborwein				
Submit at	2011-01-07 13:13:00 EST		/		
une enter à digi	i lo culculate: (10000	Canada			
Ngita are (NRAC	RECEBBRI				-
	03 scomb.				

Mathematical Interlude: III. (Maple, Mathematica and Human)

Proof of (16). For 0 < k < 8,

$$\int_0^{1/\sqrt{2}} \frac{x^{k-1}}{1-x^8} \, dx \quad = \quad \int_0^{1/\sqrt{2}} \sum_{i=0}^\infty x^{k-1+8i} \, dx = \frac{1}{2^{k/2}} \sum_{i=0}^\infty \frac{1}{16^i(8i+k)}.$$

Thus, one can write

$$\sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
$$= \int_0^{1/\sqrt{2}} \frac{4\sqrt{2} - 8x^3 - 4\sqrt{2}x^4 - 8x^5}{1 - x^8} \, dx,$$

which on substituting $y := \sqrt{2}x$ becomes

$$\int_0^1 \frac{16y - 16}{y^4 - 2y^3 + 4y - 4} \, dy = \int_0^1 \frac{4y}{y^2 - 2} \, dy - \int_0^1 \frac{4y - 8}{y^2 - 2y + 2} \, dy = \pi.$$

 25. Pi's Childhood
 BBP Digit Algorithms

 44. Pi's Adolescence
 Mathematical Interlude, III

 49. Adulthood of Pi
 Hexadecimal Digits

 80. Pi in the Digital Age
 BBP Formulas Explained

 114. Computing Individual Digits of π BBP for Pi squared — in base 2 and base 3

Mathematical Interlude: III. (Maple, Mathematica and Human)

Proof of (16). For 0 < k < 8,

$$\int_0^{1/\sqrt{2}} \frac{x^{k-1}}{1-x^8} \, dx \quad = \quad \int_0^{1/\sqrt{2}} \sum_{i=0}^\infty x^{k-1+8i} \, dx = \frac{1}{2^{k/2}} \sum_{i=0}^\infty \frac{1}{16^i(8i+k)}.$$

Thus, one can write

$$\sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
$$= \int_0^{1/\sqrt{2}} \frac{4\sqrt{2} - 8x^3 - 4\sqrt{2}x^4 - 8x^5}{1 - x^8} \, dx,$$

which on substituting $y := \sqrt{2}x$ becomes

$$\int_0^1 \frac{16y - 16}{y^4 - 2y^3 + 4y - 4} \, dy = \int_0^1 \frac{4y}{y^2 - 2} \, dy - \int_0^1 \frac{4y - 8}{y^2 - 2y + 2} \, dy = \pi.$$

 25. Pi's Childhood
 BBP Digit Algorithms

 44. Pi's Adolescence
 Mathematical Interlude, III

 49. Adulthood of Pi
 Hexadecimal Digits

 80. Pi in the Digital Age
 BBP Formulas Explained

 114. Computing Individual Digits of π BBP for Pi squared — in base 2 and base 3

Mathematical Interlude: III. (Maple, Mathematica and Human)

Proof of (16). For 0 < k < 8,

$$\int_0^{1/\sqrt{2}} \frac{x^{k-1}}{1-x^8} \, dx \quad = \quad \int_0^{1/\sqrt{2}} \sum_{i=0}^\infty x^{k-1+8i} \, dx = \frac{1}{2^{k/2}} \sum_{i=0}^\infty \frac{1}{16^i(8i+k)}.$$

Thus, one can write

$$\sum_{i=0}^{\infty} \frac{1}{16^i} \left(\frac{4}{8i+1} - \frac{2}{8i+4} - \frac{1}{8i+5} - \frac{1}{8i+6} \right)$$
$$= \int_0^{1/\sqrt{2}} \frac{4\sqrt{2} - 8x^3 - 4\sqrt{2}x^4 - 8x^5}{1 - x^8} \, dx,$$

which on substituting $y := \sqrt{2}x$ becomes

$$\int_0^1 \frac{16\,y - 16}{y^4 - 2\,y^3 + 4\,y - 4}\,dy = \int_0^1 \frac{4y}{y^2 - 2}\,dy - \int_0^1 \frac{4y - 8}{y^2 - 2y + 2}\,dy = \pi.$$

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Tuning BBP Computation

- **1997**. Fabrice Bellard of INRIA computed 152 bits of π starting at the trillionth position;
- in 12 days on 20 workstations working in parallel over the Internet.

Bellard used the following variant of (16):

$$\pi = 4\sum_{k=0}^{\infty} \frac{(-1)^k}{4^k(2k+1)} - \frac{1}{64}\sum_{k=0}^{\infty} \frac{(-1)^k}{1024^k} \left(\frac{32}{4k+1} + \frac{8}{4k+2} + \frac{1}{4k+3}\right) (17)$$

This frequently-used formula is a little faster than (16).

Colin Percival **(L)** and Fabrice Bellard **(R**)

J.M. Borwein

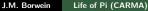
Life of Pi (CARMA)

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Tuning BBP Computation

- **1997**. Fabrice Bellard of INRIA computed 152 bits of π starting at the trillionth position;
- in 12 days on 20 workstations working in parallel over the Internet.

Bellard used the following variant of (16):


$$\pi = 4\sum_{k=0}^{\infty} \frac{(-1)^k}{4^k(2k+1)} - \frac{1}{64}\sum_{k=0}^{\infty} \frac{(-1)^k}{1024^k} \left(\frac{32}{4k+1} + \frac{8}{4k+2} + \frac{1}{4k+3}\right)$$
(17)

This frequently-used formula is a little faster than (16).

Colin Percival (L) and Fabrice Bellard (R)

Hexadecimal Digits

1998. Colin Percival, a 17-year-old at Simon Fraser, found the five trillionth and ten trillionth hex digits on 25 machines.2000. He then found the quadrillionth binary digit is 0.

- He used 250 CPU-years, on 1734 machines in 56 countries.
- The largest calculation ever done before Toy Story Two.

Position	Hex Digits
10^{6}	26C65E52CB4593
10^{7}	17AF5863EFED8D
10^{8}	ECB840E21926EC
10 ⁹	85895585A0428B
10^{10}	921C73C6838FB2
10^{11}	9C381872D27596
1.25×10^{12}	07E45733CC790B
2.5×10^{14}	E6216B069CB6C1

Hexadecimal Digits

1998. Colin Percival, a 17-year-old at Simon Fraser, found the five trillionth and ten trillionth hex digits on 25 machines.2000. He then found the quadrillionth binary digit is 0.

- He used 250 CPU-years, on 1734 machines in 56 countries.
- The largest calculation ever done before **Toy Story Two**.

Position	Hex Digits
10^{6}	26C65E52CB4593
10^{7}	17AF5863EFED8D
10^{8}	ECB840E21926EC
10 ⁹	85895585A0428B
10^{10}	921C73C6838FB2
10^{11}	9C381872D27596
1.25×10^{12}	07E45733CC790B
2.5×10^{14}	E6216B069CB6C1

Hexadecimal Digits

1998. Colin Percival, a 17-year-old at Simon Fraser, found the five trillionth and ten trillionth hex digits on 25 machines.2000. He then found the quadrillionth binary digit is 0.

- He used 250 CPU-years, on 1734 machines in 56 countries.
- The largest calculation ever done before Toy Story Two.

Position	Hex Digits	
10^{6}	26C65E52CB4593	
10^{7}	17AF5863EFED8D	
10^{8}	ECB840E21926EC	
10^9	85895585A0428B	
10^{10}	921C73C6838FB2	
10^{11}	9C381872D27596	
1.25×10^{12}	07E45733CC790B	
2.5×10^{14}	E6216B069CB6C1	

CARMA

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

MA

Everything **Doubles** Eventually

July 2010. Tsz-Wo Sz of Yahoo!/Cloud computing found the two quadrillionth bit. The computation took 23 real days and 503 CPU years; and involved as many as 4000 machines.

Abstract

We present a new record on computing specific bits of π , the mathematical constant, and discuss performing such computations on Apache Hadoop clusters. The new record represented in hexadecimal is 0 E6C1294A ED40403F 56D2D764 026265BC A98511D0 FCFFAA10 F4D28B1B B5392B8

which has **256 bits** ending at the $2,000,000,000,000,000,252^{th}$ bit position. The position of the first bit is 1,999,999,999,999,997 and the value of the two quadrillionth bit is 0.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

MA

Everything **Doubles** Eventually

July 2010. Tsz-Wo Sz of Yahoo!/Cloud computing found the two quadrillionth bit. The computation took 23 real days and 503 CPU years; and involved as many as 4000 machines.

Abstract

We present a new record on computing specific bits of π , the mathematical constant, and discuss performing such computations on Apache Hadoop clusters. The new record represented in hexadecimal is 0 E6C1294A ED40403F 56D2D764 026265BC A98511D0 FCFFAA10 F4D28B1B B5392B8

which has **256 bits** ending at the $2,000,000,000,000,000,252^{th}$ bit position. The position of the first bit is 1,999,999,999,999,997 and the value of the two quadrillionth bit is 0.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Everything **Doubles** Eventually

... Twice

August 27, 2012 Ed Karrel found 25 hex digits of π starting after the 10^{15} position

- They are 353CB3F7F0C9ACCFA9AA215F2
- Using **BBP** on *CUDA* (too 'hard' for Blue Gene)
- All processing done on four NVIDIA GTX 690 graphics cards (GPUs) installed in CUDA. Yahoo's run took 23 days; this took 37 days.

```
See www.karrels.org/pi/,
```

```
http://en.wikipedia.org/wiki/CUDA
```


BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Everything **Doubles** Eventually

... Twice

August 27, 2012 Ed Karrel found 25 hex digits of π starting after the 10^{15} position

- They are 353CB3F7F0C9ACCFA9AA215F2
- Using **BBP** on *CUDA* (too 'hard' for Blue Gene)
- All processing done on four NVIDIA GTX 690 graphics cards (GPUs) installed in CUDA. Yahoo's run took 23 days; this took 37 days.

```
See www.karrels.org/pi/,
```

```
http://en.wikipedia.org/wiki/CUDA
```


BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Everything **Doubles** Eventually

... Twice

August 27, 2012 Ed Karrel found 25 hex digits of π starting after the 10^{15} position

- They are 353CB3F7F0C9ACCFA9AA215F2
- Using **BBP** on *CUDA* (too 'hard' for Blue Gene)
- All processing done on four NVIDIA GTX 690 graphics cards (GPUs) installed in CUDA. Yahoo's run took 23 days; this took 37 days.

```
See www.karrels.org/pi/,
```

```
http://en.wikipedia.org/wiki/CUDA
```


BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

BBP Formulas Explained

Base-b BBP numbers are constants of the form

$$\alpha = \sum_{k=0}^{\infty} \frac{p(k)}{q(k)b^k},$$
(18)

where p(k) and q(k) are integer polynomials and $b=2,3,\ldots$

• I illustrate why this works in binary for $\log 2$. We start with:

$$\log 2 = \sum_{k=0}^{\infty} \frac{1}{k2^k} \tag{19}$$

as discovered by Euler.

- We wish to compute digits *beginning* at position d + 1.
- Equivalently, we need $\{2^d \log 2\}$ ($\{\cdot\}$ is the fractional part).

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

BBP Formulas Explained

Base-b BBP numbers are constants of the form

$$\alpha = \sum_{k=0}^{\infty} \frac{p(k)}{q(k)b^k},$$
(18)

where p(k) and q(k) are integer polynomials and $b=2,3,\ldots$

• I illustrate why this works in binary for $\log 2$. We start with:

$$\log 2 = \sum_{k=0}^{\infty} \frac{1}{k2^k}$$
(19)

as discovered by Euler.

- We wish to compute digits *beginning* at position d + 1.
- Equivalently, we need $\{2^d \log 2\}$ ($\{\cdot\}$ is the fractional part).

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

BBP Formulas Explained

Base-b BBP numbers are constants of the form

$$\alpha = \sum_{k=0}^{\infty} \frac{p(k)}{q(k)b^k},$$
(18)

where p(k) and q(k) are integer polynomials and $b=2,3,\ldots$

• I illustrate why this works in binary for $\log 2$. We start with:

$$\log 2 = \sum_{k=0}^{\infty} \frac{1}{k2^k}$$
(19)

as discovered by Euler.

- We wish to compute digits *beginning* at position d + 1.
- Equivalently, we need $\{2^d \log 2\}$ ($\{\cdot\}$ is the fractional part).

BBP Formula for $\log 2$

We can write

$$\{2^{d}\log 2\} = \left\{ \left\{ \sum_{k=0}^{d} \frac{2^{d-k}}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\} \right\}$$
$$= \left\{ \left\{ \sum_{k=0}^{d} \frac{2^{d-k} \mod k}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\} \right\}.$$
(20)

• The key: the numerator in (20), $2^{d-k} \mod k$, can be found rapidly by binary exponentiation, performed modulo k. So,

 $3^{17} = ((((3^2)^2)^2) \cdot 3$

uses only **5** multiplications, not the usual **16**. Moreover, $3^{17} \mod 10$ is done as $3^2 = 9; 9^2 = 1; 1^2 = 1; 1^2 = 1; 1 \times 3 = 3$

25. Pi's Childhood **BBP Digit Algorithms** 44. Pi's Adolescence Adulthood of Pi **Hexadecimal Digits** 80. Pi in the Digital Age 114. Computing Individual Digits of π

Mathematical Interlude, III **BBP** Formulas Explained BBP for Pi squared — in base 2 and base 3

BBP Formula for $\log 2$

We can write

$$\{2^{d}\log 2\} = \left\{ \left\{ \sum_{k=0}^{d} \frac{2^{d-k}}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\} \right\}$$
$$= \left\{ \left\{ \sum_{k=0}^{d} \frac{2^{d-k} \mod k}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\} \right\}.$$
(20)

• The key: the numerator in (20), $2^{d-k} \mod k$, can be found rapidly by binary exponentiation, performed modulo k. So,

 $3^{17} = ((((3^2)^2)^2)^2) \cdot 3$

uses only 5 multiplications, not the usual 16. Moreover, 3^{17} mod 10 is done as $3^2 = 9$; $9^2 = 1$; $1^2 = 1$; $1^2 = 1$; $1 \times 3 = 3$

BBP Formula for $\log 2$

We can write

$$\{2^{d}\log 2\} = \left\{ \left\{ \sum_{k=0}^{d} \frac{2^{d-k}}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\} \right\}$$
$$= \left\{ \left\{ \sum_{k=0}^{d} \frac{2^{d-k} \mod k}{k} \right\} + \left\{ \sum_{k=d+1}^{\infty} \frac{2^{d-k}}{k} \right\} \right\}.$$
(20)

• The key: the numerator in (20), $2^{d-k} \mod k$, can be found rapidly by binary exponentiation, performed modulo k. So,

 $3^{17} = ((((3^2)^2)^2)^2) \cdot 3$

uses only **5** multiplications, not the usual **16**. Moreover, $3^{17} \mod 10$ is done as $3^2 = 9$; $9^2 = 1$; $1^2 = 1$; $1^2 = 1$; $1 \times 3 = 3$ CARMA>

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Catalan's Constant G: and BBP for G in Binary

The simplest number not proven irrational is

$$G := 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots, \quad \frac{\pi^2}{12} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

2009. G is calculated to 31.026 billion digits. Records often use:

$$G = \frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2n}{n} (2n+1)^2} + \frac{\pi}{8} \log(2+\sqrt{3}) \text{ (Ramanujan)}$$
(21)
- holds since $G = -T(\frac{\pi}{4}) = -\frac{3}{2}T(\frac{\pi}{12})$ where $T(\theta) := \int_0^{\theta} \log \tan \sigma d\sigma.$

- An **18** term binary BBP formula for G = 0.9159655941772190...

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Catalan's Constant G: and BBP for G in Binary

The simplest number not proven irrational is

$$G := 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots, \quad \frac{\pi^2}{12} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

2009. G is calculated to **31.026** billion digits. Records often use:

$$G = \frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2n}{n} (2n+1)^2} + \frac{\pi}{8} \log(2+\sqrt{3}) \text{ (Ramanujan)}$$
(21)
- holds since $G = -T(\frac{\pi}{4}) = -\frac{3}{2}T(\frac{\pi}{12})$ where $T(\theta) := \int_0^{\theta} \log \tan \sigma d\sigma$.

- An **18** term binary BBP formula for G = 0.9159655941772190...

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Catalan's Constant G: and BBP for G in Binary

The simplest number not proven irrational is

$$G := 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots, \quad \frac{\pi^2}{12} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

2009. G is calculated to **31.026** billion digits. Records often use:

$$G = \frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2n}{n}(2n+1)^2} + \frac{\pi}{8} \log(2+\sqrt{3}) \text{ (Ramanujan)}$$
(21)
- holds since $G = -T(\frac{\pi}{4}) = -\frac{3}{2}T(\frac{\pi}{12})$ where $T(\theta) := \int_0^{\theta} \log \tan \sigma d\sigma$.

- An **18** term binary BBP formula for G = 0.9159655941772190...

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Catalan's Constant G: and BBP for G in Binary

The simplest number not proven irrational is

$$G := 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots, \quad \frac{\pi^2}{12} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

2009. G is calculated to **31.026** billion digits. Records often use:

$$G = \frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2n}{n}(2n+1)^2} + \frac{\pi}{8} \log(2+\sqrt{3}) \text{ (Ramanujan)}$$
(21)
- holds since $G = -T(\frac{\pi}{4}) = -\frac{3}{2}T(\frac{\pi}{12})$ where $T(\theta) := \int_0^{\theta} \log \tan \sigma d\sigma.$

- An **18** term binary BBP formula for G = 0.9159655941772190...1

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Catalan's Constant G: and BBP for G in Binary

The simplest number not proven irrational is

$$G := 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots, \quad \frac{\pi^2}{12} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

2009. G is calculated to **31.026** billion digits. Records often use:

$$G = \frac{3}{8} \sum_{n=0}^{\infty} \frac{1}{\binom{2n}{n} (2n+1)^2} + \frac{\pi}{8} \log(2+\sqrt{3}) \text{ (Ramanujan)}$$
(21)
- holds since $G = -T(\frac{\pi}{4}) = -\frac{3}{2}T(\frac{\pi}{12})$ where $T(\theta) := \int_0^{\theta} \log \tan \sigma d\sigma$.

An 18 term binary BBP formula for G = 0.9159655941772190... is

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

A Better Formula for G

A 16 term formula in concise BBP notation is:

$$G = P(2, 4096, 24, \vec{v})$$
 where
 $\vec{v} := (6144, 6144, 6144, 0, 1536)$

$$\vec{v} := (6144, -6144, -6144, 0, -1536, -3072, -768, 0, -768, -384, 192, 0, -96, 96, 96, 0, 24, 48, 12, 0, 12, 6, -3, 0)$$

It takes almost exactly 8/9th the time of 18 term formula for G.

- This makes for a very cool calculation
- Since we can not prove G is irrational, Who can say what might turn up?

What About Base Ten?

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

• The first integer logarithm with no known binary BBP formula is $\log 23$ (since $23 \times 89 = 2^{10} - 1$).

Searches conducted by numerous researchers for base-ten formulas have been unfruitful. Indeed:

2004. D. Borwein (my father), W. Gallway and I showed there are no BBP formulas of the *Machin-type* of (16) for π if base is not a power of **two**.

What About Base Ten?

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

• The first integer logarithm with no known binary BBP formula is $\log 23$ (since $23 \times 89 = 2^{10} - 1$).

Searches conducted by numerous researchers for base-ten formulas have been unfruitful. Indeed:

2004. D. Borwein (my father), W. Gallway and I showed there are no BBP formulas of the *Machin-type* of (16) for π if base is not a power of **two**.

What About Base Ten?

• The first integer logarithm with no known binary BBP formula is $\log 23$ (since $23 \times 89 = 2^{10} - 1$).

BBP Digit Algorithms Mathematical Interlude, III

BBP Formulas Explained

BBP for Pi squared — in base 2 and base 3

Hexadecimal Digits

Searches conducted by numerous researchers for base-ten formulas have been unfruitful. Indeed:

2004. D. Borwein (my father), W. Gallway and I showed there are no BBP formulas of the *Machin-type* of (16) for π if base is not a power of **two**.

What About Base Ten?

• The first integer logarithm with no known binary BBP formula is $\log 23$ (since $23 \times 89 = 2^{10} - 1$).

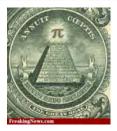
BBP Digit Algorithms Mathematical Interlude, III

BBP Formulas Explained

BBP for Pi squared — in base 2 and base 3

Hexadecimal Digits

Searches conducted by numerous researchers for base-ten formulas have been unfruitful. Indeed:


2004. D. Borwein (my father), W. Gallway and I showed there are no BBP formulas of the *Machin-type* of (16) for π if base is not a power of **two**.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Pi Photo-shopped: a 2010 PiDay Contest

"Noli Credere Pictis"

J.M. Borwein Life of Pi (CARMA)

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

π^2 in Binary and Ternary

Thanks to Dave Broadhurst, a ternary BBP formula exists for π^2 (unlike π): $\pi^2 = \frac{2}{27} \sum_{k=1}^{\infty} \frac{1}{3^{6k}} \times \left\{ \frac{243}{(12k+1)^2} - \frac{405}{(12k+2)^2} - \frac{81}{(12k+4)^2} \right\}$

$$\times \begin{cases} \frac{243}{(12k+1)^2} - \frac{405}{(12k+2)^2} - \frac{81}{(12k+4)^2} \\ - \frac{27}{(12k+5)^2} - \frac{72}{(12k+6)^2} - \frac{9}{(12k+7)^2} \\ - \frac{9}{(12k+8)^2} - \frac{5}{(12k+10)^2} + \frac{1}{(12k+11)^2} \end{cases}$$

CARMA

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

CARMA

π^2 in Binary and Ternary

Thanks to Dave Broadhurst, a ternary BBP formula exists for π^2 (unlike π):

$$\pi^{2} = \frac{2}{27} \sum_{k=0}^{\infty} \frac{1}{3^{6k}} \times \left\{ \frac{243}{(12k+1)^{2}} - \frac{405}{(12k+2)^{2}} - \frac{81}{(12k+4)^{2}} - \frac{27}{(12k+5)^{2}} - \frac{72}{(12k+6)^{2}} - \frac{9}{(12k+7)^{2}} - \frac{9}{(12k+7)^{2}} - \frac{9}{(12k+8)^{2}} - \frac{5}{(12k+10)^{2}} + \frac{1}{(12k+11)^{2}} \right\}$$

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

A Partner Binary BBP Formula for π^2

$$\pi^2 = \frac{9}{8} \sum_{k=0}^{\infty} \frac{1}{2^{6k}} \left\{ \frac{16}{(6k+1)^2} - \frac{24}{(6k+2)^2} - \frac{8}{(6k+3)^2} - \frac{6}{(6k+4)^2} + \frac{1}{(6k+5)^2} \right\}$$

• We do not fully understand why π^2 allows BBP formulas in two distinct bases.

CARMA

- $4\pi^2$ is the area of a sphere in three-space (L).
- $\frac{1}{2}\pi^2$ is the volume inside a sphere in four-space (R).
 - So in binary we are computing these fundamental physical constants.

A Partner Binary BBP Formula for π^2

$$\pi^2 = \frac{9}{8} \sum_{k=0}^{\infty} \frac{1}{2^{6k}} \left\{ \frac{16}{(6k+1)^2} - \frac{24}{(6k+2)^2} - \frac{8}{(6k+3)^2} - \frac{6}{(6k+4)^2} + \frac{1}{(6k+5)^2} \right\}$$

• We do not fully understand why π^2 allows BBP formulas in two distinct bases.

CARMA

• $4\pi^2$ is the area of a sphere in three-space (L).

• $\frac{1}{2}\pi^2$ is the volume inside a sphere in four-space (R).

- So in binary we are computing these fundamental physical constants.

A Partner Binary BBP Formula for π^2

$$\pi^2 = \frac{9}{8} \sum_{k=0}^{\infty} \frac{1}{2^{6k}} \left\{ \frac{16}{(6k+1)^2} - \frac{24}{(6k+2)^2} - \frac{8}{(6k+3)^2} - \frac{6}{(6k+4)^2} + \frac{1}{(6k+5)^2} \right\}$$

• We do not fully understand why π^2 allows BBP formulas in two distinct bases.

- $4\pi^2$ is the area of a sphere in three-space (L).
- $\frac{1}{2}\pi^2$ is the volume inside a sphere in four-space (R).
 - So in binary we are computing these fundamental physical constants.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

IBM's New Record Results

IBM® SYSTEM BLUE GENE®/P SOLUTION Expanding the limits of breakthrough science

Algorithm (What We Did)

Dave Bailey, Andrew Mattingly (L) and Glenn Wightwick (R) of IBM Australia, and I, have obtained and (nearly) confirmed:

- **()** 106 digits of π^2 base 2 at the ten trillionth place base 64
- **Q** 94 digits of π^2 base 3 at the ten trillionth place base 729

● 150 digits of G base 2 at the ten trillionth place base 4096 on a 4-rack BlueGene/P system at IBM's Benchmarking Centre in

Rochester, Minn, USA.

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1381 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated *π* nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in 2012.
- August 2013, Notices of the AMS

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1381 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated *π* nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in **2012**.
- August 2013, Notices of the AMS

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1381 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated *π* nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in 2012.
- August 2013, Notices of the AMS

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1381 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated *π* nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in **2012**.
- August 2013, Notices of the AMS

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1381 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated π nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in **2012**.
- August 2013, Notices of the AMS

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1381 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated *π* nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in **2012**.
- August 2013, Notices of the AMS

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1381 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated π nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in 2012.
- August 2013, Notices of the AMS

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1381 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated *π* nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in 2012.
- August 2013, Notices of the AMS

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

The 3 Records Use Over 1380 CPU Years (135 rack days)

An enormous amount of delicate computation: **1380 years** is a long time. Suppose a spanking new IBM single-core PC went back **1381 years**.

- It would find itself in 632 CE.
- The year that Mohammed died, and the Caliphate was established. If it then calculated π nonstop:
 - Through the Crusades, black plague, Moguls, Renaissance, discovery of America, Gutenberg, Reformation, invention of steam, Napoleon, electricity, WW2, the transistor, fiber optics,...
- With no breaks or break-downs:
- It would have finished in 2012.
- August 2013, *Notices of the AMS*

IBM's New Results: π^2 base 2

Algorithm (10 trillionth digits of π^2 in base 64 — in **230** years)

- The calculation took, on average, **253529** seconds per thread. It was broken into 7 "partitions" of **2048** threads each. For a total of $7 \cdot 2048 \cdot 253529 = 3.6 \cdot 10^9$ CPU seconds.
- On a single Blue Gene/P CPU it would take 115 years!

Each rack of BG/P contains 4096 threads (or cores). Thus, we used $\frac{7\cdot2048\cdot253529}{4096\cdot60\cdot60\cdot24}=10.3$ "rack days".

• The verification run took the same time (within a few minutes): **106 base 2 digits** are in agreement.

base-8 digits = 75|60114505303236475724500005743262754530363052416350634|573227604 60114505303236475724500005743262754530363052416350634|22021056612

IBM's New Results: π^2 base 3

Algorithm (10 trillionth digits of π^2 in base 729 — in **414** years)

- The calculation took, on average, **795773** seconds per thread. It was broken into 4 "partitions" of **2048** threads each. For a total of $4 \cdot 2048 \cdot 795773 = 6.5 \cdot 10^9$ CPU seconds.
- On a single Blue Gene/P CPU it would take 207 years!

Each rack of BG/P contains 4096 threads (or cores). Thus, we used $\frac{4\cdot2048\cdot795773}{4096\cdot60\cdot60\cdot24}=18.4$ "rack days".

• The verification run took the same time (within a few minutes): **94 base 3 digits** are in agreement.

base-9 digits = 001|12264485064548583177111135210162856048323453468|10565567|635862 12264485064548583177111135210162856048323453468|04744867|134524345

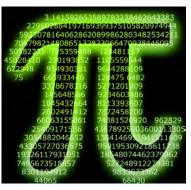
BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

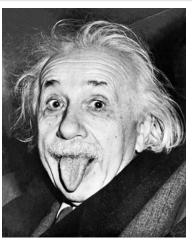
IBM's New Results: G base 2

Algorithm (10 trillionth digits of G in base **4096** — in **735** years)

- The calculation took, on average, **707857** seconds per thread. It was broken into 8 "partitions" of **2048** threads each. For a total of $8 \cdot 2048 \cdot 707857 = 1.2 \cdot 10^{10}$ CPU seconds.
- On a single Blue Gene/P CPU it would take 368 years!

Each rack of BG/P contains 4096 threads (or cores). Thus, we used $\frac{8\cdot2048\cdot707857}{4096\cdot60\cdot60\cdot24}=32.8$ "rack days".


• The verification run will take the same time (within a few minutes): xxx base 2 digits will be in agreement.


base-8 digits = 0176|347050537747770511226133716201252573272173245226000177545727

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

Thank You, One and All, and Happy Birthday, Albert

Albert Einstein 3.14.1879 – 18.04.1955

J.M. Borwein

Life of Pi (CARMA)

BBP Digit Algorithms Mathematical Interlude, III Hexadecimal Digits BBP Formulas Explained BBP for Pi squared — in base 2 and base 3

139. Links and References

- The Pi Digit site: http://carma.newcastle.edu.au/bbp
- 2 Dave Bailey's Pi Resources: http://crd.lbl.gov/~dhbailey/pi/
- 3 The Life of Pi: http://carma.newcastle.edu.au/jon/pi-2010.pdf.
- Experimental Mathematics: http://www.experimentalmath.info/.
- 5 Dr Pi's brief Bio: http://carma.newcastle.edu.au/jon/bio_short.html.
- D.H. Bailey and J.M. Borwein, "On Pi Day 2014, Pi's normality is still in question." American Mathematical Monthly, 121 March (2014), 191–204 (and Huffington Post 3.14.14 Blog)
- D.H. Bailey, and J.M. Borwein, Mathematics by Experiment: Plausible Reasoning in the 21st Century, AK Peters Ltd, 2003, ISBN: 1-56881-136-5. See http://www.experimentalmath.info/
- J.M. Borwein, "Pi: from Archimedes to ENIAC and beyond," in *Mathematics and Culture*, Einaudi, 2006. Updated 2012: http://carma.newcastle.edu.au/jon/pi-2012.pdf.
- J.M. & P.B. Borwein, and D.A. Bailey, "Ramanujan, modular equations and pi or how to compute a billion digits of pi," MAA Monthly, 96 (1989), 201–219. Reprinted in Organic Mathematics, www.cecm.sfu.ca/organics, 1996, CMS/AMS Conference Proceedings, 20 (1997), ISSN: 0731-1036.
- J.M. Borwein and P.B. Borwein, "Ramanujan and Pi," Scientific American, February 1988, 112–117. Also pp. 187-199 of Ramanujan: Essays and Surveys, Bruce C. Berndt and Robert A. Rankin Eds., AMS-LMS History of Mathematics, vol. 22, 2001.
- (6) Jonathan M. Borwein and Peter B. Borwein, Selected Writings on Experimental and Computational Mathematics, PsiPress. October 2010.⁴
 - L. Berggren, J.M. Borwein and P.B. Borwein, *Pi: a Source Book*, Springer-Verlag, (1997), (2000), (2004).