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Abstract. We study the connection between uniformly convex functions f :

X → R bounded above by ‖x‖p, and the existence of norms on X with moduli

of convexity of power type. In particular, we show that there exists a uniformly
convex function f : X → R bounded above by ‖ · ‖2 if and only if X admits a

norm with modulus of convexity of power type 2.

1. Introduction

Uniformly convex functions on Banach spaces were introduced by Levitin and
Poljak in [13]. Their properties were studied in depth by Zălinescu [17], and then
later Azé and Penot [2] studied their duality with uniformly smooth convex func-
tions; see also [18] for more details. Yet, surprisingly, little precise information
seems to be known about when they can exist on Banach spaces. For example, [18,
Theorem 3.5.13], shows that a Banach space admitting a uniformly convex function
whose domain has nonempty interior is reflexive, and in fact, it can be shown that
such a Banach space is superreflexive—see Theorem 2.5 (recall that a Banach space
is superreflexive if and only if it admits an equivalent uniformly convex norm [9]).
On the other hand, if one does not require the function to be globally uniformly
convex, then [4] and [5] show f(x) = ‖x‖r is totally convex and uniformly convex
on bounded sets whenever ‖ · ‖ is uniformly convex and r > 1. See also [3, 6] for
further applications of totally convex and other related convex functions.

In this note, we will focus on the class of uniformly convex functions, i.e. func-
tions that are globally uniformly convex as studied in [17] and defined below. This is
known to be a more restricted class of functions than those that are uniformly con-
vex on bounded sets; see e.g. [18, Proposition 3.5.8] which shows that f(x) = ‖x‖r

cannot be uniformly convex for r < 2. We will sharpen this by establishing the
precise connection between the uniform convexity of f(x) = ‖x‖r and the modu-
lus of convexity of ‖ · ‖. We also examine the more general converse problem: if
f : X → R is uniformly convex and bounded above by ‖ · ‖r, does X admit a norm
with a modulus of convexity of power type related to r?

We work with a real Banach space X with dual X∗, and let BX and SX denote
the closed unit ball and sphere respectively. The Fenchel conjugate of f is the
function f∗ : X∗ → (−∞,+∞] defined by

f∗(x∗) = sup{x∗(x)− f(x) : x ∈ X}.
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dación Séneca (CARM, Spain) and AP2003-4453 of MECD (Spain).
3Research supported by the grants AV0Z10190503 and A100190502 of Inst. Res.

1



2 J. BORWEIN1, A. J. GUIRAO2, P. HÁJEK3, AND J. VANDERWERFF

For a given convex function f : X → R ∪ {+∞} we define its modulus of convexity
as the function δf : R+ → [0,+∞] defined by

δf (t) := inf
{

1
2
f(x) +

1
2
f(y)− f

(
x + y

2

)
: ‖x− y‖ = t, x, y ∈ dom f

}
,

where the infimum over the empty set is +∞. Similarly we consider the modulus
of smoothness of f : X → R as the function ρf : R+ → R defined by

ρf (t) := sup
{

1
2
f(x) +

1
2
f(y)− f

(
x + y

2

)
: ‖x− y‖ = t

}
.

We say that f is uniformly convex when δf (t) > 0 for all t > 0, and f has a modulus
of convexity of power type p if there exists C > 0 so that δf (t) ≥ Ctp for all t > 0.
We will say f is uniformly smooth if limt→0+ ρf (t)/t = 0, and f has a modulus of
smoothness of power type q if there is a constant C > 0, so that ρf (t) ≤ Ctq for
all t > 0. Let us note that these concepts are sometimes defined using the gage of
uniform convexity and gage of uniform smoothness respectively as found in [18]; it
is important to note that these alternate definitions using the respective gages are
equivalent to those just given; cf. [17, Remark 2.1] and [18, p. 205].

2. Uniform Convexity of Functions and Norms

This section will demonstrate for 1 < p < ∞ that f(·) = ‖ · ‖p is uniformly
convex if and only if ‖ · ‖ has modulus of convexity of power type p.

Lemma 2.1. Let 0 < r ≤ 1, then |tr − sr| ≤ |t− s|r for all s, t ∈ [0,∞).

Proof. First, for x ≥ 0, (1 + x)r ≤ 1 + xr (see [16, Example 4.20]). Setting x =
(t− s)/s with t ≥ s > 0, and then multiplying by sr, we get tr ≤ sr +(t− s)r. The
conclusion follows from this. �

Theorem 2.2. For 1 < q ≤ 2, the following are equivalent in a Banach space X.
(a) The norm ‖·‖ has modulus of smoothness of power type q.
(b) The function f(·) = ‖·‖q has modulus of smoothness of power type q.
(c) The function f(·) = ‖·‖q is uniformly smooth.

Proof. (a) ⇒ (b): We assume that ‖·‖ has modulus of smoothness of power type
q. Then it has a (Fréchet) derivative satisfying a (q − 1)-Hölder-condition on its
sphere, see [7, Lemma IV.5.1]. Moreover, f(x) = ‖x‖q satisfies f ′(0) = 0 and
f ′(x) = q ‖x‖q−1

φx where φx ∈ J(x), the duality map, for x 6= 0 (i.e. φx ∈ SX , and
φx(x) = ‖x‖). Observe that if x = 0 or y = 0 then ‖f ′(x)− f ′(y)‖ ≤ q ‖x− y‖q−1.
Assuming that x, y ∈ X \ {0} we compute,

f ′(x)− f ′(y) = q ‖x‖q−1
φx − q ‖y‖q−1

φy

= q ‖x‖q−1
φx − q ‖x‖q−1

φy + q ‖x‖q−1
φy − q ‖y‖q−1

φy

= q ‖x‖q−1 (φx − φy) +
(
q ‖x‖q−1 − q ‖y‖q−1 )

φy.(2.1)

Using Lemma 2.1 we also compute

(2.2)
∣∣∣q ‖x‖q−1 − q ‖y‖q−1

∣∣∣ ≤ q
∣∣ ‖x‖ − ‖y‖ ∣∣q−1≤ q ‖x− y‖q−1

.

We now work on an estimate for q ‖x‖q−1 (φx − φy). First, consider the case
where 0 < ‖y‖ ≤ ‖x‖ ≤ 1. If ‖y‖ ≤ ‖x‖ /2, then

q ‖x‖q−1 ‖φx − φy‖ ≤ 2q ‖x‖q−1 ≤ q2q ‖x− y‖q−1
.
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If ‖x‖ ≤ 1 and ‖y‖ ≥ ‖x‖ /2, consider x′ = λx where λ = ‖y‖ / ‖x‖, so that
‖x′‖ = ‖y‖. Then

‖x′ − y‖ ≤ ‖x′ − x‖+ ‖x− y‖
= ‖x‖ − ‖y‖+ ‖x− y‖ ≤ 2 ‖x− y‖ .

Thus, given the Hölder-condition for the derivative on spheres, there is C > 0 such
that ‖φu − φv‖ ≤ C ‖u− v‖q−1

/ ‖u‖q−1 when ‖u‖ = ‖v‖, and so we have

‖φx − φy‖ = ‖φx′ − φy‖ ≤ C

(
2 ‖x− y‖
‖y‖

)q−1

.

Consequently,

q ‖x‖q−1 ‖φx − φy‖ ≤ Cq
‖x‖q−1

‖y‖q−1 2q−1 ‖x− y‖q−1 ≤ C22q−2q ‖x− y‖q−1
.

Hence in either case we have K > 0 so that for x, y ∈ BX we have

q ‖x‖q−1 ‖φx − φy‖ ≤ K ‖x− y‖q−1
.

Now consider the case ‖x‖ > 1, and let λ = ‖x‖. Denote u = x/λ and v = y/λ.
Then u, v ∈ BX and ‖u− v‖ = ‖x− y‖ /λ. Thus one can write

q ‖x‖q−1 ‖φx − φy‖ = q ‖x‖q−1 ‖φu − φv‖
≤ q ‖x‖q−1

K ‖u− v‖q−1

= q ‖x‖q−1 1
‖x‖q−1 K ‖x− y‖q−1

= Kq ‖x− y‖q−1
.

Consequently, in any case

(2.3) q ‖x‖q−1 ‖φx − φy‖ ≤ Kq ‖x− y‖q−1
.

Combining (2.1), (2.2) and (2.3) shows that for f(x) = ‖x‖q, f ′(x) satisfies a (q−1)-
Hölder-condition and hence that ‖x‖q has modulus of smoothness of power type q,
on appealing to [18, Corollary 3.5.7] (see also [7, Lemma V.3.5]).

Now (b) ⇒ (c) is trivial, so we prove (c) ⇒ (a). Suppose ‖·‖ does not have
modulus of smoothness of power type q. Then using [7, Lemma IV.5.1] there are
xn, yn ∈ SX such that ‖xn − yn‖ → 0 while

‖φxn
− φyn

‖ ≥ n ‖xn − yn‖q−1
.

Let δn = ‖xn − yn‖ and define un = 1
δn
√

n
xn and vn = 1

δn
√

n
yn. Then ‖un − vn‖ =

1√
n
→ 0. However

‖f ′(un)− f ′(vn)‖ =
∥∥∥q ‖un‖q−1

φun − q ‖vn‖q−1
φvn

∥∥∥
=

∥∥∥q ‖un‖q−1
φxn

− q ‖vn‖q−1
φyn

∥∥∥
=

q

δq−1
n n

q−1
2

‖φxn
− φyn

‖

≥ q

δq−1
n n

q−1
2

(
nδq−1

n

)
= qn

3−q
2 →∞.



4 J. BORWEIN1, A. J. GUIRAO2, P. HÁJEK3, AND J. VANDERWERFF

Consequently, f ′ is not uniformly continuous, and so [18, Theorem 3.5.6] (see also
[7, Lemma IV.3.5]) shows that that f(·) = ‖·‖q is not a uniformly smooth convex
function. �

The results in [2] enable us to derive the dual version of Theorem 2.2 for uniformly
convex functions.

Theorem 2.3. Let X be a Banach space, and let 2 ≤ p < ∞. Then the following
are equivalent.
(a) The norm ‖·‖ on X has modulus of convexity of power type p.
(b) The function f(·) = ‖·‖p has modulus of convexity of power type p.
(c) The function f(·) = ‖·‖p is uniformly convex.

Proof. (a) ⇒ (b): Let us assume that ‖·‖ has modulus of convexity of power type
p, then the modulus of smoothness of the dual norm on X∗, namely ‖·‖∗, is of
power type q where 1

p + 1
q = 1; see [7]. By Theorem 2.2 the function g(·) = 1

q ‖·‖
q
∗

has modulus of smoothness of power type q. The Fenchel conjugate of g is g∗(·) =
1
p ‖·‖

p, see [2, 18]. Now g∗—and hence ‖·‖p—has a modulus of convexity of power
type p according to [2] (see also [18, Corollary 3.5.11]).

Observe that (b) ⇒ (c) is trivial, so we prove (c) ⇒ (a). Indeed, assuming that
f(·) = ‖·‖p is a uniformly convex function, then [2] shows that f∗ (and hence ‖·‖q

∗)
is a uniformly smooth function. According to Theorem 2.2, ‖·‖∗ has modulus of
smoothness of power type q; therefore ‖·‖ has modulus of convexity of power type
p, see [7]. �

We close this section by confirming that the spaces with nontrivial uniformly
convex functions are the superreflexive spaces. First, we record a simple sym-
metrization fact.

Lemma 2.4. Suppose f : X → (−∞,+∞] is a l.s.c. uniformly convex function.
Then there exist a uniformly convex l.s.c. function h : X → (−∞,+∞] that is
centrally symmetric with

0 = h(0) = inf{h(x) : x ∈ X}.

Proof. We can assume that f is centrally symmetric and u.c. by replacing f with
f(x)+f(−x)

2 . Observe then that f(0) = min{f(x) : x ∈ X} and thus, the function
h(x) = g(x)− g(0) satisfies our requirements. �

Theorem 2.5. Let X be a Banach space. Then the following are equivalent.
(a) There exists a l.s.c. uniformly convex function f : X → (−∞,+∞] such that
the interior of the domain of f is not empty.
(b) X admits an equivalent uniformly convex norm.
(c) There exist p ≥ 2 and an equivalent norm ‖·‖ on X so that f(x) = ‖·‖p is
uniformly convex.

Proof. (a) ⇒ (b): Shift f so that 0 ∈ int(dom f) now by Lemma 2.4 and its
proof there is a l.s.c. uniformly convex function g that is is centrally symmetric,
g(x) ≥ g(0) = 0 for all x, and 0 ∈ int dom g. Fix r > 0 so that rB(X,‖·‖) ⊂ dom g.
Then for ‖h‖ = r we have

1
2
g(h) +

1
2
g(0)− g

(
h

2

)
≥ δg(r) > 0.



UNIFORMLY CONVEX FUNCTIONS ON BANACH SPACES 5

Thus g(h) ≥ 2δg(r) for all h such that ‖h‖ = r. Let us consider the norm |||·||| whose
unit ball is B = {x : g(x) ≤ δg(r)}. We have shown that B ⊂ rB(X,‖·‖) and since 0
is a point of continuity of g (see [18, Corollary 2.2.13]) then 0 ∈ intB and so |||·||| is
an equivalent norm on X.

If |||xn||| = |||yn||| = 1 and

1
2
|||xn|||+

1
2
|||yn||| −

∣∣∣∣∣∣∣∣∣∣∣∣xn + yn

2

∣∣∣∣∣∣∣∣∣∣∣∣→ 0,

then d

(
xn + yn

2
, S|||·|||

)
→ 0 where S|||·||| = {x : |||x||| = 1}. Because g is Lipschitz on

B by [18, Corollary 2.2.12], this means g
(

xn+yn

2

)
→ δg(r). Consequently 1

2g(xn)+
1
2g(yn)− g

(
xn+yn

2

)
→ 0, so the uniform convexity of g ensures that ‖xn − yn‖ → 0

and hence |||xn − yn||| → 0
(b) ⇒ (c): According to the well-known Enflo-Pisier theorem ([9, 14]), there

exist p ≥ 2 and an equivalent norm ‖·‖ whose modulus of convexity is of power
type p. Consequently, Theorem 2.3 shows the function ‖·‖p is uniformly convex.

(c) ⇒ (a): This is trivial. �

Note that the indicator function of a single point in any Banach space is trivially
uniformly convex. Thus, some domain interiority condition is required in Theo-
rem 2.5(a).

3. Growth Rates of Uniformly Convex Functions and Renorming

In this section we will construct a uniformly convex norm whose modulus of
convexity is related to the growth rate of a given uniformly convex function on the
Banach space thus sharpening Theorem 2.5.

Lemma 3.1. Let ‖·‖ be a norm on a Banach space X. Suppose ‖x‖ = ‖y‖ ≥ 1,
and ‖x− y‖ ≥ δ where 0 < δ ≤ 2 ‖x‖. Then inft≥0 ‖x− ty‖ ≥ δ/2.

Proof. Assume that ‖x− t0y‖ < δ/2 for some t0 ≥ 0. Then |1− t0| ‖y‖ < δ/2 and
so

‖x− y‖ ≤ ‖x− t0y‖+ |1− t0| ‖y‖ < δ.

which is a contradiction. �

Lemma 3.2. Suppose F : R → [0,∞) is continuous and convex with F (0) = 0 and
F (t) > 0 for t > 0. Suppose for all n ≥ N that {‖·‖n}n≥N are norms on X with

K√
F (2n)

‖·‖ ≤ ‖·‖n ≤
1
2n
‖·‖ ,

for some K > 0. Assume that ‖x‖n = ‖y‖n = 1 with ‖x− y‖ ≥ 1 implies that∥∥∥∥x + y

2

∥∥∥∥
n

≤ 1− C

F
(

2
K

√
F (2n)

)
for some C > 0. Then the modulus of convexity of the equivalent norm |·| =∑

n≥N ‖·‖n satisfies

δ|·|(t) ≥
R√

F (Mt−1)F
(

2
K

√
F (Mt−1)

) ,

for some positive constants R and M .
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Proof. It is clear the norm |·| is equivalent to ‖·‖. Moreover, we can find another
scalar k > 0 so that the norm |||·||| = k |·| satisfies

K ′ |||·||| ≤ ‖·‖ ≤ |||·||| and
K ′√
F (2n)

|||·||| ≤ ‖·‖n ≤
1
2n
‖·‖

for some 0 < K ′ < 1
2N−1 and for all n ≥ N . Now suppose that |||x||| = |||y||| = 1 and

x 6= y. We can choose and fix n ≥ N so that

(3.1)
1

K ′2n−1
≤ |||x− y||| < 1

K ′2n−2
.

We may without loss of generality assume that ‖x‖n ≤ ‖y‖n. Now let us denote

a = ‖x‖−1
n and b = ‖y‖−1

n . Then 2n ≤ b ≤ a ≤
√

F (2n)

K′ , and therefore

|||ax− ay||| ≥ a

K ′2n−1
≥ 2

K ′ .

According to Lemma 3.1 |||ax− by||| ≥ 1
K′ , which in turn implies ‖ax− by‖ ≥ 1.

Thus we compute∥∥∥∥ax + ay

2

∥∥∥∥
n

≤
∥∥∥∥ax + by

2

∥∥∥∥
n

+
1
2
(a− b) ‖y‖n

≤ 1
2
‖ax‖n +

1
2
‖by‖n +

1
2
(a− b) ‖y‖n −

C

F
(

2
K

√
F (2n)

)
=

a

2
(‖x‖n + ‖y‖n)− C

F
(

2
K

√
F (2n)

) .

This inequality implies

(3.2)
∥∥∥∥x + y

2

∥∥∥∥
n

≤ 1
2
‖x‖n +

1
2
‖y‖n −

C

aF
(

2
K

√
F (2n)

) .

Thus, using (3.2), and the triangle inequality on ‖·‖j for j 6= n, we get∣∣∣∣∣∣∣∣∣∣∣∣x + y

2

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ k

2

∑
j≥N

‖x‖j +
k

2

∑
j≥N

‖y‖j −
K ′kC√

F (2n)F
(

2
K

√
F (2n)

) .

Let us denote M = 4/K ′ and R = K ′ ·k ·C. Let t = |||x− y|||, according to (3.1),
t ≤ 1

K′2n−2 and thus F (2n) ≤ F
(

4
tK′

)
. Therefore∣∣∣∣∣∣∣∣∣∣∣∣x + y

2

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 1− R√
F (Mt−1)F

(
2
K

√
F (Mt−1)

) ,

which finishes the proof, since δ|||·||| = δ|·|. �

Lemma 3.3. Suppose f : X → (−∞,+∞] is a l.s.c. convex function.

(a) If f is uniformly convex, then lim inf‖x‖→∞
f(x)

‖x‖2 > 0.
(b) Suppose f(x) ≤ F (‖x‖) for all x and F : [0,+∞) → [0,+∞] is non-

decreasing. If x0 6= 0, and f(x0) ≥ 0, then

sup
‖h‖=1

f ′(x0, h) ≤ F (2 ‖x0‖)/ ‖x0‖ .
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Proof. (a) This is shown in [18, Proposition 3.5.8].
(b) Given that x0 6= 0, f(x0) ≥ 0 and ‖h‖ = 1, we have

f ′(x0, h) = lim
t→0+

f(x0 + th)− f(x0)
t

≤ f(x0 + ‖x0‖h)− f(x0)
‖x0‖

≤ F (2 ‖x0‖)
‖x0‖

,

where the first inequality above follows from the convexity of f . �

Theorem 3.4. Let X be a Banach space and let f : X → R be a continuous
uniformly convex function satisfying f(x) ≤ F (‖x‖) for all x ∈ X for some non-
negative real function F with F (0) = 0. Then X admits an equivalent norm |·| so
that

δ|·|(t) ≥
R√

F (Mt−1)F
(
S
√

F (Mt−1)
) ,

for some positive constants R,M and S.

Proof. First of all, replacing f with f(x)+f(−x)
2 we can assume that f is centrally

symmetric. Using Fenchel conjugation we obtain f(x) ≤ F ∗∗(‖x‖) for all x ∈ X.
According to Lemma 3.3 we choose N ∈ N and K > 0 so that f(x) ≥ K2 ‖x‖2
whenever ‖x‖ ≥ N . Thus we have

K2 ‖x‖2 ≤ f(x) ≤ F ∗∗(‖x‖) whenever ‖x‖ ≥ N.

For n ≥ N , let |·|n have unit ball Bn = {x : f(x) ≤ F ∗∗(2n)}. For any x ∈ X \ {0},
f(x/ |x|n) = F ∗∗(2n). Hence F ∗∗(‖x‖ / |x|n) ≥ F ∗∗(2n). Since F (0) = 0, F ∗∗ and
F ∗∗(s)/s are non-decreasing. This implies that ‖x‖ ≥ 2n |x|n. Analogously, using
that K2 ‖x/|x|n‖2 ≤ f(x/ |x|n) one obtains

√
F ∗∗(2n) |x|n ≥ K ‖x‖. Consequently,

K√
F ∗∗(2n)

‖x‖ ≤ |x|n ≤
1
2n
‖x‖ .

Now suppose |x|n = |y|n = 1, and ‖x− y‖ ≥ 1. Letting δf denote the modulus of
convexity of f with respect to ‖·‖, the uniform convexity of f ensures δf (1) > 0.
Then denoting z = x+y

2 and z′ = z/|z|n we obtain

δf (1) ≤ f(z′)− f(z) =
f(z)− f(z′)

−1
≤ f ′ (z′, z′ − z)

= ‖z′ − z‖ f ′
(

z,
z′ − z

‖z′ − z‖

)
≤ Mn ‖z′ − z‖ ,(3.3)

where Mn = sup{f ′(u, v) : |u|n = 1, ‖v‖ = 1}. Using the fact that F ∗∗(r)/r is
nondecreasing for r > 0 (see [15]) along with Lemma 3.3 while noting f(u) ≥ 0
when |u|n = 1, we obtain

(3.4) Mn ≤ F ∗∗

(
2

√
F ∗∗(2n)

K

)
/

√
F ∗∗(2n)

K

Consequently, using |·|n ≥
K√

F∗∗(2n)
‖·‖, (3.3) and then (3.4), we obtain∣∣∣∣x + y

2

∣∣∣∣
n

≤ 1− ‖z′ − z‖ K√
F ∗∗(2n)

≤ 1− δf (1)
Mn

· K√
F ∗∗(2n)

≤ 1− δf (1)

F ∗∗
(

2
K

√
F ∗∗(2n)

) .(3.5)
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Applying Lemma 3.2, and noting F ∗∗ ≤ F , we obtain that

δ|·|(t) ≥
R√

F ∗∗(Mt−1)F ∗∗
(

2
K

√
F ∗∗(Mt−1)

) ≥ R√
F (Mt−1)F

(
2
K

√
F (Mt−1)

) .

This completes the proof. �

Corollary 3.5. Let X be a Banach space and f : X → R a continuous uniformly
convex function satisfying that f(x) ≤ ‖x‖p for some p ≥ 2 and for all x ∈ X.
Then X admits a norm with modulus of convexity of power type p

2 (p + 1).

Proof. Applying Theorem 3.4 for F (t) = tp we obtain an equivalent norm |·| and
positive constants R, M and S such that

δ|·|(t) ≥
R√

(Mt−1)p
(
S
√

(Mt−1)p
)p =

R(
M
t

) p
2 Sp

(
M
t

) p2
2

=
R

SpM
p
2 (p+1)

t
p
2 (p+1),

i.e., there exists a positive constant K such that δ|·|(t) ≥ Kt
p
2 (p+1). �

4. A Sharp Result for p = 2

In this section, we will sharpen the result from Corollary 3.5 in the case p = 2
to obtain the optimal result that if X has a uniformly convex function bounded
above by ‖·‖2 then there is an equivalent norm on X with a modulus of convexity
of power type 2. We refer to [8] for some related information on this case. We begin
with some preliminary results.

Let X be a Banach space. We can associate to X the following modulus

δ̃X(ε) = sup
τ≥0

{1
2
τε− ρX∗(τ)

}
,

where ε ∈ [0, 2]. By Lindenstrauss’ formula δ̃X ≤ δX while δ̃X(ε) ≥ δX(ε/2), see
[10].

The modulus of smoothness associated with X satisfies the following property
which characterizes those functions being a modulus of smoothness of a Banach
space (see [11] for a dual result).

Proposition 4.1. [10, Proposition 10] Let (X, ‖·‖) be a Banach space. If 0 < τ ≤
σ, then

ρX(σ)/σ2 ≤ LρX(τ)/τ2,

where L is a constant smaller than 2
∏∞

n=0(1 + 2−n/3) ≈ 3.6591297 . . . .

Lemma 4.2. Let X be a Banach space. Suppose {‖·‖n}n≥N are norms on (X, ‖·‖)
so that for some K > 0 and all n ≥ N , one has

K ‖·‖ ≤ ‖·‖n ≤ ‖·‖ .

Then there exists an equivalent norm |·| such that for all n ≥ N

δ|·|(t) ≥ R0δ‖·‖n
(t),

where R0 > 0 is a universal constant.
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Proof. A norm with the required property can be defined by the formula

|x|2 =
∑
n≥N

an ‖x‖2n ,

where an satisfies
∑

n≥N an =
(

K
2K0L

)2

and where L is as in Proposition 4.1.
Let us fix n ≥ N and denote Y = `2(X, ‖·‖n). Applying [10, Prop. 19] with

M(t) = t2 and Xi = (X, ‖·‖n)∗ one has that

ρY ∗(τ) ≤ K0 sup
τ≤u≤1

ρ(X,‖·‖n)∗(τ/u)u2,

where K0 depends neither on X nor on ‖·‖n. Now, applying Proposition 4.1 we
obtain

ρY ∗(τ) ≤ K0Lρ(X,‖·‖n)∗(τ),
and by duality

δY (ε) ≥ δ̃Y (ε) ≥ K0Lδ̃(X,‖·‖n) (ε/K0L) ≥ K0Lδ(X,‖·‖n) (ε/2K0L) ,

for all 0 ≤ ε < 2.
From the proof of [10, Prop. 18] one has that δ(X,|·|)(ε) ≥ 1

2δY (cε), where
c = 2K0L. Therefore

δ(X,|·|)(ε) ≥
K0L

2
δ(X,‖·‖n) (ε) ,

which finishes the proof. �

We can now complete our final result.

Theorem 4.3. Let X be a Banach space and f : X → R a continuous uniformly
convex function satisfying f(x) ≤ ‖x‖2 for all x ∈ X. Then X admits a norm with
modulus of convexity of power type 2.

Proof. Again replacing f with f(x)+f(−x)
2 clearly preserves the uniform convexity

of f and allows us to assume f(−x) = f(x) for all x ∈ X. According to Lemma 3.3
we may choose N ∈ N and K > 0 so that f(x) ≥ K2 ‖x‖2 whenever ‖x‖ ≥ N .
Thus we have

K2 ‖x‖2 ≤ f(x) ≤ ‖x‖2 whenever ‖x‖ ≥ N.

For n ≥ N , let |·|n have unit ball Bn = {x : f(x) ≤ 22n}.
For any x ∈ X \ {0}, f(x/ |x|n) = 22n. Hence, using f(x) ≤ ‖x‖2, we obtain

‖x‖ ≥ 2n |x|n. Analogously, using that K2 ‖x/ |x|n‖
2 ≤ f(x/ |x|n) one obtains

2n |x|n ≥ K ‖x‖. Consequently,

K

2n
‖x‖ ≤ |x|n ≤

1
2n
‖x‖ .

Let us consider |x|n = |y|n = 1, this is f(x) = f(y) = 22n, with |x− y|n ≥ 1/2n.
Then ‖x− y‖ ≥ 1, and letting z = x+y

2 , z′ = z/|z|n and Mn = sup{f ′(u, v) : |u|n =
1, ‖v‖ = 1}, as in (3.3) in the proof of Theorem 3.4 one has

(4.1) 0 < δf (1) ≤ Mn ‖z′ − z‖

Because, f(x) ≤ ‖x‖2, and proceeding as in (3.4) we obtain

(4.2) Mn ≤
(

2 · 2n

K

)2

/
2n

K
=

4(2n)
K

.
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Using |·|n ≥
K
2n ‖·‖, (4.1), (4.2) and proceeding as in (3.5), we obtain∣∣∣∣x + y

2

∣∣∣∣
n

≤ 1− δf (1)
K

2n+2
· K

2n
= 1− C

22n
.

where C = δf (1)K2/4. This implies that

δ|·|n

(
1
2n

)
≥ C

(
1
2n

)2

.

For a fixed n ≥ N let us consider k = 1, 2, . . . , 2n and the constant R = CR0
4L where

L is the Figiel’s constant of Proposition 4.1. Then

C =
C

22n
· 1
2−2n

≤
δ|·|n(2−n)

2−2n
≤ 4L

δ|·|n(k2−n)
k22−2n

.

This implies

δ|·|n

(
k

2n

)
≥ R

R0

(
k

2n

)2

.

For each n ≥ N , let us consider the new norm ‖·‖n = 2n |·|n. These new norms
satisfy

K ‖·‖ ≤ ‖·‖n ≤ ‖·‖ and δ|·|n(·) = δ‖·‖n
(·).

Applying Lemma 4.2 we obtain an equivalent norm |·| on X such that δ|·|(t) ≥
R0δ‖·‖n

(t) for n ≥ N .

Finally, let us fix n0 and k ≤ 2n0 . For any n ≥ n0 we have that k
2n0 = k2n−n0

2n .

Therefore δ‖·‖n

(
k

2n0

)
= δ‖·‖n

(
k2n−n0

2n

)
≥ R

R0

(
k

2n0

)2
, which implies that

δ|·|

(
k

2n0

)
≥ R

(
k

2n0

)2

.

In the previous paragraph we have shown that δ|·|(t) ≥ Rt2 for all t lying in D ={
k
2n : n ∈ N, 1 ≤ k ≤ 2n

}
. Since D is dense in [0, 1] and since δ|·|(·) is continuous

[12], we have δ|·|(t) ≥ Rt2, which finishes the proof. �
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