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A Large Scale Computationl

Let

(L) = y (:|:21)”1 (:2|:1)”2N—1

n1>no>-->NoN nin2 nQN_]_nQN

Conjecture. |8Y (n (=) = ¢ (4) | for all N.

That is,

(—1)" 1

8 ) = ) 5
2 2

n>m>0 v n>m>0 T

64 Z (_1)n<_1)p — Z 1 1

2 2 2 2
n>m>p>qg>0 VM PTq n>m>p>q>0 ¢ P4




Found using Lattice basis reduction in 1995.

Such sums are important in number theory,
knot theory, QF T and elsewhere.

They converge very slowly indeed—needed
an '"FFT'.

Checked to 1,000 digits for N < 85 (40 HP
hrs) and N = 163 (10 hrs).

Nothing to do with this conference.



Abstract |

We study a variational principle with a common
perturbation function ¢ for all proper lower semi-
continuous extended real-valued functions f on
a metric space X.

e Necessary and sufficient conditions are given
for the perturbed f+4¢ to attain its minimum.

e For separable Banach space we may use a
perturbation function that is also convex and
Hadamard-like differentiable.

e \We give three applications to differentiability
of convex functions on separable and more
general Banach spaces.

e Ve pose various open questions: on VisCoSs-
ity, genericity and stability.
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Especially as we go Retro—DigitalI

“I'l be glad if I have succeeded in im-
pressing the idea that it is not only pleas-
ant to read at times the works of the
old mathematical authors, but this may

occasionally be of use for the actual ad-
vancement of science.”

Constantin Carathéodory (MAA, 1936).
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1. One Theoreml

Theorem 1 Let X be a Hausdorff topological
space which admits a proper Isc function

p: X —>RU{+o0}

whose level sets are all compact. Then for any
proper Isc and bounded from below function

f: X — RU{4+o0} the function f + ¢ attains
its minimum. In particular, if dom o is relatively
compact, the conclusion is true for any proper
Isc function f.

Key application. In separable Banach space, a
nice convex choice is:

7T

tan (IS~ tel%), if S el < 5,

o(x) = ( H) | 2
—+ o0, otherwise.

for an appropriate compact, linear and injective
mapping S: H — X (H :=¥5). Also ¢ is almost
Hadamard smooth:

im sup @) + ol —th) —2p() _
t \\O hedom ¢ t

0,



Remark 2 If (X,||-]||) is normed and ¢ is con-
vex, the result above holds for every proper Isc
convex f, provided only that the level sets of ¢
are weakly compact, or that dom ¢ is.

Remark 3 In a normed space (X,]| -|]), by al-
lowing translations of ¢, we get a localization of
the minimum of the perturbation (as in Bishop-
Phelps, Ekeland, Borwein-Preiss [B-P], etc.).

With the same proof:

Suppose X admits a function ¢ as above.
For any proper Isc (bounded below) func-
tion f : X — RU{4o0}, forany x € dom f
and each A > 0, the function

f+o((-—=2)/n)

(for some p > 0), attains its minimum at
a u with ||lu—z| < A.

e Observe that in this case, formally, the per-
turbation function is now varying.



e [ he main requirement of Theorem 1 is also
necessary.

Namely, we have:

Theorem 4 Let p: X — RU {400} be a proper
function on a metric space X with the property
that for every bounded continuous function

f X — R, the function f + ¢ attains its mini-
mum.

Then ¢ is (i) a lower semicontinuous function,

(ii) bounded from below, (iii) whose level sets
are all compact.

e T his proof is significantly more subtle.

e T he punch-line so far—a little geometry goes
a long way.



2. Two Applicationsl

1. We recover Mazur's theorem (and various
bornological extensions).

Theorem 5 Suppose X is a separable Banach
space. Then every continuous convex f . X —
R s Gateaux differentiable at the points of a
generic (that is a dense Gs) subset of X.

Proof. First, we show f is Gateaux differentiable
at the points of a dense subset of X. After
translation, it suffices to show every non empty
open set 2 of X with O € €2, contains a point at
which f is Gateaux differentiable.
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(Step 1.) Fix such an Q and let ¢ be the
function given by Theorem 1. We may suppose
dome C €2. Then there is an x € domy C €2 at
which —f 4+ ¢ attains its minimum.

In particular, for any h€e domy and t > 0O

—f(x £ th) + o(x £th) > —f(z) + ¢(z).

Using this and convexity of f we obtain

0 < f(x+th)+ f(z—th) —2f(x)
< @(xz+th) + p(z —th) — 2¢p(x)
which together with the differentiability property
(3.1) of ¢ shows that

i S th) + fla —th) —2f(z) _
t\.0 t
for every h € dom . Since f is locally Lipschitz
and domy is linearly dense, in fact, the latter
limit is O for any h € X.

O,
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(Step 2.) Finally, the fact that f is convex yields
its (linear) Gateaux differentiability at .

To show the points of Gateaux differentiability
of f is exactly a Gg-subset of X, let us observe
that (3.1) yields a stronger conclusion: that X
possesses a dense subset in which every x obeys
the following stronger condition that as ¢\.0,

sup  {f(z +th) + f(z — th) — 2f(x) } = o(1).
hedom ¢
(3.4)

On the other hand, the set of all x € X satisfy-
ing (3.4) is always Gy (possibly empty).

T herefore, fis Hadamard-like, as well as Gateaux,
differentiable on a dense Gs-subset of X. ©
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2. More generally, we recover [C-F, 2001],
Sep x GDS C GDS.

Proof. Suppose Y is the GDS factor. Let

f Y xX — R be convex continuous, and 2 C
Y x X be a non empty open set. Assume, for
ease, that 2By X 2Bx C €2 and f is bounded on
Q2.

(Step 1.) Let ¢ : X — [0,+00] be the function
provided by Theorem 1 with domain in By, and
define g 1 Y — (—o0, +0o0] by

)inf{—f(y,z) + p(x); x € X}, ifye2By
g(y) =
—~+ 00, else .

Then g is concave and continuous on 2By .

As Y is a Gateaux differentiability space, the
function g is Gateaux differentiable at some y
in By.
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(Step 2.) By Theorem 1, there is x € By SO
that

g(y) = —f(y,z) + ().

Thus, for every k€Y and every h € domp we
have, for all ¢t > O sufficiently small,

< —gy+tk)+e(x+th)

— gy—tk) +o(z—th) + 29(y) — 2¢(x)

= o(t) + o(2).

Finally, local Lipschitzness of f and linear density
of domy in X imply

flyt+tk,z+th)+ f(y—tk,xz—th)—-2f(y,z) = o(t)
as t\.0, for every k€Y and every h € X.

Therefore, f is Gateaux differentiable at the point

(y,x) € Q. ©

Example 6 (Moors and Somasundaram, 2003)

WASP ?C& GDS
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Viscosity is Fundamentall

Definition [B-Z, 1996] f is B-viscosity subdiffer-
entiable with subderivative z* at z if there is a
locally Lipschitz g, f-smooth at z, with

VP8 g(z) = 2
and f — g taking a local minimum at x. Denote
all 3-viscosity subderivatives by 8% f(x).

All variational principles rely implicitly or explic-
itly on viscosity subdifferentials.

All Fréchet subdifferentials are viscosity
subdifferentials

v We know many facts such as ...
15



Bornology H = F in Euclidean space.
Bornology F = WH in reflexive space.

For locally Lipschitz f

oL f =0y f.

Unless ¢1 c X

Ny f=0Ff

for locally Lipschitz concave f.

When X has a Fréchet renorm

of f=0p f
(e.qg., reflexive or WCG Asplund spaces).
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Example 7 Let f :R*" = R (n > 1) be continu-
ous and Gateaux but not Fréchet differentiable
at 0. Explicitly in R2, take

2+ y*

when (x,y) 7= (0,0) and f(0,0) = 0. Let
g(h) == —[f(h) — f(0) — Vg f(O)h]|

flz,y) =

Then g is locally uniformly continuous and

(1) Uniquely, 97 9(0) = {0}.

(2) But 9% g(0) is empty.
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Proof. We check that V;¢g(0) = 0, so 95 g(0) =
{0}. As always

8% g(0) C dig(0).

Thus, if (2) fails, 9% g(0) = {0}, and there is
a locally Lipschitz Gateaux-differentiable (hence
Fréchet-differentiable) function k such that

k(0) =g(0) =0, VCEK(O)=V-g(0)=0
and
k<g

in @ neighbourhood of O.

Thus, for small h,

f(O+h) = f(0) = Vg f(Oh _  k(h) - k(0)
ird| |
< [k(n) — k(O)|
- |
which implies that f is Fréchet-differentiable at
0, a contradiction. ©
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3. Three Open Questionsl

1. Viscosity. In Hilbert space is

% f(x) ¢ 9 f(x)
possible for Lipschitz f7? For continuous f
we saw it is:

A non-viscosity O-subdifferential

e Relatedly, show 9y f(z) # 9y, f(z) in (non-
separable) Hilbert space for continuous f7?

19



2. Stability. In light of the (unconditional ZFC)
result of Moors and Somasundaram, is

Sep x WASP C WASP?~?

e Our methods seem at most to show that:
Sep x a — WASP C a — WASP.

e For Stegall’'s Class: (G) C (S) C WASP,
and (S) x (S) Cc (S).

A Legendre-type function

e Drawing often helps ...
20



3. Stability. Linear iterations (needed in work
on an amazing continued fraction of Ramanu-
jan). Consider

Znd+1 = 2n + cnzp—1, cn — c € C

with zg 1= a,z1 ;= b. How does its behaviour
relate to the case ¢, =c?

e \We were able to resolve the issue via a
tail and non-symmetric word analysis:

Theorem: in any matrix algebra if
ApAp,_1---A1 — L

with L non-singular, but perhaps only con-
ditionally convergent, then

(An+Bn)(Ap—1+Bp-1) - (A1+B1) = M
whenever

n

e \What can our field say to address this and
other linear algebra stability issues?

21



Michael Faradayl

“The most prominent requisite to a lec-
turer, though perhaps not really the most
important, is a good delivery; for though
to all true philosophers science and na-
ture will have charms innumerably in ev-
ery dress, yet I am sorry to say that the
generality of mankind cannot accompany
us one short hour unless the path is strewed
with flowers.”
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Kuratowski-Ulam theorem. If X is Baire and
Y has a countable wm-base then a Borel subset
B is residual in X x Y iff there exists a residual
subset R of X s.t. ({z} xY) N B is residual (in
{x} xY) for all x € R.

A m-base B is a family of non-empty open sets
s.t. for each open set U there exists an element
of B inside U

A tri-diagonal pseudospectrum
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