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ABSTRACT. In a recent paper we have shown that most non-expansive Lip-
schitz functions (in the sense of Baire’s category) have a maximal Clarke subd-
ifferential. In the present paper, we show that in a separable Banach space the
set of non-expansive Lipschitz functions with a maximal Clarke subdifferential is
not only of generic, but also staunch.
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1 Introduction and Definitions

Lipschitz functions with maximal subdifferentials provide counter-examples in nonsmooth
analysis and differentiability theory. In a recent paper [1], we showed that the set of Lipschitz
functions with maximal subdifferentials is residual in the space of all non-expansive functions.
The purpose of this note is to strengthen this by showing that, in a separable-setting the set
of all non-expansive Lipschitz functions with maximal subdifferentials is not only of residual
but also staunch, by which we mean the complement of the set is σ-porous. We now recall
the appropriate notion of porosity.

Let (Y, d) be a complete metric space. We denote by B(y, r) the closed ball of center
y ∈ Y and radius r > 0. A subset E ⊂ Y is called porous in (Y, d) if there exist 0 < α ≤ 1
and r0 > 0 such that for each 0 < r ≤ r0 and each y ∈ Y , there exists z ∈ Y for which

B(z, αr) ⊂ B(y, r) \ E. (1)

A subset of the space Y is called σ-porous in (Y, d) if it is a countable union of porous subets
in (Y, d). All σ-porous sets are of the first category. If Y is a finite dimensional Euclidean
space, then σ-porous sets are of Lebesgue measure 0. The class of σ-porous sets is much
smaller than the class of sets which have measure 0 and are of the first category. In fact,
every complete metric space without isolated points contains a closed nowhere dense set
which is not σ-porous [6].

Throughout, X is a separable Banach space with norm ‖ · ‖, and its topological dual is
denoted by X∗ with dual unit ball B∗. We use SX to denote the unit sphere of X. Let
A ⊂ X be a bounded open convex set. For a real-valued f : A → R we say that f is
K-Lipschitz on A if K > 0 and |f(x)− f(y)| ≤ K‖x− y‖ for all x, y ∈ A. When K = 1, f
is called nonexpansive. The Clarke derivative of f at point x in the direction v is given by

f ◦(x; v) := lim sup
y→x
t↓0

f(y + tv)− f(y)

t
,

while the Clarke subdifferential ∂cf is given by:

∂cf(x) := {x∗ ∈ X∗| 〈x∗, v〉 ≤ f ◦(x; v) for all v ∈ X}.

Note that f ◦(x; v) is upper semicontinuous as a function of (x, v). Being nonempty and
weak∗ compact convex valued, the multifunction ∂cf : A → 2X∗

is norm-to-weak∗ upper
semicontinuous. Detailed properties about Clarke subdifferentials can be found in [3], which
is a sort of bible for nonsmooth analysts.

2 The Main Result

Let C be a weak∗–compact convex subset of X∗. Recall that the support function of C is
the function σC : X → R defined by

σC(v) := sup{〈x∗, v〉| x∗ ∈ C}.
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σC is sublinear, and Lipschitz with Lipschitz rate K := sup{‖x∗‖ : x∗ ∈ C}. Consider

NC := {f | f : A → R and f(x)− f(y) ≤ σC(x− y) for all x, y ∈ A}.
Since each f ∈ NC satisfies f(x)− f(y) ≤ K‖x− y‖ for all x, y ∈ A, NC is a special class of
K–Lipschitz functions defined on A.

For f, g ∈ NC , set
ρ(f, g) := sup

x∈A
|f(x)− g(x)|.

One can easily verify that (NC , ρ) is a complete metric space.
Our central result may now be stated.

Theorem 1 Assume that X is a separable Banach space and let A ⊂ X be a bounded open
convex subset of X. In the complete metric space (NC , ρ), there exists a subset G such that
NC \G is σ-porous in (NC , ρ), and such that each f ∈ G has ∂cf ≡ C on A.

Proof. Fix x ∈ A, v ∈ SX and a natural number k. Consider

G(x, v, k) :=

{
f ∈ NC | f(x + tv)− f(x)

t
− σC(v) ≥ −1

k
for some 0 < t < 1

k

}
.

We shall show that NC \G(x, v, k) is porous in (NC , ρ).
According to (1), it suffices to find 0 < α ≤ 1 such that for each r ∈ (0, 1/k) and each

f ∈ NC there exists h2 ∈ NC for which

B(h2, αr) ⊂ B(f, r) ∩G(x, v, k).

Of course, here h2 relies on r, but α only relies on (x, v, k).
To meet this goal, we define h : X → R by

h(x̃) := f(x)− r

4
+ σC(x̃− x),

and set
h1 := min{f, h}, h2 := max{f − r

2
, h1}. (2)

Clearly, h2 ∈ NC and f − r/2 ≤ h2 ≤ f, so that

ρ(h2, f) ≤ r

2
.

Set

α :=
min{dX\A(x), 1}

8(σC(v) + σC(−v) + 1)
· 1

k
. (3)

If we let

t :=
min{dX\A(x), 1}

4(σC(v) + σC(−v) + 1)
r, (4)

where dX\A(x) := inf{‖x − y‖ : y ∈ X \ A}, then 0 < t < 1/k and x + tv ∈ A. Note that
dX\A(x) > 0 because A is open and x ∈ A. Now

h(x + tv) = f(x)− r

4
+ tσC(v).
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Since
f(x)− f(x + tv) ≤ σC(−tv),

we have
f(x + tv) ≥ f(x)− σC(−tv) = f(x)− tσC(−v).

The choice of t implies

t(σC(v) + σC(−v)) ≤ r

4
,

so that
f(x)− r

4
+ tσC(v) ≤ f(x)− tσC(−v).

It follows that h(x + tv) ≤ f(x + tv), and so h1(x + tv) = h(x + tv) by (2). On the other
hand,

f(x + tv)− r

2
≤ f(x)− r

4
+ tσC(v),

since f(x + tv)− f(x) ≤ σC(tv). Therefore, by (2),

h2(x + tv) = f(x)− r

4
+ tσC(v) and h2(x) = f(x)− r

4
.

This means
h2(x + tv)− h2(x)

t
= σC(v). (5)

Assume that g ∈ B(h2, αr). We will show that g ∈ G(x, v, k). Indeed, by (5), (4), (3),

g(x + tv)− g(x)

t
− σC(v)

=
(g − h2)(x + tv)− (g − h2)(x)

t
+

h2(x + tv)− h2(x)

t
− σC(v)

≥ −2αr

t
= −2αrt−1 = −2αr

[
min{dX\A(x), 1}

4(σC(v) + σC(−v) + 1)
r

]−1

= −α · 8(σC(v) + σC(−v) + 1)

min{dX\A(x), 1} = −1

k
.

Therefore,
{g ∈ NC : ρ(g, h2) ≤ αr} ⊂ G(x, v, k). (6)

If ρ(g, h2) ≤ αr, then

ρ(g, f) ≤ ρ(g, h2) + ρ(h2, f) ≤ αr +
r

2
≤ r

2
+

r

2
= r.

Thus
{g ∈ NC : ρ(g, h2) ≤ αr} ⊂ {g ∈ NC : ρ(g, f) ≤ r}.

When combined with (6), this inclusion implies that

NC \G(x, v, k) is indeed porous in (NC , ρ). (7)
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Now let {xn : n ≥ 1} be norm dense in A, {vm : m ≥ 1} be norm dense in SX . Set

G :=
∞⋂

n=1

∞⋂

m=1

∞⋂

k=1

G(xn, vm, k).

In view of (7) and that

NC \G =
∞⋃

n=1

∞⋃

m=1

∞⋃

k=1

(NC \G(xn, vm, k)),

the set NC \ G must be σ-porous in (NC , ρ). If f ∈ G, then for each xn, vm, k, we have
f ∈ G(xn, vm, k); that is,

f(xn + tn,m,kvm)− f(xn)

tn,m,k

− σC(vm) ≥ −1

k
,

for some 0 < tn,m,k < 1
k
. When k →∞, from the definition of f ◦ it follows that

f ◦(xn; vm) ≥ lim sup
t↓0

f(xn + tvm)− f(xn)

t
≥ σC(vm).

For every x ∈ A and v ∈ SX , we may find subsequences (xn) and (vm) such that xn → x
and vm → v. By the upper semicontinuity of f ◦ and continuity of σC , we get

f ◦(x; v) ≥ σC(v). (8)

Since f ∈ NC , for every y ∈ A, t > 0,

f(y + tv)− f(y) ≤ σC(tv).

Dividing both sides by t, and taking the lim sup as y → x and t ↓ 0 produces

f ◦(x; v) ≤ σC(v).

Together with (8), we obtain

f ◦(x; v) = σC(v) for x ∈ A, v ∈ SX .

Dually, ∂cf(x) = C for every x ∈ A, and the proof of the theorem is complete. 2

Observe that

NB∗ := {f | f : A → R is nonexpansive with respect to ‖ · ‖}.

Theorem 1 gives:

Corollary 1 In the space of nonexpansive functions, (NB∗ , ρ), the set

{f ∈ NB∗| ∂cf ≡ B∗ on A},

has a σ-porous complement in (NB∗ , ρ).
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It is well-known that every locally Lipschitz function f on an open subset A of a separable
Banach space X is Gâteaux differentiable everywhere on A except for possibly a Haar-null
subset. We need a result due to Giles and Sciffer [4].

Lemma 1 Let f : A → R be a locally Lipschitz function on an open subset A of a separable
Banach space X. Then the set

{x ∈ A| f+(x; v) = f ◦(x; v) for all v ∈ X},

is residual in A. Here

f+(x; v) := lim sup
t↓0

f(x + tv)− f(x)

t
.

Combining Corollary 1 with Lemma 1 gives the following result.

Corollary 2 In the space of nonexpansive functions, (NB∗ , ρ), the set

{f ∈ NB∗ | f is Gâteaux differentiable at most on a first category subset of A},

has a σ-porous complement in (NB∗ , ρ).

Proof. Let f ∈ NB∗ such that ∂cf ≡ B∗ on A. Consider the set

Sf := {x ∈ A| f+(x; v) = f ◦(x; v) for all v ∈ X}.

By Lemma 1, Sf is a residual set in A. If f is Gâteaux differentiable at x, then f+(x; v) =
〈∇f(x), v〉 for every v ∈ X, and so x 6∈ Sf since ∂cf(x) = B∗. Therefore, such an f is at
most Gâteaux differentiable on A \ Sf , which is a first category subset in A. Since the set

{f ∈ NB∗| ∂cf ≡ B∗ on A},

has a σ-porous complement in (NB∗ , ρ) by Corollary 1, the result is proved. 2

Finally, for various generic aspects of Lipschitz functions with maximal Clarke subdiffer-
entials on general Banach spaces, we refer readers to [2]
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