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A Large Scale Computation

Let
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Conjecture. 8N ζN(−) = ζN(+) for all N .
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• Found using Lattice basis reduction in 1995.

• Such sums are important in number theory,

knot theory, QFT and elsewhere.

• They converge very slowly indeed—needed

an ’FFT’.

• Checked to 1,000 digits for N < 85 (40 HP

hrs) and N = 163 (10 hrs).

• Nothing to do with this conference.
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Abstract

We study a variational principle with a common
perturbation function ϕ for all proper lower semi-
continuous extended real-valued functions f on
a metric space X.

• Necessary and sufficient conditions are given
for the perturbed f+ϕ to attain its minimum.

• For separable Banach space we may use a
perturbation function that is also convex and
Hadamard-like differentiable.

• We give three applications to differentiability
of convex functions on separable and more
general Banach spaces.

• We pose various open questions: on viscos-
ity, genericity and stability.
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Especially as we go Retro-Digital

“I’ll be glad if I have succeeded in im-
pressing the idea that it is not only pleas-
ant to read at times the works of the
old mathematical authors, but this may
occasionally be of use for the actual ad-
vancement of science.”

Constantin Carathéodory (MAA, 1936).

Outline

1. One Theorem

2. Two Applications

3. Three Questions

4. Four References
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1. One Theorem

Theorem 1 Let X be a Hausdorff topological
space which admits a proper lsc function

ϕ : X → R ∪ {+∞}
whose level sets are all compact. Then for any
proper lsc and bounded from below function
f : X → R ∪ {+∞} the function f + ϕ attains
its minimum. In particular, if domϕ is relatively
compact, the conclusion is true for any proper
lsc function f .

Key application. In separable Banach space, a
nice convex choice is:

ϕ(x) :=




tan

(
‖S−1x‖2H

)
, if ‖S−1x‖2H <

π

2
,

+∞, otherwise.

for an appropriate compact, linear and injective
mapping S : H → X (H := `2). Also ϕ is almost
Hadamard smooth:

lim
t↘0

sup
h∈domϕ

ϕ(x + th) + ϕ(x− th)− 2ϕ(x)

t
= 0, x ∈ domϕ.}
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Remark 2 If (X, ‖ · ‖) is normed and ϕ is con-
vex, the result above holds for every proper lsc
convex f , provided only that the level sets of ϕ
are weakly compact, or that domϕ is.

Remark 3 In a normed space (X, ‖ · ‖), by al-
lowing translations of ϕ, we get a localization of
the minimum of the perturbation (as in Bishop-
Phelps, Ekeland, Borwein-Preiss [B-P], etc.).

With the same proof:

Suppose X admits a function ϕ as above.
For any proper lsc (bounded below) func-
tion f : X → R∪{+∞}, for any x̄ ∈ dom f
and each λ > 0, the function

f + ϕ((· − x̄)/µ)

(for some µ > 0), attains its minimum at
a u with ‖u− x̄‖ ≤ λ.

• Observe that in this case, formally, the per-
turbation function is now varying.
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• The main requirement of Theorem 1 is also

necessary.

Namely, we have:

Theorem 4 Let ϕ : X → R ∪ {+∞} be a proper

function on a metric space X with the property

that for every bounded continuous function

f : X → R, the function f + ϕ attains its mini-

mum.

Then ϕ is (i) a lower semicontinuous function,

(ii) bounded from below, (iii) whose level sets

are all compact.

• This proof is significantly more subtle.

• The punch-line so far—a little geometry goes

a long way.
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2. Two Applications

1. We recover Mazur’s theorem (and various

bornological extensions).

Theorem 5 Suppose X is a separable Banach

space. Then every continuous convex f : X →
R is Gâteaux differentiable at the points of a

generic (that is a dense Gδ) subset of X.

Proof. First, we show f is Gâteaux differentiable

at the points of a dense subset of X. After

translation, it suffices to show every non empty

open set Ω of X with 0 ∈ Ω, contains a point at

which f is Gâteaux differentiable.
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(Step 1.) Fix such an Ω and let ϕ be the

function given by Theorem 1. We may suppose

domϕ ⊂ Ω. Then there is an x ∈ domϕ ⊂ Ω at

which −f + ϕ attains its minimum.

In particular, for any h ∈ domϕ and t > 0

−f(x± th) + ϕ(x± th) ≥ −f(x) + ϕ(x).

Using this and convexity of f we obtain

0 ≤ f(x + th) + f(x− th)− 2f(x)

≤ ϕ(x + th) + ϕ(x− th)− 2ϕ(x)

which together with the differentiability property

(3.1) of ϕ shows that

lim
t↘0

f(x + th) + f(x− th)− 2f(x)

t
= 0,

for every h ∈ domϕ. Since f is locally Lipschitz

and domϕ is linearly dense, in fact, the latter

limit is 0 for any h ∈ X.
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(Step 2.) Finally, the fact that f is convex yields

its (linear) Gâteaux differentiability at x.

To show the points of Gâteaux differentiability

of f is exactly a Gδ-subset of X, let us observe

that (3.1) yields a stronger conclusion: that X

possesses a dense subset in which every x obeys

the following stronger condition that as t↘0,

sup
h∈domϕ

{
f(x + th) + f(x− th)− 2f(x)

}
= o(t).

(3.4)

On the other hand, the set of all x ∈ X satisfy-

ing (3.4) is always Gδ (possibly empty).

Therefore, f is Hadamard-like, as well as Gâteaux,

differentiable on a dense Gδ-subset of X. c©
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2. More generally, we recover [C-F, 2001],

Sep×GDS ⊂ GDS.

Proof. Suppose Y is the GDS factor. Let

f : Y × X → R be convex continuous, and Ω ⊂
Y × X be a non empty open set. Assume, for

ease, that 2BY × 2BX ⊂ Ω and f is bounded on

Ω.

(Step 1.) Let ϕ : X → [0,+∞] be the function

provided by Theorem 1 with domain in BX, and

define g : Y → (−∞,+∞] by

g(y) :=




inf{−f(y, x) + ϕ(x); x ∈ X}, if y ∈ 2BY

+∞, else .

Then g is concave and continuous on 2BY .

As Y is a Gâteaux differentiability space, the

function g is Gâteaux differentiable at some y

in BY .
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(Step 2.) By Theorem 1, there is x ∈ BX so
that

g(y) = −f(y, x) + ϕ(x).

Thus, for every k ∈ Y and every h ∈ domϕ we
have, for all t > 0 sufficiently small,

f(y + tk, x + th) + f(y − t k, x− t h)− 2f(y, x)

≤ −g(y + t k) + ϕ(x + t h)

− g(y − t k) + ϕ(x− t h) + 2g(y)− 2ϕ(x)

= o(t) + o(t).

Finally, local Lipschitzness of f and linear density
of domϕ in X imply

f(y+t k, x+t h)+f(y−t k, x−t h)−2f(y, x) = o(t)

as t↘0, for every k ∈ Y and every h ∈ X.

Therefore, f is Gâteaux differentiable at the point
(y, x) ∈ Ω. c©

Example 6 (Moors and Somasundaram, 2003)

WASP ⊂
6=

GDS
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Viscosity is Fundamental

Definition [B-Z, 1996] f is β-viscosity subdiffer-
entiable with subderivative x∗ at x if there is a
locally Lipschitz g, β-smooth at x, with

∇β g(x) = x∗

and f − g taking a local minimum at x. Denote
all β-viscosity subderivatives by ∂V

β f(x).
All variational principles rely implicitly or explic-
itly on viscosity subdifferentials.

–1

1

2

–0.2 0.2 0.4 0.6 0.8 1 1.2 1.4

All Fréchet subdifferentials are viscosity
subdifferentials

X We know many facts such as . . .
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• Bornology H = F in Euclidean space.

• Bornology F = WH in reflexive space.

• For locally Lipschitz f

∂V
G f = ∂V

H f.

• Unless `1 ⊂ X

∂V
WH f = ∂V

F f

for locally Lipschitz concave f .

• When X has a Fréchet renorm

∂V
F f = ∂F f

(e.g., reflexive or WCG Asplund spaces).
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Example 7 Let f : Rn → R (n > 1) be continu-

ous and Gateaux but not Fréchet differentiable

at 0. Explicitly in R2, take

f(x, y) :=
xy3

x2 + y4

when (x, y) 6= (0,0) and f(0,0) = 0. Let

g(h) := −|f(h)− f(0)−∇G f(0)h|

Then g is locally uniformly continuous and

(1) Uniquely, ∂G g(0) = {0}.

(2) But ∂V
G g(0) is empty.
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Proof. We check that ∇G g(0) = 0, so ∂G g(0) =

{0}. As always

∂V
G g(0) ⊂ ∂Gg(0).

Thus, if (2) fails, ∂V
G g(0) = {0}, and there is

a locally Lipschitz Gateaux-differentiable (hence

Fréchet-differentiable) function k such that

k(0) = g(0) = 0, ∇G k(0) = ∇G g(0) = 0

and

k ≤ g

in a neighbourhood of 0.

Thus, for small h,

|f(0 + h)− f(0)−∇G f(0)h|
‖h‖ ≤ −k(h)− k(0)

‖h‖
≤ |k(h)− k(0)|

‖h‖
which implies that f is Fréchet-differentiable at

0, a contradiction. c©
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3. Three Open Questions

1. Viscosity. In Hilbert space is

∂V
G f(x)  ∂G f(x)

possible for Lipschitz f? For continuous f
we saw it is:

A non-viscosity 0-subdifferential

• Relatedly, show ∂H f(x) 6= ∂V
H f(x) in (non-

separable) Hilbert space for continuous f?
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2. Stability. In light of the (unconditional ZFC)
result of Moors and Somasundaram, is

Sep×WASP ⊂ WASP?

• Our methods seem at most to show that:
Sep× a−WASP ⊂ a−WASP.

• For Stegall’s Class: (G) ⊂ (S) ⊂ WASP,
and (S)× (S) ⊂ (S).

A Legendre-type function

• Drawing often helps . . .
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3. Stability. Linear iterations (needed in work
on an amazing continued fraction of Ramanu-
jan). Consider

zn+1 = zn + cnzn−1, cn → c ∈ C

with z0 := a, z1 := b. How does its behaviour
relate to the case cn ≡ c?

• We were able to resolve the issue via a
tail and non-symmetric word analysis:

Theorem: in any matrix algebra if

AnAn−1 · · ·A1 → L

with L non-singular, but perhaps only con-
ditionally convergent, then

(An+Bn)(An−1+Bn−1) · · · (A1+B1) → M

whenever
∑
n
‖Bn‖ < ∞.

• What can our field say to address this and
other linear algebra stability issues?
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Michael Faraday

“The most prominent requisite to a lec-

turer, though perhaps not really the most

important, is a good delivery; for though

to all true philosophers science and na-

ture will have charms innumerably in ev-

ery dress, yet I am sorry to say that the

generality of mankind cannot accompany

us one short hour unless the path is strewed

with flowers.”
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
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Kuratowski-Ulam theorem. If X is Baire and

Y has a countable π-base then a Borel subset

B is residual in X × Y iff there exists a residual

subset R of X s.t. ({x} × Y ) ∩ B is residual (in

{x} × Y ) for all x ∈ R.

A π-base B is a family of non-empty open sets

s.t. for each open set U there exists an element

of B inside U
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A tri-diagonal pseudospectrum
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