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ABSTRACT.

A narrow path is cut through the jungle of results which
started with Tauber’s “corrected converse” of Abel’s theorem
O O

that if Zanzﬁ, then Zanmnﬁﬁasmﬁl—.



Just over a century ago, in 1897, Tauber proved the following
“corrected converse” of Abel’s theorem:

Theorem T. Ifz an,x” — f as x — 1—, and

n=0

(To)  nan =o(1),
then Z a, =Y.
n=0

Subsequently Hardy and Littlewood proved numerous other
such converse theorems, and they coined the term Tauberian
to describe them.

In summability language Theorem T can be expressed as:
Ifz an, = £ (A), where A denotes the Abel summability method,
n=0

and if the Tauberian condition (Tqg) holds, then Z a, = /.

n=0

The simplest example of an Abel summable series that is not

G 1
convergent is given by a, := (—1)", for which Z an =3 (A).
n=0



Tauber’s innocent looking theorem was the start of a veritable
Tauberian jungle of results which Korevaar, in a recent book,
made a very worthwhile effort to organize and present in a
coherent manner. The book’s 483 pages are densely packed
and there are around 800 references. Rather than attempting
the impossible task of giving such a comprehensive description
of the jungle in the course of a short talk, I will cut a reasonably
narrow path through part of it, touching on some of the key
results.

In 1914 Hardy and Littlewood proved the following generaliza-
tion of Theorem T in which the strong “two-sided” Tauberian
condition (Ty) is replaced by the much weaker “one-sided” con-
dition (T4):

Theorem H-L. If Z a,x" — L asx — 1—, and

n=0

(T1) mna, < C, a positive constant,
oo

then Z ay, = /.
n=0

Note that by changing sign throughout, the Tauberian condi-
tion (T4) could be expressed as na,, > —C.



An interesting, and non-trivial, illustration of the potency of
Theorem H-L, is a proof that the series

o0
1
2o
n=1

which is absolutely convergent and defines the Riemann zeta
function ((z) when Rz > 1, is not Abel summable on the line
z = 1 4 1t. This amounts to observing that

<01
> i

n=1

cannot be Abel summable, for if it were Theorem H-L (or even
a weaker two-sided version of it) would imply that the series is
actually convergent, which it cannot be since Hardy has shown

that, for fixed t #£ 0,

N
1 1

Z nltit — Nt +L+o0(1) as N — oo,

n=1

where /£ is finite and independent of N. In fact £ turns out to be
C(1+it). ]



Karamata simplified Hardy and Littlewood’s proof of Theorem
H-L in 1930, and in 1952 Wielandt elegantly modified Kara-
mata’s proof as follows:

Suppose, without loss in generality, that Z a,r’" — 0 as x —

n=0
1 — . Let § be the linear space of real functions f for which

Zanf(a:”)—>0asa:—>1—.
n=0

Then every real polynomial p with p(0) = 0isin §. Let g :=
X[1/2,1], the characteristic function of [1/2,1]. Given ¢ > 0,
there are real polynomials py, po with p1(0) = p2(0) = 0 and
p1(1) = p2(1) such that pi(z) < g(x) < pa(z) for 0 <z < 1,

and
Fpa(t) = pa(t) 3
/0 <

Then7 by (T1>7

Zang(a:” _Zanpl <Czp2 — )

n=0
sz (1 -z") :1:”)<C(1—:I:)Za:”q(a:”),
n=1 n=0
where
po(z) — p1(x T
o(a) = PR =3 e
k=0



Further, as ¢ — 1—,

oo . m b
(1-2) 3 amg(z") Zbkll_xlj;ﬁzkﬁl:
n=0 k=0

Hence -
lim sup Z ang(z") < e,
r—1— n—>0
and likewise
O
lirgirif z%ang(a:”) > —¢
n=

It follows that g € §, and therefore, for N = | —log2/logz|,

N
Zang(a:”):ZanHOasxel—.



Another proof of Theorem H-L is by means of Wiener’s power-

ful Tauberian theorem involving Fourier transforms which he
published in 1932:

Theorem W. [f K € L(—o00,0), ¢ € L>®(—00,0),
/ e K (t)dt #0 Vx € (—o0,0), and
/ K(x —t)p(t)dt = o(1) as x — o0,
then, VH € L(—00,00),

(1) /_OO H(x —t)p(t)dt =o(1) as x — 0.



To prove Theorem H-L with £ = 0 by means of Theorem W,
let

Then, by hypothesis, F'(z) = o(1) as x — 1—, and it follows
(fairly easily) from this and (T;) that s(z) = O(1), and hence
that, for ¢ > 0,

Fle™) = iane_”t = /000 e "ds(z) = t/ooo e "s(x)dx.
Now take ¢(z) := s(e*) and K(z) := exp(—z — e™*). Then
/OO K(z — t)¢(t)dt = F(exp(—e™")) = o(1) as & — o0,
and, Vz € (—o0, 00),

/ e TR (t) dt = / uTe " du =T(1 4 iz) # 0.
0

— O

Further, ¢(z) = O(1), and it follows from (T;) that, given
d > 0, dxg such that

d(y) — ¢p(x) <26 for zp <x <y <z +6.

Taking H := 6 'xjo,) and then H := 6 'x[_50 in (1), we
obtain respectively

limsup¢p(z) <26 and liminf¢(z) > —26,

T—00 LT—00
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from which it follows that ¢(z) — 0 and hence that s(z) — 0 as
T — Q. ]

Wiener’s theorem yields Tauberian theorems for many stan-
dard summability methods.

Karamata proved various Tauberian theorems, the most fa-
mous being the following one about Laplace transforms which

he proved in 1931:



Theorem K. Let A be a non-decreasing, unbounded function
on [0,00) with A(0) > 0, and let L be a slowly varying function
(i.e., Vt > 0, L(xt)/L(x) — 1 as x — o0). Then, for o > 0,

B(z) = / e VTdA(t) ~ 2°L(x) as © — 00
0

(i.e., B is reqularly varying with index o) if and only if
x? L(x)

A N ————————————— .
() T+ o) as T — 00

From this theorem Karamata derived:

Theorem K. Let A be a non-decreasing, unbounded and reg-
ularly varying function on [0,00) with A(0) > 0, and let the
function s be continuous and bounded below on [0, 00). If

(2) /0 T e V(1) dA(t) ~ /0 T e dA() as y — O+,

then
1

/x s(t)dA(t) — £ as v — oc.

This is also a Tauberian theorem since (3) = (2) without the
one-sided boundedness condition on s. It follows from a the-
orem established by Korenblum in 1955 that the condition in
Theorem K; that A be regularly varying can be replaced by
the weaker condition

A
(y>—>1wh6ng—>1,y>az—>oo,

4

) A(x) x

(i.e., log A(x) is slowly oscillating). From this extension of The-
orem Kj, I was able to prove:

10



Theorem DB. Let A be a non-decreasing, unbounded and
function on [0,00) with A(0) > 0, and let the function s be
continuous [0,00). If (2) and (4) are satisfied, and in addition

(5)  liminf{s(y) - s(x)} > 0 when 2 — 1,y >z — oc,
T
then s(x) — £ as © — oc.

The proof uses a variant of a method developed by Vijayaragha-
van in 1926 to first deduce that s(z) is bounded.

11



Theorem DB can be specialized by taking

A(x) :=nforn<x<n+1,n=0,1,..., and

n
s(n) := s, = Zak,
k=0

to obtain as a corollary the following result which Schmidt
established in 1925:

Corollary. If

(0. @) oo g
DRD SERTI) P
n=0 n=0
and
(7)  liminf(s,, — s,) > 0 when m —1,m>n— o
n

(i.e., sp is slowly decreasing), then s, — L.

Note that (6) is equivalent to

(1—x)§:sna:” = iana:” —flasz— 1—,
n=0

n=0

and that na, > —C = (7), so that the Corollary generalizes
Theorem H-L.
12



Another classical Tauberian result concerns the Cesaro method
Cu, @ > —1, and the Borel method B defined by:

i an, =1 (Cy),
n=0

if (n}ra) Z (k;a)an-k — { as n — 00;

Zan =/{(B), or s, — {(B),
n=0

0. @) n n
.f —x STL:C E h -« —
if e — —tasx—o0, where s, = ag.
n.
k=0

n=0
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Theorem B. If Zan = /(¢ (B), and

n=0

(Ty) Y <, 7 >0,

then Z an, = £(Ca;).

n=0

In 1960 Rajagopal proved a version of this result with a weaker
Tauberian condition than (T3). The case r = 0 of the result
with (T2) replaced by the stronger two-sided condition y/na,, =
O(1) was proved by Hardy and Littlewood in 1916. In 1925
Schmidt showed in the case = 0 that (T3) can be relaxed to

liminf(s,, — s,) > 0 when 0 < /m — v/n — 0, n — oo.

Recently Kratz and I established a quantatitive version of Vi-
jayaraghavan’s classical 1926 result and used it to give a short
proof of the case » = 0 of Theorem B. It is worth noting that
though summability Cy (i.e., convergence) implies summabil-
ity B, summability C', with a > 0 does not in general imply
summability B.

Various Tauberian theorems have been used in assorted proofs
of the prime number theorem. A particularly interesting one
is the following one proved in 1931 by Ikehara, a student and
colleague of Wiener’s:

14



Theorem I-W. Suppose that the function F' has the following
properties:
(i) For Rz > 1, F(z fo e ** A(t) dt, where A is a non-
decreasing functzon with A(0) > 0.
1
(il) For Rz > 1,2 # 1, F(z) = G(z) + PENEE where G(z)
1 continuous on the half-plane Rz > 1.
Then e *A(t) — 1 as t — oc.

The prime number theorem can be proved with the aid of The-
orem I-W as follows: Let

A(t) :==1(e'), where 9(x Z log p.

The p's in the sum defining the Chebyshev function v are the
odd primes, and it is known that the prime number theorem,
Viz.,

x
( E ~ as r — 00,
log x
p<zx

is equivalent to ¥ (x) ~ x as x — o0.

For Rz > 1, we have that

F(z) = / T A di = / Ty du= - S — gL
0 1 2((2) z— 1
the function G satisfying the requirements of Theorem I-W
since the Riemann zeta function ((z) has no zeros in the half
plane £z > 1 and is holomorphic in the whole plane, except for
a simple pole at z = 1 with residue 1. Hence, by Theorem I-W,
e tp(e!) — 1 ast — oo and so () ~ x as x — oo, O
15
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