Variational Methods in the Presence of Symmetry

Ongoing research with Jim Zhu (WMU) Optimization of Planet Earth, AustMS 2013, Sydney

Jon Borwein and Qiji Zhu

University of Newcastle

August 8, 2013

Abstract

This talk and associated paper [1] aim to survey and to provide a unified framework to connect a diverse group of results, currently scattered in the literature, that can be aided by applying variational methods to problems involving symmetry.

> Variational methods refer to mathematical treatment by construction of an appropriate action function whose critical points-or saddle points-correspond to or contain the desired solutions.

Abstract

This talk and associated paper [1] aim to survey and to provide a unified framework to connect a diverse group of results, currently scattered in the literature, that can be aided by applying variational methods to problems involving symmetry.

Variational methods refer to mathematical treatment by construction of an appropriate action function whose critical points-or saddle points-correspond to or contain the desired solutions.

> How to capture and exploit symmetry is the theme of the talk [1] JM Borwein and Qiji Zhu, "Variational methods in the presence of symmetry." Advances in Nonlinear Analysis. Online June 2013. DOI: http://www.degruyter.com/view/j/anona. ahead-of-print/anona-2013-1001/anona-2013-1001.xml

Abstract

This talk and associated paper [1] aim to survey and to provide a unified framework to connect a diverse group of results, currently scattered in the literature, that can be aided by applying variational methods to problems involving symmetry.

Variational methods refer to mathematical treatment by construction of an appropriate action function whose critical points—or saddle points-correspond to or contain the desired solutions.

How to capture and exploit symmetry is the theme of the talk
[1] JM Borwein and Qiji Zhu, "Variational methods in the presence of symmetry." Advances in Nonlinear Analysis. Online June 2013. DOI: http://www.degruyter.com/view/j/anona. ahead-of-print/anona-2013-1001/anona-2013-1001.xml

Symmetry in our setting

Symmetry: is invariance with respect to some appropriate group or more usually a semigroup action

Exploiting symmetry - as elsewhere - often simplifies discovering and establishing solutions

Jim Qiji Zhu
and

Noah Erasmus Yao

Symmetry in our setting

Symmetry: is invariance with respect to some appropriate group or more usually a semigroup action

Exploiting symmetry - as elsewhere - often simplifies discovering and establishing solutions

Jim Qiji Zhu

and
Noah Erasmus Yao

What's special when a problem involves symmetry?

Variational methods: Finding solutions by modeling them as (approximate) critical points of an action function (potential).

In dealing with variational problems involving symmetry:

What's special when a problem involves symmetry?

Variational methods: Finding solutions by modeling them as (approximate) critical points of an action function (potential).

In dealing with variational problems involving symmetry:

- The invariance of the action function may not be preserved in the process of symmetrization

What's special when a problem involves symmetry?

Variational methods: Finding solutions by modeling them as (approximate) critical points of an action function (potential).

In dealing with variational problems involving symmetry:

- The invariance of the action function may not be preserved in the process of symmetrization
- The invariance of the action function maybe different from what we need for critical points

What's special when a problem involves symmetry?

Variational methods: Finding solutions by modeling them as (approximate) critical points of an action function (potential).

In dealing with variational problems involving symmetry:

- The invariance of the action function may not be preserved in the process of symmetrization
- The invariance of the action function maybe different from what we need for critical points
- The process of symmetrization may not be compatible with the geometry of the underlying space

What's special when a problem involves symmetry?

Variational methods: Finding solutions by modeling them as (approximate) critical points of an action function (potential).

In dealing with variational problems involving symmetry:

- The invariance of the action function may not be preserved in the process of symmetrization
- The invariance of the action function maybe different from what we need for critical points
- The process of symmetrization may not be compatible with the geometry of the underlying space
- We may only be able to get approximate symmetry

What's special when a problem involves symmetry?

Variational methods: Finding solutions by modeling them as (approximate) critical points of an action function (potential).

In dealing with variational problems involving symmetry:

- The invariance of the action function may not be preserved in the process of symmetrization
- The invariance of the action function maybe different from what we need for critical points
- The process of symmetrization may not be compatible with the geometry of the underlying space
- We may only be able to get approximate symmetry

Our goal is to summarize, in a systematic way, various methods for dealing with variational problems with symmetry

What's special when a problem involves symmetry?

Variational methods: Finding solutions by modeling them as (approximate) critical points of an action function (potential).

In dealing with variational problems involving symmetry:

- The invariance of the action function may not be preserved in the process of symmetrization
- The invariance of the action function maybe different from what we need for critical points
- The process of symmetrization may not be compatible with the geometry of the underlying space
- We may only be able to get approximate symmetry

Our goal is to summarize, in a systematic way, various methods for dealing with variational problems with symmetry

Invariance

Let G be a semigroup acting on a complete metric space (X, d)

Definition: Invariance of a function

We say a Isc function $f: X \rightarrow R \cup\{+\infty\}$:
is G-subinvariant if

$$
f(g x) \leq f(x) \forall g \in G, x \in X
$$

is G-superinvariant if

$$
f(g x) \geq f(x) \forall g \in G, x \in X
$$

and is G-invariant if f is both sub and super invariant.
When G is a group these are all the same

Introduction

Symmetrization

Definition: $S: X \rightarrow X$ is a (G, f)-symmetrization if
(i) for any $g \in G, x \in X, S(g x)=g S(x)=S(x)$;
(ii) for any $x \in X, S^{2}(x)=S(x)$;
(iii) for any $x \in X, f(S(x)) \leq f(x)$

If $S(x) \in \mathrm{cl}(G \cdot x)$ then (iii) always holds but:

Symmetrization

Definition: $S: X \rightarrow X$ is a (G, f)-symmetrization if
(i) for any $g \in G, x \in X, S(g x)=g S(x)=S(x)$;
(ii) for any $x \in X, S^{2}(x)=S(x)$;
(iii) for any $x \in X, f(S(x)) \leq f(x)$

If $S(x) \in \mathrm{cl}(G \cdot x)$ then (iii) always holds but:

1. verifying that $S(x) \in \mathrm{cl}(G \cdot x)$ is very hard, if even possible
2. usually, verifying (iii) is the key and is difficult

Symmetrization

Definition: $S: X \rightarrow X$ is a (G, f)-symmetrization if

(i) for any $g \in G, x \in X, S(g x)=g S(x)=S(x)$;
(ii) for any $x \in X, S^{2}(x)=S(x)$;
(iii) for any $x \in X, f(S(x)) \leq f(x)$

If $S(x) \in \mathrm{cl}(G \cdot x)$ then (iii) always holds but:

1. verifying that $S(x) \in \mathrm{cl}(G \cdot x)$ is very hard, if even possible
2. usually, verifying (iii) is the key and is difficult

A simple extremal principle involving symmetry

The following idea captures the essence of variational methods in the presence of symmetry

Simple Extremal Principle (SEP)

Let $f: X \rightarrow R \cup\{+\infty\}$ be a G-subinvariant function and S be a (G, f)-symmetrization. Then

$$
S(\operatorname{argmin}(f)) \subseteq \operatorname{argmin}(f) .
$$

Proof of SEP. One can not properly minorize the minimum! QED

A simple extremal principle involving symmetry

The following idea captures the essence of variational methods in the presence of symmetry

Simple Extremal Principle (SEP)

Let $f: X \rightarrow R \cup\{+\infty\}$ be a G-subinvariant function and S be a (G, f)-symmetrization. Then

$$
S(\operatorname{argmin}(f)) \subseteq \operatorname{argmin}(f)
$$

Proof of SEP. One can not properly minorize the minimum! QED

Introduction

Compatible metrics

Q. What if the existence of the extremum is not guaranteed?
A. We need symmetric versions of "variational principles". This requires a compatible metric.

Definition: Metric d is (G, S)-compatible if
(i) For any $x \in X, g \in G, d(x, y) \geq d(g x, g y)$; and
(ii) For any $x, y \in X, d(x, S(y)) \geq d(S(x), S(y))$.

Compatible metrics

Q. What if the existence of the extremum is not guaranteed?
A. We need symmetric versions of "variational principles". This requires a compatible metric.

Definition: Metric d is (G,S)-compatible if
(i) For any $x \in X, g \in G, d(x, y) \geq d(g x, g y)$; and
(ii) For any $x, y \in X, d(x, S(y)) \geq d(S(x), S(y))$.

When G is a group, (i) is equivalent to, for any $x \in X$ and $g \in G$,

$$
d(x, y)=d(g x, g y),
$$

i.e. g is an isometry.

Compatible metrics

Q. What if the existence of the extremum is not guaranteed?
A. We need symmetric versions of "variational principles". This requires a compatible metric.

Definition: Metric d is (G,S)-compatible if
(i) For any $x \in X, g \in G, d(x, y) \geq d(g x, g y)$; and
(ii) For any $x, y \in X, d(x, S(y)) \geq d(S(x), S(y))$.

When G is a group, (i) is equivalent to, for any $x \in X$ and $g \in G$,

$$
d(x, y)=d(g x, g y)
$$

i.e. g is an isometry.
Q. How can we build equivalent compatible metrics?

Compatible metrics

Q. What if the existence of the extremum is not guaranteed?
A. We need symmetric versions of "variational principles". This requires a compatible metric.

Definition: Metric d is (G,S)-compatible if
(i) For any $x \in X, g \in G, d(x, y) \geq d(g x, g y)$; and
(ii) For any $x, y \in X, d(x, S(y)) \geq d(S(x), S(y))$.

When G is a group, (i) is equivalent to, for any $x \in X$ and $g \in G$,

$$
d(x, y)=d(g x, g y)
$$

i.e. g is an isometry.
Q. How can we build equivalent compatible metrics?

Variational principles in the presence of symmetry

Symmetric Variational Principle (SymVP)

Let (X, d) be a complete metric space. Let $f: X \rightarrow R \cup\{+\infty\}$ be an G-invariant Isc function bounded below and let S be a (G, f)-symmetrization such that d is (G, S)-compatible.

Then, for any $\varepsilon, \lambda>0$ there exist y, z such that
(i) $f(S(z))<\inf _{X} f(x)+\varepsilon$;
(ii) $d(S(y), S(z)) \leq \lambda$;
(iii) $f(S(y))+(\varepsilon / \lambda) d(S(y), S(z)) \leq f(S(z))$; and
(iv) $f(x)+(\varepsilon / \lambda) d(x, S(y)) \geq f(S(y))$.

For $G=\{e\}$ we get classic Ekeland variational principle (1972)

Variational principles in the presence of symmetry

Symmetric Variational Principle (SymVP)

Let (X, d) be a complete metric space. Let $f: X \rightarrow R \cup\{+\infty\}$ be an G-invariant Isc function bounded below and let S be a (G, f)-symmetrization such that d is (G, S)-compatible.

Then, for any $\varepsilon, \lambda>0$ there exist y, z such that
(i) $f(S(z))<\inf _{X} f(x)+\varepsilon$;
(ii) $d(S(y), S(z)) \leq \lambda$;
(iii) $f(S(y))+(\varepsilon / \lambda) d(S(y), S(z)) \leq f(S(z))$; and
(iv) $f(x)+(\varepsilon / \lambda) d(x, S(y)) \geq f(S(y))$.

For $G=\{e\}$ we get classic Ekeland variational principle (1972)

Introduction

Variational Principle in Pictures

Producing a (local) non-dominated point

Proof of SymVP

Since f is invariant we can find $S(z)$ satisfying (i), that is:

$$
f(S(z))<\inf _{X} f(x)+\varepsilon .
$$

Apply Ekeland's variational principle to find y satisfying
(iia) $d(y, S(z)) \leq \lambda$;
(iiia) $f(y)+(\varepsilon / \lambda) d(y, S(z)) \leq f(S(z))$; and (iva) $f(x)+(\varepsilon / \lambda) d(x, y) \geq f(y), \forall x \in X$.

Proof of SymVP

Since f is invariant we can find $S(z)$ satisfying (i), that is:

$$
f(S(z))<\inf _{X} f(x)+\varepsilon .
$$

Apply Ekeland's variational principle to find y satisfying
(iia) $d(y, S(z)) \leq \lambda$;
(iiia) $f(y)+(\varepsilon / \lambda) d(y, S(z)) \leq f(S(z))$; and
(iva) $f(x)+(\varepsilon / \lambda) d(x, y) \geq f(y), \forall x \in X$.
Finally, we check that $S(y)$ does what we need.

Proof of SymVP

Since f is invariant we can find $S(z)$ satisfying (i), that is:

$$
f(S(z))<\inf _{X} f(x)+\varepsilon .
$$

Apply Ekeland's variational principle to find y satisfying
(iia) $d(y, S(z)) \leq \lambda$;
(iiia) $f(y)+(\varepsilon / \lambda) d(y, S(z)) \leq f(S(z))$; and
(iva) $f(x)+(\varepsilon / \lambda) d(x, y) \geq f(y), \forall x \in X$.
Finally, we check that $S(y)$ does what we need.
QED

- A Symmetric Smooth Variational Principle can be similarly established

Proof of SymVP

Since f is invariant we can find $S(z)$ satisfying (i), that is:

$$
f(S(z))<\inf _{X} f(x)+\varepsilon .
$$

Apply Ekeland's variational principle to find y satisfying (iia) $d(y, S(z)) \leq \lambda$;
(iiia) $f(y)+(\varepsilon / \lambda) d(y, S(z)) \leq f(S(z))$; and
(iva) $f(x)+(\varepsilon / \lambda) d(x, y) \geq f(y), \forall x \in X$.
Finally, we check that $S(y)$ does what we need.
QED

- A Symmetric Smooth Variational Principle can be similarly established

Introduction

Other Symmetric Variational Principles

Ekeland VP and Smooth VP

Two other forms of SymVP use approximation of Schwarz

 symmetry via polarization (discussed below)(1) Squassina M., "Symmetry in variational principles and applications", Journal of London Math Soc. 2012
(2) Van Schaftingen J., "Universal approximation of symmetrization by polarization", Proc. AMS, 2005

Other Symmetric Variational Principles

Ekeland VP and Smooth VP
Two other forms of SymVP use approximation of Schwarz symmetry via polarization (discussed below)
(1) Squassina M., "Symmetry in variational principles and applications", Journal of London Math Soc. 2012
(2) Van Schaftingen J., "Universal approximation of symmetrization by polarization", Proc. AMS, 2005
The principles are simple - given the right definitions - but one must find G, S and show compatibility.

Other Symmetric Variational Principles

Ekeland VP and Smooth VP
Two other forms of SymVP use approximation of Schwarz symmetry via polarization (discussed below)
(1) Squassina M., "Symmetry in variational principles and applications", Journal of London Math Soc. 2012
(2) Van Schaftingen J., "Universal approximation of symmetrization by polarization", Proc. AMS, 2005

The principles are simple - given the right definitions - but one must find G, S and show compatibility. We will give illustrative examples \& applications as time permits (many more in paper).

Other Symmetric Variational Principles

Ekeland VP and Smooth VP
Two other forms of SymVP use approximation of Schwarz symmetry via polarization (discussed below)
(1) Squassina M., "Symmetry in variational principles and applications", Journal of London Math Soc. 2012
(2) Van Schaftingen J., "Universal approximation of symmetrization by polarization", Proc. AMS, 2005

The principles are simple - given the right definitions - but one must find G, S and show compatibility. We will give illustrative examples \& applications as time permits (many more in paper).

Proof of AG inequality by using symmetry

Consider

$$
\min f(x):=-\sum_{n=1}^{N} \log \left(x_{n}\right)+l_{C}(x)
$$

where $C:=\{x:\langle x, \overrightarrow{1}\rangle=K, x \geq 0\}$, while vector $\overrightarrow{1}$ has all components 1 , and $v_{C}(x)=0, x \in C$ and $+\infty$ otherwise

- Then f is permutation $(\mathrm{P}(\mathrm{N}))$ invariant
- $S(x)=\bar{x} \overrightarrow{1}$ is a $(P(N), f)$-symmetrization ${ }^{1}$

Proof of AG inequality by using symmetry

Consider

$$
\min f(x):=-\sum_{n=1}^{N} \log \left(x_{n}\right)+l_{C}(x)
$$

where $C:=\{x:\langle x, \overrightarrow{1}\rangle=K, x \geq 0\}$, while vector $\overrightarrow{1}$ has all components 1 , and $l_{C}(x)=0, x \in C$ and $+\infty$ otherwise

- Then f is permutation $(\mathrm{P}(\mathrm{N}))$ invariant
- $S(x)=\bar{x} \overrightarrow{1}$ is a $(P(N), f)$-symmetrization ${ }^{1}$
(1) By SEP f has a minimum of the form $S(x)=\vec{x} \overrightarrow{1}$
(2) $S(x) \in C$ forces $\bar{x}=K / N$ and $\min =-N \log (K / N)$
(3) This "easily" leads to the AG inequality
${ }^{1} \bar{x}$ is the average of components of x

Proof of AG inequality by using symmetry

Consider

$$
\min f(x):=-\sum_{n=1}^{N} \log \left(x_{n}\right)+l_{C}(x)
$$

where $C:=\{x:\langle x, \overrightarrow{1}\rangle=K, x \geq 0\}$, while vector $\overrightarrow{1}$ has all components 1 , and $l_{C}(x)=0, x \in C$ and $+\infty$ otherwise

- Then f is permutation $(\mathrm{P}(\mathrm{N}))$ invariant
- $S(x)=\bar{x} \overrightarrow{1}$ is a $(P(N), f)$-symmetrization ${ }^{1}$
(1) By SEP f has a minimum of the form $S(x)=\vec{x} \overrightarrow{1}$
(2) $S(x) \in C$ forces $\bar{x}=K / N$ and $\min =-N \log (K / N)$
(3) This "easily" leads to the AG inequality

Note that $S(x) \notin \mathrm{cl} P(N) \cdot x$ unless $x=a \overrightarrow{1}$
${ }^{1} \bar{x}$ is the average of components of x

Proof of AG inequality by using symmetry

Consider

$$
\min f(x):=-\sum_{n=1}^{N} \log \left(x_{n}\right)+l_{C}(x)
$$

where $C:=\{x:\langle x, \overrightarrow{1}\rangle=K, x \geq 0\}$, while vector $\overrightarrow{1}$ has all components 1 , and $v_{C}(x)=0, x \in C$ and $+\infty$ otherwise

- Then f is permutation $(\mathrm{P}(\mathrm{N}))$ invariant
- $S(x)=\bar{x} \overrightarrow{1}$ is a $(P(N), f)$-symmetrization ${ }^{1}$
(1) By SEP f has a minimum of the form $S(x)=\vec{x} \overrightarrow{1}$
(2) $S(x) \in C$ forces $\bar{x}=K / N$ and $\min =-N \log (K / N)$
(3) This "easily" leads to the AG inequality

Note that $S(x) \notin \mathrm{cl} P(N) \cdot x$ unless $x=a \overrightarrow{1}$
${ }^{1} \bar{x}$ is the average of components of x

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part 11: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Proof of Relative entropy inequality

(MAJORIZATION)

Consider

$$
\min f(p, q):=-\sum_{n=1}^{N} p_{n} \log \left(p_{n} / q_{n}\right)+l_{C}(p, q)
$$

where $C:=\{(p, q):\langle p, \overrightarrow{1}\rangle=\langle q, \overrightarrow{1}\rangle=1,(p, q) \geq 0\}$

- Then f is $P(N)$-invariant (all permutations) with action $g(p, q):=(g p, g q), g \in P(N)$
- $S(p, q)=(\vec{p} \overrightarrow{1}, \vec{q} \overrightarrow{1})$ is a (G, f)-symmetrization

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Proof of Relative entropy inequality

Consider

$$
\min f(p, q):=-\sum_{n=1}^{N} p_{n} \log \left(p_{n} / q_{n}\right)+v_{C}(p, q)
$$

where $C:=\{(p, q):\langle p, \overrightarrow{1}\rangle=\langle q, \overrightarrow{1}\rangle=1,(p, q) \geq 0\}$

- Then f is $P(N)$-invariant (all permutations) with action $g(p, q):=(g p, g q), g \in P(N)$
- $S(p, q)=(\vec{p} \overrightarrow{1}, \vec{q} \overrightarrow{1})$ is a (G, f)-symmetrization
(1) Again, f has a minimum $S(p, q)=(\vec{p} \overrightarrow{1}, \vec{q} \overrightarrow{1})$
(2) $S(x) \in C$ forces $S(p, q)=(\overrightarrow{1}, \overrightarrow{1})$ and minimum is 0 as needed

Proof of Relative entropy inequality

Consider

$$
\min f(p, q):=-\sum_{n=1}^{N} p_{n} \log \left(p_{n} / q_{n}\right)+\imath_{C}(p, q)
$$

where $C:=\{(p, q):\langle p, \overrightarrow{1}\rangle=\langle q, \overrightarrow{1}\rangle=1,(p, q) \geq 0\}$

- Then f is $P(N)$-invariant (all permutations) with action $g(p, q):=(g p, g q), g \in P(N)$
- $S(p, q)=(\vec{p} \overrightarrow{1}, \vec{q} \overrightarrow{1})$ is a (G, f)-symmetrization
(1) Again, f has a minimum $S(p, q)=(\vec{p} \overrightarrow{1}, \vec{q} \overrightarrow{1})$
(2) $S(x) \in C$ forces $S(p, q)=(\overrightarrow{1}, \overrightarrow{1})$ and minimum is 0 as needed

Note that, in general, $f(p, q)>f(S(p, q))$

Proof of Relative entropy inequality

Consider

$$
\min f(p, q):=-\sum_{n=1}^{N} p_{n} \log \left(p_{n} / q_{n}\right)+\imath_{C}(p, q)
$$

where $C:=\{(p, q):\langle p, \overrightarrow{1}\rangle=\langle q, \overrightarrow{1}\rangle=1,(p, q) \geq 0\}$

- Then f is $P(N)$-invariant (all permutations) with action $g(p, q):=(g p, g q), g \in P(N)$
- $S(p, q)=(\vec{p} \overrightarrow{1}, \vec{q} \overrightarrow{1})$ is a (G, f)-symmetrization
(1) Again, f has a minimum $S(p, q)=(\vec{p} \overrightarrow{1}, \vec{q} \overrightarrow{1})$
(2) $S(x) \in C$ forces $S(p, q)=(\overrightarrow{1}, \overrightarrow{1})$ and minimum is 0 as needed

Note that, in general, $f(p, q)>f(S(p, q))$

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Example 3: Subdifferentials of spectral functions $\left(R^{N}\right)$

The subdifferential of a convex function f on R^{N} is

$$
\partial f(x)=\left\{y \in R^{N}: x \in \operatorname{argmin}(f-y)\right\}
$$

Subdifferential of Spectral Functions

(Lewis 1999) Let $f: R^{N} \rightarrow R \cup\{+\infty\}$ be a convex $P(N)$-invariant function. Then

$$
y \in \partial f(x)
$$

iff

$$
y^{\downarrow} \in \partial f\left(x^{\downarrow}\right) \text { and }\langle x, y\rangle=\left\langle x^{\downarrow}, y^{\downarrow}\right\rangle,
$$

where x^{\downarrow} is a decreasing rearrangement of the components

Example 3: Subdifferentials of spectral functions $\left(R^{N}\right)$

The subdifferential of a convex function f on R^{N} is

$$
\partial f(x)=\left\{y \in R^{N}: x \in \operatorname{argmin}(f-y)\right\}
$$

Subdifferential of Spectral Functions

(Lewis 1999) Let $f: R^{N} \rightarrow R \cup\{+\infty\}$ be a convex $P(N)$-invariant function. Then

$$
y \in \partial f(x)
$$

iff

$$
y^{\downarrow} \in \partial f\left(x^{\downarrow}\right) \text { and }\langle x, y\rangle=\left\langle x^{\downarrow}, y^{\downarrow}\right\rangle
$$

where x^{\downarrow} is a decreasing rearrangement of the components

Although f is $P(N)$-invariant its subdifferential y is usually not

Example 3: Subdifferentials of spectral functions $\left(R^{N}\right)$

The subdifferential of a convex function f on R^{N} is

$$
\partial f(x)=\left\{y \in R^{N}: x \in \operatorname{argmin}(f-y)\right\}
$$

Subdifferential of Spectral Functions

(Lewis 1999) Let $f: R^{N} \rightarrow R \cup\{+\infty\}$ be a convex $P(N)$-invariant function. Then

$$
y \in \partial f(x)
$$

iff

$$
y^{\downarrow} \in \partial f\left(x^{\downarrow}\right) \text { and }\langle x, y\rangle=\left\langle x^{\downarrow}, y^{\downarrow}\right\rangle
$$

where x^{\downarrow} is a decreasing rearrangement of the components

Although f is $P(N)$-invariant its subdifferential y is usually not

Example 3: Key steps of Proof

- $u_{i j}$ - switch components x_{i}, x_{j} of x if $\left(x_{i}-x_{j}\right)(i-j)<0$
- $G^{\downarrow} \subset P(N)$ - the semigroup of finite compositions of $u_{i j}$
- Then f is G^{\downarrow}-invariant and
- $S(x)=x^{\downarrow}$ is a (G, f)-symmetrization
${ }^{2}\langle A, B\rangle \leq\langle\lambda(A), \lambda(B)\rangle$ for symmetric matrices.

Example 3: Key steps of Proof

- $u_{i j}$ - switch components x_{i}, x_{j} of x if $\left(x_{i}-x_{j}\right)(i-j)<0$
- $G^{\downarrow} \subset P(N)$ - the semigroup of finite compositions of $u_{i j}$
- Then f is G^{\downarrow}-invariant and
- $S(x)=x^{\downarrow}$ is a (G, f)-symmetrization
(1) By the Von Neumann-Theobald inequality ${ }^{2} f-y^{\downarrow}$ is G^{\downarrow}-subinvariant
${ }^{2}\langle A, B\rangle \leq\langle\lambda(A), \lambda(B)\rangle$ for symmetric matrices.

Example 3: Key steps of Proof

- $u_{i j}$ - switch components x_{i}, x_{j} of x if $\left(x_{i}-x_{j}\right)(i-j)<0$
- $G^{\downarrow} \subset P(N)$ - the semigroup of finite compositions of $u_{i j}$
- Then f is G^{\downarrow}-invariant and
- $S(x)=x^{\downarrow}$ is a (G, f)-symmetrization
(1) By the Von Neumann-Theobald inequality ${ }^{2} f-y^{\downarrow}$ is G^{\downarrow}-subinvariant
(2) Choose $g_{y} \in P(N)$ such that $y=g_{y} y \downarrow$
(3) Then $h(z):=f(z)-\left\langle y^{\downarrow}, z\right\rangle=f\left(g_{y} z\right)-\left\langle y, g_{y} z\right\rangle$ attains its minimum at $z=g_{y}^{-1} x$ and, therefore, also at z^{\downarrow}
${ }^{2}\langle A, B\rangle \leq\langle\lambda(A), \lambda(B)\rangle$ for symmetric matrices.

Example 3: Key steps of Proof

- $u_{i j}$ - switch components x_{i}, x_{j} of x if $\left(x_{i}-x_{j}\right)(i-j)<0$
- $G^{\downarrow} \subset P(N)$ - the semigroup of finite compositions of $u_{i j}$
- Then f is G^{\downarrow}-invariant and
- $S(x)=x^{\downarrow}$ is a (G, f)-symmetrization
(1) By the Von Neumann-Theobald inequality ${ }^{2} f-y^{\downarrow}$ is G^{\downarrow}-subinvariant
(2) Choose $g_{y} \in P(N)$ such that $y=g_{y} y \downarrow$
(3) Then $h(z):=f(z)-\left\langle y^{\downarrow}, z\right\rangle=f\left(g_{y} z\right)-\left\langle y, g_{y} z\right\rangle$ attains its minimum at $z=g_{y}^{-1} x$ and, therefore, also at z^{\downarrow}
(4) We can verify that $z^{\downarrow}=\left(g_{y}^{-1} x\right)^{\downarrow}=x^{\downarrow}$
(5) That is: $y^{\downarrow} \in \partial f\left(x^{\downarrow}\right)$
${ }^{2}\langle A, B\rangle \leq\langle\lambda(A), \lambda(B)\rangle$ for symmetric matrices.

Example 3: Key steps of Proof

- $u_{i j}$ - switch components x_{i}, x_{j} of x if $\left(x_{i}-x_{j}\right)(i-j)<0$
- $G^{\downarrow} \subset P(N)$ - the semigroup of finite compositions of $u_{i j}$
- Then f is G^{\downarrow}-invariant and
- $S(x)=x^{\downarrow}$ is a (G, f)-symmetrization
(1) By the Von Neumann-Theobald inequality ${ }^{2} f-y^{\downarrow}$ is G^{\downarrow}-subinvariant
(2) Choose $g_{y} \in P(N)$ such that $y=g_{y} y \downarrow$
(3) Then $h(z):=f(z)-\left\langle y^{\downarrow}, z\right\rangle=f\left(g_{y} z\right)-\left\langle y, g_{y} z\right\rangle$ attains its minimum at $z=g_{y}^{-1} x$ and, therefore, also at z^{\downarrow}
(4) We can verify that $z^{\downarrow}=\left(g_{y}^{-1} x\right)^{\downarrow}=x^{\downarrow}$
(5) That is: $y^{\downarrow} \in \partial f\left(x^{\downarrow}\right)$
${ }^{2}\langle A, B\rangle \leq\langle\lambda(A), \lambda(B)\rangle$ for symmetric matrices.

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Example 4: Spectral Functions (l^{2})

Notation. For functions of (symmetric) nuclear equivalently Hilbert-Schmidt operators we use:

$$
l^{2}:=\left\{x=\sum_{n=-\infty}^{\infty} x_{n} e^{n}: \sum_{n=-\infty}^{\infty} x_{n}^{2}<\infty\right\}
$$

Example 4: Spectral Functions $\left(l^{2}\right)$

Notation. For functions of (symmetric) nuclear equivalently Hilbert-Schmidt operators we use:
(1) $\quad l^{2}:=\left\{x=\sum_{n=-\infty}^{\infty} x_{n} e^{n}: \sum_{n=-\infty}^{\infty} x_{n}^{2}<\infty\right\}$
(2) Right shift $\quad R_{S} x:=\sum_{n=-\infty}^{\infty} x_{n-1} e^{n}$
(3) Left shift $L_{S} x:=\sum_{n=-\infty}^{\infty} x_{n+1} e^{n}$

Example 4: Spectral Functions $\left(l^{2}\right)$

Notation. For functions of (symmetric) nuclear equivalently Hilbert-Schmidt operators we use:
(1) $\quad l^{2}:=\left\{x=\sum_{n=-\infty}^{\infty} x_{n} e^{n}: \sum_{n=-\infty}^{\infty} x_{n}^{2}<\infty\right\}$
(2) Right shift $R_{S} x:=\sum_{n=-\infty}^{\infty} x_{n-1} e^{n}$
(3) Left shift $L_{S} x:=\sum_{n=-\infty}^{\infty} x_{n+1} e^{n}$
(4) Inner product $\langle x, y\rangle:=\sum_{n=-\infty}^{\infty} x_{n} y_{n}$
(5) Hamilton product $x \circ y:=\sum_{n=-\infty}^{\infty} x_{n} y_{n} e^{n}$

Example 4: Spectral Functions $\left(l^{2}\right)$

Notation. For functions of (symmetric) nuclear equivalently Hilbert-Schmidt operators we use:
(1) $\quad l^{2}:=\left\{x=\sum_{n=-\infty}^{\infty} x_{n} e^{n}: \sum_{n=-\infty}^{\infty} x_{n}^{2}<\infty\right\}$
(2) Right shift $R_{S} x:=\sum_{n=-\infty}^{\infty} x_{n-1} e^{n}$
(3) Left shift $L_{S} x:=\sum_{n=-\infty}^{\infty} x_{n+1} e^{n}$
(4) Inner product $\quad\langle x, y\rangle:=\sum_{n=-\infty}^{\infty} x_{n} y_{n}$
(5) Hamilton product $x \circ y:=\sum_{n=-\infty}^{\infty} x_{n} y_{n} e^{n}$
(0) Unit vector for $k<l(\pm \infty$ allowed $) \quad 1_{k}^{l}:=\sum_{n=k}^{l} e^{n}$

Example 4: Spectral Functions $\left(l^{2}\right)$

Notation. For functions of (symmetric) nuclear equivalently Hilbert-Schmidt operators we use:
(1) $\quad l^{2}:=\left\{x=\sum_{n=-\infty}^{\infty} x_{n} e^{n}: \sum_{n=-\infty}^{\infty} x_{n}^{2}<\infty\right\}$
(2) Right shift $\quad R_{S} x:=\sum_{n=-\infty}^{\infty} x_{n-1} e^{n}$
(3) Left shift $L_{S} x:=\sum_{n=-\infty}^{\infty} x_{n+1} e^{n}$
(4) Inner product $\langle x, y\rangle:=\sum_{n=-\infty}^{\infty} x_{n} y_{n}$
(5) Hamilton product $x \circ y:=\sum_{n=-\infty}^{\infty} x_{n} y_{n} e^{n}$
(6) Unit vector for $k<l(\pm \infty$ allowed $) \quad 1_{k}^{l}:=\sum_{n=k}^{l} e^{n}$

Example 4: Symmetry of Spectral Subdifferential

Define $S(x)=x^{*}$ to be a rearrangement such that
(1) nonnegative components decrease with nonnegative indices,
(2) negative components increase as negative indices increase.

Example. if

$$
x=(\ldots \ldots,-2,3,-1,-5,-4,7,4,5,2,0,0, \ldots \ldots)
$$

then

$$
x^{*}=(\ldots \ldots, 0,-1,-2,-4,-5,7,5,4,3,2,0, \ldots \ldots)
$$

Example 4: Symmetry of Spectral Subdifferential

Define $S(x)=x^{*}$ to be a rearrangement such that
(1) nonnegative components decrease with nonnegative indices,
(2) negative components increase as negative indices increase.

Example. if

$$
x=(\ldots \ldots,-2,3,-1,-5,-4,7,4,5,2,0,0, \ldots \ldots)
$$

then

$$
x^{*}=(\ldots \ldots, 0,-1,-2,-4,-5,7,5,4,3,2,0, \ldots \ldots)
$$

Introduction

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Example of the $*$-rearrangement in l^{2}

Before and after

Symmetry of Spectral Subdifferential

Spectral Subdifferential (Borwein, Lewis, Read \& Zhu 2000)

Let $f: l^{2} \rightarrow R \cup\{+\infty\}$ be a convex rearrangement invariant function. Then

$$
y \in \partial f(x)
$$

iff

$$
y^{*} \in \partial f\left(x^{*}\right) \text { and }\langle x, y\rangle=\left\langle x^{*}, y^{*}\right\rangle .
$$

Can be done for c_{0} and all Shatten p-class operators $(1 \leq p<\infty)$ [Conjugation: $c_{0} \rightarrow \ell^{1} \rightarrow \ell^{\infty}$ and $C_{s}(H) \rightarrow B_{1}(H) \rightarrow B_{s}(H)$]

Symmetry of Spectral Subdifferential

Spectral Subdifferential (Borwein, Lewis, Read \& Zhu 2000)

Let $f: l^{2} \rightarrow R \cup\{+\infty\}$ be a convex rearrangement invariant function. Then

$$
y \in \partial f(x)
$$

iff

$$
y^{*} \in \partial f\left(x^{*}\right) \text { and }\langle x, y\rangle=\left\langle x^{*}, y^{*}\right\rangle .
$$

Can be done for c_{0} and all Shatten p-class operators ($1 \leq p<\infty$) [Conjugation: $c_{0} \rightarrow \ell^{1} \rightarrow \ell^{\infty}$ and $C_{s}(H) \rightarrow B_{1}(H) \rightarrow B_{s}(H)$]

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Example 4: Switch and Move operators

Goal. define a semigroup G for which $*$ is the natural symmetry
We need two basic operations: switch $s_{n m}$ and move m_{n}

Example 4: Switch and Move operators

Goal. define a semigroup G for which $*$ is the natural symmetry
We need two basic operations: switch $s_{n m}$ and move m_{n}
(1) The switch operator switches components x_{n} and x_{m} if $n<m<0$ or $0 \leq n<m$ - to fit the order of $*$;
(2) The move operator moves all positive components to the right of $n=0$ (inclusive) and negative to the left of $n=-1$.

Example 4: Switch and Move operators

Goal. define a semigroup G for which $*$ is the natural symmetry
We need two basic operations: switch $s_{n m}$ and move m_{n}
(1) The switch operator switches components x_{n} and x_{m} if $n<m<0$ or $0 \leq n<m$ - to fit the order of $*$;
(2) The move operator moves all positive components to the right of $n=0$ (inclusive) and negative to the left of $n=-1$.

Introduction

Eight Applications or Examples

Visualizing Switch and Move

Before and after

Definition of Switch and Move operators

Switch Operator

$$
s_{n m} x:=x-x_{n} e^{n}-x_{m} e^{m}+\max \left(x_{n}, x_{m}\right) e^{n}+\min \left(x_{n}, x_{m}\right) e^{m}
$$

Move Operator

$$
m_{n} x:= \begin{cases}x \circ 1_{-\infty}^{k-1}-x_{n} e^{n}+x_{n} e^{k}+R_{S}\left(x \circ 1_{k}^{\infty}\right) & n<0, x_{n}>0 \\ x \circ 1_{l+1}^{\infty}-x_{n} e^{n}+x_{n} e^{l}+L_{S}\left(x \circ 1_{-\infty}^{l}\right) & n \geq 0, x_{n}<0 \\ x & \text { otherwise }\end{cases}
$$

where $k:=\min \left\{m \geq 0: \sup _{i \geq m}\left|x_{i}\right|<x_{n}\right\}$
and $\quad l:=\max \left\{m<0: \sup _{i \leq m}\left|x_{i}\right|<-x_{n}\right\}$

Example 4: Switch and Move Inequalities

Switch and Move Inequalities. Let $x, y \in l^{2}$. Then

$$
\left\langle y^{*}, x\right\rangle \leq\left\langle y^{*}, s_{n m} x\right\rangle,
$$

and

$$
\left\langle y^{*}, x\right\rangle \leq\left\langle y^{*}, m_{n} x\right\rangle .
$$

Example 4: The missing semigroup

Definition: The semigroup H

Define H to be the semigroup of self-mappings on l^{2} which (i) add or delete an arbitrary number of zeros and (ii) permute components

Though H is not a group, for $y \in l^{2}$ there exists $h_{y}, h^{y} \in H$ with

$$
h_{y} y^{*}=y \text { and } y^{*}=h^{y} y
$$

Moreover, $G \subseteq H$.

Coxeter's 1927 kaleidoscope

Example 4: The missing semigroup

Definition: The semigroup H

Define H to be the semigroup of self-mappings on l^{2} which (i) add or delete an arbitrary number of zeros and (ii) permute components

Though H is not a group, for $y \in l^{2}$ there exists $h_{y}, h^{y} \in H$ with

$$
h_{y} y^{*}=y \text { and } y^{*}=h^{y} y .
$$

Moreover, $G \subseteq H$.

Coxeter's 1927 kaleidoscope

Example 4: Proof that * is an (H, f)-symmetrization

(1) Represent $G:=\cup_{N=1}^{\infty} G_{N}$ where

$$
G_{N}:=\left\{\text { finite compositions of } s_{n m}, m_{n} \forall|n|,|m| \leq N\right\}
$$

(2) By Switch and Move Ineq. $\varphi(x)=-\left\langle y^{*}, x\right\rangle$ is G-subinvariant
(3) For $x \in l^{2}, h \in H$, if components of $x^{*} \circ 1_{k}^{l}$ are a subset of $\left\{(h x)_{n},|n| \leq N\right\}$, then $\varphi(x)$ attains \min on $G_{N}(h x)$ at some element x_{h}^{N} (key approximation)

Example 4: Proof that $*$ is an (H, f)-symmetrization

(1) Represent $G:=\cup_{N=1}^{\infty} G_{N}$ where

$$
G_{N}:=\left\{\text { finite compositions of } s_{n m}, m_{n} \forall|n|,|m| \leq N\right\}
$$

(2) By Switch and Move Ineq. $\varphi(x)=-\left\langle y^{*}, x\right\rangle$ is G-subinvariant
(3) For $x \in l^{2}, h \in H$, if components of $x^{*} \circ 1_{k}^{l}$ are a subset of $\left\{(h x)_{n},|n| \leq N\right\}$, then $\varphi(x)$ attains \min on $G_{N}(h x)$ at some element x_{h}^{N} (key approximation)
(4) We can verify $x^{*} \circ 1_{k}^{l}=x_{h}^{N} \circ 1_{k}^{l}$
(5) As $k \rightarrow-\infty, l \rightarrow \infty$ we see $x_{h}^{N} \rightarrow x^{*}$ as $N \rightarrow \infty$

Example 4: Proof that $*$ is an (H, f)-symmetrization

(1) Represent $G:=\cup_{N=1}^{\infty} G_{N}$ where $G_{N}:=\left\{\right.$ finite compositions of $\left.s_{n m}, m_{n} \forall|n|,|m| \leq N\right\}$
(2) By Switch and Move Ineq. $\varphi(x)=-\left\langle y^{*}, x\right\rangle$ is G-subinvariant
(3) For $x \in l^{2}, h \in H$, if components of $x^{*} \circ 1_{k}^{l}$ are a subset of $\left\{(h x)_{n},|n| \leq N\right\}$, then $\varphi(x)$ attains \min on $G_{N}(h x)$ at some element x_{h}^{N} (key approximation)
(4) We can verify $x^{*} \circ 1_{k}^{l}=x_{h}^{N} \circ 1_{k}^{l}$
(5) As $k \rightarrow-\infty, l \rightarrow \infty$ we see $x_{h}^{N} \rightarrow x^{*}$ as $N \rightarrow \infty$

QED

Example 4: Proof of Symmetry of Subdifferential

Let $y \in \partial f(x)$. Then, for all $z \in l^{2}$,

$$
\begin{aligned}
f(z)-\left\langle y^{*}, z\right\rangle & =f\left(h_{y} z\right)-\left\langle h_{y} y^{*}, h_{y} z\right\rangle \\
& =f\left(h_{y} z\right)-\left\langle y, h_{y} z\right\rangle \geq f(x)-\langle y, x\rangle \\
& =f\left(h^{y} x\right)-\left\langle y^{*}, h^{y} x\right\rangle .
\end{aligned}
$$

Since f is H-invariant and $*$ is an (H, f)-symmetrization,

or $y^{*} \in \partial f\left(x^{*}\right)$.

Jon Borwein and Qiji Zhu

Example 4: Proof of Symmetry of Subdifferential

Let $y \in \partial f(x)$. Then, for all $z \in l^{2}$,

$$
\begin{aligned}
f(z)-\left\langle y^{*}, z\right\rangle & =f\left(h_{y} z\right)-\left\langle h_{y} y^{*}, h_{y} z\right\rangle \\
& =f\left(h_{y} z\right)-\left\langle y, h_{y} z\right\rangle \geq f(x)-\langle y, x\rangle \\
& =f\left(h^{y} x\right)-\left\langle y^{*}, h^{y} x\right\rangle .
\end{aligned}
$$

Since f is H-invariant and $*$ is an (H, f)-symmetrization,

$$
f(z)-\left\langle y^{*}, z\right\rangle \geq f\left(x^{*}\right)-\left\langle y^{*}, x^{*}\right\rangle,
$$

or $y^{*} \in \partial f\left(x^{*}\right)$.
QED

Example 5: Laplace equation

Laplace Equation

The solutions of

$$
\begin{equation*}
\Delta u=f \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=0 \tag{1}
\end{equation*}
$$

correspond to critical points of

$$
\begin{equation*}
F(u):=\int_{\Omega}\left(\frac{|\nabla u|^{2}}{2}+f u\right) \mu(d x) \tag{2}
\end{equation*}
$$

in the Sobolev space $H_{0}^{1}(\Omega)$.

Example 5: Schwarz symmetry

We seek symmetric solution of Laplace's equation as follows:

Schwarz symmetrization (Decreasing rearrangement)

The symmetrization $*$ on $L^{2}\left(R^{n}, \mathscr{M}, \mu\right)^{+}$for a measurable $M \in \mathscr{M}$ is

$$
M^{*}=B_{r}(0) \text { where } \mu(M)=\mu\left(B_{r}(0)\right)
$$

and for any $u \in L^{2}$ we then define u^{*} by

$$
\left(u^{*}>c\right)=(u>c)^{*} .
$$

Does Schwarz symmetry of f and Ω ensure that of the solution?

Example 5: Schwarz symmetry

We seek symmetric solution of Laplace's equation as follows:

Schwarz symmetrization (Decreasing rearrangement)

The symmetrization $*$ on $L^{2}\left(R^{n}, \mathscr{M}, \mu\right)^{+}$for a measurable $M \in \mathscr{M}$ is

$$
M^{*}=B_{r}(0) \text { where } \mu(M)=\mu\left(B_{r}(0)\right)
$$

and for any $u \in L^{2}$ we then define u^{*} by

$$
\left(u^{*}>c\right)=(u>c)^{*} .
$$

Does Schwarz symmetry of f and Ω ensure that of the solution?
Jakob Steiner (1796-1863) 'proved' isoperimetric inequality in 1836 by symmetrization wrt line. Hermann Schwarz (1843-1921) first considered hyperplanes.

Example 5: Schwarz symmetry

We seek symmetric solution of Laplace's equation as follows:

Schwarz symmetrization (Decreasing rearrangement)

The symmetrization $*$ on $L^{2}\left(R^{n}, \mathscr{M}, \mu\right)^{+}$for a measurable $M \in \mathscr{M}$ is

$$
M^{*}=B_{r}(0) \text { where } \mu(M)=\mu\left(B_{r}(0)\right)
$$

and for any $u \in L^{2}$ we then define u^{*} by

$$
\left(u^{*}>c\right)=(u>c)^{*} .
$$

Does Schwarz symmetry of f and Ω ensure that of the solution?
Jakob Steiner (1796-1863) 'proved' isoperimetric inequality in 1836 by symmetrization wrt line. Hermann Schwarz (1843-1921) first considered hyperplanes.

Introduction

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

$|x-1|$ and its Schwarz symmetrization on $[-2,2]$

$|x-1|$ with blue symmetrization

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian Saddle points: Symmetric Criticality and the Mountain Pass

Example 5: Polarization-building semigroup G

(1) Let $0 \notin H_{0}$ be a hyperplane dividing R^{N} into two closed half-spaces $0 \in H_{+}$and its complement H_{-}
(2) Let σ be the reflection exchanging the two half-spaces

Definition: The polarization of f at H_{0}

Steiner (L) and
Schwarz (R)

Example 5: Polarization-building semigroup G

(1) Let $0 \notin H_{0}$ be a hyperplane dividing R^{N} into two closed half-spaces $0 \in H_{+}$and its complement H_{-}
(2) Let σ be the reflection exchanging the two half-spaces

Definition: The polarization of f at H_{0}

$$
f^{\sigma}(x):= \begin{cases}\max \{f(x), f(\sigma x)\} & x \in H_{+} \\ \min \{f(x), f(\sigma x)\} & x \in H_{-} \\ f(x) & x \in H_{0}\end{cases}
$$

Steiner (L) and
Schwarz (R)

- We next show a symmetrization of a function followed by a sequence of polarizations of the function

Example 5: Polarization-building semigroup G

(1) Let $0 \notin H_{0}$ be a hyperplane dividing R^{N} into two closed half-spaces $0 \in H_{+}$and its complement H_{-}
(2) Let σ be the reflection exchanging the two half-spaces

Definition: The polarization of f at H_{0}

$$
f^{\sigma}(x):= \begin{cases}\max \{f(x), f(\sigma x)\} & x \in H_{+}, \\ \min \{f(x), f(\sigma x)\} & x \in H_{-}, \\ f(x) & x \in H_{0}\end{cases}
$$

- We next show a symmetrization of a function followed by a sequence of polarizations of the function

Eight Applications or Examples

Picture of $|x-1|$ on $[-2,2]$

$|x-1|$ with blue symmetrization

Introduction

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Polarization of $|x-1|$ on $[-2,2]$

$H_{0}=(x=-0.3)$

Introduction

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Polarization of $|x-1|$ on $[-2,2]$

$$
H_{0}=(x=0.4)
$$

Introduction

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Polarization of $|x-1|$ on $[-2,2]$

$$
H_{0}=(x=0.2)
$$

Introduction

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Polarization of $|x-1|$ on $[-2,2]$

$$
H_{0}=(x=-0.1)
$$

Example 5: Symmetrization Movie

The sequence of polarizations revisited

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian Saddle points: Symmetric Criticality and the Mountain Pass

Properties of polarization: Brock and Solynin (1999)

Let G be semigroup of finite compositions of polarizations. Then
(1) Hardy-Littlewood inequality:

$$
\int f g \leq \int f^{\sigma} g^{\sigma} \quad \forall \sigma \in G
$$

(2) Decreasing L^{2} norm:

${ }^{3} 4$ illustrates the curse of Sobolev. It uses weak integration by parts.

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian Saddle points: Symmetric Criticality and the Mountain Pass

Properties of polarization: Brock and Solynin (1999)

Let G be semigroup of finite compositions of polarizations. Then
(1) Hardy-Littlewood inequality:

$$
\int f g \leq \int f^{\sigma} g^{\sigma} \quad \forall \sigma \in G
$$

(2) Decreasing L^{2} norm:

$$
\|f-g\|_{2} \geq\left\|f^{\sigma}-g^{\sigma}\right\|_{2} \quad \forall \sigma \in G
$$

(3) Strong approximation of Schwarz symmetrization in L^{2} : there exists a sequence $g_{k} \in G \cdot f$ such that $\left\|g_{k}-f^{*}\right\|_{2} \rightarrow 0$
(4) Weak approximation of Schwarz symmetrization in H^{1} : the sequence g_{k} may be chosen so that also $g_{k} \rightharpoondown f^{*}$ weakly ${ }^{3}$ in H^{1}

[^0]
Properties of polarization: Brock and Solynin (1999)

Let G be semigroup of finite compositions of polarizations. Then
(1) Hardy-Littlewood inequality:

$$
\int f g \leq \int f^{\sigma} g^{\sigma} \quad \forall \sigma \in G
$$

(2) Decreasing L^{2} norm:

$$
\|f-g\|_{2} \geq\left\|f^{\sigma}-g^{\sigma}\right\|_{2} \quad \forall \sigma \in G
$$

(3) Strong approximation of Schwarz symmetrization in L^{2} : there exists a sequence $g_{k} \in G \cdot f$ such that $\left\|g_{k}-f^{*}\right\|_{2} \rightarrow 0$
(4) Weak approximation of Schwarz symmetrization in H^{1} : the sequence g_{k} may be chosen so that also $g_{k} \rightharpoondown f^{*}$ weakly ${ }^{3}$ in H^{1}
(5) Characterization of $*: f^{*}=f$ iff $g f=f$ for all $g \in G$
${ }^{3} 4$ illustrates the curse of Sobolev. It uses weak integration by parts.

Properties of polarization: Brock and Solynin (1999)

Let G be semigroup of finite compositions of polarizations. Then
(1) Hardy-Littlewood inequality:

$$
\int f g \leq \int f^{\sigma} g^{\sigma} \quad \forall \sigma \in G
$$

(2) Decreasing L^{2} norm:

$$
\|f-g\|_{2} \geq\left\|f^{\sigma}-g^{\sigma}\right\|_{2} \quad \forall \sigma \in G
$$

(3) Strong approximation of Schwarz symmetrization in L^{2} : there exists a sequence $g_{k} \in G \cdot f$ such that $\left\|g_{k}-f^{*}\right\|_{2} \rightarrow 0$
(4) Weak approximation of Schwarz symmetrization in H^{1} : the sequence g_{k} may be chosen so that also $g_{k} \rightharpoondown f^{*}$ weakly ${ }^{3}$ in H^{1}
(5) Characterization of $*: f^{*}=f$ iff $g f=f$ for all $g \in G$
(6) Preservation of the norm: $\left\|f^{\sigma}\right\|_{H^{1}}=\|f\|_{H^{1}}$
${ }^{3} 4$ illustrates the curse of Sobolev. It uses weak integration by parts.

Properties of polarization: Brock and Solynin (1999)

Let G be semigroup of finite compositions of polarizations. Then
(1) Hardy-Littlewood inequality:

$$
\int f g \leq \int f^{\sigma} g^{\sigma} \quad \forall \sigma \in G
$$

(2) Decreasing L^{2} norm:

$$
\|f-g\|_{2} \geq\left\|f^{\sigma}-g^{\sigma}\right\|_{2} \quad \forall \sigma \in G
$$

(3) Strong approximation of Schwarz symmetrization in L^{2} : there exists a sequence $g_{k} \in G \cdot f$ such that $\left\|g_{k}-f^{*}\right\|_{2} \rightarrow 0$
(4) Weak approximation of Schwarz symmetrization in H^{1} : the sequence g_{k} may be chosen so that also $g_{k} \rightharpoondown f^{*}$ weakly ${ }^{3}$ in H^{1}
(5) Characterization of $*: f^{*}=f$ iff $g f=f$ for all $g \in G$
(6) Preservation of the norm: $\left\|f f^{\sigma}\right\|_{H^{1}}=\|f\|_{H^{1}}$
${ }^{3} 4$ illustrates the curse of Sobolev. It uses weak integration by parts.

A GUDE To

INTEGRATION BY PARTS:
GIVEN A PROQLEM OF THE FORM:

$$
\int f(x) g(x) d x=?
$$

CHOOSE VARIABIES U AND \vee SUCH THAT:

$$
\begin{aligned}
& u=f(x) \\
& d v=g(x) d x
\end{aligned}
$$

NOW THE ORIGINAL EXPRESSION BECOMES:

$$
\int u d v=?
$$

WHICH DEFINITELY LOOKS EASIER. ANYWAY, I GOITA RUN. BUT GOOD UCK!

Example 5: Putting everything together for the Laplacian

Recall

$$
F(u):=\int_{\Omega}\left(\frac{|\nabla u|^{2}}{2}+f u\right) \mu(d x)
$$

Then
(1) F is convex in H^{1} and, therefore, weakly lower continuous,
(2) when $f^{*}=f, F$ is G-subinvariant, and

3 * is a (G, F)-symmetrization.
Thus, F has a symmetric minimum $u=u^{*}$.

- The use of approximate polarization is essential and nontrivial
- Using symmetry helped but did not make the work easy

Example 5: Putting everything together for the Laplacian

Recall

$$
F(u):=\int_{\Omega}\left(\frac{|\nabla u|^{2}}{2}+f u\right) \mu(d x)
$$

Then
(1) F is convex in H^{1} and, therefore, weakly lower continuous,
(2) when $f^{*}=f, F$ is G-subinvariant, and
(3) $*$ is a (G, F)-symmetrization.

Thus, F has a symmetric minimum $u=u^{*}$.

- The use of approximate polarization is essential and nontrivial
- Using symmetry helped but did not make the work easy

Example 6: Planar motion

The planar motion of two bodies

Mathematical formulation: minimize the action functional

$$
F(x):=\int_{0}^{P}\left[\frac{\left\|x^{\prime}(t)\right\|^{2}}{2}+\frac{1}{\|x(t)\|}\right] d t
$$

in space of periodic orbits $\left\{x \in H^{1}\left([0, P], R^{2}\right): x(0)=x(P)\right\}$

- Clearly F is rotation invariant
- Kepler first 'showed' the solution is a circle
- Thus, both action function and solution are rotation invariant

Example 6: Planar motion

The planar motion of two bodies

Mathematical formulation: minimize the action functional

$$
F(x):=\int_{0}^{P}\left[\frac{\left\|x^{\prime}(t)\right\|^{2}}{2}+\frac{1}{\|x(t)\|}\right] d t
$$

in space of periodic orbits $\left\{x \in H^{1}\left([0, P], R^{2}\right): x(0)=x(P)\right\}$

- Clearly F is rotation invariant
- Kepler first 'showed' the solution is a circle
- Thus, both action function and solution are rotation invariant

Introduction

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Example 6: Planar motion

Open Question: Can we find a (semi)group G and a (G, F) symmetrization to fit this problem into the above framework?

Example 6: Planar motion

Open Question: Can we find a (semi)group G and a (G, F) symmetrization to fit this problem into the above framework?

Two bodies with similar mass orbiting around a common barycentre in elliptic orbits

Example 6: Planar motion

Open Question: Can we find a (semi)group G and a (G, F) symmetrization to fit this problem into the above framework?

Example 7: Simple saddle points

Simple saddle point behavior

The function $F(x, y):=x^{2}-y^{2}$ is rather typical:

- F has a saddle point at $(0,0)$
- F is reflection symmetric with respect to both x and y axis
- F has no local extremum, and is unbounded

We will use F to illustrate two different ideas:

(1) Palais principle of symmetric criticality; and
(2) Ambrosetti and Rabinowitz mountain pass method - which needs SymVP.

Example 7: Simple saddle points

Simple saddle point behavior

The function $F(x, y):=x^{2}-y^{2}$ is rather typical:

- F has a saddle point at $(0,0)$
- F is reflection symmetric with respect to both x and y axis
- F has no local extremum, and is unbounded

We will use F to illustrate two different ideas:
(1) Palais principle of symmetric criticality; and
(2) Ambrosetti and Rabinowitz mountain pass method - which needs SymVP.

Introduction

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Palais principle of symmetric criticality

Here is a simplified but effective version to illustrate the idea:

Principle of Symmetric Criticality (PSC)

Let X be a Hilbert space with an isometric linear group action G and let $F \in C^{1}(X)$ be G-invariant.
Denote

$$
\Sigma:=\{x \in X: g x=x, \forall g \in G\} .
$$

Then any critical point of $\left.F\right|_{\Sigma}$ is also a critical point for F.

Palais principle of symmetric criticality

Here is a simplified but effective version to illustrate the idea:

Principle of Symmetric Criticality (PSC)

Let X be a Hilbert space with an isometric linear group action G and let $F \in C^{1}(X)$ be G-invariant.
Denote

$$
\Sigma:=\{x \in X: g x=x, \forall g \in G\} .
$$

Then any critical point of $\left.F\right|_{\Sigma}$ is also a critical point for F.

- Note that Σ is a subspace and, therefore, coincides with $\left.T \Sigma\right|_{x}$.

Palais principle of symmetric criticality

Here is a simplified but effective version to illustrate the idea:

Principle of Symmetric Criticality (PSC)

Let X be a Hilbert space with an isometric linear group action G and let $F \in C^{1}(X)$ be G-invariant.
Denote

$$
\Sigma:=\{x \in X: g x=x, \forall g \in G\} .
$$

Then any critical point of $\left.F\right|_{\Sigma}$ is also a critical point for F.

- Note that Σ is a subspace and, therefore, coincides with $\left.T \Sigma\right|_{x}$.

Proof of Principle of Symmetric Criticality

For any $g \in G, v \in X$ and $x \in \Sigma, F \circ g=F$ implies that $d F_{x}(v)=d F_{g x}(g(v))$. Since g is an isometry

$$
\langle g \nabla F(x), g(v)\rangle=\langle\nabla F(x), v\rangle=d F_{x}(v)
$$

On the other hand $g x=x$ implies

$$
d F_{g x}(g(v))=\langle\nabla F(g x), g(v)\rangle=\langle\nabla F(x), g(v)\rangle
$$

Thus, for all $v \in X$ we have $\langle g \nabla F(x), g(v)\rangle=\langle\nabla F(x), g(v)\rangle$ and so

$$
g \nabla F(x)=\nabla F(x)
$$

It follows that $\nabla F(x) \in \Sigma$. Hence $\left.\nabla F(x) \in T \Sigma\right|_{x}$. Thus, if x is a critical point of $\left.F\right|_{\Sigma}$ - namely $\nabla F(x)$ restricted to $\left.T \Sigma\right|_{x}$ is 0 - then

$$
\nabla F(x) \in \Sigma^{\perp} \cap \Sigma=\{0\}
$$

as claimed.
QED

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

Example 7: Applying Palais principle to $x^{2}-y^{2}$

- Consider the reflection

$$
r(x, y):=(-x, y),
$$

which is a linear isometry

- The invariant set of r is

$$
\Sigma=\{(0, y): y \in R\}
$$

(1) $F(x, y):=x^{2}-y^{2}$ is invariant with respect to r

Example 7: Applying Palais principle to $x^{2}-y^{2}$

- Consider the reflection

$$
r(x, y):=(-x, y)
$$

which is a linear isometry

- The invariant set of r is

$$
\Sigma=\{(0, y): y \in R\}
$$

(1) $F(x, y):=x^{2}-y^{2}$ is invariant with respect to r
(2) $(0,0)$ is a critical point of $\left.F(x, y)\right|_{\Sigma=y^{2}}$
(3) Hence $(0,0)$ is a critical point of F

Example 7: Applying Palais principle to $x^{2}-y^{2}$

- Consider the reflection

$$
r(x, y):=(-x, y)
$$

which is a linear isometry

- The invariant set of r is

$$
\Sigma=\{(0, y): y \in R\}
$$

(1) $F(x, y):=x^{2}-y^{2}$ is invariant with respect to r
(2) $(0,0)$ is a critical point of $\left.F(x, y)\right|_{\Sigma}=y^{2}$
(3) Hence $(0,0)$ is a critical point of F

QED

Example 6: PSC and two body problem revisited

- $G:=$ rotations around the origin is a group of isometries
- The Lagrange action function

$$
F(x):=\int_{0}^{P}\left[\frac{\left\|x^{\prime}(t)\right\|^{2}}{2}+\frac{1}{\|x(t)\|}\right] d t
$$

is G-invariant

- Hence, Principle of Symmetric Criticality applies to 2-body problem
- Thus, we need only look for a critical point of $F(x)$ on

$$
\Sigma:=\left\{x \in H^{1}\left([0, P], R^{2}\right): x(0)=x(P), g x=x\right\}
$$

- the set of all P-periodic H^{1} cyclic trajectories

Example 6: PSC and two body problem revisited

- $G:=$ rotations around the origin is a group of isometries
- The Lagrange action function

$$
F(x):=\int_{0}^{P}\left[\frac{\left\|x^{\prime}(t)\right\|^{2}}{2}+\frac{1}{\|x(t)\|}\right] d t
$$

is G-invariant

- Hence, Principle of Symmetric Criticality applies to 2-body problem
- Thus, we need only look for a critical point of $F(x)$ on

$$
\Sigma:=\left\{x \in H^{1}\left([0, P], R^{2}\right): x(0)=x(P), g x=x\right\}
$$

- the set of all P-periodic H^{1} cyclic trajectories

Nonsmooth Saddle Points

By mollification or regularization, we can relax somewhat the smoothness requirement in the Principle of Symmetric Criticality so that it can be applied to, say, the nonsmooth critical point of

$$
F(x, y)=|x|-|y|
$$

Introduction

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian
Saddle points: Symmetric Criticality and the Mountain Pass

The Mountain Pass idea

Figure: A typical mountain pass

Invariance of action function not preserved by symmetrization Symmetry mismatching
Part II: Approximate symmetrization and the Laplacian Saddle points: Symmetric Criticality and the Mountain Pass

Example 7: Mountain Pass method for saddle points

We now illustrate the use the Mountain pass lemma to deal with the saddle point of $F(x, y):=x^{2}-y^{2}$

- Define

$$
\Gamma:=\left\{\gamma \in C\left([0,1], R^{2}\right): \gamma(0)=(0,1), \gamma(1)=(0,-1)\right\}
$$

and

$$
\widehat{F}(\gamma):=\max _{t \in[0,1]} F(\gamma(t))
$$

- Define reflection \hat{r} on Γ by $(\hat{r} \gamma)(t):=r(\gamma(t))$
- Then \hat{F} is \hat{r}-subinvariant and bounded below by 0

Example 7: Mountain Pass method for saddle points

We now illustrate the use the Mountain pass lemma to deal with the saddle point of $F(x, y):=x^{2}-y^{2}$

- Define

$$
\Gamma:=\left\{\gamma \in C\left([0,1], R^{2}\right): \gamma(0)=(0,1), \gamma(1)=(0,-1)\right\}
$$

and

$$
\widehat{F}(\gamma):=\max _{t \in[0,1]} F(\gamma(t))
$$

- Define reflection \hat{r} on Γ by $(\hat{r} \gamma)(t):=r(\gamma(t))$
- Then \hat{F} is \hat{r}-subinvariant and bounded below by 0

However, we now face an infinite dimensional problem

Example 7: Mountain Pass method for saddle points

We now illustrate the use the Mountain pass lemma to deal with the saddle point of $F(x, y):=x^{2}-y^{2}$

- Define

$$
\Gamma:=\left\{\gamma \in C\left([0,1], R^{2}\right): \gamma(0)=(0,1), \gamma(1)=(0,-1)\right\}
$$

and

$$
\widehat{F}(\gamma):=\max _{t \in[0,1]} F(\gamma(t))
$$

- Define reflection \hat{r} on Γ by $(\hat{r} \gamma)(t):=r(\gamma(t))$
- Then \hat{F} is \hat{r}-subinvariant and bounded below by 0

However, we now face an infinite dimensional problem
The lack of compactness requires use of Symmetric VP

Example 7: Mountain Pass method for saddle points

We now illustrate the use the Mountain pass lemma to deal with the saddle point of $F(x, y):=x^{2}-y^{2}$

- Define

$$
\Gamma:=\left\{\gamma \in C\left([0,1], R^{2}\right): \gamma(0)=(0,1), \gamma(1)=(0,-1)\right\}
$$

and

$$
\widehat{F}(\gamma):=\max _{t \in[0,1]} F(\gamma(t))
$$

- Define reflection \hat{r} on Γ by $(\hat{r} \gamma)(t):=r(\gamma(t))$
- Then \hat{F} is \hat{r}-subinvariant and bounded below by 0

However, we now face an infinite dimensional problem
The lack of compactness requires use of Symmetric VP

Example 7: Use of SymVP

(1) Apply SymVP to \widehat{F} to ensure a symmetric approximate minimum
(2) Use the subdifferential formula for the max function to get an approximate critical point for F
(3) Then take limits to show zero is a critical point for F

- It is silly to use such heavy artillery (rather than PSC) for this simple problem

Example 7: Use of SymVP

(1) Apply SymVP to \widehat{F} to ensure a symmetric approximate minimum
(2) Use the subdifferential formula for the max function to get an approximate critical point for F
(3) Then take limits to show zero is a critical point for F

- It is silly to use such heavy artillery (rather than PSC) for this simple problem
- The point is the same method works for many other problems

Example 7: Use of SymVP

(1) Apply SymVP to \widehat{F} to ensure a symmetric approximate minimum
(2) Use the subdifferential formula for the max function to get an approximate critical point for F
(3) Then take limits to show zero is a critical point for F

- It is silly to use such heavy artillery (rather than PSC) for this simple problem
- The point is the same method works for many other problems

Example 8: Saddle points of quasi-linear Laplace equations

For $a(x) \leq c<0$ and $2<p<2^{*}=2 N /(N-2)$, consider

$$
\Delta u=a(x) \operatorname{sgn}(u)|u|^{p-1} \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=0 .
$$

Then solution corresponds to a critical point of

$$
F(u):=\int_{\Omega}\left(\frac{|\nabla u|^{2}}{2}+a|u|^{p}\right) \mu(d x),
$$

in the Sobolev space $H_{0}^{1}(\Omega)$.
It turns out F has a nontrivial saddle point.
QED

- The celebrated Ambrosetti and Rabinowitz Mountain Pass Lemma was motivated by just these kinds of problems. We give symmetric versions in our paper.

Example 8: Saddle points of quasi-linear Laplace equations

For $a(x) \leq c<0$ and $2<p<2^{*}=2 N /(N-2)$, consider

$$
\Delta u=a(x) \operatorname{sgn}(u)|u|^{p-1} \text { in } \Omega,\left.\quad u\right|_{\partial \Omega}=0 .
$$

Then solution corresponds to a critical point of

$$
F(u):=\int_{\Omega}\left(\frac{|\nabla u|^{2}}{2}+a|u|^{p}\right) \mu(d x),
$$

in the Sobolev space $H_{0}^{1}(\Omega)$.
It turns out F has a nontrivial saddle point.
QED

- The celebrated Ambrosetti and Rabinowitz Mountain Pass Lemma was motivated by just these kinds of problems. We give symmetric versions in our paper.

Conclusion

- Variational problems with symmetric action functions often have symmetric solutions
(1) Symmetric variational principles are useful tools

Conclusion

- Variational problems with symmetric action functions often have symmetric solutions
(1) Symmetric variational principles are useful tools
(2) Using a natural symmetry is often helpful but does not ensure the work is easy

Conclusion

- Variational problems with symmetric action functions often have symmetric solutions
(1) Symmetric variational principles are useful tools
(2) Using a natural symmetry is often helpful but does not ensure the work is easy
(3) Additional problem specific methods are often necessary

Conclusion

- Variational problems with symmetric action functions often have symmetric solutions
(1) Symmetric variational principles are useful tools
(2) Using a natural symmetry is often helpful but does not ensure the work is easy
(3) Additional problem specific methods are often necessary
- Many more examples and case studies are needed

Conclusion

- Variational problems with symmetric action functions often have symmetric solutions
(1) Symmetric variational principles are useful tools
(2) Using a natural symmetry is often helpful but does not ensure the work is easy
(3) Additional problem specific methods are often necessary
- Many more examples and case studies are needed
\square

Conclusion

- Variational problems with symmetric action functions often have symmetric solutions
(1) Symmetric variational principles are useful tools
(2) Using a natural symmetry is often helpful but does not ensure the work is easy
(3) Additional problem specific methods are often necessary
- Many more examples and case studies are needed

THANK YOU

[^0]: 34 illustrates the curse of Sobolev. It uses weak integration by parts.

