Experimental Computation and Visual Theorems: Part III. Random Walks

Jonathan Borwein FRSC FAAAS FAA FBAS FAMS

 (With Aragón, Bailey, P. Borwein, Skerritt, Straub, Tam, Wan, Zudilin, ...)
australia
Centre for Computer Assisted Research Mathematics and its Applications The University of Newcastle, Australia

http://carma.newcastle.edu.au/meetings/evims/
http://www.carma.newcastle.edu.au/jon/visuals-ext-abst.pdf

For 2016 Presentations
 Revised 25-02-16

Reflect-Reflect-Average for a line and ellipse

Reflect-Reflect-Average

2016 Presentations

```
Jonathan Borwein FRSC FAA FAAA
Laureate Professor
and Director CARMA
www.carma.newcastle.edu.au
```


2016 Presentations as

Distinguished Scholar in Residence Western University, London Ontario

Western
 UNIVERSITY•CANADA

April 12-13: Owens Lectures Wayne State University

1. Lambert W in Optimization 2. Walking on Numbers

Revised 4-02-2016

EXTENDED ABSTRACT

Long before current graphic, visualisation and geometric tools were available, John E. Littlewood (1885-1977) wrote in his delightful Miscellany ${ }^{1}$:

A heavy warning used to be given [by lecturers] that pictures are not rigorous; this has never had its bluff called and has permanently frightened its victims into playing for safety. Some pictures, of course, are not rigorous, but I should say most are (and I use them whenever possible myself). [p. 53]

[^0]
Extended Abstract

Long before current graphic, visualisation and geometric tools were available, John E. Littlewood (1885-1977) wrote in his delightful Miscellany ${ }^{1}$:

A heavy warning used to be given [by lecturers] that pictures are not rigorous; this has never had its bluff called and has permanently frightened its victims into playing for safety. Some pictures, of course, are not rigorous, but I should say most are (and I use them whenever possible myself). [p. 53]

Over the past decade, the role of visual computing in my own research has expanded dramatically.

In part this was made possible by the increasing speed and storage capabilities-and the growing ease of programming-of modern multi-core computing environments [BMC].

[^1]But, at least as much, it has been driven by my group's paying more active attention to the possibilities for graphing, animating or simulating most mathematical research activities.

[^2]But, at least as much, it has been driven by my group's paying more active attention to the possibilities for graphing, animating or simulating most mathematical research activities.

- I first briefly discuss both visual theorems and experimental computation.
- I then turn to dynamic geometry (iterative reflection methods $[A B]$) and matrix completion problems (applied to protein conformation [ABT]). ${ }^{2}$ (Case studies I)

[^3]But, at least as much, it has been driven by my group's paying more active attention to the possibilities for graphing, animating or simulating most mathematical research activities.

- I first briefly discuss both visual theorems and experimental computation.
- I then turn to dynamic geometry (iterative reflection methods $[A B]$) and matrix completion problems (applied to protein conformation [ABT]). ${ }^{2}$ (Case studies I)
- After an algorithmic interlude (Case studies II), I end with description of work from my group in probability (behaviour of short random walks [BS, BSWZ]) and transcendental number theory (normality of real numbers [AB3]). (Case studies III)

[^4]
My plans

My plans

While all this work involved significant, often threaded [BSC], numerical- symbolic computation, I shall focus on the visual components.

My plans

While all this work involved significant, often threaded [BSC], numerical- symbolic computation, I shall focus on the visual components.

I will make a sample of the on-line presentation, based in part on:

My plans

While all this work involved significant, often threaded [BSC], numerical- symbolic computation, I shall focus on the visual components.

I will make a sample of the on-line presentation, based in part on:

- What makes most sense for the audience
- My inclinations on the day
- How I manage my time

My plans

While all this work involved significant, often threaded [BSC], numerical- symbolic computation, I shall focus on the visual components.

I will make a sample of the on-line presentation, based in part on:

- What makes most sense for the audience
- My inclinations on the day
- How I manage my time

JMB was among roughly 60 new 2015 Fellows of the American Mathematical Society. He was cited "For contributions to nonsmooth analysis and classical analysis as well as experimental mathematics and visualization of mathematics."

John Monaghan
Luc Trouche
Jonathan M. Borwein

Tools and Mathematics

Instruments for learning
J. Monaghan, L. Trouche, J.M. Borwein Tools and Mathematics

Instruments for learning

Series: Mathematics Education Library

- The only book on the topic of tools and mathematics education
- Comprehensive coverage from pre-history to future directions in the field
- Content divided equally among the areas of curriculum, assessment, and policy design

This book is an exploration of tools and mathematics and issues in mathematics education related to tool use. The book has four parts. The first part sets the scene with a reflection on doing a mathematical task with different tools, a mathematician's account of tool use in his work and historical considerations of tool use. The second part opens with a broad review of technology and intellectual trends, circa 1970, and continues with three case studies of approaches in mathematics education and the place of tools in these approaches. The third part considers issues related to mathematics instructions: curriculum, assessment and policy; the calculator debate; mathematics in the real world; and teachers' use of technology. The final part looks to the future and digital tools: task design; the importance of artefacts in gameplay; and new forms of activity via connectivity.

Key References and URLS

F. Aragon and J.M. Borwein, "Global convergence of a non-convex Douglas-Rachford iteration." J. Global Optim. 57(3) (2013), 753-769.
F. Aragon, D. H. Bailey, J.M. Borwein and P.B. Borwein, "Walking on real numbers." Mathematical Intelligencer. 35(1) (2013), 42-60.
F. Aragon, J. M.Borwein, and M. Tam, '"Douglas-Rachford feasibility methods for matrix completion problems.ANZIAM Journal, 55 (4) (2014), 299-326. Available at http://arxiv.org/abs/1308.4243.
J.M. Borwein and A. Straub, "Mahler measures, short walks and logsine integrals." Theoretical Comp Sci. Special issue on Symbolic and Numeric Computation. 479 (1) (2013), 4-21. DOI: http://link.springer.com/article/10.1016/j.tcs.2012.10.025.
J.M. Borwein, M. Skerritt and C. Maitland, "Computation of a lower bound to Giuga's primality conjecture." Integers 13 (2013). Online Sept 2013 at \#A67, http://www.westga.edu/~integers/cgi-bin/get.cgi.
J.M. Borwein, A. Straub, J. Wan and W. Zudilin (with an Appendix by Don Zagier), "Densities of short uniform random walks." Can. J. Math. 64(5), (2012), 961-990.
http://dx.doi.org/10.4153/CJM-2011-079-2.

Contents

(1) PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

O
Normality

- Normality
- Normality of Pi
- BBP digit algorithms

O
Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities
(4)

Special functions

- Meijer-G
${ }^{(}{ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

We shall explore things like:

Remember: π is area of a circle of radius one (and perimeter is 2π).

We shall explore things like:

Remember: π is area of a circle of radius one (and perimeter is 2π).
First true calculation of π was due to Archimedes of Syracuse (287-212 BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons (with 'interval arithmetic')

We shall explore things like:

How random is Pi?

Remember: π is area of a circle of radius one (and perimeter is 2π).
First true calculation of π was due to Archimedes of Syracuse (287-212 BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons (with 'interval arithmetic')

$$
\mathbf{6} \mapsto \mathbf{1 2} \mapsto 24 \mapsto 48 \mapsto \mathbf{9 6}
$$

We shall explore things like:

How random is Pi?

Remember: π is area of a circle of radius one (and perimeter is 2π).
First true calculation of π was due to Archimedes of Syracuse (287-212 BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons (with 'interval arithmetic')

$\mathbf{6} \mapsto \mathbf{1 2} \mapsto 24 \mapsto 48 \mapsto \mathbf{9 6}$ to obtain the estimate

$$
3 \frac{10}{71}<\pi<3 \frac{10}{70} .
$$

Archimedes' "Method of Mechanical Theorems"

Pi movie below

Archimedes' "Method of Mechanical Theorems"

Pi movie below
... certain things first became clear to me by a mechanical method (Codex C), although they had to be proved by geometry afterwards because their investigation by the said method did not furnish an actual proof.

But it is of course easier, when we have previously acquired, by the method, some knowledge of the questions, to supply the proof than it is to find it without any previous knowledge.

Archimedes' "Method of Mechanical Theorems"

Pi movie below
... certain things first became clear to me by a mechanical method (Codex C), although they had to be proved by geometry afterwards because their investigation by the said method did not furnish an actual proof.

But it is of course easier, when we have previously acquired, by the method, some knowledge of the questions, to supply the proof than it is to find it without any previous knowledge.

- Only recently rediscovered and even more recently reconstructed ...

Proving π is not $\frac{22}{7}$

Even Maple or Mathematica 'knows' this since

$$
\begin{equation*}
0<\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi, \tag{1}
\end{equation*}
$$

though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Proving π is not $\frac{22}{7}$

Even Maple or Mathematica 'knows' this since

$$
\begin{equation*}
0<\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi, \tag{1}
\end{equation*}
$$

though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on $(0,1)$, and the answer in (1) is an area and so strictly positive, despite millennia of claims that π is $22 / 7$.

Proving π is not $\frac{22}{7}$

Even Maple or Mathematica 'knows' this since

$$
\begin{equation*}
0<\int_{0}^{1} \frac{(1-x)^{4} x^{4}}{1+x^{2}} d x=\frac{22}{7}-\pi \tag{1}
\end{equation*}
$$

though it would be prudent to ask 'why' it can perform the integral and 'whether' to trust it?

Assume we trust it. Then the integrand is strictly positive on $(0,1)$, and the answer in (1) is an area and so strictly positive, despite millennia of claims that π is $22 / 7$.

- Accidentally, $22 / 7$ is one of the early continued fraction approximation to π. These commence:

$$
3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}, \ldots
$$

(1) PART III: Randomness

- Randomness is slippery
- Pi is not $22 / 7$
- Continued fractions
- Is Pi random?
,
Normality
- Normality
- Normality of Pi
- BBP digit algorithms
(3)

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities
(4)

Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

Proving π is not $\frac{22}{7}$

In this case, the indefinite integral provides immediate reassurance. We obtain

Proving π is not $\frac{22}{7}$

In this case, the indefinite integral provides immediate reassurance.
We obtain

$$
\int_{0}^{t} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x=\frac{1}{7} t^{7}-\frac{2}{3} t^{6}+t^{5}-\frac{4}{3} t^{3}+4 t-4 \arctan (t)
$$

as differentiation easily confirms, and the fundamental theorem of calculus proves (1).

An opinion without 3.14 is an onion. You'll understand.

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{aligned}
\pi & =3.141592653589793238462643383279502884197169399375 \ldots \\
e & =2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2} & =1.414213562373095048801688724209698078569671875376 \ldots
\end{aligned}
$$

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{aligned}
\pi & =3.141592653589793238462643383279502884197169399375 \ldots \\
e & =2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2} & =1.414213562373095048801688724209698078569671875376 \ldots
\end{aligned}
$$

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{aligned}
\pi & =3.141592653589793238462643383279502884197169399375 \ldots \\
e & =2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2} & =1.414213562373095048801688724209698078569671875376 \ldots
\end{aligned}
$$

Are they really?

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{gathered}
\pi=3.141592653589793238462643383279502884197169399375 \ldots \\
e=2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2}=1.414213562373095048801688724209698078569671875376 \ldots
\end{gathered}
$$

Are they really?

- 1949 ENIAC (Electronic Numerical Integrator and Calculator) computed of π to 2,037 decimals (in 70 hours)—proposed by polymath John von Neumann (1903-1957) to shed light on distribution of π (and of e).

Contents

(1) PART III: Randomness

- Randomness is slippery
- Pi is not 22/7

- Continued fractions

- Is Pi random?
(3)

Normality

- Normality
- Normality of Pi
- BBP digit algorithms
,
Random-ish walks and
- Some background
- IIla. Short rambles
- Simulating densities
(4)

Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals'

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

Two continued fractions

Change representations often

Gauss map. Remove the integer, invert the fraction and repeat: for 3.1415926 and 2.7182818 to get the fractions below.

Two continued fractions

Change representations often
Gauss map. Remove the integer, invert the fraction and repeat: for 3.1415926 and 2.7182818 to get the fractions below.

Two continued fractions

Gauss map. Remove the integer, invert the fraction and repeat: for 3.1415926 and 2.7182818 to get the fractions below.

Leonhard Euler (17071783) named e and π.
"Lisez Euler, lisez Euler, c'est notre maître à tous." Simon Laplace (1749-1827)

Contents

(1) PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?
(3)

Normality

- Normality
- Normality of Pi
- BBP digit algorithms
(3)

Fandom-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities

4

Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals'

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

References

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Table: Counts of first billion digits of π. Second half is 'right' for law of large
numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

Table: Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
- e has a fine continued fraction

Table: Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0}$

Table: Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
- e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
- e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π

Table: Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0}$

Table: Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
$-e$ has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π
- There are equally many zeroes and ones in the binary expansion of π

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0}$

Table: Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
$-e$ has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π
- There are equally many zeroes and ones in the binary expansion of π
- Or pretty much anything else...

What is "random"?

A hard question

What is "random"?

A hard question

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)?

Folks believe this is the most random.

- Incompressible ('zip' does not help)?

What is "random"?

A hard question

TOUR OF ACCOUNTING
OVER HERE
WE HAVE OUR
RANDOM NUMBER
GENERATOR.
Has
Sos

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?

Conjecture (Borel) All irrational algebraic numbers are b-normal

- Algorithmically random (π is not)?
- Quantum random (radiation)?

Folks believe this is the most random.

- Incompressible ('zip' does not help)?

What is "random"?

A hard question

TOUR OF ACCOUNTING
OVER HERE
WE HAVE OUR
RANDOM NUMBER
GENERATOR.
Was
Sos

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)? Folks believe this is the most random.
- Incompressible ('zip' does not help)?

Conjecture (Borel) All irrational algebraic numbers are b-normal

Best Theorem [BBCP, 04] (Feeble but hard) Asymptotically all degree d algebraics have at least $n^{1 / d}$ ones in binary (should be $n / 2$)

Randomness in Pi?

Randomness in Pi?

```
http://mkweb.bcgsc.ca/pi/art/
```


- a better color palette for art if not for science

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?
(2) Normality
- Normality
- Normality of Pi
- BBP digit algorithms

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities
(4)

Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

Normality

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

Normality

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- Given an integer $b \geq 2$, almost all real numbers, with probability one, are b-normal (Borel).

Normality

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- Given an integer $b \geq 2$, almost all real numbers, with probability one, are b-normal (Borel).
- Indeed, almost all real numbers are b-normal simultaneously for all positive integer bases ("absolute normality").

Normality

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- Given an integer $b \geq 2$, almost all real numbers, with probability one, are b-normal (Borel).
- Indeed, almost all real numbers are b-normal simultaneously for all positive integer bases ("absolute normality").
- Unfortunately, it has been very difficult to prove normality for any number in a given base b, much less all bases simultaneously.

Normal numbers

concatenation numbers

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- The first Champernowne number proven 10-normal was:

$$
C_{10}:=0.123456789101112131415161718 \ldots
$$

- 1933 by David Champernowne (1912-2000) as a student
- 1937 Mahler proved transcendental. 2012 not strongly normal

Normal numbers

concatenation numbers

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- The first Champernowne number proven 10-normal was:

$$
C_{10}:=0.123456789101112131415161718 \ldots
$$

- 1933 by David Champernowne (1912-2000) as a student
- 1937 Mahler proved transcendental. 2012 not strongly normal
- 1946 Arthur Copeland and Paul Erdős proved the same holds when one concatenates the sequence of primes:

$$
C E(10):=0.23571113171923293137414347 \ldots
$$

is 10-normal (concatenation works in all bases).

- Copeland-Erdős constant

Normal numbers

concatenation numbers

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- The first Champernowne number proven 10-normal was:

$$
C_{10}:=0.123456789101112131415161718 \ldots
$$

- 1933 by David Champernowne (1912-2000) as a student
- 1937 Mahler proved transcendental. 2012 not strongly normal
- 1946 Arthur Copeland and Paul Erdős proved the same holds when one concatenates the sequence of primes:

$$
C E(10):=0.23571113171923293137414347 \ldots
$$

is 10-normal (concatenation works in all bases).

- Copeland-Erdős constant
- Normality proofs are not known for $\pi, e, \log 2, \sqrt{2}$ etc.

Normal numbers

concatenation numbers

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

Theorem (Davenport-Erdös (1952))

Let p be any polynomial positive on the natural numbers. Then the concatenation number

$$
0 . p(1) p(2) p(3) \ldots p(n) \ldots
$$

is Borel normal (in the base of presentation).

Normal numbers

concatenation numbers

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

Theorem (Davenport-Erdös (1952))

Let p be any polynomial positive on the natural numbers. Then the concatenation number

$$
0 . p(1) p(2) p(3) \ldots p(n) \ldots
$$

is Borel normal (in the base of presentation).

- Includes Champernowne's number and 0.1491625... (Besicovich)
- See H. Davenport and P. Erdös, "Note on normal numbers." Can. J. Math., 4 (1952), 58-63.

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?
(2) Normality
- Normality

- Normality of Pi

- BBP digit algorithmsRandom-ish walks and
- Some background
- IIla. Short rambles
- Simulating densities

4
Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

String	Occurrences	String	Occurrences	String	Occurrences
0	$99,993,942$	00	$10,004,524$	000	$1,000,897$
1	$99,997,334$	01	$9,998,250$	001	$1,000,758$
2	$100,002,410$	02	$9,999,222$	002	$1,000,447$
3	$99,986,911$	03	$10,000,290$	003	$1,001,566$
4	$100,011,958$	04	$10,000,613$	004	$1,000,741$
5	$99,998,885$	05	$10,002,048$	005	$1,002,881$
6	$100,010,387$	06	$9,995,451$	006	999,294
7	$99,996,061$	07	$9,993,703$	007	998,919
8	$100,001,839$	08	$10,000,565$	008	999,962
9	$100,000,273$	09	$9,999,276$	009	999,059
		10	$9,997,289$	010	998,884
		11	$9,997,964$	011	$1,001,188$
		\vdots	\vdots	\vdots	\vdots
		99	$10,003,709$	099	999,201
				\vdots	\vdots
				999	$1,000,905$
TOTAL	$1,000,000,000$	TOTAL	$1,000,000,000$	TOTAL	$1,000,000,000$

Table: Counts for the first billion digits of π.

Is π 16-normal

\hookleftarrow Counts of first trillion hex digits

0	62499881108
1	62500212206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	$\underline{\mathbf{6 2 5 0 0 2} 16752}$
9	62500120671
A	62500266095
B	62499955595
C	62500188610
D	62499613666
E	62499875079
F	62499937801
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

Is π 16-normal

\hookleftarrow Counts of first trillion hex digits

0	62499881108
1	62500212206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	$\underline{62500216752}$
9	62500120671
A	62500266095
B	62499955959
C	62500188610
D	62499613666
E	62499875079
F	62499937801
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

\hookleftarrow Counts of first trillion hex digits

0	62499881108
1	6250021206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	$\underline{62500216752}$
9	62500120671
A	62500266095
B	62499955595
C	62500188610
D	62499613666
E	62499875079
F	62499937801
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

- 2011 Ten trillion hex digits computed by Yee and Kondo - and seem very normal. (2013: 12.1 trillion)
- 2012 Ed Karrel found 25 hex digits of π starting after the 10^{15} position computed using BBP on GPUs (graphics cards) at NVIDIA (too hard for Blue Gene)

Is π 16-normal

\hookleftarrow Counts of first trillion hex digits

- 2011 Ten trillion hex digits computed by Yee and Kondo - and seem very normal. (2013: 12.1 trillion)
- 2012 Ed Karrel found 25 hex digits of π starting after the 10^{15} position computed using BBP on GPUs (graphics cards) at NVIDIA (too hard for Blue Gene)
- They are 353CB3F7F0C9ACCFA9AA215F2

See www.karrels.org/pi/index.html
ונונונונ

OCTOPI

Modern π Calculation Records:

Name	Year	Correct Digits
Miyoshi and Kanada	1981	$2,000,036$
Kanada-Yoshino-Tamura	1982	$16,777,206$
Gosper	1985	$17,526,200$
Bailey	Jan. 1986	$29,360,111$
Kanada and Tamura	Sep. 1986	$33,554,414$
Kanada and Tamura	Oct. 1986	$67,108,839$
Kanada et. al	Jan. 1987	$134,217,700$
Kanada and Tamura	Jan. 1988	$201,326,551$
Chudnovskys	May 1989	$480,000,000$
Kanada and Tamura	Jul. 1989	$536,870,898$
Kanada and Tamura	Nov. 1989	$1,073,741,799$
Chudnovskys	Aug. 1991	$2,260,000,000$
Chudnovskys	May 1994	$4,044,000,000$
Kanada and Takahashi	Oct. 1995	$6,442,450,938$
Kanada and Takahashi	Jul. 1997	$51,539,600,000$
Kanada and Takahashi	Sep. 1999	$206,158,430,000$
Kanada-Ushiro-Kuroda	Dec. 2002	$1,241,100,000,000$
Takahashi	Jan. 2009	$1,649,000,000,000$
Takahashi	April 2009	$2,576,980,377,524$
Bellard	Dec. 2009	$2,699,99,990,000$
Kondo and Yee	Aug. 2010	$\mathbf{5 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$
Kondo and Yee	Oct. 2011	$\mathbf{1 0 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$
Kondo and Yee	Dec. 2013	$\mathbf{1 2 , 1 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?
(2) Normality
- Normality
- Normality of Pi
- BBP digit algorithms

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities
(4)

Special functions

- Meijer-G
${ }^{-}{ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string of hex or binary digits of π, beginning at any position, using no prior bits

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string of hex or binary digits of π, beginning at any position, using no prior bits
- is implementable on any modern computer;

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string of hex or binary digits of π, beginning at any position, using no prior bits
- is implementable on any modern computer;
- requires no multiple precision software;

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string of hex or binary digits of π, beginning at any position, using no prior bits
- is implementable on any modern computer;
- requires no multiple precision software;
- requires very little memory; and has

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string of hex or binary digits of π, beginning at any position, using no prior bits
- is implementable on any modern computer;
- requires no multiple precision software;
- requires very little memory; and has
- a computational cost growing only slightly faster than the digit position.

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string of hex or binary digits of π, beginning at any position, using no prior bits
- is implementable on any modern computer;
- requires no multiple precision software;
- requires very little memory; and has
- a computational cost growing only slightly faster than the digit position.
- An algorithm found by computer-now used to check record π computations and in some compilers.

What BBP Is?

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{2}
\end{equation*}
$$

What BBP Is?

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{2}
\end{equation*}
$$

- Millionth hex digit (four millionth bit) takes under 30 secs on a fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.

What BBP Is?

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{2}
\end{equation*}
$$

- Millionth hex digit (four millionth bit) takes under 30 secs on a fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.

What BBP Is?

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{2}
\end{equation*}
$$

- Millionth hex digit (four millionth bit) takes under $\mathbf{3 0}$ secs on a fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.
Equation (2) was discovered numerically using integer relation methods over months in my BC lab, CECM. It arrived coded as:

What BBP Is?

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{2}
\end{equation*}
$$

- Millionth hex digit (four millionth bit) takes under $\mathbf{3 0}$ secs on a fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.
Equation (2) was discovered numerically using integer relation methods over months in my BC lab, CECM. It arrived coded as:

$$
\pi=4_{2} \mathrm{~F}_{1}\left(1, \frac{1}{4} ; \frac{5}{4},-\frac{1}{4}\right)+2 \tan ^{-1}\left(\frac{1}{2}\right)-\log 5
$$

where ${ }_{2} \mathrm{~F}_{1}(1,1 / 4 ; 5 / 4,-1 / 4)=0.955933837 \ldots$ is a Gaussian hypergeometric function.

What BBP Is?

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{2}
\end{equation*}
$$

- Millionth hex digit (four millionth bit) takes under $\mathbf{3 0}$ secs on a fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.
Equation (2) was discovered numerically using integer relation methods over months in my BC lab, CECM. It arrived coded as:

$$
\pi=4_{2} \mathrm{~F}_{1}\left(1, \frac{1}{4} ; \frac{5}{4},-\frac{1}{4}\right)+2 \tan ^{-1}\left(\frac{1}{2}\right)-\log 5
$$

where ${ }_{2} \mathrm{~F}_{1}(1,1 / 4 ; 5 / 4,-1 / 4)=0.955933837 \ldots$ is a Gaussian hypergeometric function.

- Bailey-Crandall (220) link BBP and normality.

Edge of Computation Prize Finalist (2005)

EdgeThe Third Culture

Home	About Edge	Features	Edge Editions	Press	The Reality Club	Third Culture	Digerati	Edge Search

THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

Edge of Computation Prize Finalist (2005)

EdgeThe Third Culture

| Home | About
 Edge | Features | Edge Editions | Press | The Reality
 Club | Third
 Culture | Digerati |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Edge
 Search |
| :---: |

THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize

Edge of Computation Prize Finalist (2005)

EdgeThe Third Culture

| Home | About
 Edge | Features | Edge Editions | Press | The Reality
 Club | Third
 Culture | Digerati |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Edge
 Search |
| :---: |

THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc. , is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize
- Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...

Edge of Computation Prize Finalist (2005)

EdgeThe Third Culture

| Home | About
 Edge | Features | Edge Editions | Press | The Reality
 Club | Third
 Culture | Digerati |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Edge
 Search |
| :---: |

THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc. , is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize
- Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...
- Won by David Deutsch — discoverer of Quantum Computing.

Stefan Banach (1892-1945)
 Another Nazi casualty

A mathematician is a person who can find analogies between theorems; a better mathematician is one who can see analogies between proofs and the best mathematician can notice analogies between theories. ${ }^{3}$

[^5]
Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

Normality

- Normality
- Normality of Pi
- BBP digit algorithms
(3) Random-ish walks and ...
- Some background
- IIla. Short rambles
- Simulating densities
(4)

Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals'

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

A Little History:

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

A Little History:

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.

A Little History:

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.

Karl Pearson (1857-1936): founded statistics, eugenicist \& socialist, changed name ($C \mapsto K$), declined knighthood.

A Little History:

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.
The problem "is the same as that of the composition of n isoperiodic vibrations of unit amplitude and phases distributed at random" he studied in 1880 (diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist \& socialist, changed name $(C \mapsto K)$, declined knighthood.

A Little History:

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.
The problem "is the same as that of the composition of n isoperiodic vibrations of unit amplitude and phases distributed at random" he studied in 1880 (diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist \& socialist, changed name $(C \mapsto K)$, declined knighthood.

- UNSW: Donovan and Nuyens, WWII cryptography.

A Little History:

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.
The problem "is the same as that of the composition of n isoperiodic vibrations of unit amplitude and phases distributed at random" he studied in 1880 (diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist \& socialist, changed name $(C \mapsto K)$, declined knighthood.

- UNSW: Donovan and Nuyens, WWII cryptography.
- appear in graph theory, quantum chemistry, in quantum physics as hexagonal and diamond lattice integers, etc ...

The first walk (Venn)

Why is the sky blue?

The first person to visualize the random nature of pi's decimal digits was the Victorian nathematician John Venn. In The Logic of Chance (1888), he suggested that the digits 0 to 7 epresent eight compass directions, and he followed the path tracked by these digits in pi. He nisses out the initial 3, and starts 14159. Venn's image was the first "random walk", an idea now ised frequently in probability and statistics. (The illustration is taken from my book, Alex's tdventures in Numberland)

MY HOBBY: TEACHING TRICKY QUESTIONS TO THE CHILDREN OF MY SCIENTIST FRIENDS.

One 1500-step ramble: a familiar picture

One 1500-step ramble: a familiar picture

- 1D (and 3D) easy. Expectation of RMS distance is easy (\sqrt{n}).

One 1500-step ramble: a familiar picture

- 1D (and 3D) easy. Expectation of RMS distance is easy (\sqrt{n}).
- 1D or 2D lattice: probability one of returning to the origin.

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

Normality

- Normality
- Normality of Pi
- BBP digit algorithms
(3) Random-ish walks and ...
- Some background
- Illa. Short rambles
- Simulating densities
©
Special functions
- Meijer-G
${ }^{-}{ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals'

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

Case study II: short rambles

1000 three-step uniform planar walks

The moments of an n-step planar walk:

- Second simplest case:

$$
W_{2}=\int_{0}^{1} \int_{0}^{1}\left|e^{2 \pi i x}+e^{2 \pi i y}\right| \mathrm{d} x \mathrm{~d} y=?
$$

[^6]
The moments of an n-step planar walk:

- Second simplest case:

$$
W_{2}=\int_{0}^{1} \int_{0}^{1}\left|e^{2 \pi i x}+e^{2 \pi i y}\right| \mathrm{d} x \mathrm{~d} y=?
$$

- Mathematica 10 and Maple 18 still think the answer is 0 ('bug' or 'feature'?).

[^7]
The moments of an n-step planar walk:

- Second simplest case:

$$
W_{2}=\int_{0}^{1} \int_{0}^{1}\left|e^{2 \pi i x}+e^{2 \pi i y}\right| \mathrm{d} x \mathrm{~d} y=?
$$

- Mathematica 10 and Maple 18 still think the answer is 0 ('bug' or 'feature'?).
- There is always a 1-dimension reduction ${ }^{4}$

$$
\begin{aligned}
W_{n}(s) & =\int_{[0,1]^{n}}\left|\sum_{k=1}^{n} e^{2 \pi x_{k} i}\right|^{s} \mathrm{~d}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \\
& =\int_{[0,1]^{n-1}}\left|1+\sum_{k=1}^{n-1} e^{2 \pi x_{k} i}\right|^{s} \mathrm{~d}\left(x_{1}, \ldots, x_{n-1}\right)
\end{aligned}
$$

The moments of an n-step planar walk:

- Second simplest case:

$$
W_{2}=\int_{0}^{1} \int_{0}^{1}\left|e^{2 \pi i x}+e^{2 \pi i y}\right| \mathrm{d} x \mathrm{~d} y=?
$$

- Mathematica 10 and Maple 18 still think the answer is 0 ('bug' or 'feature'?).
- There is always a 1 -dimension reduction ${ }^{4}$

$$
\begin{aligned}
W_{n}(s) & =\int_{[0,1]^{n}}\left|\sum_{k=1}^{n} e^{2 \pi x_{k} i}\right|^{s} \mathrm{~d}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \\
& =\int_{[0,1]^{n-1}}\left|1+\sum_{k=1}^{n-1} e^{2 \pi x_{k} i}\right|^{s} \mathrm{~d}\left(x_{1}, \ldots, x_{n-1}\right)
\end{aligned}
$$

- So $W_{2}=4 \int_{0}^{1 / 4} \cos (\pi x) \mathrm{d} x=\frac{4}{\pi}$.

Art meets science

Art meets science

AAAS \& Bridges conference

A visualization of six routes that 1000 ants took after leaving their nest in search of food. The jagged blue lines represent the breaking off of random ants in search of seeds.
(Nadia Whitehead 2014-03-25 16:15)

Art meets science

AAAS \& Bridges conference

A visualization of six routes that 1000 ants took after leaving their nest in search of food. The jagged blue lines represent the breaking off of random ants in search of seeds.
(Nadia Whitehead 2014-03-25 16:15)
(JonFest 2011 Logo) Three-step random walks. The (purple) expected distance travelled is 1.57459 ..

The closed form W_{3} is given below.

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

O
Normality

- Normality
- Normality of Pi
- BBP digit algorithms
(3) Random-ish walks and ...
- Some background
- IIla. Short rambles
- Simulating densities
(4)

Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

Simulating the densities for $n=3,4$

3-Step Radial Random Walk Probability Density
for $1,000,000$ Trials Allocated to 1,000 Radius Bins

5-Step Radial Random Walk Probability Density
for $1,000,000$ Trials Allocated to 1,000 Radius Bins

4-Step Radial Random Walk Probability Density for 1,000,000 Trials Allocated to 1,000 Radius Bins

6-Step Radial Random Walk Probability Density
for $1,000,000$ Trials Allocated to 1,000 Radius Bins

Pearson's original full question

A man starts from a point O and walks l yards in a straight line; he then turns through any angle whatever and walks another lyards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r+\delta r$ from his starting point, O.

Pearson's original full question

A man starts from a point O and walks l yards in a straight line; he then turns through any angle whatever and walks another lyards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r+\delta r$ from his starting point, O.
"the graphical construction, however carefully reinvestigated, did not permit of our considering the curve to be anything but a straight line. . . Even if it is not absolutely true, it exemplifies the extraordinary power of such integrals of J [Bessel] products to give extremely close approximations to such simple forms as horizontal lines."

Pearson's original full question

A man starts from a point O and walks l yards in a straight line; he then turns through any angle whatever and walks another lyards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r+\delta r$ from his starting point, O.
"the graphical construction, however carefully reinvestigated, did not permit of our considering the curve to be anything but a straight line. . . Even if it is not absolutely true, it exemplifies the extraordinary power of such integrals of J [Bessel] products to give extremely close approximations to such simple forms as horizontal lines."

- JMAA 2016. Our analysis of short walks extends interestingly to arbitrary dimensions (JMB, Straub, Vignat).

The radial densities for $n=3,4$ are modular functions

Let $\sigma(x):=\frac{3-x}{1+x}$. Then σ is an involution on $[0,3]$ sending $[0,1]$ to $[1,3]$:

$$
\begin{equation*}
p_{3}(x)=\frac{4 x}{(3-x)(x+1)} p_{3}(\sigma(x)) . \tag{3}
\end{equation*}
$$

So $\frac{3}{4} p_{3}^{\prime}(0)=p_{3}(3)=\frac{\sqrt{3}}{2 \pi}, p(1)=\infty$.

The radial densities for $n=3,4$ are modular functions

Let $\sigma(x):=\frac{3-x}{1+x}$. Then σ is an involution on $[0,3]$ sending $[0,1]$ to $[1,3]$:

$$
\begin{equation*}
p_{3}(x)=\frac{4 x}{(3-x)(x+1)} p_{3}(\sigma(x)) . \tag{3}
\end{equation*}
$$

So $\frac{3}{4} p_{3}^{\prime}(0)=p_{3}(3)=\frac{\sqrt{3}}{2 \pi}, p(1)=\infty$. We found:

$$
p_{3}(\alpha)=\frac{2 \sqrt{3} \alpha}{\pi\left(3+\alpha^{2}\right)}{ }_{2} F_{1}\left(\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
1
\end{array} \left\lvert\, \frac{\alpha^{2}\left(9-\alpha^{2}\right)^{2}}{\left(3+\alpha^{2}\right)^{3}}\right.\right)=\frac{2 \sqrt{3}}{\pi} \frac{\alpha}{\mathrm{AG}_{3}\left(3+\alpha^{2}, 3\left(1-\alpha^{2}\right)^{2 / 3}\right)}
$$

where AG_{3} is the cubically convergent mean iteration (1991):

$$
\mathrm{AG}_{3}(a, b):=\frac{a+2 b}{3} \bigotimes\left(b \cdot \frac{a^{2}+a b+b^{2}}{3}\right)^{1 / 3}
$$

The densities $p_{3}(\mathrm{~L})$ and $p_{4}(\mathrm{R})$

Formula for the 'shark-fin' p_{4}

We ultimately deduce on $2 \leq \alpha \leq 4$ a hyper-closed form:

$$
p_{4}(\alpha)=\frac{2}{\pi^{2}} \frac{\sqrt{16-\alpha^{2}}}{\alpha}{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \tag{5}\\
\frac{5}{6}, \frac{7}{6}
\end{array} \right\rvert\, \frac{\left(16-\alpha^{2}\right)^{3}}{108 \alpha^{4}}\right) .
$$

Formula for the 'shark-fin' p_{4}

We ultimately deduce on $2 \leq \alpha \leq 4$ a hyper-closed form:

$$
p_{4}(\alpha)=\frac{2}{\pi^{2}} \frac{\sqrt{16-\alpha^{2}}}{\alpha}{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \tag{5}\\
\frac{5}{6}, \frac{7}{6}
\end{array} \right\rvert\, \frac{\left(16-\alpha^{2}\right)^{3}}{108 \alpha^{4}}\right) .
$$

$\leftarrow p_{4}$ from (5) vs 18-terms of empirical power series
\checkmark Proves $p_{4}(2)=\frac{2^{7 / 3} \pi}{3 \sqrt{3}} \Gamma\left(\frac{2}{3}\right)^{-6}=$

$$
\frac{\sqrt{3}}{\pi} W_{3}(-1) \approx 0.494233<\frac{1}{2}
$$

- Empirically, quite marvelously, we found - and proved by a subtle use of distributional Mellin transforms - that on $[0,2]$ as well:

$$
p_{4}(\alpha) \stackrel{?}{=} \quad \frac{2}{\pi^{2}} \frac{\sqrt{16-\alpha^{2}}}{\alpha} \Re_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \tag{6}\\
\frac{5}{6}, \frac{7}{6}
\end{array} \right\rvert\, \frac{\left(16-\alpha^{2}\right)^{3}}{108 \alpha^{4}}\right)
$$

(Discovering this \Re brought us full circle.)

The radial densities for $5 \leq n \leq 8$

(and large n approximation)

The radial densities for $5 \leq n \leq 8$

Both $p_{2 n+4}, p_{2 n+5}$ are n-times continuously differentiable for $x>0$ with $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$. So "four is small" but "eight is large."

The radial densities for $5 \leq n \leq 8$

Both $p_{2 n+4}, p_{2 n+5}$ are n-times continuously differentiable for $x>0$ with $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$. So "four is small" but "eight is large."

- Pearson wondered if p_{5} was linear on $[0,1]$. Only disproven in sixties.

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

O
Normality

- Normality
- Normality of Pi
- BBP digit algorithms
(3)

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities

4 Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

Meijer-G (1936) form for W_{3}

Theorem (Meijer-G form for W_{3})

For s not an odd integer

$$
W_{3}(s)=\frac{\Gamma\left(1+\frac{s}{2}\right)}{\sqrt{\pi} \Gamma\left(-\frac{s}{2}\right)} G_{33}^{21}\left(\left.\begin{array}{c|c}
1,1,1 & \frac{1}{2},-\frac{s}{2},-\frac{s}{2}
\end{array} \right\rvert\, \frac{1}{4}\right) .
$$

Meijer-G (1936) form for W_{3}

Theorem (Meijer-G form for W_{3})

For s not an odd integer

$$
W_{3}(s)=\frac{\Gamma\left(1+\frac{s}{2}\right)}{\sqrt{\pi} \Gamma\left(-\frac{s}{2}\right)} G_{33}^{21}\left(\left.\begin{array}{c|c}
1,1,1 & \frac{1}{2},-\frac{s}{2},-\frac{s}{2}
\end{array} \right\rvert\, \begin{array}{c}
\frac{1}{4}
\end{array}\right) .
$$

- First found by Crandall via CAS.
- Proved using residue calculus methods.

Meijer-G (1936) form for W_{3}

Theorem (Meijer-G form for W_{3})

For s not an odd integer

$$
W_{3}(s)=\frac{\Gamma\left(1+\frac{s}{2}\right)}{\sqrt{\pi} \Gamma\left(-\frac{s}{2}\right)} G_{33}^{21}\left(\begin{array}{c|c}
1,1,1 \\
\frac{1}{2},-\frac{s}{2},-\frac{s}{2} & \left.\frac{1}{4}\right) . ~
\end{array}\right.
$$

- First found by Crandall via CAS.
- Proved using residue calculus methods.
- $W_{3}(s)$ is among the first non-trivial higher order Meijer-G function to be placed in closed form.

Meijer-G (1936) form for W_{4}

Meijer-G (1936) form for W_{4}

Theorem (Meijer form for W_{4})

For $\Re s>-2$ and s not an odd integer

$$
W_{4}(s)=\frac{2^{s}}{\pi} \frac{\Gamma\left(1+\frac{s}{2}\right)}{\Gamma\left(-\frac{s}{2}\right)} G_{44}^{22}\left(\left.\begin{array}{c}
1, \frac{1-s}{2}, 1,1 \tag{7}\\
\frac{1}{2}-\frac{s}{2},-\frac{s}{2},-\frac{s}{2}
\end{array} \right\rvert\, 1\right) .
$$

Meijer-G (1936) form for W_{4}

Theorem (Meijer form for W_{4})

For $\mathfrak{R} s>-2$ and s not an odd integer

$$
W_{4}(s)=\frac{2^{s}}{\pi} \frac{\Gamma\left(1+\frac{s}{2}\right)}{\Gamma\left(-\frac{s}{2}\right)} G_{44}^{22}\left(\left.\begin{array}{c}
1, \frac{1-s}{2}, 1,1 \tag{7}\\
\frac{1}{2}-\frac{s}{2},-\frac{s}{2},-\frac{s}{2}
\end{array} \right\rvert\, 1\right) .
$$

He [Gauss (or Mathematica)] is like the fox, who effaces his tracks in the sand with his tail.- Niels Abel (1802-1829)

Meijer-G (1936) form for W_{4}

Theorem (Meijer form for W_{4})

For $\Re s>-2$ and s not an odd integer

$$
W_{4}(s)=\frac{2^{s}}{\pi} \frac{\Gamma\left(1+\frac{s}{2}\right)}{\Gamma\left(-\frac{s}{2}\right)} G_{44}^{22}\left(\left.\begin{array}{c}
1, \frac{1-s}{2}, 1,1 \tag{7}\\
\frac{1}{2}-\frac{s}{2},-\frac{s}{2},-\frac{s}{2}
\end{array} \right\rvert\, 1\right) .
$$

He [Gauss (or Mathematica)] is like the fox, who effaces his tracks in the sand with his tail.- Niels Abel (1802-1829)

But we really need a formula with $s=1$, that is an integer.

Visualizing W_{4}, W_{5}, and W_{6} on the real line

Visualizing W_{4}, W_{5}, and W_{6} on the real line

- Use recursion from $s>1$

Visualizing W_{4}, W_{5}, and W_{6} on the real line

- Use recursion from $s>1$
- Nonnegativity of W_{4} was hard to prove (Wan)

Visualizing W_{4} in the complex plane

Visualizing W_{4} in the complex plane

- Easily drawn now in Mathematica from the Meijer-G representation

Visualizing W_{4} in the complex plane

- Easily drawn now in Mathematica from the Meijer-G representation
- Each point is coloured differently (black is zero and white infinity). Note the poles and zeros.

Visualizing W_{4} in the complex plane:

- Easily drawn now in Mathematica from the Meijer-G representation.
- Each quadrant is coloured differently (black is zero and white infinity). Note the poles and zeros.

Visualizing W_{4} in the complex plane:

- Less easily drawn now from the Meijer-G representation.
- As prepared for Springer's Mathematical Beauties (2016).

Simplifying the Meijer integrals for W_{3} and W_{4}

- We (humans and/or computers) now obtained:

Simplifying the Meijer integrals for W_{3} and W_{4}

- We (humans and/or computers) now obtained:

Corollary (Hypergeometric forms for non-integer $s>-2$)

$$
W_{3}(s)=\frac{\tan \left(\frac{\pi s}{2}\right)}{2^{2 s+1}}\binom{s}{\frac{s-1}{2}}^{2}{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
\frac{s+3}{2}, \frac{s+3}{2}
\end{array} \right\rvert\, \frac{1}{4}\right)+\binom{s}{\frac{s}{2}}{ }_{3} F_{2}\left(\left.\begin{array}{c}
-\frac{s}{2},-\frac{s}{2},-\frac{s}{2} \\
1,-\frac{s-1}{2}
\end{array} \right\rvert\, \frac{1}{4}\right),
$$

and
$W_{4}(s)=\frac{\tan \left(\frac{\pi s}{2}\right)}{2^{2 s}}\binom{s}{\frac{s-1}{2}}^{3}{ }_{4} F_{3}\left(\left.\begin{array}{c}\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{s}{2}+1 \\ \frac{s+3}{2}, \frac{s+3}{2}, \frac{s+3}{2}\end{array} \right\rvert\, 1\right)+\binom{s}{\frac{s}{2}} 4 F_{3}\left(\left.\begin{array}{c}\frac{1}{2},-\frac{s}{2},-\frac{s}{2},-\frac{s}{2} \\ 1,1,-\frac{s-1}{2}\end{array} \right\rvert\, 1\right)$.

Simplifying the Meijer integrals for W_{3} and W_{4}

- We (humans and/or computers) now obtained:

Corollary (Hypergeometric forms for non-integer $s>-2$)

$$
W_{3}(s)=\frac{\tan \left(\frac{\pi s}{2}\right)}{2^{2 s+1}}\binom{s}{\frac{s-1}{2}}^{2}{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
\frac{s+3}{2}, \frac{s+3}{2}
\end{array} \right\rvert\, \frac{1}{4}\right)+\binom{s}{\frac{s}{2}}{ }_{3} F_{2}\left(\left.\begin{array}{c}
-\frac{s}{2},-\frac{s}{2},-\frac{s}{2} \\
1,-\frac{s-1}{2}
\end{array} \right\rvert\, \frac{1}{4}\right)
$$

and
$W_{4}(s)=\frac{\tan \left(\frac{\pi s}{2}\right)}{2^{2 s}}\binom{s}{\frac{s-1}{2}}^{3}{ }_{4} F_{3}\left(\left.\begin{array}{c}\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{s}{2}+1 \\ \frac{s+3}{2}, \frac{s+3}{2}, \frac{s+3}{2}\end{array} \right\rvert\, 1\right)+\binom{s}{\frac{s}{2}} 4{ }_{4} F_{3}\left(\left.\begin{array}{c}\frac{1}{2},-\frac{s}{2},-\frac{s}{2},-\frac{s}{2} \\ 1,1,-\frac{s-1}{2}\end{array} \right\rvert\, 1\right)$.

- We (humans) were able to provably take the limit at \pm 1: e.g.,

$$
\begin{aligned}
W_{4}(-1) & =\frac{\pi}{4}{ }_{7} F_{6}\left(\left.\begin{array}{c}
\frac{5}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
\frac{1}{4}, 1,1,1,1,1
\end{array} \right\rvert\, 1\right)=\frac{\pi}{4} \sum_{n=0}^{\infty} \frac{(4 n+1)\binom{2 n}{n}^{6}}{4^{6 n}} \\
& =\frac{\pi}{4}{ }_{6} F_{5}\binom{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \left.\frac{1}{2} \right\rvert\, 1}{1,1,1,1,1}+\frac{\pi}{64}{ }_{6} F_{5}\left(\left.\begin{array}{c}
\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2} \\
2,2,2,2,2
\end{array}\right|_{1}\right) .
\end{aligned}
$$

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

O
Normality

- Normality
- Normality of Pi
- BBP digit algorithms
(3)

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities

4 Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

9) References

Hypergeometric values of W_{3} :

With much work involving moments of elliptic integrals we obtain:

Theorem (Tractable hypergeometric form for W_{3})

(a) For $s \neq-3,-5,-7, \ldots$, we have

$$
W_{3}(s)=\frac{3^{s+3 / 2}}{2 \pi} \beta\left(s+\frac{1}{2}, s+\frac{1}{2}\right){ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{s+2}{2}, \frac{s+2}{2}, \frac{s+2}{2} \tag{8}\\
1, \frac{s+3}{2}
\end{array} \right\rvert\, \frac{1}{4}\right) .
$$

(b) For every natural number $k=1,2, \ldots$,

$$
W_{3}(-2 k-1)=\frac{\sqrt{3}\binom{2 k}{k}^{2}}{2^{4 k+1} 3^{2 k}} 3 F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
k+1, k+1
\end{array} \right\rvert\, \frac{1}{4}\right) .
$$

Hypergeometric values of W_{3} :

With much work involving moments of elliptic integrals we obtain:

Theorem (Tractable hypergeometric form for W_{3})

(a) For $s \neq-3,-5,-7, \ldots$, we have

$$
W_{3}(s)=\frac{3^{s+3 / 2}}{2 \pi} \beta\left(s+\frac{1}{2}, s+\frac{1}{2}\right){ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{s+2}{2}, \frac{s+2}{2}, \frac{s+2}{2} \tag{8}\\
1, \frac{s+3}{2}
\end{array} \right\rvert\, \frac{1}{4}\right) .
$$

(b) For every natural number $k=1,2, \ldots$,

$$
W_{3}(-2 k-1)=\frac{\sqrt{3}\binom{2 k}{k}^{2}}{2^{4 k+1} 3^{2 k}} 3 F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
k+1, k+1
\end{array} \right\rvert\, \frac{1}{4}\right) .
$$

- The following formula hints at role played by Bessel functions (Kluywer 1906 and http:
//www.carma.newcastle.edu.au/jon/walks-anu.pdf):

$$
W_{n}=n \int_{0}^{\infty} J_{1}(x) J_{0}(x)^{n-1} \frac{\mathrm{dx}}{x} \approx \frac{\sqrt{n \pi}}{2}
$$

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

O
Normality

- Normality
- Normality of Pi
- BBP digit algorithms

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities

4

Special functions

- Meijer-G
- ${ }_{p} F_{q}$

5 Number walks

- Number walks (base four)

6. Walks on 'reals'

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension
(Other formats
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome References

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
1=\uparrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
1=\uparrow
$$

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$
$2=\leftarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$
$2=\leftarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$2=\leftarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
3=\downarrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
3=\downarrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
0=\rightarrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

11222330

What is a random walk (base 4)?

Pick a random number in $\{0,1,2,3\}$ and move $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

Figure: A million step base-4 pseudorandom walk. We use the spectrum to show when we visited each point (ROYGBIV and R).

Random walks look similarish

Figure: Eight different base-4 (pseudo)random ${ }^{5}$ walks of one million steps.

[^8]

Figure: Directions for base-3 and base-7 random walks.

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

0
Normality

- Normality
- Normality of Pi
- BBP digit algorithms

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities
(4)

Special functions

- Meijer-G
${ }^{(}{ }_{p} F_{q}$

Number walks

- Number walks (base four)

6 Walks on 'reals'

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

3 Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

References

III: Two rational numbers

The base-4 digit expansion of $Q 1$ and $Q 2$:

Q1=

0.221221012232121200122101223121001222100011232123121000122210001222 10001222100012221000012221000122201103010122010012010311033333333333 33333333333333330111111111111111111111111111100100000000300300320032 00320030223000322203000322230003022220300032223000322230003222300032 22320000232223000322230032221330023321233023213232112112121222323233 33303000001000323003230032203032030110333011103301103101111011332333 323232232122121121112112232222122 . .

Q2 $=$
0.221221012232121200122101223121001222100011232123121000122210001222 10001222100012221000012221000122201103010122010012010311033333333333 33333333333333330111111111111111111111111111100100000000300300320032 00320030223000322203000322230003022220300032223000322230003222300032 22320000232223000322230032221330023321233023213232112112121222323233 33303000001000323003230032203032030110333011103301103101111011000000 000000...

III: Two rational numbers

Figure: Self-referent walks on the rational numbers $Q 1$ (top) and $Q 2$ (bottom).

The following relatively small rational numbers [G. Marsaglia, 2010]

$$
Q 3=\frac{3624360069}{7000000001} \text { and } Q 4=\frac{123456789012}{1000000000061},
$$

have base-10 periods with huge length of $\mathbf{1 , 7 5 0 , 0 0 0 , 0 0 0}$ digits and $1,000,000,000,060$ digits, respectively.

Two more rationals

The following relatively small rational numbers [G. Marsaglia, 2010]

$$
Q 3=\frac{3624360069}{7000000001} \text { and } Q 4=\frac{123456789012}{1000000000061},
$$

have base-10 periods with huge length of $\mathbf{1 , 7 5 0 , 0 0 0 , 0 0 0}$ digits and $1,000,000,000,060$ digits, respectively.

Figure: Walks on the first million base-10 digits of the rationals $Q 3$ and $Q 4$.

Walks on the digits of numbers

Figure: A walk on the first 10 million base- 4 digits of π.
See also D. Bailey, J. Borwein, R. Brent and M. Reisi, "Reproducibility in computational science a case study: randomness of the digits of Pi." Preprint 2016.
https://www.carma.newcastle.edu.au/jon/pi-repro.pdf

Walks on the digits of numbers

Figure: 100 million base- 4 digits of π coloured by number of returns to points.

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

0
Normality

- Normality
- Normality of Pi
- BBP digit algorithms

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities
(4)

Special functions

- Meijer-G
${ }^{-}{ }_{p} F_{q}$

Number walks

- Number walks (base four)

6 Walks on 'reals'

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension
(8) Other formats
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome References

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{\pi}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{n}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

Theorem (Normality of Stoneham constants, Bailey-Crandall '02)

For every coprime pair of integers $b \geq 2$ and $c \geq 2$, the constant $\alpha_{b, c}$ is b-normal.

The Stoneham numbers
 $$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{n}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

Theorem (Normality of Stoneham constants, Bailey-Crandall '02)
For every coprime pair of integers $b \geq 2$ and $c \geq 2$, the constant $\alpha_{b, c}$ is b-normal.

Theorem (Nonnormality of Stoneham constants, Bailey-Borwein '12)
Given coprime $b \geq 2$ and $c \geq 2$, such that $c<b^{c-1}$, the constant $\alpha_{b, c}$ is $b c$-nonnormal.

The Stoneham numbers
 $$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{n}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

Theorem (Normality of Stoneham constants, Bailey-Crandall '02)
For every coprime pair of integers $b \geq 2$ and $c \geq 2$, the constant $\alpha_{b, c}$ is b-normal.

Theorem (Nonnormality of Stoneham constants, Bailey-Borwein '12)
Given coprime $b \geq 2$ and $c \geq 2$, such that $c<b^{c-1}$, the constant $\alpha_{b, c}$ is $b c$-nonnormal.

- Since $3<2^{3-1}=4, \alpha_{2,3}$ is 2-normal and 6-nonnormal!

The Stoneham numbers
 $$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{x}}
$$

Figure: $\alpha_{2,3}$ is 2-normal (top) but 6-nonnormal (bottom). Is seeing believing?

The Stoneham numbers
 $$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{n}}
$$

Figure: Is $\alpha_{2,3}$ 3-normal or not?

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

Normality

- Normality
- Normality of Pi
- BBP digit algorithms

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities

4

Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals'

- IIIb: Study of number walks
- IIIc: Stoneham numbers
(7) Features of our walks
- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

3 Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

The expected distance to the origin

Theorem

The expected distance d_{N} to the origin of a base-b random walk of N steps behaves like to $\sqrt{\pi N} / 2$.

The expected distance to the origin

Theorem

The expected distance d_{N} to the origin of a base-b random walk of N steps behaves like to $\sqrt{\pi N} / 2$.
$\left.\begin{array}{|c|c|r|c|c|}\hline \text { Number } & \text { Base } & \text { Steps } & \begin{array}{c}\text { Average normalized } \\ \text { dist. to the origin: } \\ \frac{1}{\text { Steps }} \sum_{N=2}^{\text {Steps }} \frac{\text { dist }}{N}\end{array} & \text { Normal } \\ \hline \frac{\sqrt{\pi N}}{2}\end{array}\right]$

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

Normality

- Normality
- Normality of Pi
- BBP digit algorithms

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities

4

Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers
(7) Features of our walks
- Expected distance to origin
- Number of points visited
- Fractal and box-dimension
(Other formats
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome
 References

Number of points visited

- The expected number of distinct points visited by an N-step random walk on a two-dimensional lattice behaves for large N like $\pi N / \log (N)$ (Dvoretzky-Erdős, 1951).

Number of points visited

- The expected number of distinct points visited by an N-step random walk on a two-dimensional lattice behaves for large N like $\pi N / \log (N)$ (Dvoretzky-Erdős, 1951).
- Practical problem: Convergence is slow $\left(O\left(N \log \log N /(\log N)^{2}\right)\right)$.

Number of points visited

- The expected number of distinct points visited by an N-step random walk on a two-dimensional lattice behaves for large N like $\pi N / \log (N)$ (Dvoretzky-Erdős, 1951).
- Practical problem: Convergence is slow $\left(O\left(N \log \log N /(\log N)^{2}\right)\right)$.
- 1988 D. Downham and S. Fotopoulos gave better bounds on the expectation. It lies in:

$$
\left(\frac{\pi(N+0.84)}{1.16 \pi-1-\log 2+\log (N+2)}, \frac{\pi(N+1)}{1.066 \pi-1-\log 2+\log (N+1)}\right) .
$$

Number of points visited

- The expected number of distinct points visited by an N-step random walk on a two-dimensional lattice behaves for large N like $\pi N / \log (N)$ (Dvoretzky-Erdős, 1951).
- Practical problem: Convergence is slow $\left(O\left(N \log \log N /(\log N)^{2}\right)\right)$.
- 1988 D. Downham and S. Fotopoulos gave better bounds on the expectation. It lies in:

$$
\left(\frac{\pi(N+0.84)}{1.16 \pi-1-\log 2+\log (N+2)}, \frac{\pi(N+1)}{1.066 \pi-1-\log 2+\log (N+1)}\right) .
$$

- For example, for $N=10^{6}$ these bounds are (199256.1,203059.5), while $\pi N / \log (N)=227396$, which overestimates the expectation.

Catalan's constant
 $$
G=1-1 / 4+1 / 9-1 / 16+\cdots
$$

Figure: A walk on one million quad-bits of G with height showing frequency

Paul Erdős (1913-1996)

"My brain is open"

(a) Paul Erdős (Banff 1981. I was there)

(b) Émile Borel (1871-1956)

Figure: Two of my favourites. Consult MacTutor.

Number of points visited:

Again π looks random

(a) (Pseudo)random walks.

(b) Walks built by chopping up 10 billion digits of π.

Figure: Number of points visited by 10,000 million-steps base-4 walks.

Points visited by various base-4 walks

Number	Steps	Sites visited	Bounds on the expectation of sites visited by a random walk	
			Lower bound	Upper bound
Mean of 10,000 random walks	1,000,000	202,684	199,256	203,060
Mean of 10,000 walks on the digits of π	1,000,000	202,385	199,256	203,060
$\alpha_{2,3}$	1,000,000	95,817	199,256	203,060
$\alpha_{3,2}$	1,000,000	195,585	199,256	203,060
π	1,000,000	204,148	199,256	203,060
π	10,000,000	1,933,903	1,738,645	1,767,533
π	100,000,000	16,109,429	15,421,296	15,648,132
π	1,000,000,000	138,107,050	138,552,612	140,380,926
e	1,000,000	176,350	199,256	203,060
$\sqrt{2}$	1,000,000	200,733	199,256	203,060
$\log 2$	1,000,000	214,508	199,256	203,060
Champernowne C_{4}	1,000,000	548,746	199,256	203,060
Rational number Q_{1}	1,000,000	378	199,256	203,060
Rational number Q_{2}	1,000,000	939,322	199,256	203,060

Normal numbers need not be so "random" ...

Figure: Champernowne $C_{10}=0.123456789101112 \ldots$ (normal). Normalized distance to the origin: 15.9 (50,000 steps).

Normal numbers need not be so "random"

Figure: Champernowne $C_{4}=0.123101112132021 \ldots$ (normal). Normalized distance to the origin: 18.1 (100,000 steps). Points visited: 52760. Expectation: (23333, 23857).

Normal numbers need not be so "random" ...

Figure: Stoneham $\alpha_{2,3}=0.0022232032 \ldots 4$ (normal base 4). Normalized distance to the origin: 0.26 (1,000,000 steps). Points visited: 95817. Expectation: $(199256,203060)$.

Normal numbers need not be so "random" ...

Figure: Stoneham $\alpha_{2,3}=0.0022232032 \ldots 4$ (normal base 4). Normalized distance to the origin: 0.26 (1,000,000 steps). Points visited: 95817. Expectation: $(199256,203060)$.

Figure: A pattern in the digits of $\alpha_{2,3}$ base 4 . We show only positions of the walk after $\frac{3}{2}\left(3^{n}+1\right), \frac{3}{2}\left(3^{n}+1\right)+3^{n}$ and $\frac{3}{2}\left(3^{n}+1\right)+2 \cdot 3^{n}$ steps, $n=0,1, \ldots, 11$.

Experimental conjecture

Theorem (Base-4 structure of Stoneham $\alpha_{2,3}$)

Denote by a_{k} the $k^{\text {th }}$ digit of $\alpha_{2,3}$ in its base 4 expansion: $\alpha_{2,3}=\sum_{k=1}^{\infty} a_{k} / 4^{k}$, with $a_{k} \in\{0,1,2,3\}$ for all k. Then, for all $n=0,1,2, \ldots$ one has:
(i) $\sum_{k=\frac{3}{2}\left(3^{n}+1\right)}^{\frac{3}{2}\left(3^{n}+1\right)+3^{n}} e^{a_{k} \pi i / 2}=\left\{\begin{array}{lc}-i, & n \text { odd } \\ -1, & \mathrm{n} \text { even }\end{array}\right.$;
(ii) $a_{k}=a_{k+3^{n}}=a_{k+2 \cdot 3^{n}}$ if $k=\frac{3\left(3^{n}+1\right)}{2}, \frac{3\left(3^{n}+1\right)}{2}+1, \ldots, \frac{3\left(3^{n}+1\right)}{2}+3^{n}-1$.

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

Normality

- Normality
- Normality of Pi
- BBP digit algorithms

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities

4

Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers
(7) Features of our walks
- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

8) Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

Box-dimension:

$$
\text { Box-dimension }=\lim _{\text {side } \rightarrow 0} \frac{\log (\# \text { boxes })}{\log (1 / \text { side })}
$$

Norway is "frillier" - Hitchhiker's Guide to the Galaxy

Box-dimension:

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds \& ferns not buildings \& cars). Curves have dimension 1 , squares dimension 2

Box-dimension:

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds \& ferns not buildings \& cars). Curves have dimension 1, squares dimension 2

Box-dimension:

Tends to '2' for a planar random walk

Approximate fractal dimension of Pi in base 4: 1.842
Steps of the walk: $1,000,000,000$

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds \& ferns not buildings \& cars). Curves have dimension 1 , squares dimension 2

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

O
Normality

- Normality
- Normality of Pi
- BBP digit algorithms

Random-ish walks and

- Some background
- Illa. Short rambles
- Simulating densities

4

Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

8 Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

Fractals everywhere

Fractals everywhere

The picture fractalized by the Barnsley's
http://frangostudio.com/frangocamera.html

Fractals everywhere

From Space

Fractals everywhere

Fractals everywhere

Fractals everywhere

Fractals everywhere

Pascal triangle modulo two [1] [1,1] [1,2,1] [1,3,3,1,] [1,4,6,4,1] [1,510,10,5,1] ...

Fractals everywhere

Steps to construction of a Sierpinski cube

The Sierpinski Triangle

$$
1 \mapsto 3 \mapsto 9
$$

The Sierpinski Triangle

$$
1 \mapsto 3 \mapsto 9
$$

Fractals everywhere

The Sierpinski Triangle

$$
1 \mapsto 3 \mapsto 9
$$

Fractals everywhere

The Sierpinski Triangle

$$
1 \mapsto 3 \mapsto 9
$$

http:
//oldweb.cecm.sfu.ca/cgi-bin/organics/pascalform

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

0
Normality

- Normality
- Normality of Pi
- BBP digit algorithms

O
Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities

4

Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension
(Other formats
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome

Figure: Matt Skerritt's 3D walk on π (base 6), showing one million steps. But 3D random walks are not recurrent.

Three dimensional walks:

Figure: Matt Skerritt's 3D walk on π (base 6), showing one million steps. But 3D random walks are not recurrent.
"A drunken man will find his way home, a drunken bird will get lost forever." (Kakutani)

Three dimensional printing:

Figure: The future is here ...

[^9]
Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

O
Normality

- Normality
- Normality of Pi
- BBP digit algorithms
(3)

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities

4
Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension
(Other formats
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome References

Chaos games:

Figure: Coloured by frequency - leads to random fractals. Row 1: Champernowne $C_{3}, \alpha_{3,5}$, random, $\alpha_{2,3}$. Row 2: Champernowne C_{4}, π, random, $\alpha_{2,3}$. Row 3: Champernowne $C_{6}, \alpha_{3,2}$, random, $\alpha_{2,3}$.

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

O
Normality

- Normality
- Normality of Pi
- BBP digit algorithms

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities

4
Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension

8 Other formats

- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome
(9) References

Automatic numbers: Thue-Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but fascinating rules...giving structured/boring walks:

Figure: Paper folding. The sequence of left and right folds along a strip of paper that is folded repeatedly in half in the same direction. Unfold and read 'right' as ' 1 ' and 'left' as ' 0 ': 10110011100100

Automatic numbers: Thue-Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but fascinatina rules aivino structured/horing walks:

Figure: Paper folding. The sequence of left and right folds along a strip of paper that is folded repeatedly in half in the same direction. Unfold and read 'right' as ' 1 ' and 'left' as ' 0 ': 10110011100100

Thue-Morse constant (transcendental; 2-automatic, hence nonnormal):

$$
\begin{gathered}
T M_{2}=\sum_{n=1}^{\infty} \frac{1}{2^{t(n)}} \text { where } t(0)=0, \text { while } t(2 n)=t(n) \text { and } t(2 n+1)=1-t(n) \\
0.01101001100101101001011001101001 \ldots
\end{gathered}
$$

Automatic numbers: Thue-Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but fascinating rules...giving structured/boring walks:

(b) 10 million bits of paperfolding sequence.

Figure: Walks on two automatic and so nonnormal numbers.

Automatic numbers:

Turtle plots look great!

(a) Ten million digits of the paperfolding sequence, rotating 60°.

(c) 100,000 digits of the Thue-

Morse sequence, rotating 60° (a Koch snowflake).
(b) One million digits of the paperfolding sequence, rotating 120° (a dragon curve).

(d) One million digits of π, rotating 60°.

Figure: Turtle plots on various constants with different rotating angles in base 2 -where ' 0 ' yields forward motion and ' 1 ' rotation by a fixed angle.

Contents

PART III: Randomness

- Randomness is slippery
- Pi is not 22/7
- Continued fractions
- Is Pi random?

O
Normality

- Normality
- Normality of Pi
- BBP digit algorithms

Random-ish walks and

- Some background
- IIla. Short rambles
- Simulating densities

4
Special functions

- Meijer-G
- ${ }_{p} F_{q}$

Number walks

- Number walks (base four)

Walks on 'reals

- IIIb: Study of number walks
- IIIc: Stoneham numbers

Features of our walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension
(Other formats
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Walks on the genome
© References

Genomes as walks:

We are all base 4 numbers (ACGT/U)

Chromosome X

$$
\begin{aligned}
c & =[1,0] \\
g & =[0,1] \\
t & =[-1,0] \\
a & =[0,-1]
\end{aligned}
$$

Chromosome 1
$c=[1,0]$
$g=[0,1]$
$t=[-1,0]$
$a=[0,-1]$

Genomes as walks:

We are all base 4 numbers (ACGT/U)
Chromosome X

$$
\begin{aligned}
c & =[1,0] \\
g & =[0,1] \\
t & =[-1,0] \\
a & =[0,-1]
\end{aligned}
$$

Chromosome 1
$c=[1,0]$
$g=[0,1]$
$t=[-1,0]$
$a=[0,-1]$

The X Chromosome (34K) and Chromosome One (10K).

Genomes as walks:

We are all base 4 numbers (ACGT/U)
Chromosome X

$$
\begin{aligned}
c & =[1,0] \\
g & =[0,1] \\
t & =[-1,0] \\
a & =[0,-1]
\end{aligned}
$$

Chromosome 1
$c=[1,0]$
$g=[0,1]$
$t=[-1,0]$
$a=[0,-1]$

The X Chromosome (34K) and Chromosome One (10K).

® Chromosomes look less like π and more like concatenation numbers?

DNA for Storage:

We are all base 4 numbers (ACGT/U)

News Science Biochemistry and molecular biology
Shakespeare and Martin Luther King demonstrate potential of DNA storage All 154 Shakespeare sonnets have been spelled out in DNA to demonstrate the vast potential of genetic data storage

Ian Sample, science correspondent
The Guardian, Thursday 24 January 2013
Jump to comments (...)

When written in DNA, one of Shakespeare's sonnets weighs 0.3 millionths of a millionth of a gram. Photograph: Oli Scarff/Getty

Figure: The potential for DNA storage (L) and the quadruple helix (R)

The end

with some fractal dessert

The end

with some fractal dessert

Thank you

Other References

```
http:// carma.newcastle.edu.au/walks/
```

M. Barnsley: Fractals Everywhere, Academic Press, Inc., Boston, MA, 1988.
F.J. Aragón Artacho, D.H. Bailey, J.M. Borwein, P.B. Borwein: Walking on real numbers, The Mathematical Intelligencer 35 (2013), no. 1, 42-60.
D.H. Bailey and J.M. Borwein: Normal numbers and pseudorandom generators, Proceedings of the Workshop on Computational and Analytical Mathematics in Honour of JMB's 60th Birthday. Springer Proceedings in Mathematics and Statistics 50, pp. 1-18.
D.H. Bailey and R.E. Crandall: Random generators and normal numbers, Experimental Mathematics 11 (2002), no. 4, 527-546.
D.G. Champernowne: The construction of decimals normal in the scale of ten, Journal of the London Mathematical Society 8 (1933), 254-260.
A.H. Copeland and P. Erdős: Note on normal numbers, Bulletin of the American Mathematical Society 52 (1946), 857-860.
D.Y. Downham and S.B. Fotopoulos: The transient behaviour of the simple random walk in the plane, J. Appl. Probab. 25 (1988), no. 1, 58-69.
A. Dvoretzky and P. Erdős: Some problems on random walk in space, Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability (1951), 353-367.
G. MARSAGLIA: On the randomness of pi and other decimal expansions, preprint (2010).
R. Stoneham: On absolute (j, ε)-normality in the rational fractions with applications to normal numbers, Acta Arithmetica 22 (1973), 277-286.

[^0]: ${ }^{1}$ J.E. Littlewood, A mathematician's miscellany, London: Methuen (1953); Littlewood, J. E. and Bollobás, Béla, ed., Littlewood's miscellany, Cambridge University Press, 1986.

[^1]: ${ }^{1}$ J.E. Littlewood, A mathematician's miscellany, London: Methuen (1953);
 Littlewood, J. E. and Bollobás, Béla, ed., Littlewood's miscellany, Cambridge University Press, 1986.

[^2]: ${ }^{2}$ See http://www.carma.newcastle.edu.au/jon/Completion.pdf and http://www.carma.newcastle.edu.au/jon/dr-fields11.pptx.

[^3]: ${ }^{2}$ See http://www.carma.newcastle.edu.au/jon/Completion.pdf and http://www.carma.newcastle.edu.au/jon/dr-fields11.pptx.

[^4]: ${ }^{2}$ See http://www. carma.newcastle.edu.au/jon/Completion.pdf and http://www.carma.newcastle.edu.au/jon/dr-fields11.pptx.

[^5]: ${ }^{3}$ Only the best get stamps. Quoted in
 www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html.

[^6]: ${ }^{4}$ Quadrature was our first interest

[^7]: ${ }^{4}$ Quadrature was our first interest

[^8]:

[^9]: www.digitaltrends.com/cool-tech/the-worlds-first-plane-created-entirely-by-3d-printing-takes-flight/
 www. shapeways.com/shops/3Dfractals

