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1 Motivation and preliminaries.

We intend to show that a variety of trigonometric sums have unexpected closed forms by relating them to
cognate integrals. We hope this offers a good advertisement for the possibilities of experimental mathematics,
as well as providing both some entertaining examples for the classroom and a caution against over-extrapolating
from seemingly compelling initial patterns.

Recall the standard convention sinc(x) := sin(x)/x when x 6= 0 and sinc(0) := 1. It is known (see, for
example, [4] and [3]) that ∫ ∞

0

sinc(x) dx =
∫ ∞

0

sinc2(x) dx =
π

2
, (1)

while
∞∑

n=1

sinc(n) =
∞∑

n=1

sinc2(n) =
π

2
− 1

2
. (2)

Since sinc is an even function we can remove the mysterious −1/2 from (2) to get the equivalent statement∫ ∞

−∞
sinc(x) dx =

∫ ∞

−∞
sinc2(x) dx =

∞∑
n=−∞

sinc(n) =
∞∑

n=−∞
sinc2(n) = π.

In the rest of the paper we do not restate this sort of equivalence and mainly use the one-sided sums and
integrals which are more familiar to most readers, rather than the two-sided versions which are more natural
from a Fourier analysis perspective.

Experimentation with Mathematica suggested that for N = 1, 2, 3, 4, 5, and 6, the sum

∞∑
n=1

sincN (n)

is −1/2 plus a rational multiple of π. But for N = 7 and N = 8, the results are completely different: Mathematica
gives polynomials in π of degree 7 and 8 respectively. For example, for N = 7, we get

−1
2

+
129423π − 201684π2 + 144060π3 − 54880π4 + 11760π5 − 1344π6 + 64π7

46080
.

These results are surprising, and we explain them below. But there’s more. Further experimentation suggested
that for N = 1, 2, 3, 4, 5, and 6, (but not 7 or 8), we had

∞∑
n=1

sincN (n) = −1
2

+
∫ ∞

0

sincN (x) dx . (3)
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This too was unexpected. In the integral test for infinite series, the convergence of the integral of f(x) may
imply the convergence of the sum of f(n), but there is usually no simple relationship between the values of the
sum and the corresponding integral.

We found more examples where the sum was 1/2 less than the corresponding integral. In [5] and [8], it was
shown that, for N = 0, 1, 2, 3, 4, 5, and 6,

∫ ∞

0

N∏
k=0

sinc
(

x

2k + 1

)
dx =

π

2
(4)

but that for N = 7, the integral is just slightly less than π/2:

∫ ∞

0

sinc(x) sinc
(x

3

)
· · · sinc

( x

15

)
dx = π

(
1
2
− 6879714958723010531

935615849440640907310521750000

)
. (5)

This surprising sequence is explained by Corollary 1 of Theorem 2 in [5], which we incorporate into Theorem 2
below.

More experiments suggested that, for N = 0, 1, 2, 3, 4, 5, 6, and 7, the sums were also 1/2 less than the
corresponding integrals:

∞∑
n=1

N∏
k=0

sinc
(

n

2k + 1

)
= −1

2
+
∫ ∞

0

N∏
k=0

sinc
(

x

2k + 1

)
dx . (6)

In fact, we show in Example 1 (b) below that (6) holds for every N ≤ 40248 and fails for all larger integers!
This certainly underscores the need for caution, mentioned above.

We now turn to showing that the theorems for integrals proven in [5] imply analogues for sums. Our results
below use basic Fourier analysis, all of which can be found in [16] and [8], to explain the above sums, and others,
and to allow us to express many such sums in closed form.

2 When sums and integrals agree.

Our notation and original development in this section were based on Boas and Pollard [4], but the present more
satisfactory treatment is largely due to the kind and insightful suggestions of Mark Pinsky. See also [13] for
pertinent information about Fourier analysis.

Suppose that G is Lebesgue integrable over (−∞,∞) and define its Fourier transform g by

g(x) :=
1√
2π

∫ ∞

−∞
e−iuxG(u) du.

At any point u such that G is of bounded variation on [u − δ, u + δ] for some δ > 0 we have [16, Theorem 23]
that

1
2
{G(u+) + G(u−)} = lim

T→∞

1√
2π

∫ T

−T

eiuxg(x) dx, (7)

where G(u±) denotes limx→u± G(x).
Suppose, in addition, that G(x) = 0 for x /∈ (−α, α) for some α > 0, and that G is of bounded variation on

[−δ, δ] for some δ > 0. Then clearly

g(x) =
1√
2π

∫ α

−α

e−iuxG(u) du,
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and hence, for r = 0, 1, 2, . . ., by summing the exponential, as in [15, Theorem 5.12],

r∑
n=−r

g(n) =
1√
2π

∫ α

−α

G(u)
sin((r + 1/2)u)

sin(u/2)
du. (8)

Suppose first that 0 < α < 2π. Then

r∑
n=−r

g(n) =
1√
2π

∫ α

−α

G∗(u)
sin((r + 1/2)u)

u
du, (9)

where

G∗(u) := G(u)
u

sin(u/2)
. (10)

Since G∗ is of bounded variation on [−δ, δ] and Lebesgue integrable over (−α, α), and G∗(0+) = 2G(0+) and
G∗(0−) = 2G(0−), it follows, by a standard Jordan-type result (see the proof of Theorem 3 in [16]), that

lim
r→∞

∫ α

−α

G∗(u)
sin((r + 1/2)u)

u
du =

π

2
{G∗(0+) + G∗(0−)} = π{G(0+) + G(0−)}. (11)

The following proposition, which enables us to explain most of the above experimental identities, now follows
from (7) with u = 0, (9), (10), and (11).

Proposition 1 If G is of bounded variation on [−δ, δ], vanishes outside (−α, α), and is Lebesgue integrable
over (−α, α) with 0 < α < 2π, then

lim
r→∞

r∑
n=−r

g(n) = lim
T→∞

∫ T

−T

g(x) dx =
√

π

2
{G(0+) + G(0−)}. (12)

As a simple illustration, consider the function G that equals 1 in the interval (−1, 1) and 0 outside. The
corresponding g is given by g(x) =

√
2/π sinc(x). Then (12) shows, since sinc(x) is an even function, that

1 + 2
∞∑

n=1

sinc(n) = 2
∫ ∞

0

sinc(x) dx = π,

where the integral is an improper Riemann integral.
The prior analysis can be taken further, assuming only that G(x) = 0 for x /∈ (−α, α) for some α > 0.

Suppose first that 2π ≤ α < 4π and that G is also of bounded variation on [−2π−δ,−2π+δ] and [2π−δ, 2π+δ].
Then, by splitting the integral in (8) into three parts and making the appropriate changes of variables, we get

r∑
n=−r

g(n) =
1√
2π

∫ π

−π

G(u)
sin((r + 1/2)u)

sin(u/2)
du

+
1√
2π

∫ α−2π

−π

G(u + 2π)
sin((r + 1/2)u)

sin(u/2)
du

+
1√
2π

∫ π

2π−α

G(u− 2π)
sin((r + 1/2)u)

sin(u/2)
du.

Hence, from this we get as in the previous case that when α = 2π,

lim
r→∞

r∑
n=−r

g(n) = lim
T→∞

∫ T

−T

g(x) dx +
√

π

2
{G(2π−) + G(−2π+)}, (13)
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and when 2π < α < 4π,

lim
r→∞

r∑
n=−r

g(n) = lim
T→∞

∫ T

−T

g(x) dx

+
√

π

2
{G(2π−) + G(2π+) + G(−2π−) + G(−2π+)}. (14)

This process can evidently be continued by induction to yield that, when 2mπ < α < 2(m + 1)π with m a
positive integer, and G is of bounded variation in intervals containing the points ±2nπ, n = 0, 1, . . . ,m,

lim
r→∞

r∑
n=−r

g(n) = lim
T→∞

∫ T

−T

g(x) dx +
√

π

2
Rm, (15)

where R0 := 0 and for k > 0,

Rk :=
k∑

n=1

{G(2nπ−) + G(2nπ+) + G(−2nπ−) + G(−2nπ+)}.

Correspondingly, when α = 2mπ,

lim
r→∞

r∑
n=−r

g(n) = lim
T→∞

∫ T

−T

g(x) dx +
√

π

2
{Rm−1 + G(2mπ−) + G(−2mπ+)}. (16)

3 Applications to sinc sums.

For an application of the above analysis let

g(x) :=
N∏

k=0

sinc(akx)

with all ak > 0, and let

AN :=
N∑

k=0

ak.

The corresponding Fourier transform G is the function FN+1, with differently numbered ak, defined in
Section 5 below. As shown for example in [5] and also in [12, p. 20, Entries 5.2–5.13], G is positive and
continuous in the interval IN := (−AN , AN ) and 0 outside the closure of IN , and is of bounded variation on
every finite interval; indeed, G is absolutely continuous on (−∞,∞) when N ≥ 1. It therefore follows from (12)
along with (13) that

1 + 2
∞∑

n=1

N∏
k=0

sinc(akn) = 2
∫ ∞

0

N∏
k=0

sinc(akx) dx, (17)

provided

AN ≤ 2π when N ≥ 1, or AN < 2π when N = 0. (18)

The proviso is needed since (15) and (16) tell us that the left-hand side of (17) is strictly greater than right-hand
side when (18) doesn’t hold, since then either (i) N ≥ 1, AN > 2π, and G(±2π) > 0 or (ii) N = 0, AN ≥ 2π, and
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G(2π−) + G(−2π+) > 0, and in either case all other terms that comprise the remainder RN are non-negative.
We can go further and say that when the proviso fails the constant 1 on the left-hand side of (17) has to be
replaced by a constant C < 1 that depends only on the value of AN ; unfortunately there appears to be no
neat expression for C. We emphasize that though the case N = 0 follows from the above analysis, neither the
series nor the integral in (17) is absolutely convergent in this case. For all other values of N both are absolutely
convergent.

As is made clear in [4], this “sum=integral” paradigm is very general. However, as a perusal of [12] shows,
there are not too many “natural” analytic g for which G is as required—other than powers and other relatives
of the sinc function. Some nice examples are exhibited in [4]; often they require massaging. For example, with
G(t) :=

(
1 + eit

)α for |t| ≤ π and zero otherwise, and with α > −1, they obtain a result first found by Shisha
and Pollard:

∞∑
n=−∞

(
α

n

)
eint =

∫ ∞

−∞

(
α

u

)
eitu du =

(
1 + eit

)α
for α > −1, |t| < π.

Additionally, however, in the case of sinc integrals, as explained in [5, Theorem 1 and Remark 1], [8], and
more explicitly in [6], the right-hand term in (17) is equal to 2−NVNπ/a0, where VN is the—necessarily rational
when the ak are—volume of the part of the cube [−1, 1]N between the parallel hyperplanes

a1x1 + a2x2 + · · ·+ aNxN = −a0 and a1x1 + a2x2 + · · ·+ aNxN = a0.

Theorem 1 (Sinc Sums) One has

1
2

+
∞∑

n=1

N∏
k=0

sinc(akn) =
∫ ∞

0

N∏
k=0

sinc(akx) dx =
π

2a0

VN

2N
≤ π

2a0
(19)

where the first equality holds provided

AN =
N∑

k=0

ak ≤ 2π when N ≥ 1, or AN < 2π when N = 0. (20)

The second equality needs no such restriction. Moreover (19) holds with equality throughout provided additionally
that

AN < 2 a0. (21)

Various extensions are possible when (20) or (21) fail. The following corollary follows immediately from (19)
on making the substitution x = τt in the integral.

Corollary 1 Let τ be any positive number such that 0 < τ AN ≤ 2π when N ≥ 1, or 0 < τ AN < 2π when
N = 0. Then

τ

2
+ τ

∞∑
n=1

N∏
k=0

sinc(τakn) =
∫ ∞

0

N∏
k=0

sinc(akx) dx =
π

2a0

VN

2N
≤ π

2a0
. (22)

In particular, (22) is independent of τ in the given interval.

When (21) fails but AN−1 < 2 a0, as proven in [5, Corollary 1] we may specify the volume change:
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Theorem 2 (First Bite) Suppose that 2ak ≥ aN for k = 0, 1, . . . , N − 1 and that AN−1 ≤ 2a0 < AN , and
0 < τ AN ≤ 2π. Then

τ

2
+ τ

∞∑
n=1

r∏
k=0

sinc(τakn) =
∫ ∞

0

r∏
k=0

sinc(akx) dx =
π

2a0
for r = 0, 1, . . . , N − 1, (23)

while

τ

2
+ τ

∞∑
n=1

N∏
k=0

sinc(τakn) =
∫ ∞

0

N∏
k=0

sinc(akx) dx =
π

2a0

(
1− (AN − 2a0)N

2N−1N !
∏N

k=1 ak

)
. (24)

4 Examples and extensions.

We may now explain the original discoveries:

Example 1 (a) Let N be an integer and for k = 0, 1, . . . , N, let ak := 1/(2k+1). If N is in the range 1 ≤ N ≤ 6,
then

AN =
N∑

k=0

ak < 2a0 and AN < 2π.

Hence, for each of these N, conditions (20) and (21) of Theorem 1 hold and so we can apply that theorem to
get

1
2

+
∞∑

n=1

N∏
k=0

sinc
(

n

2k + 1

)
=
∫ ∞

0

N∏
k=0

sinc
(

x

2k + 1

)
dx =

π

2
.

Now for N = 7, condition (21) fails because

AN = 1 +
1
3

+
1
5

+
1
7

+
1
9

+
1
11

+
1
13

+
1
15

> 2a0 = 2 > AN−1 = 1 +
1
3

+
1
5

+
1
7

+
1
9

+
1
11

+
1
13

.

However, the conditions of Theorem 2 are met, namely

AN−1 =
88069
45045

≤ 2a0 < AN =
91072
45045

< 2π,

and for each k = 0, 1, . . . , N − 1, we have 2ak > aN . Therefore, we can take τ = 1 and apply equation (24) of
Theorem 2 to get

1
2

+
∞∑

n=1

7∏
k=0

sinc
(

n

2k + 1

)
=
∫ ∞

0

7∏
k=0

sinc
(

x

2k + 1

)
dx

=
π

2

(
1−

(
91072
45045 − 2

)7
267! · 1

3 ·
1
5 · · ·

1
15

)
=

π

2

(
1− 6879714958723010531

467807924720320453655260875000

)
.

(b) Let ak be as in part (a). If 7 ≤ N ≤ 40248, then
∑N

k=0 ak < 2π, so (20) holds but (21) does not. For each
of these N, Theorem 1 tells us that

1
2

+
∞∑

n=1

N∏
k=0

sinc
(

n

2k + 1

)
=
∫ ∞

0

N∏
k=0

sinc
(

x

2k + 1

)
dx <

π

2
.
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For N > 40248, the equality in the above formula fails. Indeed, equation (15) shows that

1
2

+
∞∑

n=1

N∏
k=0

sinc
(

n

2k + 1

)
>

∫ ∞

0

N∏
k=0

sinc
(

x

2k + 1

)
dx,

since the error term is necessarily strictly positive for the requisite G, which was discussed at the beginning of
the previous section. In a remarkable analysis based on random walks, Crandall [10] rigorously estimates that
the error for N = 40249 is minuscule: less than 10−226576. The integral is still less than π/2 by virtue of [5,
Theorem 1]. Moreover, all subsequent errors are provably no larger than 10−13679.

(c) Let ak := 1/(k + 1)2. Because
∑∞

k=0 ak converges with sum π2/6 which is both less than 2π and less than
2a0 = 2, Theorem 1 says that, for every N ≥ 0,

1
2

+
∞∑

n=1

N∏
k=0

sinc
(

n

(k + 1)2

)
=
∫ ∞

0

N∏
k=0

sinc
(

x

(k + 1)2

)
dx =

π

2
.

Thus, no matter how many factors we include, both sum and integral are unchanged! In fact, if the ak are the
terms of any positive infinite series that converges to a sum less than min(2π, 2a0), then for every N ≥ 0,

1
2

+
∞∑

n=1

N∏
k=0

sinc(akn) =
∫ ∞

0

N∏
k=0

sinc(akx) dx =
π

2
.

Ω

Example 2 (a) Let a0 := 1 and—to inject a little number theory—let a1, a2, . . . , a9 be the reciprocals of the
odd primes 3, 5, 7, 11, . . . , 29. Then the conditions of Theorem 2 are satisfied, so

1
2

+
∞∑

n=1

sinc(n) sinc(n/3) sinc(n/5) · · · sinc(n/23) sinc(n/29)

=
∫ ∞

0

sinc(x) sinc(x/3) sinc(x/5) · · · sinc(x/23) sinc(x/29) dx =

π

(
1
2
− 3959735161333055430365082511104170654915014306538069299939389760351849

435103498335938196749586813353939508898115607445847937714032094343748498175000

)
∼ .499999990899 π.
(b) In the same vein, if we tweak the sequence very slightly by taking the reciprocals of all the primes (i.e.,
the first term is 1/2 not 1), then we have the ‘sum plus 1/2’ and the integral equalling π only for N = 0 or 1.
For N = 2, Theorem 2 tells us each equals π(1− 1/240). However, the first equality in Theorem 1 holds until∑N

k=0 ak exceeds 2π.
We now estimate the N for which this occurs. The sum of the reciprocals of the primes diverges slowly. In

fact,
∑
{1/p : p ≤ x, p prime} is roughly log(log(x))+B, where B ∼ 0.26149 . . . is the Mertens constant (see, e.g.,

[11, pp. 35, 79, 80]). In order for this sum to exceed 2 π, x must be about y = exp(exp(2π−B)) ∼ 10179. Thus,
by the Prime Number Theorem, N ∼ y/ log(y), which is about 10176. Thus, anyone who merely tested examples
using these ak would almost certainly never find an integer N where the first equality in Theorem 1 failed.
This time Crandall [10] proves—unconditionally—the consequent error to be less than 10−(1086). Moreover,
assuming the Riemann hypothesis this upper bound reduces to 10−(10176), which is much less than one part in
a googolplex. Ω
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Example 3 Let 1 ≤ N ≤ 6, and take a0 = a1 = · · · = aN−1 = 1. Then condition (20) with N replaced by
N − 1 is satisfied, so equation (19) of Theorem 1 tells us that for each N = 1, 2, 3, 4, 5, and 6, we have

∞∑
n=1

sincN (n) = −1
2

+
∫ ∞

0

sincN (x) dx.

Moreover (see [5, Remark 1] and [8]), for each N ≥ 1 the integral is an effectively computable rational multiple
of π, the numerator and denominator of which are listed by Sloane in [14, Seq. A049330] and [14, Seq. A049330].
If N = 7, then AN−1 = 7 > 2π, so (20) with N replaced by N − 1 is no longer satisfied and, in this case, as
Example 4 shows, the sum and the integral do not differ by 1/2. Indeed, for N ≥ 7, the sums have an entirely
different quality: they are polynomials in π of degree N. Ω

We continue this discussion in the next counterexample, for which we define, for N = 1, 2, . . . ,

iN :=
∫ ∞

0

sincN (x) dx, sN :=
∞∑

n=1

sincN (n).

Example 4 (a) We saw in Example 3 that for N = 1, 2, 3, 4, 5, and 6, we have sN = iN − 1/2. By contrast
i7 = 5887π/23040, but Mathematica 6 gives

s7 = −1
2

+
43141
15360

π − 16807
3840

π2 +
2401
768

π3 − 343
288

π4 +
49
192

π5 − 7
240

π6 +
1

720
π7. (25)

Similarly, i8 = 151π/360, and Mathematica 6 gives

s8 = −1
2

+
733π

210
− 256π2

45
+

64π3

15
− 16π4

9
+

4π5

9
− π6

15
+

π7

180
− π8

5040
. (26)

Although (20) fails, we can explain these sums, and we will show how to express sN in closed form.

(b) For N ≤ 6, sN is 1/2 less than a rational multiple of π. The sudden change to a polynomial in π of degree
N is explained by the use of trigonometric identities and known Bernoulli polynomial evaluations of Fourier
series. In general, we have the following two identities, whose proofs we leave to the reader:

sin2N+1(n) =
1

22N

N+1∑
k=1

(−1)k+1

(
2N + 1

N − k + 1

)
sin
(
(2k − 1)n

)
(27)

and

sin2N (n) =
1

22N−1

(
1
2

(
2N

N

)
+

N∑
k=1

(−1)k

(
2N

N − k

)
cos(2kn)

)
. (28)

In particular, to compute s7, we start with

sin7 (n) =
35
64

sin (n)− 21
64

sin (3 n) +
7
64

sin (5 n)− 1
64

sin (7 n) . (29)

Now, for 0 ≤ x ≤ 2π,

∞∑
n=1

sin(nx)
n2N+1

=
(−1)N−1

2
(2π)2N+1 φ2N+1

( x

2π

)
(30)

and
∞∑

n=1

cos(nx)
n2N

=
(−1)N−1

2
(2π)2Nφ2N

( x

2π

)
, (31)
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where φN (x) is the Nth Bernoulli polynomial, normalized so that the high-order coefficient is 1/N !, see [15,
p. 430]. We divide (29) by n7 and sum over n. Then, we would like to use (30) four times with N = 3 and
x = 1, 3, 5, 7. But there is a hitch: (30) is not valid for x = 7 because x > 2π. So instead of 7 we use 7− 2π. It
is this value, 7− 2π, substituted into the Bernoulli polynomial, that causes s7 to be a 7th degree polynomial in
π. For s13, for example, we would have to use x = 1, 3, 5, 7− 2π, 9− 2π, 11− 2π, and 13− 4π. For N ≥ 7, we
would end up with an Nth degree polynomial in π.

(c) With more effort this process yields a closed form for each such sum. First, for N = 7 we have observed
that

−64 sin7(n) = sin(7n)− 7 sin(5n) + 21 sin(3n)− 35 sin(n), (32)

and that
∞∑

n=1

sin(nx)
n7

= 64π7φ7

( x

2π

)
for 0 ≤ x ≤ 2π, (33)

where

φ7(x) :=
1

30240
x− 1

4320
x3 +

1
1440

x5 +
1

5040
x7 − 1

1440
x6 (34)

is the Bernoulli polynomial of order seven. Note that in (32), 7 is the only coefficient that falls outside the
interval (0, 2π). Substituting (33) into (32) yields (25), provided instead of simply replacing x with 7, we replace
x with 7− 2π when dealing with the sin(7n) term in (32), to stay in the interval where (33) is valid. The same
procedure, with versions of (33) and (32) using cosines in place of sines, yields (26). An interesting additional
computation shows that

s7 +
1
2
− i7 = 64π7

{
φ7

(
7− 2π

2π

)
− φ7

(
7
2π

)}
. (35)

In other words the difference between s7 + 1/2 and i7 resides in the one term in (32) with coefficient outside
the interval (0, 2π).

(d) Let us use the fractional part
{z}2π :=

z

2π
−
⌊ z

2π

⌋
.

In like fashion, we ultimately obtain pretty closed forms for each sM .
For M odd:

sM =
(−1)

M+1
2

M !
πM

M+1
2∑

k=1

(−1)k+1

(
M

M+1
2 − k

)
φM ({2k − 1}2π) .

For M even:

sM =
(−1)M/2

M !
πM

M
2∑

k=0

(−1)k+1

δk,0 + 1

(
M

M
2 − k

)
φM ({2k}2π) ,

where, as usual, δk,0 = 1 when k = 0, and 0 otherwise. Remarkably, these formulae are rational multiples of π
exactly for M ≤ 6 and thereafter are polynomials in π of degree M . Ω

Many variations on the previous themes are possible. For example, one may insert powers of cosine as in [5,
Thm. 3], although it does not seem possible to extend Theorem 1 to this case. In simple cases it is, however,
easy to proceed as follows:
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Example 5 Let us introduce the notation

si,j :=
∞∑

n=1

sinc(n)i cos(n)j .

We discovered experimentally that s1,1 = s1,2 = s2,1 = s3,1 = s2,2 = π/4 − 1/2 and that in each case
the corresponding integral equals π/4. Likewise s1,3 = s2,3 = s3,3 = s1,4 = s2,4 = 3π/16 − 1/2 while the
corresponding integrals are equal to 3π/16. Except for s1,2, s2,2, s2,3, and s1,4, the identity sinc(n) cos(n) =
sinc(2n) allows us to apply Theorem 1. In the remaining four cases, we may use the method of Example 4 to
prove the discovered results, but a good explanation has eluded us. Richard Crandall [9] has, however, recently
pointed out that Poisson summation will produce a finite closed form for each si,j . Ω

5 An extremal property.

We finish with a useful Siegel-type lower bound, [2, Exercise 8.4], giving an extremal property of the sinck

integrals. This has applications to giving an upper bound on the size of integral solutions to integer linear
equations, [1]. In [1] it was intimated that the proof was easy; it appears not to be so:

Theorem 3 (Lower Bound) Suppose a0 ≥ ak > 0 for k = 1, 2, . . . , n. Then∫ ∞

0

n∏
k=0

sinc(akx) dx ≥
∫ ∞

0

sincn+1(a0x) dx. (36)

In view of Corollary 1 we then have the following:

Corollary 2 Suppose a0 ≥ ak > 0 for k = 1, 2, . . . , n and 0 < τAn < 2π. Then

τ

2
+ τ

∞∑
r=1

n∏
k=0

sinc(τakr) =
∫ ∞

0

n∏
k=0

sinc(akx) dx ≥
∫ ∞

0

sincn+1(a0x) dx. (37)

Proof of Theorem 3. Let

τn :=
∫ ∞

0

n∏
k=0

sinc(akx) dx, µn :=
∫ ∞

0

sincn+1(a0x) dx,

and, for a > 0, let

χa(x) :=

 1, if |x| < a;
1/2, if |x| = a;
0, if |x| > a.

Further, let

F0 :=
1
a0

√
π

2
χa0 , Fn := (

√
2π)1−nf1 ∗ f2 ∗ · · · ∗ fn,

where

fn :=
1
an

√
π

2
χan

,

and * indicates convolution, i.e.,

fj ∗ fk(x) :=
∫ ∞

−∞
fj(x− t)fk(t) dt.
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Then (see [5], and [12, p. 20, Entry 5.2]) F0 is the Fourier transform of sinc(a0x) and, for n ≥ 1, Fn is the
Fourier transform of

∏n
k=1 sinc(akx). In addition, for n ≥ 1, Fn(x) is an even function which vanishes on

(−∞,−σn] ∪ [σn,∞) and is positive on (−σn, σn), where σn := An − a0 = a1 + a2 + · · ·+ an. Furthermore, for
n ≥ 1, Fn(x) is monotone nonincreasing on (0,∞). Hence, by a version of Parseval’s theorem (see [5]),

τn =
∫ ∞

0

Fn(x)F0(x) dx =
1
a0

√
π

2

∫ min(σn,a0)

0

Fn(x) dx for n ≥ 1. (38)

Observe that, for n ≥ 2,

Fn =
1√
2π

Fn−1 ∗ fn,

and hence that, for y > 0,∫ y

0

Fn(v) dv =
1√
2π

∫ y

0

dv

∫ ∞

−∞
Fn−1(v − t)fn(t) dt

=
1

2an

∫ y

0

dv

∫ an

−an

Fn−1(v − t) dt

=
1

2an

∫ an

−an

dt

∫ y

0

Fn−1(v − t) dv =
1

2an

∫ an

−an

dt

∫ y−t

−t

Fn−1(u) du.

Thus, we determine that ∫ y

0

Fn(v) dv =
∫ y

0

Fn−1(u) du + I1(an) + I2(an), (39)

where, for x > 0,

I1(x) :=
1
2x

∫ x

−x

dt

∫ 0

−t

Fn−1(u) du and I2(x) :=
1
2x

∫ x

−x

dt

∫ y−t

y

Fn−1(u) du.

Now I1(x) = 0 since
∫ 0

−t
Fn−1(u) du is an odd function of t, and for y ≥ x,

I2(x) =
1
2x

∫ x

0

dt

∫ y−t

y

Fn−1(u) du +
1
2x

∫ 0

−x

dt

∫ y−t

y

Fn−1(u) du =
1
2x

∫ x

0

φ(t) dt, (40)

where

φ(t) :=
∫ y+t

y

Fn−1(u) du−
∫ y

y−t

Fn−1(u) du ≤ 0 for 0 ≤ t ≤ y, (41)

since Fn−1(u) is monotonic nonincreasing for u ≥ 0. Observe that φ′(t) = Fn−1(y + t) − Fn−1(y − t) ≤ 0 for
0 ≤ t ≤ y, apart from at most two exceptional values of t when n = 2. Hence

I ′2(x) =
1
x2

∫ x

0

(
φ(x)− φ(t)

)
dt =

1
x2

∫ x

0

dt

∫ x

t

φ′(u) du ≤ 0,

and so

I2(x) is nonincreasing for 0 ≤ x ≤ y. (42)

Our aim is to prove that τn ≥ µn. Since, by Theorem 1, this inequality automatically holds when a0 ≥ σn, we
assume that a0 < σn. Note that in case n = 1 the hypothesis a0 ≥ a1 = σ1 immediately implies the desired
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inequality. Assume therefore that n ≥ 2 in the rest of the proof. Suppose a0, a1, . . . , an are not all equal, and
re-index them so that a0 remains fixed and an < an−1 ≤ a0. If an is increased to an−1, it follows from (42)
with x = an and y = a0 that I2(an) is not increased and hence, by (38), and (39) with y = a0, that τn is not
increased. Continuing in this way, we can coalesce all the ak’s into the common value a0 without increasing the
value of τn. This final value of τn is, of course, µn, and so the original value of τn satisfies τn ≥ µn, as desired.Ω

Perhaps a somewhat analogous version of Theorem 3 holds for sums?
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