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Jacques Hadamard, A Universal Mathematician (1998)

“The object of
mathematical rigor is to
sanction and legitimize
the conquests of
intuition, and there was
never any other object
for it.”–JSH (1865-1963)
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EXTENDED ABSTRACT

Long before current graphic, visualisation and geometric tools were
available, John E. Littlewood (1885-1977) wrote in his delightful
Miscellany1:

A heavy warning used to be given [by lecturers] that pictures
are not rigorous; this has never had its bluff called and has
permanently frightened its victims into playing for safety.
Some pictures, of course, are not rigorous, but I should say
most are (and I use them whenever possible myself). [p. 53]

Over the past decade, the role of visual computing in my own
research has expanded dramatically.

In part this was made possible by the increasing speed and storage
capabilities—and the growing ease of programming—of modern
multi-core computing environments [BMC].

1J.E. Littlewood, A mathematician’s miscellany, London: Methuen (1953);
Littlewood, J. E. and Bollobás, Béla, ed., Littlewood’s miscellany, Cambridge University
Press, 1986.
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But, at least as much, it has been driven by my group’s paying more
active attention to the possibilities for graphing, animating or
simulating most mathematical research activities.

I first briefly discuss both visual theorems and
experimental computation.

I then turn to dynamic geometry (iterative reflection
methods [AB]) and matrix completion problems (applied
to protein conformation [ABT]).2 (Case studies I)

After an algorithmic interlude (Case studies II), I end
with description of work from my group in probability
(behaviour of short random walks [BS, BSWZ]) and
transcendental number theory (normality of real
numbers [AB3]). (Case studies III)

2See http://www.carma.newcastle.edu.au/jon/Completion.pdf and
http://www.carma.newcastle.edu.au/jon/dr-fields11.pptx.
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My plans

While all this work involved significant, often
threaded [BSC], numerical- symbolic
computation, I shall focus on the visual
components.

I will make a sample of the on-line presentation,
based in part on:

What makes most sense for the audience
My inclinations on the day
How I manage my time

JMB was among roughly 60 new 2015 Fellows of the American
Mathematical Society. He was cited “For contributions to
nonsmooth analysis and classical analysis as well as experimental
mathematics and visualization of mathematics.”
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Tools and Mathematics April 2016
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Key References and URLS

F. ARAGON AND J.M. BORWEIN, “Global convergence of a non-convex Douglas-Rachford
iteration.” J. Global Optim. 57(3) (2013), 753–769.

F. ARAGON, D. H. BAILEY, J.M. BORWEIN AND P.B. BORWEIN, “Walking on real numbers.”
Mathematical Intelligencer. 35(1) (2013), 42–60.

F. ARAGON, J. M.BORWEIN, AND M. TAM, ‘“Douglas-Rachford feasibility methods for matrix
completion problems.ANZIAM Journal, 55 (4) (2014), 299–326. Available at
http://arxiv.org/abs/1308.4243.

J.M. BORWEIN AND A. STRAUB, “Mahler measures, short walks and logsine integrals.”
Theoretical Comp Sci. Special issue on Symbolic and Numeric Computation. 479 (1) (2013),
4-21. DOI: http://link.springer.com/article/10.1016/j.tcs.2012.10.025.

J.M. BORWEIN, M. SKERRITT AND C. MAITLAND, “Computation of a lower bound to Giuga’s
primality conjecture.” Integers 13 (2013). Online Sept 2013 at #A67,
http://www.westga.edu/˜integers/cgi-bin/get.cgi.

J.M. BORWEIN, A. STRAUB, J. WAN AND W. ZUDILIN (with an Appendix by Don Zagier),
“Densities of short uniform random walks.” Can. J. Math. 64(5), (2012), 961-990.
http://dx.doi.org/10.4153/CJM-2011-079-2.

Jonathan Borwein (University of Newcastle, Australia) Visual Theorems www.carma.newcastle.edu.au/walks

http://arxiv.org/abs/1308.4243
http://link.springer.com/article/10.1016/j.tcs.2012.10.025
http://www.westga.edu/~integers/cgi-bin/get.cgi
http://dx.doi.org/10.4153/CJM-2011-079-2
http://www.carma.newcastle.edu.au/walks


PART I: Visual Theorems Digital Assistance PART II. Case Studies Other References

...and 3D?

NAMS 2005. KnotPlot in a Cave

Considerable obstacles generally present
themselves to the beginner, in studying the
elements of Solid Geometry, from the
practice which has hitherto uniformly
prevailed in this country, of never
submitting to the eye of the student, the
figures on whose properties he is
reasoning, but of drawing perspective
representations of them upon a plane.

...

I hope that I shall never be obliged to have
recourse to a perspective drawing of any
figure whose parts are not in the same
plane.—Augustus De Morgan
In Adrian Rice,“What Makes a Great Mathematics Teacher?” MAA Monthly, 1999.
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Visual Theorems: Animation, Simulation and Stereo . . .

See http://vis.carma.newcastle.edu.au/: Stoneham movie

The latest developments in computer and video technology
have provided a multiplicity of computational and symbolic
tools that have rejuvenated mathematics and mathematics
education. Two important examples of this revitalization are
experimental mathematics and visual theorems
— ICMI Study 19 (2012)

Cinderella, 3.14 min of Pi, Catalan’s constant and Passive 3D
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Visualising large matrices

Large matrices often have structure that pictures will reveal but which
numeric data may obscure.

The picture shows a 25×25 Hilbert matrix on the left and on the
right a matrix required to have 50% sparsity and non-zero entries
random in [0,1].

Figure: The Hilbert matrix (L) and a sparse random matrix (R)
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Visualising large matrices MATLAB’s first symbolic example

The 4×4 Hilbert matrix is
1 1/2 1/3 1/4

1/2 1/3 1/4 1/5

1/3 1/4 1/5 1/6

1/4 1/5 1/6 1/7



Hilbert matrices are notoriously unstable numerically. The left of the
Figure shows the inverse of the 20×20 Hilbert matrix computed
symbolically exactly. The middle shows enormous numerical errors if
one uses 10 digit precision, and the right even if one uses 20 digits.

Figure: Inverse 20×20 Hilbert matrix (L) and 2 numerical inverses (R)

It is good fun to play with pictures of very large matrices constructed
to have complicated block structure.
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Visualising large polynomials

Large polynomials also often have structure that pictures will reveal
but which numeric data may obscure.

Table: 192-degree minimal polynomial for optical aberration correction, with
up to 85 digit coefficients found by multipair PSLQ.

Table: Some large coefficients
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Poisson & Crandall for aberration correction

References
D.H. Bailey, J.M. Borwein, R.E. Crandall and I.J. Zucker, “Lattice sums
arising from the Poisson equation.” Journal of Physics A, 46 (2013)
#115201 (31pp).

D.H. Bailey, J.M. Borwein, and J. Kimberley, “Discovery and computation
of large Poisson polynomials.” Experimental Mathematics, Accepted,
May 2016.

G. Savin and D. Quarfoot, “On attaching coordinates of Gaussian prime
torsion points of y2 = x3 + x to Q(i),” 2010.
www.math.utah.edu/˜savin/EllipticCurvesPaper.pdf

3

3Found from one 12 digit coefficient 387221579866.
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Me and my collaborators

MAA 3.14
http://www.carma.newcastle.edu.au/jon/pi-monthly.pdf
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2012 walk on π (went viral) Biggest mathematics picture ever?

Figure: Walk on first 100 billion base-4 digits of π (normal?).

Resolution: 372,224×290,218 pixels
(108 gigapixels)

Computation: took roughly a month
where several parts of the algorithm
were run in parallel with 20 threads

on CARMA’s MacPro cluster.

http://gigapan.org/gigapans/106803
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Outreach: images and animations led to high-level research which went viral
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Outreach: images and animations led to high-level research which went viral

• 100 billion base four digits of π on Gigapan
• Really big pictures are often better than movies (NASA and AMS)
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My number-walk collaborators
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My short-walk collaborators

James Wan Armin Straub Wadim Zudilin

• Plus Dirk Nuyens and Don Zagier, ...
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Some early conclusions: So I am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Maths can be done experimentally (it is fun)
- using computer algebra, numerical

computation and graphics: SNaG
- computations, tables and pictures are

experimental data
- but you can not stop thinking

Making mistakes is fine
- as long as you learn from them
- keep your eyes open (conquer fear)

You can not use what you do not know
- and what you know you can usually use
- you do not need to know much before

you start research (as we shall see)
DHB and JMB, Exploratory Experimentation in Mathematics (2011), www.ams.org/notices/201110/rtx111001410p.pdf
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It is not knowledge, but the act of learning, not possession
but the act of getting there, which grants the greatest
enjoyment.

When I have clarified and exhausted a
subject, then I turn away from it, in order
to go into darkness again; the
never-satisfied man is so strange if he
has completed a structure, then it is not
in order to dwell in it peacefully, but in
order to begin another.

I imagine the world conqueror must feel
thus, who, after one kingdom is scarcely
conquered, stretches out his arms for
others.

Carl Friedrich Gauss
(1777-1855)

In an 1808 letter to his friend Farkas (father of Janos) Bolyai
Archimedes, Euler, Gauss are the big three
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Computer Assisted Research Maths: what it is?

Experimental mathematics is the use of a computer to run
computations—sometimes no more than trial-and- error
tests—to look for patterns, to identify particular numbers and
sequences, to gather evidence in support of specific
mathematical assertions that may themselves arise by
computational means, including search.

Like contemporary chemists — and before them the alchemists of
old—who mix various substances together in a crucible and heat
them to a high temperature to see what happens, today’s
experimental mathematicians put a hopefully potent mix of
numbers, formulas, and algorithms into a computer in the hope that
something of interest emerges. (JMB-Devlin, Crucible 2008, p. 1)

• Quoted in International Council on Mathematical Instruction
Study 19: On Proof and Proving, 2012
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Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers β ,α1,α2, . . . ,αn, Helaman Ferguson’s
integer relation method (PSLQ), finds a nontrivial
linear relation of the form

a0β +a1α1 +a2α2 + · · ·+anαn = 0, (1)

where ai are integers—if one exists and provides
an exclusion bound otherwise.

If a0 6= 0 then (1) assures β is in rational vector
space generated by {α1,α2, . . . ,αn}.

β = 1,αi = α i means α is algebraic of degree n

2000 Computing in Science & Engineering: PSLQ
one of top 10 algorithms of 20th century
(2001 CISE article on Grand Challenges (JB-PB))

20 OCTOBER 2006 VOL 314 SCIENCE www.sciencemag.org412

B A LT I M O R E ,  M A RY L A N D — H e l a m a n

Ferguson’s sculpture studio is set back

from the road, hidden behind a construc-

tion site. Inside, pieces of art line shelves

and cover tabletops. Ferguson, clad in a

yellow plastic apron and a black T-shirt,

serenely makes his  way through the

room. The 66-year-old is tall and white-

haired, his bare arms revealing a strength

requisite for his avocation.

The most striking work in the studio is a

more than 2-meter-tall, 5-ton chunk of gran-

ite. When it is finished, it will stand in the

entry to the science building at Macalester

College in St. Paul, Minnesota. Right now, it

is a mass of curving surfaces sloping in dif-

ferent directions, its surface still jagged

with the rough grains left by the diamond-

toothed chainsaw Ferguson uses to carve

through the stone.

“I’m in my negative-Gaussian-curvature

phase,” Ferguson says. “Say we’re going to

shake hands, but we don’t quite touch. OK,

see the space between the two hands?” That

saddle-shaped void, he explains, is a perfect

example of negative Gaussian curvature.

Our bodies contain many others, he adds:

the line between the first finger’s knuckle

and the wrist, for instance, and where the

neck meets the shoulders.

The topological jargon is no surprise:

Ferguson spent 17 years as a mathematics

professor at Brigham Young University

(BYU) in Provo, Utah. What is unusual is

how successfully he has pursued a dual

career as mathematician and artist and the

ease with which he blurs the categories.

Math inspires and figures in almost all of

Ferguson’s artistic works. Through

them, he has helped some mathe-

maticians appreciate the

artist’s craft and aesthetic.

And he’s persuaded per-

haps even more artists

that math may not be

as frighteningly elu-

sive as they believe,

or even if it is out of

their reach, it’s as

beau t i f u l  a s  any

work  o f  a r t  t hey

might imagine. “The

way he has brought

together the worlds

of science and the

arts—this is an admirable

t h i n g ,”  s ay s  H a r vey

Bricker, Ferguson’s former

college roommate. 

Twin callings
Ferguson himself finds it hard to say which

calling came first. As a teenager in upstate

New York, he learned stone carving as an

informal apprentice to his adopted father, a

stonemason. Artistically, however, he was

more drawn to painting. After f inishing

high school in 1958, he wanted to study art

as well as math. He chose Hamilton Col-

lege, a liberal arts school in upstate New

York near where he had spent most of his

childhood, where he could do both.

After getting his math degree, he

enrolled in a doctoral program in math at the

University of Wisconsin, Madison. He paid

for some of his living expenses by selling

paintings. He also met and began dating an

undergraduate art student, Claire. The cou-

ple married in 1963 and had their first child

(of an eventual seven) in 1964. Ferguson

dropped out of school for a couple of years

to work as a computer programmer, then

resumed his math studies. He obtained his

master’s degree in mathematics at BYU and

a doctorate in group representations—a

broad area of math that involves algebra,

geometry, topology, and analysis—at the

University of Washington, Seattle. In 1971,

he accepted an appointment as assistant

professor at BYU.

As a mathematician, Ferguson is perhaps

best known for the algorithm he developed

with BYU colleague Rodney Forcade. The

algorithm, called PSLQ, finds mathemati-

cal relations among seemingly unrelated

real numbers. Among many other applica-

tions, PSLQ provided an efficient way of

computing isolated digits within pi and

blazed a path for modeling hard-to-calculate

particle interactions in quantum physics.

In 2000, the journal Computing

in Science and Engineering

named i t  one of the top

1 0  algori thms of

the 20th century.

M e a n w h i l e ,

Fe rguson’s artistic

career also developed

apace. When he married

Claire, a painter, the two

struck a deal: “I get the

floors, she gets the walls,” he

says. He began focusing more on

sculpture. The art department at BYU

allotted him some studio space, and he

turned out a regular stream of work. He’s

done commissions for the Maryland Sci-

ence and Technology Center, the University

of California, Berkeley, the University of

Carving His Own Unique Niche, 
In Symbols and Stone
By refusing to choose between mathematics and art, a self-described “misfit” has
found the place where parallel careers meet
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University of Wisconsin, Madison. He paid

for some of his living expenses by selling

paintings. He also met and began dating an

undergraduate art student, Claire. The cou-

ple married in 1963 and had their first child

(of an eventual seven) in 1964. Ferguson

dropped out of school for a couple of years
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master’s degree in mathematics at BYU and

a doctorate in group representations—a

broad area of math that involves algebra,

geometry, topology, and analysis—at the

University of Washington, Seattle. In 1971,

he accepted an appointment as assistant

professor at BYU.
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PSLQ in action
In all serious computations of π from 1700 (by John Machin) until 1980 some
version of a Machin formula was used. These write

arctan(1) = a1 · arctan
(

1
p1

)
+a2 · arctan

(
1
p2

)
+ · · ·+an · arctan

(
1
pn

)
(2)

for rationals a1,a2, . . . ,an and integers p1,p2, . . . ,pn > 1.
Recall the Taylor series arctan(x) = ∑

∞
n=0

(−1)n

2n+1 x2n+1. Combined with (2) this
computes π = 4arctan(1) efficiently, especially if the pn are not too small.

For instance, Machin found

π = 16 arctan
(

1
5

)
−4 arctan

(
1

239

)
while Euler discovered

arctan(1) = arctan
(

1
2

)
+ arctan

(
1
5

)
+ arctan

(
1
8

)
. (3)

I have a function ‘pslq’ in Maple. When input data for PSLQ it predicts
an answer to the precision requested. And checks it to ten digits more
(or some other precision).

This makes the code a real experimental tool as it predicts and confirms.
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PSLQ in action prepping for class

The third shows that when no relation exists the code may find a good
approximation but using very large rationals.

So it diagnoses failure because it uses large coefficients and because it
is not true to the requested 30 places.
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Digital Assistance

By digital assistance I mean use of artefacts as:

Modern Mathematical Computer Packages-–symbolic, numeric,
geometric, or graphical.

– Largely symbolic packages include the commercial
computer algebra packages Maple and Mathematica, and
the open source SAGE.

– Primarily numeric packages start with the proprietary
MATLAB and public counterpart Octave or the statistical
package R.

– The dynamic geometry offerings include Cinderella,
Geometer’s SketchPad, Cabri and the freeware Geogebra.

Specialized Packages or General Purpose Languages such as
Fortran, C++, Python, CPLEX, PARI, SnapPea, and MAGMA.
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Digital Assistance

Web Applications such as: Sloane’s Encyclopedia of Integer
Sequences, the Inverse Symbolic Calculator, Fractal Explorer,
Jeff Weeks’ Topological Games, or Euclid in Java.4

– Most of the functionality of the ISC is built into the “identify”
function Maple starting with version 9.5. For example,
identify(4.45033263602792) returns

√
3+ e. As

always, the experienced will extract more than the novice.

Web Databases including Google, MathSciNet, ArXiv, GitHub,
Wikipedia, MathWorld, MacTutor, Amazon, Wolfram Alpha, the
DLMF (all formulas of which are accessible in MathML, as
bitmaps, and in TEX) and many more that are not always so
viewed.

4A cross-section of such resources is available through
http://www.carma.newcastle.edu.au/jon/portal.html and
www.experimentalmath.info.
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Digital Assistance
All entail data-mining . Franklin argues “exploratory experimentation”
facilitated by “widening technology”, as in finance, pharmacology,
astrophysics, medicine, and biotechnology, is leading to a
reassessment of what legitimates experiment; in that a “local model”
is not now prerequisite. Sørenson says experimental mathematics is
following similar tracks.

These aspects of exploratory experimentation and wide
instrumentation originate from the philosophy of (natural) science
and have not been much developed in the context of experimental
mathematics. However, I claim that e.g. the importance of wide
instrumentation for an exploratory approach to experiments that
includes concept formation also pertain to mathematics.

In consequence, boundaries between mathematics and natural
sciences and between inductive and deductive reasoning are blurred
and getting more so.
I leave the philosophically-vexing if mathematically-minor question as to if
genuine mathematical experiments exist even if one embraces a fully idealist
notion of mathematical existence. They sure feel like they do.
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Top Ten Algorithms (20C): all but one well used in CARMA
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Experimental Mathematics: PSLQ is core to CARMA

Experimental Mathematics (2004-08, 2009, 2010)
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Simulation in pure mathematics

Pure mathematicians have not often though of simulation as a
relevant tool.
The cardioid in the Figure below came from a scatter plot while trying
to determine for which complex numbers z = b/a a continued fraction
due to Ramanujan, R(a,b), converged.

It is given for complex numbers a and b by

R(a,b) =
a

1+
b2

1+
4a2

1+
9b2

1+ ...

. (4)

As often I first tried to compute—R(1,1)—and had little luck.
It transpires for a = b ∈ R convergence is O(1/n); but is geometric for
a 6= b. So what looks like the simplest case analytically is the hardest
computationally.
We eventually determined from highly sophisticated arguments that:
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Simulation in pure mathematics

Theorem (Six formulae for R(a,a),a > 0)

R(a,a) =
∫

∞

0

sech
(

π x
2a

)
1+ x2 dx

= 2a
∞

∑
k=1

(−1)k+1

1+(2k−1)a

=
1
2

(
ψ

(
3
4
+

1
4a

)
−ψ

(
1
4
+

1
4a

))

=
2a

1+a 2F1

(
1
2a +

1
2 ,1

1
2a +

3
2

∣∣∣∣−1

)

= 2
∫ 1

0

t1/a

1+ t2 dt

=
∫

∞

0
e−x/a sech(x)dx.
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Simulation in pure mathematics

Here 2F1 is the hypergeometric function. If you do not know ψ (‘psi’) ,
you can easily look it up once you can say ‘psi’.
Notice that

R(a,a) = 2
∫ 1

0

t1/a

1+ t2 dt

so that R(1,1) = log2.

After making no progress analytically, Crandall and I decided in
2003, taking a somewhat arbitrary criterion for convergence, to
colour yellow points for which the fraction seemed to converge.
We sampled one million points and reasoned a few thousand
mis-categorisations would not damage the experiment.

Figure: A cardioid discovered by simulation.
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Simulation in pure mathematics

The Figure is so precise that we could identify the cardioid. It is the
points where √

|ab| ≤ |a+b|
2

.

Since for positive a,b the fraction satisfies

R(
a+b

2
,
√

ab) =
R(a,b)+R(b,a)

2

this gave us enormous impetus to continue our eventually successful
hunt for a proof.
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Reflection methods

Let S⊆ Rm. The (nearest point or metric) projection onto S is the
(set-valued) mapping,

PSx := argmin
s∈S

‖s− x‖.

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS− I.

x x

p1

p2

r1

r2
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The Douglas–Rachford Algorithm (1956–1979– )

Theorem (Douglas–Rachford in finite dimensions)

Suppose A,B⊆ Rm are closed and convex. For any x0 ∈ Rm define

xn+1 := TA,Bxn where TA,B :=
I +RBRA

2
.

If A∩B 6= /0, then xn→ x such that PAx ∈ A∩B. Else ‖xn‖→+∞.

xn

RAxn

RBRAxn

xn+1 = TA,Bxn

A

B

A := {x ∈ Rm : ‖x‖ ≤ 1}, B := {x ∈ Rm : 〈a,x〉= b}.
((non)-convex Phase retrieval)
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Works for B affine and A a ‘sphere’ ANIMATION

In this case we have:

Some local and fewer global convergence results.
Much empirical evidence for this and other non-convex settings.

– both numeric and geometric (Cinderella/SAGE)
– http://carma.newcastle.edu.au/jon/expansion.html

⇐= from Cinderella applet
– 20000 starting points coloured

by distance from y-axis
– after 0,7,14,21 steps
– a “generic visual theorem”?⊙

showing global
convergence off the
(chaotic) y-axis?

– note the error from using only
14 digit computation.
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Works for B affine and A a ‘sphere’

What we could prove (L) and what we could see (R)

2012 Proven region of convergence in grey
2014 Lyapunov function based proof of global convergence (Benoist)
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Case study I: Protein conformation determination

Proteins: large biomolecules comprising multiple amino acid chains.5

Generic amino acid RuBisCO Matt Tam

Proteins participate in virtually every cellular process !
Protein structure→ predicts how functions are performed.
NMR spectroscopy (Nuclear Overhauser effect6) can determine
a subset of interatomic distances without damage (under 6Å ).

A low-rank Euclidean distance matrix completion problem.

5RuBisCO (responsible for photosynthesis) has 550 amino acids (smallish).
6A coupling which occurs through space, rather than chemical bonds.
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Six Proteins Numerics if reconstructed using reflection methods

We use only interatomic distances below 6Å typically constituting less
than 8% of the total nonzero entries of the distance matrix.

Table. Six Proteins: average (maximum) errors from five replications.
Protein # Atoms Rel. Error (dB) RMSE Max Error
1PTQ 404 -83.6 (-83.7) 0.0200 (0.0219) 0.0802 (0.0923)
1HOE 581 -72.7 (-69.3) 0.191 (0.257) 2.88 (5.49)
1LFB 641 -47.6 (-45.3) 3.24 (3.53) 21.7 (24.0)
1PHT 988 -60.5 (-58.1) 1.03 (1.18) 12.7 (13.8)
1POA 1067 -49.3 (-48.1) 34.1 (34.3) 81.9 (87.6)
1AX8 1074 -46.7 (-43.5) 9.69 (10.36) 58.6 (62.6)

Rel. error(dB) := 10log10

(
‖PC2 PC1 XN −PC1 XN‖2

‖PC1 XN‖2

)
,

RMSE :=

√
∑

m
i=1 ‖p̂i−ptrue

i ‖2
2

# of atoms
, Max := max

1≤i≤m
‖p̂i−ptrue

i ‖2.

The points p̂1, p̂2, . . . , p̂n denote the best fitting of p1,p2, . . . ,pn when rotation, translation and
reflection is allowed.
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What do the reconstructions look like?

1PTQ (actual) 5,000 steps, -83.6dB (perfect)

1POA (actual) 5,000 steps, -49.3dB (mainly good!)

• The picture of ‘failure’ suggests many strategies
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What do reconstructions look like?

Video: First 3,000 steps of the 1PTQ reconstruction.

At http://carma.newcastle.edu.au/DRmethods/1PTQ.html
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What do the Reconstructions Look Like?

An optimised implementation gave a ten-fold speed-up.

This allowed
for the following experiment to be performed:

Figure: Relative error by iterations (vertical axis logarithmic).
For < 5,000 iterations, the error exhibits non-monotone
oscillatory behaviour. It then decreases sharply. Beyond this
progress is slower.
Is early termination to blame? Terminate when error <−100dB.
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A More Robust Stopping Criterion
The “un-tuned” implementation (from previous slide):

1POA (actual) 5,000 steps (∼2d), -49.3dB

The optimised implementation:

1POA (actual) 28,500 steps (∼1d), -100dB (perfect!)

Similar results observed for the other test proteins.
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What do reconstructions look like?

There are many projection methods, so why use Douglas-Rachford?

Douglas–Rachford reflection method reconstruction:

500 steps, -25 dB. 1,000 steps, -30 dB. 2,000 steps, -51 dB. 5,000 steps, -84 dB.

Alternating projection method reconstruction:

500 steps, -22 dB. 1,000 steps, -24 dB. 2,000 steps, -25 dB. 5,000 steps, -28 dB.

Yet MAP works very well for optical abberation correction
(Hubble, amateur telescopes). Why?
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How the mathematical software world has changed

In the January 2002 issue of SIAM News, Nick Trefethen presented
ten diverse problems used in teaching modern graduate numerical
analysis students at Oxford University, the answer to each being a
certain real number.

Readers were challenged to compute ten digits of each answer, with
a $100 prize to the best entrant. Trefethen wrote,

“If anyone gets 50 digits in total, I will be impressed.”

To his surprise, a total of 94 teams, representing 25 different
nations, submitted results. Twenty of these teams received a full
100 points (10 correct digits for each problem).
Bailey, Fee and I quit at 85 digits!
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nations, submitted results. Twenty of these teams received a full
100 points (10 correct digits for each problem).
Bailey, Fee and I quit at 85 digits!
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The hundred digit challenge SKIP

The problems and solutions are dissected most entertainingly in
[1] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel
(2004).“The Siam 100-Digit Challenge: A Study In
High-accuracy Numerical Computing”, SIAM, Philadelphia.

In a 2005 Math Intelligencer review of [1], I wrote

Success in solving these problems required a broad
knowledge of mathematics and numerical analysis, together
with significant computational effort, to obtain solutions and
ensure correctness of the results. As described in [1] the
strengths and limitations of Maple, Mathematica, MATLAB
(The 3Ms), and other software tools such as PARI or GAP,
were strikingly revealed in these ventures.

Almost all of the solvers relied in large part on one or more
of these three packages, and while most solvers attempted
to confirm their results, there was no explicit requirement for
proofs to be provided.
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Trefethen’s problem #9

The integral

I(α) =
∫ 2

0
[2+ sin(10α)]xα sin

(
α

2− x

)
dx

depends on the parameter α. What is
the value α ∈ [0,5] at which I(α)
achieves its maximum?

Integrands for some α

I(α) is expressible in terms of a Meijer-G function —a special
function with a solid history that we use below.

Unlike most contestants, Mathematica and Maple will figure this
out; help files or a web search then inform the scientist.
This is another measure of the changing environment. It is
usually a good idea—and not at all immoral—to data-mine.
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Trefethen’s problem #10 ANIMATION

A particle at the center of a 10×1
rectangle undergoes Brownian motion (i.e.,
2-D random walk with infinitesimal step
lengths) till it hits the boundary. What is the
probability that it hits at one of the ends
rather than at one of the sides?

Walking in a 10×5 box

Hitting the Ends. Bornemann [1] starts his remarkable solution by
exploring Monte-Carlo methods, which are shown to be impracticable.

He reformulates the problem deterministically as the value at the
center of a 10×1 rectangle of an appropriate harmonic measure
of the ends, arising from a 5-point discretization of Laplace’s
equation with Dirichlet boundary conditions.
This is then solved by a well chosen sparse Cholesky solver. A
reliable numerical value of 3.837587979 ·10−7 is obtained and the
problem is solved numerically to the requisite ten places.
This is the warm up....
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Walking in a b×a box ANIMATION
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Trefethen’s problem #10

We may proceed to develop two analytic solutions, the first using
separation of variables on the underlying PDE on a general 2a×2b
rectangle. We learn that with ρ := a/b

p(a,b) =
4
π

∞

∑
n=0

(−1)n

2n+1
sech

(
π(2n+1)

2
ρ

)
. (5)

Three terms yields 50 correct digits:
p(10,1) = 0.00000038375879792512261034071331862048391007930055940724 . . .

The first term alone, 4
π

sech(5π), gives the underlined digits.

A second method using conformal mappings, yields

arccotρ = p(a,b)
π

2
+ argK

(
eip(a,b)π

)
(6)

where K is the complete elliptic integral of the first kind.
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Trefethen’s problem #10

•We have entered the wonderful world of modular functions

Bornemann et al ultimately show that the answer is

p =
2
π

arcsin(k100) (7)

where

k100 :=
((

3−2
√

2
)(

2+
√

5
)(
−3+

√
10
)(
−
√

2+ 4√5
)2
)2

,

is a singular value. [In general p(a,b) = 2
π

arcsin
(

k(a/b)2

)
.]

No one (except harmonic analysts perhaps) anticipated a closed
form—let alone one like this.
Can be done for some other shapes (perhaps, convex with
piecewise smooth boundaries, starting at barycentre), and for
self-avoiding walks.
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Trefethen’s problem #4 ... zooming

What is the global minimum of the function

exp(sin(50x))+ sin(60ey)+ sin(70sinx)+ sin(sin(80y))

−sin(10(x+ y))+(x2 + y2)/4?

Can be solved in a global optimization package or by a damped Newton
method

In Mathematica by NMinimize[f[x, y], x, y, Method ->
"RandomSearch", "SearchPoints" -> 250,
WorkingPrecision -> 20]

In Maple by NLPSolve(f(x,y), x = -4 .. 4, y = -4 .. 4,
initialpoint = {x = -.4, y = -.1});
or by ‘zooming’ on [−3,3]× [−3,3].
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Trefethen’s problem #4 ... zooming on [0,1]
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Algorithm performance a simulated interlude

Proposition (Polylogarithm computation)

(a) For s = n a positive integer,

Lin(z) =
∞ ′

∑
m=0

ζ (n−m)
logm z

m!
+

logn−1 z
(n−1)!

(Hn−1− log(− logz)). (8)

(b) For any complex order s not a positive integer,

Lis(z) = ∑
m≥0

ζ (s−m)
logm z

m!
+Γ(1− s)(− logz)s−1. (9)

Here ζ (s) := ∑
−s
n and continuations, Hn := 1+ 1

2 +
1
3 + · · ·+

1
n , and ∑

′

avoids the singularity at ζ (1).
In (8), | logz|< 2π precludes use when |z|< e−2π ≈ 0.0018674. For
small |z|, however, it suffices to use the definition

Lis(z) =
∞

∑
k=1

zk

ks . (10)
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Algorithm performance a simulated interlude

We found (10) faster than (8) whenever |z|< 1/4, for precision
from 100 to 4000 digits. We illustrate for Li2 in the Figure.

Timings show microseconds required for 1,000 digit accuracy as
the modulus goes from 0 to 1 with blue showing superior
performance of (8). The region records 10,000 trials of random z,
such that −0.6 < ℜ(z)< 0.4,−0.5 < ℑ(z)< 0.5.

Figure: (L) Timing (8) (blue) and (10) (red).(R) blue region where (8) is faster.
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