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A Central Problem: `0 minimization

Given a linear map A : Rn → Rm full-rank with 0 < m < n, solve

Program

(P0)
minimize

x∈Rn
‖x‖0

subject to Ax = b

where ‖x‖0 :=
∑

j |sign(xj)| with sign (0) := 0.

• ‖x‖0 = limp→0+
∑

j |xj|p is a metric but not a norm.

p-balls for 1/5, 1/2, 1, 100

• Combinatorial optimization problem (hard to solve).
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Central Problem: `0 minimization

Solve instead

Program

(P1)
minimize

x∈Rn
‖x‖1

subject to Ax = b

where ‖x‖1 is the usual `1 norm.

• `1 minimization now routine in statistics and elsewhere for
“missing data” under-determined problems.

A nonsmooth convex, actually linear, programming problem ...
easy to solve for small problems.

• Let’s illustrate by trying to solve the problem for x a
512× 512 image ...
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Application: Crystallography

Given data:

(autocorrelation transfer function — ‘ATF’ — missing pixels)

Desired reconstruction:

(The true ATF with all pixels)
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Application: Crystallography

Formulate as: Solve

Program

minimize
x∈Rn

‖x‖1

subject to x ∈ C

where C := {x ∈ Rn |Ax = b} for a linear A : Rn → Rm (m < n).

• Could apply Douglas-Rachford iteration — originated in
1956 for convex heat transfer problems (Laplacian):

xn+1 :=
1
2
(
Rf1Rf2 + I

)
(xn)

where
Rfjx := 2 proxα,fj x− x

for f1(x) := ‖x‖1 and f2(x) := ιC(x), and α > 0 fixed
(a generalized best approximation or prox-mapping).
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Application: Crystallography

• Great strategy for big problems, but convergence is
(arbitrarily) slow and accuracy is likely to be poor ...

(Douglas-Rachford and Russell Luke)

It seemed to me that a better approach was to think about real
dynamics and see where they go. Maybe they go to the
[classical] equilibrium solution and maybe they don’t.
— Peter Diamond (2010 Economics co-Nobel)
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Motivation

A variational/geometrical interpretation of the Candes-Tao
(2004) probabilistic criterion for the solution to (P1) to be unique
and exactly match the true signal x∗.

• As a by-product, better practical methods for solving the
underlying problem.

• Aim to use entropy/penalty ideas and duality and also
prove some rigorous theorems.

• The counterpart paper (largely successful):

J. M. Borwein and D. R. Luke, “Entropic Regularization of the `0

function.” In Fixed-Point Algorithms for Inverse Problems in
Science and Engineering, Springer Optimization and Its
Applications. In press, 2011. Available at
http://carma.newcastle.edu.au/jon/sensing.pdf.
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Outline

1 Dual Convex (Entropic) Regularization

2 Subgradient Descent with Exact Line-search

3 Our Main Theorem

4 Computational Results

5 Conclusion and Questions
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Fenchel duality

The Fenchel-Legendre conjugate f ∗ : X∗ →]−∞,+∞] of f is

f ∗(x∗) := sup
x∈X
{〈x∗, x〉 − f (x)}.

• For the `1 problem, the norm is proper, convex, lsc and
b ∈ core (A dom f ) so strong Fenchel duality holds.

That is:

Program

inf
x∈Rn
{‖x‖1 : Ax = b} = sup

y∈Rm
{〈b, y〉 − ‖(A∗y)‖∗1}

where
‖x∗‖1

∗ = ι[−1,1](x
∗)

is zero on the supremum ball and is infinite otherwise.
JMB/DRL Compressed Sensing: a Subgradient Approach



Entropy Descent & Search Theory Numbers Open

Elementary Observations

The dual to (P1) is

Program

(D1)
maximize

y∈Rm
bTy

subject to (A∗y)j ∈ [−1, 1] j = 1, 2, . . . , n.

• The solution includes a vertex of the constraint polyhedron.
• Uniqueness of primal solutions depends on whether dual

solutions live on edges or faces of the dual polyhedron.

• We deduce that if a solution x to (P1) is unique, then

m ≥ { number of active constraints in (D1) } = ‖x‖0.
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Elementary observations

The `0 function is proper, lsc but not convex, so only weak
Fenchel duality holds:

Program

inf
x∈Rn
{‖x‖0 |Ax = b} ≥ sup

y∈Rm
{〈b, y〉 − ‖(A∗y)‖∗0}.

where

‖x∗‖∗0 :=

{
0 x∗ = 0
+∞ else
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Elementary observations

In other words, the dual to (P0) is

Program

(D0)
maximize

y∈Rm
bTy

subject to A∗y = 0.

• primal problem is a combinatorial optimization problem.
• dual problem, however, is a linear program, which is finitely

terminating.
• The solution to the dual problem is trivial: y = 0 ... which

tells us nothing useful about the primal problem.

JMB/DRL Compressed Sensing: a Subgradient Approach



Entropy Descent & Search Theory Numbers Open

The Main Idea

• Relax and Regularize the dual — and either solve this
directly, or solve the corresponding regularized primal
problem, or some mixture.

• Performance will be “part art and part science” and tied
to the specific problem at hand.

• We do not expect a method which works all of the time ...

JMB/DRL Compressed Sensing: a Subgradient Approach



Entropy Descent & Search Theory Numbers Open

The Fermi-Dirac Entropy (1926)

The Fermi-Dirac entropy is ideal for [0, 1] problems:

FD(x) :=
∑

j

xj log(xj) + (1− xj) log(1− xj).

Fermi-Dirac in 1-dim

• A Legendre barrier function with smooth finite conjugate

FD∗(y) :=
∑

j

log (1 + eyj).
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Regularization/Relaxation: Fermi-Dirac Entropy

For L, ε > 0, define a shifted nonnegative entropy:

f ∗ε,L(x) :=
n∑

j−1

[
ε

(
(L + xj) ln(L + xj) + (L− xj) ln(L− xj)

2L ln(2)
− ln(L)

ln(2)

)]
for x ∈ [−L,L]n

:= +∞ for ‖x‖∞ > L.

Then

f ∗∗ε,L(x) =
n∑

j=1

[
ε

ln(2)
ln
(

4xjL/ε + 1
)
− xjL− ε

]
. (1)

• f ∗ is proper, convex and lsc, thus f ∗∗∗ = f ∗. We set f := f ∗∗.
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Regularization/Relaxation: Fermi-Dirac Entropy
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Regularization/Relaxation: Fermi-Dirac Entropy

For L > 0 fixed, in the limit as ε→ 0 we have

lim
ε→0

f ∗ε,L(y) =

{
0 y ∈ [−L,L]
+∞ else

and lim
ε→0

fε,L(x) = L|x|.

For ε > 0 fixed we have

lim
L→0

f ∗ε,L(y) =

{
0 y = 0
+∞ else

and lim
L→0

fε,L(x) := 0.

• ‖ · ‖0 and f ∗ε0 have the same conjugate;
• ‖ · ‖∗∗0 6= ‖ · ‖0 while f ∗∗∗ε0 = f ∗ε0;
• fε,L and f ∗ε,L are convex and smooth on the interior of their

domains for all ε,L > 0.

This is in contrast to the metrics of the form
(∑

j |xj|p
)

which
are nonconvex for p < 1.

JMB/DRL Compressed Sensing: a Subgradient Approach



Entropy Descent & Search Theory Numbers Open

Regularization/Relaxation: Fermi-Dirac Entropy

For L > 0 fixed, in the limit as ε→ 0 we have

lim
ε→0

f ∗ε,L(y) =

{
0 y ∈ [−L,L]
+∞ else

and lim
ε→0

fε,L(x) = L|x|.

For ε > 0 fixed we have

lim
L→0

f ∗ε,L(y) =

{
0 y = 0
+∞ else

and lim
L→0

fε,L(x) := 0.

• ‖ · ‖0 and f ∗ε0 have the same conjugate;
• ‖ · ‖∗∗0 6= ‖ · ‖0 while f ∗∗∗ε0 = f ∗ε0;
• fε,L and f ∗ε,L are convex and smooth on the interior of their

domains for all ε,L > 0.

This is in contrast to the metrics of the form
(∑

j |xj|p
)

which
are nonconvex for p < 1.

JMB/DRL Compressed Sensing: a Subgradient Approach



Entropy Descent & Search Theory Numbers Open

Regularization/Relaxation: FD Entropy

Hence we aim to solve

Program

(DL,ε) minimize
y∈Rm

f ∗L,ε(A
∗y)− 〈b, y〉

for appropriately updated L and ε.

• This is a convex optimization problem, so equivalently
we solve the inclusion:

0 ∈ A∂f ∗L,ε(A
∗y)− b (DI)

• We can also model more realistic relaxed inequality
constraints such as ‖Ax− b‖ ≤ δ (JMB-Lewis)
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ε = 0: f ∗L,0 = ι[−L,L]n

Solve
0 ∈ A∂f ∗L,0(A

∗y)− b

via subgradient descent:

Program

Given y−, choose v− ∈ ∂f ∗L,0(A
∗y−), λ− → 0 and construct y+ as

y+ := y− + λ− (b− Av−).

‘Only’ two issues remain: Direction and Step size
(a) how to choose direction v− ∈ ∂f ∗L,0(A

∗y−)
(b) how to choose step length λ−.
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ε = 0: (a) Choose v− ∈ ∂f ∗L,0(A
∗y−)

Recall that f ∗L,0 = ι[−L,L]n so

∂ι[−L,L]n(x
∗) = N[−L,L](x

∗) (normal cone)
= {v ∈ Rn | ±vj ≤ 0 (j ∈ J±), vj = 0 (j ∈ J0)}

where

J− := {j ∈ N | xj = −L} , J+ := {j ∈ N | xj = L}

and
J0 := {j ∈ N | xj ∈]− L,L[} .

Program

Choose v− ∈ N[−L,L](A∗y−) to be the solution to

minimize
v∈Rn

1
2‖b− Av‖2

subject to v ∈ N[−L,L]n(A∗y−)
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ε = 0: Choose v− ∈ ∂f ∗L,0(A
∗y−)

That is:

Program(
Pv−

) minimize
v∈Rn

1
2‖b− Av‖2

subject to v ∈ N[−L,L]n(A∗y−)

Defining
B := {v ∈ Rn |Av = b},

we reformulate as:

Program

(
Pv−

)
minimize

v∈Rn

β

2(1− β)
dist 2(v,B) + ιN[−L,L]n (A∗y−)(v),

for given 1
2 < β < 1.
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ε = 0: Choose v− ∈ ∂f ∗L,0(A
∗y−)

Approximate (dynamic) averaged alternating reflections:

Program

We choose v(0) ∈ Rn. For ν ∈ N set

v(ν+1) :=
1
2

(
R1

(
R2v(ν) + εν

)
+ ρν + v(ν)

)
, (2)

- where
• R1x := 2 prox β

2(1−β) dist (v,B)2 x− x
• R2x := 2 proxιN[−L,L]n (A∗y−)

x− x

• {εν} and {ρν} are the errors at each iteration, assumed
summable.

• In the dynamic version we may adjust L as we go.
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ε = 0: Choose v− ∈ ∂f ∗L,0(A
∗y−)

• Luke (2005–08) shows (2) is equivalent to Inexact Relaxed
Averaged Alternating Reflections:

Program

Choose v(0) ∈ Rn and β ∈ [1/2, 1[. For ν ∈ N set

v(ν+1) :=
β

2

(
RB

(
RN[−L,L]n (A∗y−)v

(ν) + εn

)
+ ρn + v(ν)

)
+(1− β)

(
PN[−L,L]n (A∗y−)v

(ν) +
εn

2

)
. (3)

where RB := 2PB − I also for RN[−L,L]n (A∗y−). We can show:

Lemma (Luke 2008, Combettes 2004)

The sequence {v(ν)}∞ν=1 converges to v where PBv solves (Pv−).

JMB/DRL Compressed Sensing: a Subgradient Approach



Entropy Descent & Search Theory Numbers Open

ε = 0: (b) Choose λ−

Exact line search: choose largest λ− that solves

Program

minimize
λ∈R+

f ∗L,0(A
∗y− + A∗λ(b− Av−))

Note that f ∗L,0(A
∗y− + A∗λ(b− Av−)) = 0 = min f for all

A∗y− + A∗λ(b− Av−) ∈ [−L,L]n. So we solve:

Program (Exact line-search)

(Pλ)

minimize
λ∈R+

− λ

subject to
λ(A∗(b− Av−))j ≤ L− (A∗y−)j

λ(A∗(b− Av−))j ≥ −L− (A∗y−)j

j = 1, . . . , n
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ε = 0: Choose λ−

Exact line search is practicable: Define

J+ := {j | (A∗(b− Av−))j > TOL} ,
J− := {j | (A∗(b− Av−))j < −TOL}

and set

λ− := min
{

minj∈J+{(L− (A∗y−)j)/(A∗(b− Av−))j},
minj∈J−{(−L− (A∗y−)j)/(A∗(b− Av−))j}

}

• Relies on ‘simulating’ exact arithmetic ... harder for ε > 0.
• Full algorithm terminates when current v− is such that
J+ = J− = Ø.
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Choosing dynamically reweighted weights: details

The algorithm in our paper has a nice convex-analytic criterion
for choosing the reweighting parameter Lk:

• Lk is chosen so the projection of the data onto the
normal cone of the rescaled problem at the rescaled
iterate yk lies in the relative interior to said normal cone.

• This guarantees orthogonality of the search directions
to the (rescaled) active constraints.

• What are optimal (in some sense) reweightings Lk

(dogmatic or otherwise)?

JMB/DRL Compressed Sensing: a Subgradient Approach



Entropy Descent & Search Theory Numbers Open

Choosing dynamically reweighted weights: details

The algorithm in our paper has a nice convex-analytic criterion
for choosing the reweighting parameter Lk:

• Lk is chosen so the projection of the data onto the
normal cone of the rescaled problem at the rescaled
iterate yk lies in the relative interior to said normal cone.

• This guarantees orthogonality of the search directions
to the (rescaled) active constraints.

• What are optimal (in some sense) reweightings Lk

(dogmatic or otherwise)?

JMB/DRL Compressed Sensing: a Subgradient Approach



Entropy Descent & Search Theory Numbers Open

Choosing dynamically reweighted weights: details

The algorithm in our paper has a nice convex-analytic criterion
for choosing the reweighting parameter Lk:

• Lk is chosen so the projection of the data onto the
normal cone of the rescaled problem at the rescaled
iterate yk lies in the relative interior to said normal cone.

• This guarantees orthogonality of the search directions
to the (rescaled) active constraints.

• What are optimal (in some sense) reweightings Lk

(dogmatic or otherwise)?

JMB/DRL Compressed Sensing: a Subgradient Approach



Entropy Descent & Search Theory Numbers Open

Choosing dynamically reweighted weights: details

The algorithm in our paper has a nice convex-analytic criterion
for choosing the reweighting parameter Lk:

• Lk is chosen so the projection of the data onto the
normal cone of the rescaled problem at the rescaled
iterate yk lies in the relative interior to said normal cone.

• This guarantees orthogonality of the search directions
to the (rescaled) active constraints.

• What are optimal (in some sense) reweightings Lk

(dogmatic or otherwise)?

JMB/DRL Compressed Sensing: a Subgradient Approach



Entropy Descent & Search Theory Numbers Open

Outline

1 Dual Convex (Entropic) Regularization

2 Subgradient Descent with Exact Line-search

3 Our Main Theorem

4 Computational Results

5 Conclusion and Questions

JMB/DRL Compressed Sensing: a Subgradient Approach



Entropy Descent & Search Theory Numbers Open

Sufficient sparsity

The mutual coherence of a matrix A is defined as

µ(A) := max
1≤k,j≤n, k 6=j

|aT
k aj|

‖ak‖‖aj‖

where 0/0 := 1 and aj denotes the jth column of A.

• Mutual coherence measures the dependence between
columns of A.

• The mutual coherence of unitary matrices, for instance, is
zero; for matrices with columns of zeros, the mutual
coherence is 1.

• What is a variational analytic/geometric interpretation
(constraint qualification or the like) of the mutual coherence
condition (4) below?
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Sufficient sparsity

Lemma (uniqueness of sparse representations (Donoho–Elad,
2003))

Let A ∈ Rm×n (m < n) be full rank. If there exists an element x∗

such that Ax∗ = b and

‖x∗‖0 <
1
2

(
1 +

1
µ(A)

)
, (4)

then it is unique and sparsest possible (has minimal support).

• In the case of matrices that are not full rank — and thus
unitarily equivalent to matrices with columns of zeros —
only the trivial equation Ax = 0 has a unique sparsest
possible solution.
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A Precise Result

Theorem (Recovery of sufficiently sparse solutions)

Let A ∈ Rm×n (m < n) be full rank (denote jth column of A by aj).
Initialize the algorithm above with y0 and weight L0 such that
y0

j = 0 and L0
j = ‖aj‖ for j = 1, 2, . . . , n.

If x∗ ∈ Rn with Ax∗ = b satisfies (4), then, with tolerance τ = 0,
we converge in finitely many steps to a point y∗ and a weight L∗

where,
argmin {‖Aw− b‖2 | w ∈ NRL∗ (y

∗)} = x∗,

the unique sparsest solution to Ax = b.

• We showed a ‘greedy’ adaptive rescaling of our Algorithm is
equivalent to a well-known greedy algorithm: Orthogonal
Matching Pursuit (Bruckstein–Donoh-Elad 09).
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Greedy or What?

“Orthogonality of the search directions is important for
guaranteeing finite termination, but it is a strong condition to
impose, and is really the mathematical manifestation of what it
means to be a “greedy algorithm”.

I think “greed” is a misnomer because what really happens is
that you forgo any RECOURSE once a decision has been
made: the orthogonality condition means that once you’ve
made your decision, you don’t have the option of throwing
some candidates out of your active constraint set.

I’d call the strategy “dogmatic”, but as a late arrival to the scene
I don’t get naming rights.”
— Russell Luke
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Computational Results

The image of the solution to the dual y under A∗

A∗y

• Used 2 · 27 length real vectors with 70 non-zero entries.
• As often, this is a qualitative solution to the primal:

yielding location and sign of nonzero signal elements.
JMB/DRL Compressed Sensing: a Subgradient Approach
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Computational Results

The primal solution x as determined by the solution to

Program

(Py)
minimize

x∈Rn

1
2‖b− Ax‖2

subject to x ∈ N[−L,L]n(A∗y)

where y solves the dual with L := 0.001 and `∞ error of 10−12.
JMB/DRL Compressed Sensing: a Subgradient Approach
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Computational Results

Observations:

• Inner iterations can be shown to be arbitrarily slow:
• the solution sets to the subproblems are not metrically

regular, and the indicator function ιN[−L,L]n is not coercive in
the sense of Lions.

• The algorithm fails when there are too few samples
relative to the sparsity of the true solution.

• All-in-all the method seems highly competitive (and there is
still much to tune).

It’s generally the way with progress that it looks much
greater than it really is.

— Ludwig Wittgenstein (1889–1951)
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Conclusion

We have given a finitely terminating subgradient descent
algorithm — one specialization of which yields a variational
interpretation and proof of a known greedy algorithm.

Work in progress:
1 Characterize recoverability of true solution — in terms of

the regularity of the subproblem

Program(
Pv−

) minimize
v∈Rn

1
2‖b− Av‖2

subject to v ∈ N[−L,L]n(A∗y−)

2 Recovery of ‖.‖0 in the limit; not just its convex envelope, 0.
3 Robust code with parameters automatically adjusted

(eventually) — appears insensitive to L but weighted norms
seem useful; also for ε > 0 and non-dogmatically.
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Conclusion

Thank you...
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