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The Surprise Examination or Unexpected Hang-
ing Paradox has long fascinated mathematicians
and philosophers, as the number of publications
devoted to it attests.

For an exhaustive bibliography on the
subject, the reader is referred to [1].

Herein, the optimization problems arising from
an information theoretic avoidance of the Para-
dox are examined and solved.

They provide a very satisfactory application of
both the Kuhn-Tucker theory and of various
classical inequalities and estimation techniques.

¤ Although the necessary convex analytic con-
cepts are recalled in the course of the presenta-
tion, some elementary knowledge of optimiza-
tion is assumed.

Those without this background may sim-
ply skip a couple of proofs and few tech-
nical details.
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INFORMATION MEASURE OF SURPRISE

Tim Chow’s [3] version of the Paradox:

A teacher announces in class that an

examination will be held on some day

during the following week, and more-

over that the examination will be a sur-

prise. The students argue that a sur-

prise exam cannot occur. For suppose

the exam were on the last day of the

week. Then on the previous night, the

students would be able to predict that

the exam would occur on the following

day, and the exam would not be a sur-

prise. So it is impossible for a surprise

exam to occur on the last day.
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But then a surprise exam cannot oc-

cur on the penultimate day, either, for

in that case the students, knowing that

the last day is an impossible day for a

surprise exam, would be able to predict

on the night before the exam that the

exam would occur on the following day.

Similarly, the students argue that a sur-

prise exam cannot occur on any other

day of the week either. Confident in

this conclusion, they are of course to-

tally surprised when the exam occurs (on

Wednesday, say). The announcement is

vindicated after all. Where did the stu-

dents’ reasoning go wrong?
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In this work, we study two optimization prob-

lems arising from an entropic approach to max-

imizing surprise. Such an approach was pro-

posed in outline by Karl Narveson [3, p. 49].

We do not discuss here the various approaches

to the logical resolution of the paradox itself;

one may consult [1,3].

¤ Rather we ask the question:

What should be the probability distrib-

ution of an event occurring once every

week so that it maximizes the surprise it

creates?

¤ This requires us to find a measure of surprise.
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¤ Let us start by posing an information theo-

retic counterpart of the paradox:

during a period of m days an event (such

as a test given by a teacher or a surprise

tax audit) occurs with probability pi on

day i = 1, . . . , m.

We wish to find a probability distribution that

maximizes the average surprise caused by the

event when it occurs.

¤ We consider a measure of surprise analogous

to the one used in the celebrated definition of

the Shannon entropy [2,4,6].
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¤ The surprise on day i is the negative of the

logarithm of the probability the event occurs on

day i given that it has not occurred so far.

¤ As in the classical definition, − log p is used to

measure the surprise associated with an event

of probability p, which is also a measure of how

much we learn if it occurs.

¤ The logarithm makes the measure additive:

the information associated with independent events

should sum up when they both occur.

¤ The use of conditional probabilities introduces

some causality: it accounts for what is already

known of the previous days.
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The event ‘test occurs on day i’ is simply de-

noted by i, and its probability is denoted by P (i)

or pi. The event ‘test does not occur on day i’

will be denoted by ∼i.

¤ Thus, we need to maximize:

−
m∑

i=1

P (i) logP
(
i | ∼1, . . . ,∼(i− 1)

)
. (1)

Using Bayes’ formula for conditional probabili-

ties, we obtain an explicit formula:

P
(
i | ∼1, . . . ,∼(i− 1)

)

=
P

(
∼1, . . . ,∼(i− 1)| i

)
P (i)

P
(
∼1, . . . ,∼(i− 1)

)

=
P (i)

1−
(
P (1) + · · ·+ P (i− 1)

)

=
P (i)

P (i) + · · ·+ P (m)
.
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¤ We are led to the next optimization problem:

(Pm) inf {Sm(p) | p ∈ Rm, 1 = 〈u , p〉} (2)

Here, u is the m−vector of 1’s and:

¤ Sm is the (m-dimensional) surprise function

Sm(p) :=
m∑

j=1

pj log
pj

1

m

∑

i≥j

pi

−
m∑

j=1

pj.

More precisely,

Sm(p) :=
m∑

j=1

h


pj,

1

m

m∑

i=j

pi


 , p ∈ Rm,

where h is defined on R2 by

h(x, y) :=





x log
x

y
− x if x > 0 and y > 0,

0 if x = 0 and y ≥ 0,

+∞ otherwise.
(3)
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¤ For all p satisfying the constraint in (2), Sm(p)

differs from the negative of the quantity in (1)

only by a constant.

The factor m−1 makes subsequent com-

putations more aesthetic and the limit

analysis more harmonious.

¤ Note that Sm(p) can be viewed as the Kullback-

Leibler information measure of p relative to its

(normalized) tail q:

q := (q1, . . . , qm) with

qj := 1
m

∑m
i=j pi, j = 1, . . . , m.

(4)
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The Kullback-Leibler information measure [2, 5]
is an extension of Boltzmann-Shannon entropy.
It is also called the relative information measure,
cross-entropy or I-divergence.

Given two probability measures P and
Q, the relative information of P with re-
spect to Q is

K(P ||Q) :=
∫ (

dP
dQ log dP

dQ − dP
dQ

)
dQ

=
∫ (

log dP
dQ − 1

)
dP

if P is absolutely continuous with re-
spect to Q, and K(P ||Q) := +∞ oth-
erwise, [5].

¤ For an extended discussion on the Maximum
Entropy Principle, one may consult [4] and ref-
erences therein.

¤ Also of interest is the following continuous
time formulation of the above problem.
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We suppose that the event occurs at some point t

in the time interval [0, T ], with probability den-

sity p(t).

¤ By analogy with the discrete case, we con-

sider the following optimization problem:

(P) inf
{
S(p)

∣∣∣ p ∈ L1

(
[0, T ]

)
, 1 = 〈u, p〉

}
(5)

in which the surprise function S is the functional

defined on L1

(
[0, T ]

)
by

S(p) :=
∫ T

0
h

(
p(t),

1

T

∫ T

t
p(s) ds

)
dt,

and u ≡ 1 [0, T ].

As above h is defined by

h(x, y) :=





x log
x

y
− x if x > 0 and y > 0,

0 if x = 0 and y ≥ 0,

+∞ otherwise.
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WHAT is

Boltzmann (1844-1906) Shannon (1916-2001)
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WHAT is ENTROPY?

Despite the narrative force that the concept of entropy

appears to evoke in everyday writing, in scientific writ-

ing entropy remains a thermodynamic quantity and a

mathematical formula that numerically quantifies dis-

order. When the American scientist Claude Shannon

found that the mathematical formula of Boltzmann de-

fined a useful quantity in information theory, he hesi-

tated to name this newly discovered quantity entropy

because of its philosophical baggage. The mathemati-

cian John Von Neumann encouraged Shannon to go

ahead with the name entropy, however, since “no one

knows what entropy is, so in a debate you will always

have the advantage.”

• 19C: Boltzmann—thermodynamic disorder

• 20C: Shannon—information uncertainty

• 21C: JMB—potentials with superlinear growth
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SURPRISINGLY, SURPRISE IS CONCAVE

¤ We now establish the convexity of (the neg-

ative of) our measure of surprise. An extended

real-valued function on Rn is closed (convex) if

its epigraph (the set of points which are above

or on its graph) is closed (convex) in Rn+1.

¤ The domain of a convex function f is the

set of points where it is less than +∞, denoted

by dom f .

¤ If a convex function is not identically +∞
and is nowhere −∞ (such functions are proper),

then being closed is the same as being lower

semi-continuous.
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¤ Given any function f on Rn (convex or not),

the convex conjugate of f is the function

f?(ξ) := sup {〈x , ξ 〉 − f(x) | x ∈ Rn}

for ξ ∈ Rn.

It is easily shown that f? is always closed and

convex [2, 7]. Furthermore, if f is closed, proper,

and convex, then so is f? and the bi-conjugate

f?? := (f?)? is f itself [2, 7].

Even without this theoretical underpin-

ning, computation of f as a double-conjugate

provides an accessible way of establish-

ing both convexity and semi-continuity.
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Lemma 1 The function h defined in (3) is closed

and convex.

Proof. One may directly show that h is the

convex conjugate of the indicator function

δ ((ξ, η) | C ) :=

{
0 if (ξ, η) ∈ C,

+∞ otherwise,

where C is the convex set
{
(ξ, η) ∈ R2|η ≤ − exp ξ

}
.

This proves that h is closed and convex.

Convexity of h can also be derived from

the easy fact that, for any interval I, a

function

(x, y) 7→ y f(x y−1)

is convex on I× (0,∞) if and only if f is

convex on I. [A ‘bad’ way is to check the

Hessian matrix is positive semi-definite.]
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¤ Figure 1 displays h.

Using Lemma 1, we deduce that Sm and S are

convex. Indeed, we have

Sm(p) =
∑m

i=1 h(pi, [Jp]i) and

S(p) =
∫ T
0 h

(
p(t), [J p](t)

)
dt,

in which J is the (m×m)-matrix whose entries

are m−1 on and above the diagonal and 0 else-

where, and J : L1([0, T ]) → C([0, T ]) is the linear

mapping defined by

[J p](t) :=
1

T

∫ T

t
p(s) ds. (6)

In passing, we recall that the composi-

tion of a convex function with an arbi-

trary linear mapping is convex.
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Figure 1. Graph of (x, y) 7→ x log
x

y
− x.
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DISCRETE TIME ANALYSIS

Constrained optimization problems such as (2)

are traditionally approached using concepts from

duality theory, which flows from the theory of

Lagrange multipliers.

Roughly speaking, duality theory reduces

constrained optimization problems to sim-

pler or unconstrained ones.

¤ A modern version of duality theory is posed

in the language of Fenchel conjugation [2, 7].

We recall some additional basic facts. Let f

be a closed proper convex function on Rn, let A

be an (m× n)-matrix, and let y ∈ Rm.

18
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We consider the linearly constrained optimiza-

tion problem

(P) inf {f(x) | x ∈ Rn, y −Ax = 0} . (7)

¤ We denote the optimal value of (P) by V (P),

the feasible set by F (P) and the solution set

by S(P). Thus,

F (P) := {x|y −Ax = 0}
and

S(P) := {x ∈ F (P)|f(x) = V (P)} .
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¤ The Lagrangian of (7) is the function

L(λ,x) := f(x) + 〈λ , y −Ax〉 ,

for λ ∈ Rm, x ∈ Rn. For a given λ, L(λ,x) can

be regarded as a “penalized” version of f .

Each component of λ fixes the price

(positive or negative) to be paid if the

corresponding constraint is violated.

¤ Under favourable circumstances, it is possi-

ble to find a particular value λ̄ of λ such that

minimizers of L(λ̄, ·) also solve (7). Such a λ̄ is

then called a Lagrange Multiplier or a shadow

price.
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¤ Now minimizing L(λ̄, ·) is an unconstrained

problem (save for any implicit constraints im-

posed by dom f .)

We can now state the Kuhn-Tucker Theorem

which provides necessary and sufficient condi-

tions (on λ and x) for x to be a solution of (7),

[7] or [2].

Theorem 1 (Kuhn-Tucker) Suppose V (P) 6=
−∞ and that

(CQ) F (P) ∩ int dom f 6= ∅.

Then, the following are equivalent:

(i) x ∈ S(P);

(ii) supL( · ,x) = L(λ̄,x) = inf L(λ̄, ·) for some

λ̄;

(iii) x ∈ F (P) and A?λ̄ ∈ ∂f(x) for some λ̄.
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¤ In condition (iii), A? is the matrix transpose

of A and ∂f(x) denotes the subdifferential of f

at x, i.e., the set of subgradients of f at x.

¤ Precisely, a vector ξ ∈ Rn is a subgradient

of f at x if the subgradient inequality

f(z) ≥ g(z) := f(x) + 〈ξ, z− x〉

holds for all z ∈ Rn.

If f is convex and differentiable at x, ∇f(x) is

the unique subgradient of f at x, and conversely.

• In the words of Rockafellar, the subgradient in-

equality says that “the graph of the affine func-

tion g is a non-vertical supporting hyperplane to

the epigraph of f at (x, f(x)).” [7].
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¤ Points (λ̄,x) satisfying condition (ii) are said

to be saddle points of L.

The requirements in (iii) are a form of the Kuhn-

Tucker conditions. Notice that, in condition (ii),

λ̄ appears as the maximizer of the (concave)

dual function

D(λ) := inf L(λ, ·).

· · ·
¤ We now return to the study of Problem (2).

The Lagrangian of (2) is

L(p, λ) := Sm(p) + λ(1− 〈u , p〉),
for p ∈ Rm, λ ∈ R.
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Theorem 1 tells us that p is a solution for (2)

if and only if:

(α) 0 = 1− 〈u,p〉;

(β) for some λ̄ ∈ R 0 ∈ ∂Sm(p)+λ̄ ∂
[
1−〈u, · 〉

]
(p).

Indeed, one can check that V (Pm) 6= −∞ and

that (Pm) has a feasible solution in

int domSm = {p ∈ Rm | p > 0} .

¤ Furthermore, Sm is differentiable in the inte-

rior of its domain, and we have

∂Sm

∂pk
(p) = logmµk −

∑

i≤k

µi,

where

µk := pk/
∑

j≥k

pj. (8)
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¤ Consequently, condition (β) becomes

0 = logmµk −
∑

i≤k

µi − λ, k = 1, . . . , m. (9)

Now, by definition, µm = 1, so setting k = m

in (9) gives

λ = logm−
∑

µi,

from which we obtain the recursion

µm = 1, µk = exp
(
−∑m

j=k+1 µj

)
, (10)

for k = m− 1, . . . ,1. Also

µk−1 = exp
(
−∑m

j=k µj

)

= exp(−µk) exp
(
−∑m

j=k+1 µj

)
.

Thus, the backward recursion (10) can be rewrit-

ten as

µm = 1, µk−1 = µk exp (−µk) , (11)

for k = m, . . . ,2.

¤ Values of µk are shown in Figure 2, while

Figure 3 shows optimal probability distributions.
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Fig. 3. Optimal distributions
m = 7 (left) and m = 50 (right).
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¤ Finally, from condition (α) and the values of

the µk’s, we see that the components of p must

obey the following forward recursion:

p1 = µ1, pk = µk ×
(
1−∑k−1

j=1 pj

)
,

k = 2, . . . , m.
(12)

The vector p defined in (12) satisfies

conditions (α) and (β), and therefore

uniquely solves Problem (Pm) in (2).

Most pleasingly, the iteration is easy to han-

dle both numerically and theoretically. For ex-

ample, its components form an increasing se-

quence. Indeed,

pk = µk (pk + · · ·+ pm)

and

pk−1 = µk−1 (pk−1 + · · ·+ pm).
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¤ From whence we deduce, using (11), that

pk

pk−1
=

µk (1− µk−1)

µk−1

= expµk ×
(
1− µk exp(−µk)

)

= expµk − µk > 1,

(13)

since µk > 0.

¤ We recapitulate the prior discussion as:

Algorithm 1 The unique probability distribution

pm maximizing surprise in Problem (Pm), given

in (2), is strictly increasing and is determined

as follows.

a. Compute for j = m, . . . ,2

µm = 1, µj−1 = µj exp
(
−µj

)
, (14)

and then

b. compute for k = 2, . . . , m

p1 = µ1, pk = µk ×

1−

k−1∑

i=1

pi


 . (15)
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Remark 1 As in [3, p. 50], the (optimal) condi-

tional probability that the event occurs on the

ith-to-the-last day, given that it has not oc-

curred thus far, is independent of m.

¤ This is immediate from (11) and the equality

P (m− i | ∼1, . . . ,∼(m− i− 1))

= pm−i




m∑

j=m−i

pj



−1

= µm−i.

Furthermore, as the µk’s are defined via a back-

ward recursion, pm−i/pm−i−1 is also independent

of m.

Remark 2 We may also obtain the solution to

Problem (Pm) of (2) via the optimization prob-

lem

inf
{
S′m(p,q)

∣∣∣ 1 = 〈1 , p〉 , q = Jp
}

,

where

S′m(p,q) :=
∑

h(pj, qj).
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¤ The needed Kuhn-Tucker conditions are

(α′) 0 = 1− 〈u,p〉 and 0 = q− Jp;

(β′) there exist λ ∈ R and λ = (λ1, . . . , λm) in Rm

such that

0 ∈ ∂S′m(p,q) + λ ∂f(p,q)
+λ1 ∂f1(p,q) + · · ·+ λm ∂fm(p,q)

with f and f = (f1, . . . , fm) defined by

f(p,q) := 1− 〈u,p〉
and

f(p,q) := q− Jp.

¤ It is then easy to check that the λj’s derived

from (α′) and (β′) coincide with the µj’s of the

previous discussion multiplied by m.
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HOW THE DISTRIBUTION BEHAVES?

Striking characteristics of the optimal distribu-

tion were already shown in Remark 1. We will

study asymptotic behaviour of Problem (Pm)

as m tends to infinity.

We now establish three key properties.

¤ First, we show that asymptotically the least

probability p
(m)
1 behaves like m−1.

The nub is an analysis of the rate of conver-

gence of the Picard-Banach iteration,

tn+1 = g(tn),

to the unique fixed point of a contractive self-

map, g, on [0,1].
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¤ But, when the fixed point, t, has |g′(t)| = 1,

and so is not strictly contractive. Recall that g

is contractive if

|g(t)− g(s)| < |t− s|
for all t 6= s in [0,1]. We use x 7→ x exp(−x).

Proposition 1 The quantity mp
(m)
1 tends to one

as m tends to ∞.

Proof. We define a sequence {tn} by setting

ti := µ
(m)
m+1−i

for i = 1, . . . , m, m = 1,2, . . . . Observe that

ti is independent of m, that tm = p
(m)
1 , and

satisfies the recursion

t1 = 1, tk+1 = tk exp(−tk),

for k ≥ 1.
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¤ We note that tk tends monotonically to a

limit ` which must necessarily be zero. Hence

t−1
k+1 − t−1

k = t−1
k (exp tk − 1),

which tends to exp′(0) = 1 as k tends to infin-

ity. Whence, since Cesàro averaging preserves

limits,

1

mtm
=

1

m

m−1∑

k=1

etk − 1

tk
+

1

mt1

also tends to 1.

¤ It is fun to perform a similar analysis for a

general g : [0,1] 7→ [0,1].

Next, we show that the ratio between

the last (biggest) and first (smallest)

components converges.
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Proposition 2

lim
m→∞

p
(m)
m

p
(m)
1

exists and is finite.

Proof. We have from (13) and the above def-

inition of {tn}, that

lim p
(m)
m

p
(m)
1

= limm→∞
∏m

j=2(e
µ
(m)
j − µ

(m)
j )

= limm→∞
∏m−1

j=1 (etj − tj)

' 2.132979 . . . .

The limit exists since

1 ≤ exp tj − tj ≤ 1 + t2j ,

while
∑

j t2j < ∞ by Proposition 1.

Finally recall that
∏

n(1 + |an|) and
∑

n |an| con-

verge together.
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Third – and more subtly - we establish that in

the limit our solution value approaches that of

the uniform solution of the next section.

Proposition 3 The optimal value of (Pm), V (Pm),

tends to zero as m tends to infinity.

Proof. To establish this, we show that

lim supV (Pm) ≤ 0,

and that

0 ≤ lim inf V (Pm).
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a. The first inequality is easily obtained from

identifying a Riemann sum:

V (Pm) ≤ Sm

(
1

m
, . . . ,

1

m

)

= logm− logm!

m
− 1

= − 1

m

m∑

k=1

log
k

m
− 1

→ −
∫ 1

0
log t dt− 1 = 0.

b. obtain the other inequality, consider

τm :=
m−1∑

i=1


p

(m)
i log

p
(m)
i

q
(m)
i+1

− p
(m)
i




and

σm :=
m−1∑

i=1


p

(m)
i log

p
(m)
i

q
(m)
i

− p
(m)
i


 .
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¤ We make two claims:

(i) τm − σm tends to 0 as m tends to infinity;

(ii) τm ≥ −p
(m)
m logm.

Proof of (i). We recall from (4) and (8) that

µ
(m)
i = p

(m)
i /(mq

(m)
i ) and so

τm − σm = −
m−1∑

i=1

p
(m)
i log(1− µ

(m)
i ),

whence, as p
(m)
i increases with i,

0 ≤ τm − σm = −∑m−1
i=1 p

(m)
m−i log(1− ti+1)

≤ −p
(m)
m

∑m−1
i=1 log(1− ti+1) → 0,

since ti → 0 and mp
(m)
m = O(1).
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The proof of (ii) is deferred to the next section

where it is a consequence of a general integral

inequality.

¤ Now, by design,

V (Pm) = σm + p
(m)
m logm− p

(m)
m .

It follows from (ii) that

V (Pm) ≥ σm − τm − p
(m)
m .

And so, since

p
(m)
m → 0,

(i) shows

lim inf V (Pm) ≥ 0

as needed.

¤ These techniques allow much more precise

assertions about the asymptotics of pm.
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CONTINUOUS TIME ANALYSIS

In the discrete case, the distribution is strictly

increasing, with a sharp increase at the tip of

the tail (see Figure ). In measure, this is washed

out in the limit.

¤ Indeed, the optimal continuous distribution is

flat, as the following theorem shows.

Theorem 2 For all p ∈ L1([0, T ]), we have
∫ T

0
p(t) log

p(t)
1

T

∫ T

t
p(s) ds

dt ≥
∫ T

0
p(t) dt

– equivalently S(p) ≥ 0 – with equality if and

only if p is constant on [0, T ].
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Proof. Without loss p is (a.e.) nonnegative,

else S(p) = ∞.

As in (6), set

q(t) := [J p](t) =
1

T

∫ T

t
p(s) ds.

On integrating by parts,

S(p) =
∫ T

0

(
p(t) log

p(t)

q(t)
− p(t)

)
dt

=
∫ T

0

(
p(t) log p(t)− p(t)

)
dt

+T
∫ T
0 q′(t) log q(t) dt

=
∫ T

0
p(t) log p(t) dt− Tq(0) log q(0),

¤ We shall be done once we show
∫ T

0
p(t) log p(t) dt ≥ Tq(0) log q(0). (16)

with equality if and only if p is constant.
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But, applying the integral version of Jensen’s

inequality to the strictly convex function g :=

x 7→ x logx− x yields

1

T

∫ T

0

(
p(t)

q(0)
log

p(t)

q(0)
− p(t)

q(0)

)
dt

≥ g(1) = −1,

from which (16) follows immediately.

¤ Theorem 2 shows that the (unique) solution

of Problem (P) given in (5) is the uniform prob-

ability density on [0, T ].

¤ A consequence of Theorem 2, which com-

pletes the considerations of the last Section,

follows:
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Corollary 1 As claimed in Section ,

τm ≥ −p
(m)
m logm.

Proof. Apply Theorem 2 with

T := 1 and p(t) := p
(m)
n

if

t ∈
(

n− 1

m
,

n

m

]
(n = 1, . . . , m).

For n−1
m < t ≤ n

m and n ≤ m− 1,

q(t) ≥
m∑

k=n+1

∫ k
m

k−1
m

p(t) dt

=
1

m

m∑

k=n+1

p
(m)
k = q

(m)
n+1,

and, for m−1
m < t ≤ 1,

q(t) = p
(m)
m (1− t).
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Hence τm majorizes

m
m−1∑

n=1

∫ n
m

n−1
m

p(t)

{
log

(
p(t)

q(t)

)
− 1

}
dt

= m
∫ 1− 1

m

0
p(t)

{
log

(
p(t)

q(t)

)
− 1

}
dt

=
∫ 1

0
p(t)

{
log

(
p(t)

q(t)

)
− 1

}
dt

+ m
∫ 1

1− 1
m

p
(m)
m {log(1− t) + 1} dt

≥ 0− p
(m)
m logm,

on evaluating the second integral and applying

Theorem 2.

¤ This finishes the proof that the optimal value

of (Pm) tends to 0 ( =V (P)), as claimed above.
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CONCLUSION

The entropic formulation of the Surprise Exam-

ination Problem provides a beautiful case study

of the application of concepts from the elemen-

tary theory of convex constrained optimization,

probability and classical inequality theory. Its at-

tractiveness comes in part from the very explicit

recursive nature of the (discrete time) solution,

which derives from the Kuhn-Tucker Theorem.

REFERENCE. D. Borwein, J. M. Bor-

wein and P. Marchal, “Surprise maxi-

mization,”The American Mathematical

Monthly, 107 June-July 2000, 527–537.

[CECM Preprint 98:116].

www.cecm.sfu.ca/preprints/1998pp.html

Open Question. How does one quantify aver-

age multiple surprise?
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