CH MathResources Inc. October 1 ${ }^{\text {st }} 2008$

What's New, What's Possible, What's Coming ..

Jonathan Borwein, frsc \qquad
rwein $\%$ anada Research Chair in Collaborative Technology, Dahous
Visiting Professor Laureate, University of Newcastle
"intuition comes to us much earlier and with much less outside influence than formal arguments which we cannot really understand unless we have reached a relatively high level of logical experience and sophistication."

Abstract of Presentation

I will describe and illustrate my experiences over the past two-and-a-bit decades in using, designing and trying to sell mathematical software

I will do this from the perspective(s) of a researcher, an educator, a consultant, and of a partner in a small but robust business

Outline of Presentation

0. Early Chronology of a Company
I. The Changing Research Landscape
II. New Ways of Doing Mathematics
III. New Ways of Seeing Mathematics
IV. Amazing New Web Services

products.

I. Changing Research Landscape: a new triangle

HPC Needs in Canada or Oz

Moore's Law and its Implications

"The complexity for minimum component costs has increased at a rate of roughly a factor of two per year.

- now taken as "every 18 months to 2 years"

Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for a east 10 years. That means by 1975, the number of
components per integrated circuit circuit can cost will be n be built on a single wafer.

Gordon Moore (Intel) "Cramming more components onto Electronic Circuits", Electronics Magazine 19 April 1965
nprecedented and expected to continue for 10-20 years.

NERSC's 6000 cpu Seaborg in 2004 (10Tflops/sec) - we need new software paradigms for 'bigga-scale' hardware

IBM BlueGene/L at LANL

IBM Computer Achieves Petaflop Performance 6/9/2008

A National Nuclear Security Administration (NNSA) supercomputer has achieved an operational rate of 1,000 trillion calculations per second, or 1 petaflop, making the Roadrunner -which the NNSA commissioned IBM Corp. to build in 2006 for around $\$ 130$ million -- the world's fastest computer, the agency announced today.

0.5 GB DDR

 ($5 \times$ Canada or $8 \times \mathrm{Oz}$)Things we can't model here include:
Self assembling wires 2 nm apart (HP Labs)

"It says it's sick of doing things like inventories and payrolls, and it wants to make some breakthroughs in astrophysics."

II. New Ways of Doing Math

- and related subjects: Computer Science, Statistics, Engineering, all Sciences, every other subject for learning or for research
- Experimentally on the Computer
- Visual or Haptic or Acoustic Output
- Simulations and Emersions
- With Web-services, Databases, Wikis,
- Marvelous support tools for the Classroom
- also New Ways of Collaborating

Jon Borwein's Mathematics Portal

The following is a list of useful math tools. The distinction between categories is

Utilities (General)

The On-Line Encuclosed
2. 1 SC2.0: The Inverse Symbolic Calceulator sence:
3. 30 Function Grapher
5. The Knot Plot Site

Utilities (Special)

6. EZ Face: Evaluation of Euler Sums and Multiple Zeta Values 7. GraPHedron: Automated and Computer Assisted Conjectures in Graph Theory
7. Symbelic and Numeric Convex Analysis Tonts Eigenproblems

Reference

NiST Digital Library of Mathematical Functions(X)
11. Experimental Mathematics Website
12. Numbers, Constants, and computation
13. Numbers: the Competition

Math + Physics = Computing ?

- En français

Content Dominates Form

III. New Ways of Seeing Math

- The Colour Calculator
- numbers as pictures
- The Inverse Calculator
- numbers go in and symbols come out
- The Top Ten Numbers Website

NUMBERS

- All at http://ddrive.cs.dal.ca/~isc/portal

A Colour and an Inverse

 Calculator (1995 \& 2007)
Inverse Symbolic Computation

 inferring mathematical structure from numerical data Mixes large table lookup, integer relation methods and intelligent preprocessing - needs micro-parallelism- It faces the "curse of exponentiality"
- Implemented as identify in Maple 9.5 invense symeouccalculaton

When is a Movie an Interactive Proof? The Perko Pair 10_{161} and 10_{162}
are two adjacent 10-crossing knots (1900)

- first shown to be the same by Ken Perko in 1974
- and beautifully made dynamic in KnotPlot (open source-ish)

A Movie that Teaches Beautifully

"What it comes down to is our software is too hard and our hardware is too soft."

J.M. Borwein and D.H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century, A.K. Peters, 2nd expanded edition, 2008 R. Girgensohn, Experimentation in Mathematics: Computational
D.H. Bailey and J.M Borwein, "Experimental Mathematics: Examples D.H. Bailey and J.M Borwein, "Experimental Mathematics: Examples,
Methods and Implications," Notices AMW, 52 No. 5 (2005), 502 -514.
J. Borwein, D. Bailey, N. Calkin, R. Girgensohn, R. Luke, and V. Moll, J. Borvein, D. Bailey, N. Calkin, R. Girgensohn, R. Luke,
Experimental Mathematics in Action, A.K. Peters, 2007.

Jon Borwein and Keith Devlin, The Computer as Crucible, A.K. Peters, November, 2008.
"The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it." J. Hadamard quoted at length in E. Borel, Lecons sur la theorie des fonctions, 1928.

