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MY INTENTIONS IN THIS TALK

Most significant results or constructions in

non-smooth analysis rely on exposing and re-

ally understanding underlying objects.

Usually these objects

are

• convex or

• differentiable

or both

          Insight taking place  

X As an illustration, in Rn

Theorem 1 (BFKL, 2001) Every “reason-

able” connected set with zero interior to

its domain is exactly the range of the

gradient of a continuously differentiable

bump function, i.e., with compact sup-

port.∗
∗Online slides are a superset of this talk
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After a topological detour, I shall illustrate
this in five ways:

1. Smooth variational principles and bumps

2. Bumps and generalized gradients

3. Derivatives and best approximations to
sets

4. Non-differentiable mean value theorems
and convex sandwich theorems

5. Convex functions and the Banach spaces
they populate

• Full references will be found in

J.M. Borwein and Qiji (Jim) Zhu, Tech-
niques of Variational Analysis CMS-
Springer Books, in Press, 2004.
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Michael Faraday

The most prominent requisite to a lec-

turer, though perhaps not really the most

important, is a good delivery; for though

to all true philosophers science and na-

ture will have charms innumerably in every

dress, yet I am sorry to say that the gen-

erality of mankind cannot accompany us

one short hour unless the path is strewed

with flowers.
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

• So I offer nano-flowers and nourishing tubers
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Franciscus Vieta

(1540-1603)

Arithmetic is absolutely as much science as
geometry [is]. Rational magnitudes are con-
veniently designated by rational numbers, and
irrational magnitudes by irrational [numbers].
If someone measures magnitudes with num-
bers and by his calculation get them different
from what they really are, it is not the reck-
oning’s fault but the reckoner’s.

Rather, says Proclus, ARITHMETIC IS
MORE EXACT THAN GEOMETRY. To
an accurate calculator, if the diameter is set
to one unit, the circumference of the inscribed
dodecagon will be the side of the binomial
[i.e. square root of the difference] 72−√3888.

Whosoever declares any other result, will be
mistaken, either the geometer in his measure-
ments or the calculator in his numbers.
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SOME TOPOLOGY

• The acronym usco (cusco) denotes a (convex-
valued) upper semicontinuous non-empty
compact-valued multifunction (set-valued
function).

• These are fundamental because they de-
scribe common features of maximal mono-
tone operators, convex subdifferentials and
Clarke generalized gradients.

¦ Cuscos are the most natural extensions of
continuous (single-valued) functions.

• The Clarke gradient is usually much too
large (generically “maximal”, see below).

¦ By contrast convex subdifferentials and
maximal monotone operators are always
“minimal” (interior to their domains), as
are the Clarke subdifferentials of a.e. strictly
differentiable functions (BM).
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• An usco (cusco) mapping Φ from a topo-

logical space T to subsets of a (linear)

topological space X is a minimal usco (cusco)

if its graph does not strictly contain the

graph of any other usco (cusco) on T .

• A Banach space is of class (S) (Stegall)

provided every weak∗ usco from a Baire

space into X∗ has a selection which is

generically weak∗ continuous. Every smooth

Banach space is class (S).

• A Banach space is (weak) Asplund if con-

vex functions on the space are generically

Fréchet (Gateaux) differentiable. Equiva-

lently, every separable subspace has a sep-

arable dual (e.g., reflexive spaces).

In our setting a fundamental result is:
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• A Banach space X is Asplund if and only

if every locally bounded minimal weak∗
cusco from a Baire space into X∗ is gener-

ically singleton and norm-continuous. A

fortiori, Asplund spaces are class (S).

We show the power of minimality by easily

proving a generic (partial) differentiability re-

sult:

Theorem 2 Suppose that f is locally Lips-

chitz on an open subset A of a Banach space

X and possesses a minimal subgradient on A.

(a) When Y is a class (S) subspace of X then

f is generically Y –Hadamard smooth through-

out A.

(b) When Y is an Asplund subspace of X then

f is generically Y –Fréchet smooth throughout

A.
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Proof. Let ΩY be the restriction of elements

of ∂f to Y .

As the composition of the ‘restriction’ linear

operator

R : x∗ → x∗|Y
and the minimal cusco ∂f , ΩY is a minimal

cusco from A ⊂ X to Y ∗.

(a) Consider first the class (S) case.

Then ΩY is generically single-valued on the

open (Baire) set A. An easy application of

Lebourg’s mean-value theorem establishes that

at each such point f is (strictly) Y -Hadamard

smooth.

(b) The Asplund case follows similarly. c©

¦ Note how Y and X∗ have been ‘detached’ !
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• An immediate consequence is that in any

Banach space, continuous convex func-

tions are generically Fréchet (respectively

Gateaux) differentiable with respect to any

fixed Asplund (respectively class (S)) sub-

space.

Remark 1 Fabian, Zaj́ıc̆ek and Zizler give a

category version of Asplund’s result that if a

Banach space and its dual have rotund renorms

one can find a rotund renorm whose dual norm

is rotund simultaneously.

• Their technique allows us to show that if

Y is a subspace of X such that both X

and X∗ admit ‘Y -rotund’ renorms (appro-

priately defined), then X can be renormed

to be simultaneously Y -smooth and Y -

rotund.
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BUMPS I: VARIATIONAL PRINCIPLES

• All variational principles devolve from Eke-
land’s powerful (1974) reworking of the
Bishop-Phelps theorem∗ (1961).

• More powerful recent ones exploit smooth-
ness of the underlying space—by partially
capturing the smoothness of an osculat-
ing norm or bump function

function
oscullant
tangent

Legend

∗All Banach spaces are “sub-reflexive”
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Viscosity is Fundamental

Definition [BZ, 1996] f is β-viscosity sub-
differentiable with subderivative x∗ at x if
there is a locally Lipschitz g, β-smooth at x,
with

∇β g(x) = x∗

and f − g taking a local minimum at x. De-
note all β-viscosity subderivatives by ∂v

β f(x).

All variational principles rely implicitly or ex-
plicitly on viscosity subdifferentials.

–1

1

2

–0.2 0.2 0.4 0.6 0.8 1 1.2 1.4

All Fréchet subdifferentials
are viscosity subdifferentials
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X We know many facts such as . . .

• Bornology H = F in Euclidean space

• Bornology F = WH in reflexive space

• For locally Lipschitz f

∂v
G f = ∂v

H f ∂G f = ∂H f

• When `1 * X

∂v
WH f = ∂v

F f

for locally Lipschitz concave f

• When X has a Fréchet renorm

∂v
F f = ∂F f

(e.g., reflexive or WCG Asplund spaces)
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Example 1 Let f : Rn → R (n > 1) be con-

tinuous and Gateaux but not Fréchet differ-

entiable at 0.

Explicitly in R2, take

f(x, y) :=
xy3

x2 + y4

when (x, y) 6= (0,0) and f(0,0) = 0.

Let

g(h) := −|f(h)− f(0)−∇G f(0)h|

Then g is locally uniformly continuous and

1. Uniquely, ∂G g(0) = {0}.

2. But ∂v
G g(0) is empty.

X The proof is easy but instructive . . .
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Proof. We check that ∇G g(0) = 0, so

∂G g(0) = {0}. As always

∂v
G g(0) ⊂ ∂Gg(0).

Thus, if (2) fails, ∂v
G g(0) = {0}, and yet there

is a locally Lipschitz Gateaux (hence Fréchet)

differentiable function k such that

k(0) = g(0) = 0, ∇G k(0) = ∇G g(0) = 0

and k ≤ g in a neighbourhood of zero.

Thus, for small h,

|f(0 + h)− f(0)−∇G f(0)h|
‖h‖ ≤ −k(h)− k(0)

‖h‖
≤ |k(h)− k(0)|

‖h‖

This implies that f is Fréchet-differentiable at

0, a contradiction. c©
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The Smooth Variational Principle

Theorem 3 (Borwein-Preiss, 1987) Let X be

Banach and let f : X → (−∞,∞] be lsc, let

λ > 0 and let p ≥ 1. Suppose ε > 0 and z ∈ X

satisfy

f(z) < inf
X

f + ε.

Then there exist y and a sequence {xi} ⊂ X

with x1 = z and a continuous convex function

ϕp : X → R of the form

ϕp(x) :=
∞∑

i=1

µi‖x− xi‖p,

where µi > 0 and
∑∞

i=1 µi = 1 such that

(i) ‖xi − y‖ ≤ λ, n = 1,2, . . .,

(ii) f(y) + (ε/λp)ϕp(y) ≤ f(z), and

(iii) f(x) + ε
λp ϕp(x) > f(y) + ε

λp ϕp(y) forx 6= y
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Corollary 1 All extended real-valued lsc (resp.
convex) functions on a smoothable (Gateaux,
Fréchet, . . .) space are densely subdifferen-
tiable (resp. differentiable) in the same sense.

• f : X → (∞,∞] attains a strong minimum
at x ∈ X if f(x) = infX f and whenever
xi ∈ X and f(xi) → f(x), we have ‖xi → x‖
(The problem is well posed.)

• also we set ‖g‖∞ := sup{|g(x)| : x ∈ X}.

Theorem 4 (Deville-Godefroy-Zizler, 1992)
Let X be Banach and let Y be a Banach space
of continuous bounded functions on X such
that

(i) ‖g‖∞ ≤ ‖g‖Y for all g ∈ Y.

(ii) For g ∈ Y and z ∈ X, x 7→ gz(x) = g(x+ z)
is in Y and ‖gz‖Y = ‖g‖Y .

(iii) For g ∈ Y and a ∈ R, x 7→ g(ax) is in Y.

(iv) There exists a bump function in Y.
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Then, whenever f : X → (∞,∞] is lsc and
bounded below, the set G of g ∈ Y such that
f + g attains a strong minimum on X is resid-
ual (in fact a dense Gδ set).

• Picking Y appropriately leads to:

Theorem 5 Let X be Banach with a Fréchet
smooth bump and let f be lsc. There is a > 0
(a = a(X)) such that for ε ∈ (0,1) and y ∈ X
satisfying

f(y) < inf
X

f + aε2,

there is a Lipschitz Fréchet differentiable g
and x ∈ X such that

(i) f + g has a strong minimum at x,

(ii) ‖g‖∞ < ε and ‖g′‖∞ < ε,

(iii) ‖x− y‖ < ε.

Corollary 2 For any C1 bump function b on
a finite dimensional space

0 ∈ intR(∇b)
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The Stegall Variational Principle

As we add more geometry we may often refine
the variational principle:

• Again, x ∈ S is a strong minimum of f on
S if f(x) = infS f and f(xi) → f(x) implies
‖x− xi‖ → 0.

• A slice for f bounded above on S is:

S(f, S, α) := {x ∈ S : f(x) > sup
S

f − α}.

• A necessary and sufficient condition for a
f to attain a strong minimum on a closed
set S is diam S(−f, S, α) → 0 as α → 0+.

Theorem 6 (Stegall, (1978)) Let X be Ba-
nach and let C ⊂ X be a closed bounded
convex set with the Radon-Nikodym property,
Let f be lsc on C and bounded from below.

For any ε > 0 there exists x∗ ∈ X∗ such that
‖x∗‖ < ε and f +x∗ attains a strong minimum
on C.
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• The following variant due to Fabian (1983)

is often convenient in applications

Corollary 3 Let X be Banach with the Radon-

Nikodym property (e.g., reflexive) and let f be

lsc. Suppose there exists a > 0 and b ∈ R such

that

f(x) > a‖x‖+ b, x ∈ X.

Then for any ε > 0 there exists x∗ ∈ X∗ such

that ‖x∗‖ < ε and f +x∗ attains a strong min-

imum on X.

X In separable space we may set the pertur-

bation in advance:
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A One-perturbation Variational Principle

Theorem 7 Let X be a Hausdorff space which
admits a proper lsc function

ϕ : X → R ∪ {+∞}
with compact level sets. For any proper lsc
bounded below function f : X → R ∪ {+∞}
the function f + ϕ attains its minimum.

In particular, if domϕ is relatively compact,
the conclusion is true for any proper lsc f .

Key application. In separable Banach space,
a nice convex choice is:

ϕ(x) :=




tan

(
‖S−1x‖2H

)
, if ‖S−1x‖2H <

π

2
,

+∞, otherwise.

for an appropriate compact, linear and injec-
tive mapping S : H → X (H := `2).

• ϕ is almost Hadamard smooth: x ∈ domϕ

lim
t↘0

sup
h∈domϕ

ϕ(x + th) + ϕ(x− th)− 2ϕ(x)

t
= 0
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• We recover a recent result (CF, 2001)
open for 25 years:

Corollary 4 GDS× Sep ⊂ GDS.

Proof Sketch. Suppose Y is the Gateaux
differentiability space factor. Let f : Y ×X →
R be convex continuous, and Ω ⊂ Y ×X non
empty open. Without loss, 2BY × 2BX ⊂ Ω
and f is bounded on Ω.

Let ϕ : X → [0,+∞] be as in Theorem 7 with
domain in BX, and define

g(y) :=




inf{−f(y, x) + ϕ(x); x ∈ X}, if y ∈ 2BY

+∞, else.

Then g is concave and continuous on 2BY .
As Y is a GDS, the function g is Gâteaux
differentiable at some y in BY .

Moreover

g(y) = −f(y, x) + ϕ(x)

and (y, x) is a point of joint differentiability
· · · c©
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• This is particularly interesting because we

cannot show the corresponding generic re-

sult:

WASP× Sep
?⊂ WASP,

while recently Moors and Somasundaram

(2003) showed—unconditionally—that

Example 2

WASP ⊂
6=

GDS

answering another long open question with

delicate set-theoretic topological tools.

• Lassonde and Revalski (2004) have ex-

tended the single perturbation principle to

ensure generic strong minimality.
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Two Open Questions

1. Viscosity. In Hilbert space is

∂v
G f(x)  ∂G f(x)

possible for Lipschitz f?
X For continuous f we saw it was:

A non-viscosity subdifferential

2. Genericity. WASP× Sep
?⊂ WASP.
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BUMPS II: SUBDIFFERENTIALS

Maximality and Genericity

• These powerful positive results are com-

plemented by the following negative ones:

Below BX∗ is the dual ball, (XBX∗, ρ) is the

space of real-valued non-expansive mappings

|f(x)− f(y)| ≤ ‖x− y‖
in the uniform metric, while ∂0 and ∂a denote

the Clarke and approximate subdifferentials

∂af(x) := {x∗ : x∗ w∗
↽ x∗n ∈ ∂Hf(xn), xn → x}

and

∂0f(x) = co∗∂af(x).

• In reasonable (reflexive or separable) spaces,

∂0f(x) is the limit of nearby gradients.
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Theorem 8 (Maximal Subdifferentials) Let A

be open in a Banach space X.

(i) Then

{g ∈ XBX∗ : ∂0g(x) = BX∗ for all x ∈ A}
is residual in (XBX∗, ρ).

(ii) If X is smooth

{g ∈ XBX∗ : ∂ag(x) = BX∗ for all x ∈ A}
is residual in (XBX∗, ρ).

¦ Thus usually (generically) even the lim-

iting subdifferential is everywhere maxi-

mal (and convex, agreeing with the Clarke

subdifferential).

• T (x) := ∇f(x)+BX∗ is also a subgradient.

Much more is true (BMW).
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• Despite this, the limiting subdifferential of

a Lipschitz function can be non-convex

a.e. (BBW)—save on R where it differs

from the Clarke subdifferential at most

countably.

Moreover,

Theorem 9 Let 0 ∈ A be an open connected

and bounded subset of RN and let ε > 0.

There is a locally Lipschitz function f : RN →
R such that

R(∂af) ⊂ A

and

µ{x : ∂af(x) 6= A} < ε.

The proof relies on two facts:
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Fact 1 By Theorem 1, such connected A can

be realized as the range of the gradient of

a continuously differentiable bump (bounded

support) function bA.

Step 1. The support function of a strictly

convex body

σC(x) := sup
y∈C

〈y, x〉

leads to a bump

bC(x) :=
3
√

3

8

(
max

{
1− σC(−x)2,0

})2

with range exactly C.

0.5 0 0.5 1 1.5 2 2.5 3

0.4

0.2

0

0.2

0.4

(0,0) (2,0)

• This is clearest for the case of an ellipse

E := {x : 〈Ax, x〉 ≤ 1} where

σE(y) = 〈Ax, x〉1/2
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Step 2. A disjoint sum then leads to

1.5 1 0.5 0 0.5 1 1.5 2 2.5 3 3.5

0.5

0

0.5

1

1.5

2

2.5

3

(0,0) (2,0)

(2,2)

A Non-convex Gradient Range ∇bC
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Step 3. Build a flat patch on a bump range

0.26
0.24

0.22
0.2

0.18
0.16

0.01

0

0.01

0.02

0.03
0.05

0.1

0.15

0.2

0.25

0.3

0.35

XY

Step 4. Superposing a bump on a flat patch
of another leads to

(0,0) (2,0)

(0,2) (2,2)

S
0

S
1

S
2

S
3

A Non-simply Connected
Gradient Range ∇bC1∪C2
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• Step 5. Careful analysis leads, in the limit,

to the general result.

¦ Indeed, there is a C1 bump b : R2 → R such

that ∇b(R2) is exactly the k-th approxima-

tion to the Sierpinski carpet (BFKL).

A Multiply Connected Gradient Range
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Fact 2 One can ‘seed’ an open dense set of

small measure with dilated bumps of constant

gradient range, A, forcing all limits to be A.

Reason. As observed by Ioffe, dilation and

translation do not effect the range. Consider

fA(x) :=
∞∑

n=0

2−n−1 bA(an + 2n+1x)

sketched below.

Scaled bumps in one and two dimensions

Limiting blue subdifferential at right

X Now, Facts 1 and 2 prove Theorem 9.
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Two Open Questions

• Can one build an explicit example of a

function on R2 with ∂af(x) ≡ B2?

• Is it always true in RN that the range of a

C1 bump’s gradient is semi-closed:

R (∇b) = cl− intR (∇b)?

– with enough smoothness this is true

(CN+1, Rifford, 2003).

• The situation is quite different in infinite

dimensions (BFL, Deville-Hajek and oth-

ers): the interior may be empty and one

can achieve many strange sets.
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DERIVATIVES I: PROXIMALITY

• A norm is Kadec-Klee (sequentially) if the
weak and norm topologies coincide (se-
quentially) on the boundary of the unit
ball, as in Hilbert space.

Theorem 10 Let C be a closed subset of a
reflexive Banach space X with a Kadec-Klee
norm.

(a) (Density) The set of points in X at which
every minimizing sequence clusters to a best
approximation is dense in X.

(b) (Projection) If in addition, the original
norm is Fréchet then

∂FdC(x) ⊂ ∂FdC(PC(x))

where PC(x) is the (set of) best approxima-
tions of x on C.

(c) In particular, in any Fréchet LUR norm
on a reflexive space, this holds for all sets in
the Fréchet sense with a single-valued metric
projection.
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Proof. (a) We may assume xn →w p and at
any of the dense set of points with

φ ∈ ∂FdC(x) 6= ∅
all minimizing sequences actually converge in
norm to p since

φ(xn − x) → dC(x) ⇒ ‖xn − x‖ → ‖p− x‖,
and by Kadec-Klee xn → p, and p = PC(x).

The Fréchet slice forces
the approximating sequence to line up

The corresponding subgradient is a proximal
normal to C at p.
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(b-c) Finally, when the norm is F -smooth,
simple derivative estimates show that any mem-
ber of ∂FdC(x) must lie in

∂FdC(PC(x)).

c©

X This used to be hard.

• (Lau-Konjagin (1976-86)) X is reflexive
and Kadec-Klee iff best approximations al-
ways exist densely (or generically).

• Theorem 10 easily shows the normal cone
defined in terms of distance functions is
always contained in the normal cone de-
fined in terms of indicator functions.

• In Hilbert space we may conclude

∂FdC(x) ⊂ ∂πdC(PC(x)),

where ∂π denotes the set of proximal sub-
gradients.
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Random Subgradients

• ∂0dC is a minimal cusco for all closed C iff
the norm is uniformly Gateaux.

• While dC is often too well behaved,
√

dC(x)
is not Lipschitz and choosing C wisely pro-
vides many counter-examples:

√
dS(x) =

√
|1− ‖x‖|

Burke

Lewis

Overton

How random gradients fail
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Two Open Questions

• Every closed set in every reflexive space

(every renorm of Hilbert space) admits at

least one best approximation.

(Stronger variant.) For every closed set

of every reflexive space the proximal nor-

mal points are norm dense in the norm

boundary.

X Any counter-example is necessarily un-

bounded (and fractal-like)

• Every norm closed set in a reflexive Ba-

nach space with unique best approxima-

tions for every point in A (a Chebyshev

set) is convex.

[True in weak topology, and so in RN .]
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DERIVATIVES II and CONVEXITY I

Duality Inequalities

• The following hybrid inequality is based on

the two-set Mean Value theorem of Clarke

and Ledyaev (94) and its Fenchel rework-

ing by Lewis & Ralph (96).

Theorem 11 (Three Functions) Let C ⊂ Rn

be nonempty compact convex and let f and h

be lsc functions with dom(f) ∪ dom(h) ⊂ C.

For any Lipschitz g : C → R there is z∗ ∈
∂0g(C) (the Clarke subdifferential) such that

(min(f − g) + min(h + g))

≤ −f∗(z∗)− h∗(−z∗) ≤ min(f + h).
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A Three Function Sandwich

• The smooth case (BF) applies the classi-

cal Mean value theorem to t 7→ g(x(t)) for

an arc, x, on [0,1] obtained via Schauder’s

fixed point theorem.

• The nonsmooth case follows by ‘mollification’—

the limits lie in the Clarke subdifferential.

• Fenchel Duality is ‘recovered’ from g := f .

Recall, f∗(t) = supx y(x)− f(x).
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Finding the arc. We may smoothify since(
f + ε‖ · ‖2

)∗
is differentiable.

Let M := 2 sup{‖c‖ : c ∈ C} and

W := {x : [0,1] → C : Lip(x) ≤ M}.
By Arzela-Ascoli, W is compact in the uniform

norm topology.

For x ∈ W define a continuous self map T :

W → W by

Tx(t) :=
∫ t

0
∇f∗ ◦ ∇g ◦ x +

∫ 1

t
∇h∗ ◦ (−∇g) ◦ x.

Since W is compact and convex, the Schauder

fixed point theorem shows there is x ∈ W such

that x = Tx. That is,

x(t) =
∫ t

0
∇f∗ ◦ ∇g ◦ x +

∫ 1

t
∇h∗ ◦ (−∇g) ◦ x.
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• A striking partner is:

Theorem 12 (Two Functions) Let C ⊂ Rn

be nonempty compact convex and f proper

convex lower semicontinuous with dom(f) ⊂
C. If α 6= 1 and g : [C, αC] → R is Lipschitz

then there are z∗ ∈ ∂0g([C, αC]) and a ∈ C

such that

[g(αa)− g(a)]/(α− 1)− f(a) ≥ f∗(z∗).

¦ Two fine specializations follow.

Corollary 5 Let C ⊂ Rn be compact con-

vex and f proper convex lower semicontinuous

with dom(f) ⊂ C. If g : [C,−C] → R is Lip-

schitz then there are z∗ ∈ ∂0g([C,−C]) and

a ∈ C such that

[g(a)− g(−a)]/2− f(a) ≥ f∗(z∗).

Hence

f∗(z∗) ≤ 0

if f dominates the odd part of g on C.
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• The comparison of f to the odd part of g

reinforces the suggestion that fixed point

theory is central to these results.

Corollary 6 Let C ⊂ Rn be nonempty, com-

pact and convex and f lsc with dom(f) ⊂ C.

If g : [C,0] → R is Lipschitz then there are

z∗ ∈ ∂0g([C,0]) and a ∈ C such that

f(a) + f∗(z∗) ≤ g(a)− g(0).

Hence

f∗(z∗) ≤ 0

whenever f dominates g − g(0) on C.

• By contrast, this corollary can be obtained

and strengthened by variational methods.
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Theorem 13 Let A be nonempty open bounded

in a Banach space and let g : A → R be Lips-

chitz. If x ∈ intA and

t := inf{‖z∗‖ : z∗ ∈ ∂0g(z), z ∈ A} > 0

then

sup
u∈∂A

(g(u)− t‖u− x‖) ≥ g(x).

X Specialized to the unit ball with x := 0 we

obtain, a la Corvallec:

Corollary 7 (Rolle Theorem) Let B be the

closed unit ball in Rn and g : B → R a Lipschitz

function. Then there is x∗ ∈ ∂0g(B) such that

‖x∗‖∗ ≤ max
a∈∂B

|g(a)|.

¦ Contrastingly:
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Corollary 8 (Odd Rolle Theorem) Let B be

the closed unit ball in Rn and g : B → R a

Lipschitz function. Then there is x∗ ∈ ∂0g(B)

such that

‖x∗‖∗ ≤ max
a∈B

g(a)− g(−a)

2
.

• That this last result is ‘topological’ is height-

ened by the following example (BKW):

Remark 2 Corollary 8 fails if B is replaced

by the unit sphere S. Indeed, there is a C1

mapping f : B ⊂ R2 → R such that

(i) f |S is even; but

(ii) f has no critical point in B.
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Two Open Questions

• The picture suggests that in the sandwich

theorem the slope is actually achieved by

a tangent. Is this true?

• Can one avoid using Brouwer’s fixed point

theorem in the proof—a variational proof?
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CONVEXITY II: BANACH SEQUENCES

Convex function properties are tightly coupled

to the sequential properties of the spaces they

may inhabit. We finish by illustrating this in

three cases.

1. Finite dimensional spaces

2. Spaces containing `1

3. Grothendiek spaces.

Fact 3 (Josephson-Nissensweig) A Banach space

is infinite dimensional iff it contains a JN se-

quence: that is, a norm-one but weak-star

null sequence.

• This is easy in separable space—e.g., the

unit vectors in `2—but appears hard in

general.

49



Theorem 14 (a) Every continuous convex func-

tion finite throughout X is bounded on bounded

sets iff (b) X is a JN space: weak-star and

norm convergence of sequences coincides iff

(c) X is finite dimensional.

Theorem 15 Every continuous convex func-

tion finite on X has f∗∗ finite on X∗∗ iff X is

a Grothendiek space: weak-star and weak

convergence of sequences coincides (e.g., in

reflexive space or `∞).

Theorem 16 Gateaux and Fréchet differen-

tiability agree for convex functions on X iff X

is a JN-space.

Theorem 17 Weak Hadamard and Fréchet

differentiability agree for convex functions on

X iff X is a sequentially reflexive space:

`1 * X iff norm and Mackey convergence of

sequences coincides.
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Proof of Theorem 14

[(a) implies (b)] Suppose {yn} is JN. Define

f(x) :=
∑

2n ψ(yn(x))

where ψ ≥ 0 is convex, continuous with ψ(1) =

1 and ψ([0,1/2]) = 0.

Then f is continuous since the sum is locally

finite, and unbounded on BX since f(yn) = 1.

[(b) implies (a)] if f ≥ 0 is unbounded on

BX, so by the MVT, is ∂f . Thus, there is

xn ∈ BX, zn ∈ ∂f(xn) and ‖zn‖ → ∞. Then

yn := zn/‖zn‖ is JN. Indeed

〈yn, x〉 ≤ 〈yn, xn〉+ f(x)− f(xn)

‖zn‖
→ 0.

c©

♠ There are many other such results (e.g.,

characterizing Schur spaces, reflexive spaces,

strong separability etc).
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Two Open Questions

• Any two real valued Lipschitz functions on

Hilbert space are simultaneously densely

Fréchet differentiable.

♦ True in the separable Gateaux case.

• A convex continuous function on separa-

ble Hilbert space admits a second-order

Gateaux expansion densely.

♦ True in finite dimensions.

♦ False for Fréchet or nonseparable `2.
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