A CENTURY OF TAUBERIAN THEORY

DAVID BORWEIN

Abstract

.

A narrow path is cut through the jungle of results which started with Tauber's "corrected converse" of Abel's theorem that if $\sum_{n=0}^{\infty} a_{n}=\ell$, then $\sum_{n=0}^{\infty} a_{n} x^{n} \rightarrow \ell$ as $x \rightarrow 1-$.

Just over a century ago, in 1897, Tauber proved the following "corrected converse" of Abel's theorem:

Theorem T. If $\sum_{n=0}^{\infty} a_{n} x^{n} \rightarrow \ell$ as $x \rightarrow 1-$, and
$\left(\mathrm{T}_{0}\right) \quad n a_{n}=o(1)$,
then $\sum_{n=0}^{\infty} a_{n}=\ell$.

Subsequently Hardy and Littlewood proved numerous other such converse theorems, and they coined the term Tauberian to describe them.

In summability language Theorem T can be expressed as:
If $\sum_{n=0}^{\infty} a_{n}=\ell(A)$, where A denotes the Abel summability method, and if the Tauberian condition $\left(\mathrm{T}_{0}\right)$ holds, then $\sum_{n=0}^{\infty} a_{n}=\ell$.

The simplest example of an Abel summable series that is not convergent is given by $a_{n}:=(-1)^{n}$, for which $\sum_{n=0}^{\infty} a_{n}=\frac{1}{2}(A)$.

Tauber's innocent looking theorem was the start of a veritable Tauberian jungle of results which Korevaar, in a recent book, made a very worthwhile effort to organize and present in a coherent manner. The book's 483 pages are densely packed and there are around 800 references. Rather than attempting the impossible task of giving such a comprehensive description of the jungle in the course of a short talk, I will cut a reasonably narrow path through part of it, touching on some of the key results.

In 1914 Hardy and Littlewood proved the following generalization of Theorem T in which the strong "two-sided" Tauberian condition (T_{0}) is replaced by the much weaker "one-sided" condition $\left(\mathrm{T}_{1}\right)$:

Theorem H-L. If $\sum_{n=0}^{\infty} a_{n} x^{n} \rightarrow \ell$ as $x \rightarrow 1-$, and
$\left(\mathrm{T}_{1}\right) \quad n a_{n} \leq C, a$ positive constant,
then $\sum_{n=0}^{\infty} a_{n}=\ell$.

Note that by changing sign throughout, the Tauberian condition (T_{1}) could be expressed as $n a_{n} \geq-C$.

An interesting, and non-trivial, illustration of the potency of Theorem H-L, is a proof that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

which is absolutely convergent and defines the Riemann zeta function $\zeta(z)$ when $\Re z>1$, is not Abel summable on the line $z=1+i t$. This amounts to observing that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{1+i t}}
$$

cannot be Abel summable, for if it were Theorem H-L (or even a weaker two-sided version of it) would imply that the series is actually convergent, which it cannot be since Hardy has shown that, for fixed $t \neq 0$,

$$
\sum_{n=1}^{N} \frac{1}{n^{1+i t}}=\frac{i}{t N^{i t}}+\ell+o(1) \text { as } N \rightarrow \infty
$$

where ℓ is finite and independent of N. In fact ℓ turns out to be $\zeta(1+i t)$.

Karamata simplified Hardy and Littlewood's proof of Theorem H-L in 1930, and in 1952 Wielandt elegantly modified Karamata's proof as follows:

Suppose, without loss in generality, that $\sum_{n=0}^{\infty} a_{n} x^{n} \rightarrow 0$ as $x \rightarrow$ $1-$. Let \mathfrak{F} be the linear space of real functions f for which

$$
\sum_{n=0}^{\infty} a_{n} f\left(x^{n}\right) \rightarrow 0 \text { as } x \rightarrow 1-
$$

Then every real polynomial p with $p(0)=0$ is in \mathfrak{F}. Let $g:=$ $\chi_{[1 / 2,1]}$, the characteristic function of $[1 / 2,1]$. Given $\varepsilon>0$, there are real polynomials p_{1}, p_{2} with $p_{1}(0)=p_{2}(0)=0$ and $p_{1}(1)=p_{2}(1)$ such that $p_{1}(x) \leq g(x) \leq p_{2}(x)$ for $0 \leq x \leq 1$, and

$$
\int_{0}^{1} \frac{p_{2}(t)-p_{1}(t)}{t(1-t)} d t<\frac{\varepsilon}{C}
$$

Then, by $\left(\mathrm{T}_{1}\right)$,

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} g\left(x^{n}\right) & -\sum_{n=0}^{\infty} a_{n} p_{1}\left(x^{n}\right) \leq C \sum_{n=1}^{\infty} \frac{p_{2}\left(x^{n}\right)-p_{1}\left(x^{n}\right)}{n} \\
& =C \sum_{n=1}^{\infty} \frac{x^{n}\left(1-x^{n}\right)}{n} q\left(x^{n}\right) \leq C(1-x) \sum_{n=0}^{\infty} x^{n} q\left(x^{n}\right)
\end{aligned}
$$

where

$$
q(x):=\frac{p_{2}(x)-p_{1}(x)}{x(1-x)}=: \sum_{k=0}^{m} b_{k} x^{k} .
$$

Further, as $x \rightarrow 1-$,
$(1-x) \sum_{n=0}^{\infty} x^{n} q\left(x^{n}\right)=\sum_{k=0}^{m} b_{k} \frac{1-x}{1-x^{k+1}} \rightarrow \sum_{k=0}^{m} \frac{b_{k}}{k+1}=\int_{0}^{1} q(t) d t<\frac{\varepsilon}{C}$.
Hence

$$
\limsup _{x \rightarrow 1-} \sum_{n=0}^{\infty} a_{n} g\left(x^{n}\right)<\varepsilon,
$$

and likewise

$$
\liminf _{x \rightarrow 1-} \sum_{n=0}^{\infty} a_{n} g\left(x^{n}\right)>-\varepsilon .
$$

It follows that $g \in \mathfrak{F}$, and therefore, for $N=\lfloor-\log 2 / \log x\rfloor$,

$$
\sum_{n=0}^{\infty} a_{n} g\left(x^{n}\right)=\sum_{n=0}^{N} a_{n} \rightarrow 0 \text { as } x \rightarrow 1-.
$$

Another proof of Theorem H-L is by means of Wiener's powerful Tauberian theorem involving Fourier transforms which he published in 1932:

Theorem W. If $K \in L(-\infty, \infty), \phi \in L^{\infty}(-\infty, \infty)$,

$$
\begin{gathered}
\int_{-\infty}^{\infty} e^{-i t x} K(t) d t \neq 0 \quad \forall x \in(-\infty, \infty), \text { and } \\
\int_{-\infty}^{\infty} K(x-t) \phi(t) d t=o(1) \text { as } x \rightarrow \infty,
\end{gathered}
$$

then, $\forall H \in L(-\infty, \infty)$,
(1)

$$
\int_{-\infty}^{\infty} H(x-t) \phi(t) d t=o(1) \text { as } x \rightarrow \infty .
$$

To prove Theorem H-L with $\ell=0$ by means of Theorem W, let

$$
s(x):=\sum_{n \leq x} a_{n}, \quad \text { and } \quad F(x):=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Then, by hypothesis, $F(x)=o(1)$ as $x \rightarrow 1-$, and it follows (fairly easily) from this and $\left(\mathrm{T}_{1}\right)$ that $s(x)=O(1)$, and hence that, for $t>0$,

$$
F\left(e^{-t}\right)=\sum_{n=0}^{\infty} a_{n} e^{-n t}=\int_{0}^{\infty} e^{-t x} d s(x)=t \int_{0}^{\infty} e^{-t x} s(x) d x
$$

Now take $\phi(x):=s\left(e^{x}\right)$ and $K(x):=\exp \left(-x-e^{-x}\right)$. Then

$$
\int_{-\infty}^{\infty} K(x-t) \phi(t) d t=F\left(\exp \left(-e^{-x}\right)\right)=o(1) \text { as } x \rightarrow \infty,
$$

and, $\forall x \in(-\infty, \infty)$,

$$
\int_{-\infty}^{\infty} e^{-i t x} K(t) d t=\int_{0}^{\infty} u^{i x} e^{-u} d u=\Gamma(1+i x) \neq 0
$$

Further, $\phi(x)=O(1)$, and it follows from $\left(\mathrm{T}_{1}\right)$ that, given $\delta>0, \exists x_{0}$ such that

$$
\phi(y)-\phi(x) \leq 2 \delta \text { for } x_{0} \leq x \leq y \leq x+\delta
$$

Taking $H:=\delta^{-1} \chi_{[0, \delta]}$ and then $H:=\delta^{-1} \chi_{[-\delta, 0]}$ in (1), we obtain respectively

$$
\limsup _{x \rightarrow \infty} \phi(x) \leq 2 \delta \quad \text { and } \quad \liminf _{x \rightarrow \infty} \phi(x) \geq-2 \delta
$$

from which it follows that $\phi(x) \rightarrow 0$ and hence that $s(x) \rightarrow 0$ as $x \rightarrow \infty$.

Wiener's theorem yields Tauberian theorems for many standard summability methods.

Karamata proved various Tauberian theorems, the most famous being the following one about Laplace transforms which he proved in 1931:

Theorem K. Let A be a non-decreasing, unbounded function on $[0, \infty)$ with $A(0) \geq 0$, and let L be a slowly varying function (i.e., $\forall t>0, L(x t) / L(x) \rightarrow 1$ as $x \rightarrow \infty$). Then, for $\sigma \geq 0$,

$$
B(x):=\int_{0}^{\infty} e^{-t / x} d A(t) \sim x^{\sigma} L(x) \text { as } x \rightarrow \infty
$$

(i.e., B is regularly varying with index σ) if and only if

$$
A(x) \sim \frac{x^{\sigma} L(x)}{\Gamma(1+\sigma)} \text { as } x \rightarrow \infty
$$

From this theorem Karamata derived:

Theorem \mathbf{K}_{1}. Let A be a non-decreasing, unbounded and regularly varying function on $[0, \infty)$ with $A(0) \geq 0$, and let the functions be continuous and bounded below on $[0, \infty)$. If
(2) $\quad \int_{0}^{\infty} e^{-y t} s(t) d A(t) \sim \ell \int_{0}^{\infty} e^{-y t} d A(t)$ as $y \rightarrow 0+$, then

$$
\begin{equation*}
\frac{1}{A(x)} \int_{0}^{x} s(t) d A(t) \rightarrow \ell \text { as } x \rightarrow \infty \tag{3}
\end{equation*}
$$

This is also a Tauberian theorem since $(3) \Rightarrow(2)$ without the one-sided boundedness condition on s. It follows from a theorem established by Korenblum in 1955 that the condition in Theorem K_{1} that A be regularly varying can be replaced by the weaker condition

$$
\begin{equation*}
\frac{A(y)}{A(x)} \rightarrow 1 \text { when } \frac{y}{x} \rightarrow 1, y>x \rightarrow \infty \tag{4}
\end{equation*}
$$

(i.e., $\log A(x)$ is slowly oscillating). From this extension of Theorem K_{1}, I was able to prove:

Theorem DB. Let A be a non-decreasing, unbounded and function on $[0, \infty)$ with $A(0) \geq 0$, and let the function s be continuous $[0, \infty)$. If (2) and (4) are satisfied, and in addition
(5) $\liminf \{s(y)-s(x)\} \geq 0$ when $\frac{y}{x} \rightarrow 1, y>x \rightarrow \infty$,
then $s(x) \rightarrow \ell$ as $x \rightarrow \infty$.

The proof uses a variant of a method developed by Vijayaraghavan in 1926 to first deduce that $s(x)$ is bounded.

Theorem DB can be specialized by taking

$$
\begin{aligned}
& A(x):=n \text { for } n \leq x<n+1, n=0,1, \ldots, \text { and } \\
& \qquad s(n):=s_{n}:=\sum_{k=0}^{n} a_{k}
\end{aligned}
$$

to obtain as a corollary the following result which Schmidt established in 1925:

Corollary. If

$$
\begin{equation*}
\sum_{n=0}^{\infty} s_{n} e^{-n y} \sim \ell \sum_{n=0}^{\infty} e^{-n y}=\frac{\ell}{1-e^{-y}} \text { as } y \rightarrow 0+ \tag{6}
\end{equation*}
$$

and
(7) $\quad \liminf \left(s_{m}-s_{n}\right) \geq 0$ when $\frac{m}{n} \rightarrow 1, m>n \rightarrow \infty$
(i.e., s_{n} is slowly decreasing), then $s_{n} \rightarrow \ell$.

Note that (6) is equivalent to

$$
(1-x) \sum_{n=0}^{\infty} s_{n} x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n} \rightarrow \ell \text { as } x \rightarrow 1-,
$$

and that $n a_{n}>-C \Rightarrow(7)$, so that the Corollary generalizes Theorem H-L.

Another classical Tauberian result concerns the Cesàro method

 $C_{\alpha}, \alpha>-1$, and the Borel method B defined by:$$
\begin{gathered}
\sum_{n=0}^{\infty} a_{n}=\ell\left(C_{\alpha}\right), \\
\text { if } \frac{1}{\binom{n+\alpha}{n}} \sum_{k=0}^{n}\binom{k+\alpha}{k} a_{n-k} \rightarrow \ell \text { as } n \rightarrow \infty ; \\
\sum_{n=0}^{\infty} a_{n}=\ell(B), \text { or } s_{n} \rightarrow \ell(B), \\
\text { if } e^{-x} \sum_{n=0}^{\infty} \frac{s_{n} x^{n}}{n!} \rightarrow \ell \text { as } x \rightarrow \infty, \quad \text { where } s_{n}:=\sum_{k=0}^{n} a_{k} .
\end{gathered}
$$

Theorem B. If $\sum_{n=0}^{\infty} a_{n}=\ell(B)$, and
$\left(\mathrm{T}_{2}\right) \quad \frac{\sqrt{n} a_{n}}{n^{r}} \leq C, r \geq 0$,
then $\sum_{n=0}^{\infty} a_{n}=\ell\left(C_{2 r}\right)$.

In 1960 Rajagopal proved a version of this result with a weaker Tauberian condition than $\left(\mathrm{T}_{2}\right)$. The case $r=0$ of the result with (T_{2}) replaced by the stronger two-sided condition $\sqrt{n} a_{n}=$ $O(1)$ was proved by Hardy and Littlewood in 1916. In 1925 Schmidt showed in the case $r=0$ that $\left(\mathrm{T}_{2}\right)$ can be relaxed to

$$
\liminf \left(s_{m}-s_{n}\right) \geq 0 \text { when } 0<\sqrt{m}-\sqrt{n} \rightarrow 0, n \rightarrow \infty
$$

Recently Kratz and I established a quantatitive version of Vijayaraghavan's classical 1926 result and used it to give a short proof of the case $r=0$ of Theorem B. It is worth noting that though summability C_{0} (i.e., convergence) implies summability B, summability C_{α} with $\alpha>0$ does not in general imply summability B.

Various Tauberian theorems have been used in assorted proofs of the prime number theorem. A particularly interesting one is the following one proved in 1931 by Ikehara, a student and colleague of Wiener's:

Theorem I-W. Suppose that the function F has the following properties:
(i) For $\Re z>1, F(z)=\int_{0}^{\infty} e^{-z t} A(t) d t$, where A is a nondecreasing function with $A(0) \geq 0$.
(ii) For $\Re z>1, z \neq 1, F(z)=G(z)+\frac{1}{z-1}$, where $G(z)$ is continuous on the half-plane $\Re z \geq 1$.
Then $e^{-t} A(t) \rightarrow 1$ as $t \rightarrow \infty$.

The prime number theorem can be proved with the aid of Theorem I-W as follows: Let

$$
A(t):=\psi\left(e^{t}\right), \text { where } \psi(x):=\sum_{p^{n} \leq x} \log p
$$

The $p^{\prime} s$ in the sum defining the Chebyshev function ψ are the odd primes, and it is known that the prime number theorem, viz.,

$$
\pi(x):=\sum_{p \leq x} \sim \frac{x}{\log x} \text { as } x \rightarrow \infty
$$

is equivalent to $\psi(x) \sim x$ as $x \rightarrow \infty$.
For $\Re z>1$, we have that
$F(z)=\int_{0}^{\infty} e^{-z t} A(t) d t=\int_{1}^{\infty} u^{-z-1} \psi(u) d u=-\frac{\zeta^{\prime}(z)}{z \zeta(z)}=G(z)+\frac{1}{z-1}$,
the function G satisfying the requirements of Theorem I-W since the Riemann zeta function $\zeta(z)$ has no zeros in the half plane $\Re z \geq 1$ and is holomorphic in the whole plane, except for a simple pole at $z=1$ with residue 1 . Hence, by Theorem I-W, $e^{-t} \psi\left(e^{t}\right) \rightarrow 1$ as $t \rightarrow \infty$ and so $\psi(x) \sim x$ as $x \rightarrow \infty$.

References

1. D. Borwein, Tauberian theorems concerning Laplace transforms and Dirichlet series, Arch. Math. (Basel) 53 (1989), 352-362.
2. D. Borwein and W. Kratz, A one-sided Tauberian theorem for the Borel Summability method, J.Math. Analysis and Applications 293 (2004), 285-292.
3. G.H. Hardy, Divergent Series, Oxford, 1949.
4. G.H. Hardy and J.E. Littlewood, Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive, Proc. London Math. Soc. (2) 13 (1914), 174-191.
5. G.H. Hardy and J.E. Littlewood, Theorems concerning the summability of series by Borel's exponential method, Rend. Palermo 41 (1916), 36-53.
6. S. Ikehara, An extension of Landau's theorem in the analytic theory of numbers, J. Math. and Phys. M.I.T. (2) 10 (1931), 1-12.
7. J. Karamata, Über die Hardy-Littlewoodschen Umkehrungen des Abelschen Stetigkeitssatzes, Math. Z. 32 (1930), 319-320.
8. J. Karamata, Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplacesche Transformation betreffen, Math. Z. 164 (1931), 319-320.
9. B. Korenblum, On the asymptotic behaviour of Laplace integrals near the boundary of a region of convergence (Russian), Dokl. Akad. SSSR (NS) 104 (1955), 173-176.
10. J. Korevaar, Tauberian Theory, a century of developments, Springer, 2004.
11. R. Schmidt, Über divergente Folgen und lineare Mittelbildungen, Math. Z. 22 (1925), 89-152.
12. R. Schmidt, Umkersätze des Borelschen Summierungsverfahren, Schriften Köningsberg
1 (1925), 205-256.
13. A. Tauber, Ein Satz aus der Theorie der uneindliche Reihen, Monatsh. Math. u. Phys. 8 (1897), 273-277.
14. T. Vijayaraghavan, A Tauberian theorem, J. London Math. Soc. (1) 1 (1926), 113-120.
15. T. Vijayaraghavan, A theorem concerning the summability of series by Borel's method, Proc. London Math. Soc. (2) 27 (1928), 316-326.
16. D.V. Widder, The Laplace Transform, Princeton, 1946.
17. H. Wielandt, Zur Umkehrung des Abelschen Stetigkeitssatzes, J. Reine Angew Math. 56 (1952), 27-39.
18. N. Wiener, Tauberian theorems, Annuls of Math. 33 (1932), 1-100.
