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Abstract.

A narrow path is cut through the jungle of results which

started with Tauber’s “corrected converse” of Abel’s theorem

that if
∞∑

n=0

an = `, then
∞∑

n=0

anxn → ` as x → 1 − .
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Just over a century ago, in 1897, Tauber proved the following
“corrected converse” of Abel’s theorem:

Theorem T. If
∞∑

n=0

anx
n → ` as x→ 1−, and

(T0) nan = o(1),

then
∞∑

n=0

an = `.

Subsequently Hardy and Littlewood proved numerous other
such converse theorems, and they coined the term Tauberian
to describe them.

In summability language Theorem T can be expressed as:

If
∞∑

n=0

an = ` (A), where A denotes the Abel summability method,

and if the Tauberian condition (T0) holds, then
∞∑

n=0

an = `.

The simplest example of an Abel summable series that is not

convergent is given by an := (−1)n, for which
∞∑

n=0

an =
1
2

(A).
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Tauber’s innocent looking theorem was the start of a veritable
Tauberian jungle of results which Korevaar, in a recent book,
made a very worthwhile effort to organize and present in a
coherent manner. The book’s 483 pages are densely packed
and there are around 800 references. Rather than attempting
the impossible task of giving such a comprehensive description
of the jungle in the course of a short talk, I will cut a reasonably
narrow path through part of it, touching on some of the key
results.

In 1914 Hardy and Littlewood proved the following generaliza-
tion of Theorem T in which the strong “two-sided” Tauberian
condition (T0) is replaced by the much weaker “one-sided” con-
dition (T1):

Theorem H-L. If
∞∑

n=0

anx
n → ` as x→ 1−, and

(T1) nan ≤ C, a positive constant,

then
∞∑

n=0

an = `.

Note that by changing sign throughout, the Tauberian condi-
tion (T1) could be expressed as nan ≥ −C.
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An interesting, and non-trivial, illustration of the potency of
Theorem H-L, is a proof that the series

∞∑

n=1

1
nz
,

which is absolutely convergent and defines the Riemann zeta
function ζ(z) when <z > 1, is not Abel summable on the line
z = 1 + it. This amounts to observing that

∞∑

n=1

1
n1+it

cannot be Abel summable, for if it were Theorem H-L (or even
a weaker two-sided version of it) would imply that the series is
actually convergent, which it cannot be since Hardy has shown
that, for fixed t 6= 0,

N∑

n=1

1
n1+it

=
i

tN it
+ `+ o(1) as N → ∞,

where ` is finite and independent of N. In fact ` turns out to be
ζ(1+it). �
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Karamata simplified Hardy and Littlewood’s proof of Theorem
H-L in 1930, and in 1952 Wielandt elegantly modified Kara-
mata’s proof as follows:

Suppose, without loss in generality, that
∞∑

n=0

anx
n → 0 as x→

1 − . Let F be the linear space of real functions f for which

∞∑

n=0

anf(xn) → 0 as x→ 1 − .

Then every real polynomial p with p(0) = 0 is in F. Let g :=
χ[1/2,1], the characteristic function of [1/2, 1]. Given ε > 0,
there are real polynomials p1, p2 with p1(0) = p2(0) = 0 and
p1(1) = p2(1) such that p1(x) ≤ g(x) ≤ p2(x) for 0 ≤ x ≤ 1,
and ∫ 1

0

p2(t) − p1(t)
t(1 − t)

dt <
ε

C
.

Then, by (T1),

∞∑

n=0

ang(xn) −
∞∑

n=0

anp1(xn) ≤ C

∞∑

n=1

p2(xn) − p1(xn)
n

= C

∞∑

n=1

xn(1 − xn)
n

q(xn) ≤ C (1 − x)
∞∑

n=0

xnq(xn),

where

q(x) :=
p2(x) − p1(x)
x(1 − x)

=:
m∑

k=0

bkx
k.
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Further, as x→ 1−,

(1−x)
∞∑

n=0

xnq(xn) =
m∑

k=0

bk
1 − x

1 − xk+1
→

m∑

k=0

bk
k + 1

=
∫ 1

0

q(t) dt <
ε

C
.

Hence

lim sup
x→1−

∞∑

n=0

ang(xn) < ε,

and likewise

lim inf
x→1−

∞∑

n=0

ang(xn) > −ε.

It follows that g ∈ F, and therefore, for N = b− log 2/ logxc,

∞∑

n=0

ang(xn) =
N∑

n=0

an → 0 as x→ 1 − . �
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Another proof of Theorem H-L is by means of Wiener’s power-
ful Tauberian theorem involving Fourier transforms which he
published in 1932:

Theorem W. If K ∈ L(−∞,∞), φ ∈ L∞(−∞,∞),

∫ ∞

−∞
e−itxK(t) dt 6= 0 ∀x ∈ (−∞,∞), and

∫ ∞

−∞
K(x− t)φ(t) dt = o(1) as x→ ∞,

then, ∀H ∈ L(−∞,∞),

(1)
∫ ∞

−∞
H(x− t)φ(t) dt = o(1) as x→ ∞.
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To prove Theorem H-L with ` = 0 by means of Theorem W,
let

s(x) :=
∑

n≤x

an, and F (x) :=
∞∑

n=0

anx
n.

Then, by hypothesis, F (x) = o(1) as x → 1−, and it follows
(fairly easily) from this and (T1) that s(x) = O(1), and hence
that, for t > 0,

F (e−t) =
∞∑

n=0

ane
−nt =

∫ ∞

0

e−tx ds(x) = t

∫ ∞

0

e−txs(x) dx.

Now take φ(x) := s(ex) and K(x) := exp(−x− e−x). Then

∫ ∞

−∞
K(x− t)φ(t) dt = F

(
exp(−e−x)

)
= o(1) as x→ ∞,

and, ∀x ∈ (−∞,∞),

∫ ∞

−∞
e−itxK(t) dt =

∫ ∞

0

uixe−u du = Γ(1 + ix) 6= 0.

Further, φ(x) = O(1), and it follows from (T1) that, given
δ > 0, ∃x0 such that

φ(y) − φ(x) ≤ 2δ for x0 ≤ x ≤ y ≤ x+ δ.

Taking H := δ−1χ[0,δ] and then H := δ−1χ[−δ,0] in (1), we
obtain respectively

lim sup
x→∞

φ(x) ≤ 2δ and lim inf
x→∞

φ(x) ≥ −2δ,
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from which it follows that φ(x) → 0 and hence that s(x) → 0 as
x→ ∞. �

Wiener’s theorem yields Tauberian theorems for many stan-
dard summability methods.

Karamata proved various Tauberian theorems, the most fa-
mous being the following one about Laplace transforms which
he proved in 1931:
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Theorem K. Let A be a non-decreasing, unbounded function
on [0,∞) with A(0) ≥ 0, and let L be a slowly varying function
(i.e., ∀t > 0, L(xt)/L(x) → 1 as x→ ∞). Then, for σ ≥ 0,

B(x) :=
∫ ∞

0

e−t/xdA(t) ∼ xσL(x) as x→ ∞

(i.e., B is regularly varying with index σ) if and only if

A(x) ∼ xσL(x)
Γ(1 + σ)

as x→ ∞.

From this theorem Karamata derived:

Theorem K1. Let A be a non-decreasing, unbounded and reg-
ularly varying function on [0,∞) with A(0) ≥ 0, and let the
function s be continuous and bounded below on [0,∞). If

(2)
∫ ∞

0

e−yts(t) dA(t) ∼ `

∫ ∞

0

e−yt dA(t) as y → 0+ ,

then

(3)
1

A(x)

∫ x

0

s(t) dA(t) → ` as x→ ∞.

This is also a Tauberian theorem since (3) ⇒ (2) without the
one-sided boundedness condition on s. It follows from a the-
orem established by Korenblum in 1955 that the condition in
Theorem K1 that A be regularly varying can be replaced by
the weaker condition

(4)
A(y)
A(x)

→ 1 when
y

x
→ 1, y > x→ ∞,

(i.e., logA(x) is slowly oscillating). From this extension of The-
orem K1, I was able to prove:
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Theorem DB. Let A be a non-decreasing, unbounded and
function on [0,∞) with A(0) ≥ 0, and let the function s be
continuous [0,∞). If (2) and (4) are satisfied, and in addition

(5) lim inf{s(y) − s(x)} ≥ 0 when
y

x
→ 1, y > x→ ∞,

then s(x) → ` as x→ ∞.

The proof uses a variant of a method developed by Vijayaragha-
van in 1926 to first deduce that s(x) is bounded.
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Theorem DB can be specialized by taking

A(x) := n for n ≤ x < n+ 1, n = 0, 1, . . . , and

s(n) := sn :=
n∑

k=0

ak,

to obtain as a corollary the following result which Schmidt
established in 1925:

Corollary. If

(6)
∞∑

n=0

sne
−ny ∼ `

∞∑

n=0

e−ny =
`

1 − e−y
as y → 0+

and

(7) lim inf(sm − sn) ≥ 0 when
m

n
→ 1, m > n→ ∞

(i.e., sn is slowly decreasing), then sn → `.

Note that (6) is equivalent to

(1 − x)
∞∑

n=0

snx
n =

∞∑

n=0

anx
n → ` as x→ 1−,

and that nan > −C ⇒ (7), so that the Corollary generalizes
Theorem H-L.
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Another classical Tauberian result concerns the Cesàro method
Cα, α > −1, and the Borel method B defined by:

∞∑

n=0

an = ` (Cα),

if
1(

n+α
n

)
n∑

k=0

(
k + α

k

)
an−k → ` as n→ ∞;

∞∑

n=0

an = ` (B), or sn → ` (B),

if e−x
∞∑

n=0

snx
n

n!
→ ` as x→ ∞, where sn :=

n∑

k=0

ak.
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Theorem B. If
∞∑

n=0

an = ` (B), and

(T2)
√

nan

nr ≤ C, r ≥ 0,

then
∞∑

n=0

an = `(C2r).

In 1960 Rajagopal proved a version of this result with a weaker
Tauberian condition than (T2). The case r = 0 of the result
with (T2) replaced by the stronger two-sided condition

√
nan =

O(1) was proved by Hardy and Littlewood in 1916. In 1925
Schmidt showed in the case r = 0 that (T2) can be relaxed to

lim inf(sm − sn) ≥ 0 when 0 <
√
m−

√
n→ 0, n→ ∞.

Recently Kratz and I established a quantatitive version of Vi-
jayaraghavan’s classical 1926 result and used it to give a short
proof of the case r = 0 of Theorem B. It is worth noting that
though summability C0 (i.e., convergence) implies summabil-
ity B, summability Cα with α > 0 does not in general imply
summability B.

Various Tauberian theorems have been used in assorted proofs
of the prime number theorem. A particularly interesting one
is the following one proved in 1931 by Ikehara, a student and
colleague of Wiener’s:
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Theorem I-W. Suppose that the function F has the following
properties:

(i) For <z > 1, F (z) =
∫ ∞
0 e−ztA(t) dt, where A is a non-

decreasing function with A(0) ≥ 0.

(ii) For <z > 1, z 6= 1, F (z) = G(z) +
1

z − 1
, where G(z)

is continuous on the half-plane <z ≥ 1.
Then e−tA(t) → 1 as t→ ∞.

The prime number theorem can be proved with the aid of The-
orem I-W as follows: Let

A(t) := ψ(et), where ψ(x) :=
∑

pn≤x

log p.

The p′s in the sum defining the Chebyshev function ψ are the
odd primes, and it is known that the prime number theorem,
viz.,

π(x) :=
∑

p≤x

∼
x

log x
as x→ ∞,

is equivalent to ψ(x) ∼ x as x→ ∞.

For <z > 1, we have that

F (z) =
∫ ∞

0

e−ztA(t) dt =
∫ ∞

1

u−z−1ψ(u) du = − ζ′(z)
zζ(z)

= G(z)+
1

z − 1
,

the function G satisfying the requirements of Theorem I-W
since the Riemann zeta function ζ(z) has no zeros in the half
plane <z ≥ 1 and is holomorphic in the whole plane, except for
a simple pole at z = 1 with residue 1. Hence, by Theorem I-W,
e−tψ(et) → 1 as t→ ∞ and so ψ(x) ∼ x as x→ ∞. �
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11. R. Schmidt, Über divergente Folgen und lineare Mittelbildungen, Math.
Z. 22 (1925), 89–152.

12. R. Schmidt, Umkersätze des Borelschen Summierungsverfahren, Schriften

Köningsberg
1 (1925), 205–256.

13. A. Tauber, Ein Satz aus der Theorie der uneindliche Reihen, Monatsh.

Math. u. Phys. 8 (1897), 273–277.

14. T. Vijayaraghavan, A Tauberian theorem, J. London Math. Soc. (1)

1 (1926), 113–120.

15. T. Vijayaraghavan, A theorem concerning the summability of series

by Borel’s method, Proc. London Math. Soc. (2) 27 (1928), 316–326.

16. D.V. Widder, The Laplace Transform, Princeton, 1946.

17. H. Wielandt, Zur Umkehrung des Abelschen Stetigkeitssatzes, J. Reine

Angew Math. 56 (1952), 27–39.

18. N. Wiener, Tauberian theorems, Annuls of Math. 33 (1932), 1–100.

17


