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EXTENDED ABSTRACT

Long before current graphic, visualisation and geometric tools were
available, John E. Littlewood (1885-1977) wrote in his delightful
Miscellany1:

A heavy warning used to be given [by lecturers] that pictures
are not rigorous; this has never had its bluff called and has
permanently frightened its victims into playing for safety.
Some pictures, of course, are not rigorous, but I should say
most are (and I use them whenever possible myself). [p. 53]

Over the past decade, the role of visual computing in my own
research has expanded dramatically.

In part this was made possible by the increasing speed and storage
capabilities—and the growing ease of programming—of modern
multi-core computing environments [BMC].

1J.E. Littlewood, A mathematician’s miscellany, London: Methuen (1953);
Littlewood, J. E. and Bollobás, Béla, ed., Littlewood’s miscellany, Cambridge University
Press, 1986.
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But, at least as much, it has been driven by my group’s paying more
active attention to the possibilities for graphing, animating or
simulating most mathematical research activities.

I first briefly discuss both visual theorems and
experimental computation.

I then turn to dynamic geometry (iterative reflection
methods [AB]) and matrix completion problems (applied
to protein conformation [ABT]).2 (Case studies I)

After an algorithmic interlude (Case studies II), I end
with description of work from my group in probability
(behaviour of short random walks [BS, BSWZ]) and
transcendental number theory (normality of real
numbers [AB3]). (Case studies III)

2See http://www.carma.newcastle.edu.au/jon/Completion.pdf and
http://www.carma.newcastle.edu.au/jon/dr-fields11.pptx.
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My plans

While all this work involved significant, often
threaded [BSC], numerical- symbolic
computation, I shall focus on the visual
components.

I will make a sample of the on-line presentation,
based in part on:

What makes most sense for the audience
My inclinations on the day
How I manage my time

JMB was among roughly 60 new 2015 Fellows of the American
Mathematical Society. He was cited “For contributions to
nonsmooth analysis and classical analysis as well as experimental
mathematics and visualization of mathematics.”
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Tools and Mathematics 2016
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We shall explore things like: How random is Pi?

Remember: π is area of a circle of radius one (and perimeter is 2π).

First true calculation of π was due to Archimedes of Syracuse
(287–212 BCE). He used a brilliant scheme for doubling inscribed
and circumscribed polygons (with ‘interval arithmetic’)

6 7→ 12 7→ 24 7→ 48 7→ 96 to obtain the estimate

3
10
71

< π < 3
10
70

.
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Archimedes’ “Method of Mechanical Theorems”

Pi movie below

... certain things first became clear to
me by a mechanical method
(Codex C), although they had to be
proved by geometry afterwards
because their investigation by the said
method did not furnish an actual proof.

But it is of course easier, when we have
previously acquired, by the method,
some knowledge of the questions, to
supply the proof than it is to find it
without any previous knowledge.

• Only recently rediscovered and even more recently reconstructed ...
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Proving π is not 22
7

Even Maple or Mathematica ‘knows’ this since

0 <
∫ 1

0

(1− x)4x4

1+ x2 dx =
22
7
−π, (1)

though it would be prudent to ask ‘why’ it can perform the integral and
‘whether’ to trust it?

Assume we trust it. Then the integrand is strictly positive on (0,1),
and the answer in (1) is an area and so strictly positive, despite
millennia of claims that π is 22/7.

Accidentally, 22/7 is one of the early continued fraction approximation to
π. These commence:

3,
22
7
,

333
106

,
355
113

, . . .
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Proving π is not 22
7

In this case, the indefinite integral provides immediate reassurance.
We obtain

∫ t

0

x4 (1− x)4

1+ x2 dx =
1
7

t7− 2
3

t6 + t5− 4
3

t3 +4 t−4 arctan(t)

as differentiation easily confirms, and the fundamental theorem of
calculus proves (1). QED
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Randomness
The digits expansions of π,e,

√
2 appear to be “random”:

π= 3.141592653589793238462643383279502884197169399375 . . .
e = 2.718281828459045235360287471352662497757247093699 . . .
√

2= 1.414213562373095048801688724209698078569671875376 . . .

Are they really?

1949 ENIAC (Electronic Numerical Integrator and Calculator)
computed of π to 2,037 decimals (in 70 hours)—proposed by
polymath John von Neumann (1903-1957) to shed light on
distribution of π (and of e).
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computed of π to 2,037 decimals (in 70 hours)—proposed by
polymath John von Neumann (1903-1957) to shed light on
distribution of π (and of e).
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Two continued fractions Change representations often

Gauss map. Remove the integer, invert the fraction and repeat: for
3.1415926 and 2.7182818 to get the fractions below.

e =
1
1
+

1
1
+

1
2
+

1
6
+

1
24

+
1

120
+

1
720

+ . . .

Leonhard Euler (1707-
1783) named e and π.

“Lisez Euler, lisez Euler, c’est
notre maı̂tre à tous.” Simon
Laplace (1749-1827)
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Are the digits of π random?

Digit Ocurrences
0 99,993,942
1 99,997,334
2 100,002,410
3 99,986,911
4 100,011,958
5 99,998,885
6 100,010,387
7 99,996,061
8 100,001,839
9 100,000,273

Total 1,000,000,000

Table: Counts of first billion
digits of π. Second half is
‘right’ for law of large
numbers.

Pi is Still Mysterious. We know π is not
algebraic; but do not ‘know’ (in sense of
being able to prove) whether ....

The simple continued fraction for π is
unbounded

– Euler found the 292

– e has a fine continued fraction

There are infinitely many sevens in
the decimal expansion of π

There are infinitely many ones in the
ternary expansion of π

There are equally many zeroes and
ones in the binary expansion of π

Or pretty much anything else...
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What is “random”? A hard question

It might be:
Unpredictable (fair dice or coin-flips)?
Without structure (noise)?
Algorithmically random (π is not)?
Quantum random (radiation)?
Folks believe this is the most
random.
Incompressible (‘zip’ does not help)?

Conjecture (Borel) All irrational
algebraic numbers are b-normal

Best Theorem [BBCP, 04] (Fee-
ble but hard) Asymptotically all
degree d algebraics have at least
n1/d ones in binary (should be
n/2)
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Randomness in Pi? http://mkweb.bcgsc.ca/pi/art/

• a better color palette for art if not for science
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Normality A property random numbers must possess

Definition
A real constant α is b-normal if, given the positive integer b≥ 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of α with precisely the expected limiting frequency 1/bm.

Given an integer b≥ 2, almost all real numbers, with probability
one, are b-normal (Borel).

Indeed, almost all real numbers are b-normal simultaneously for
all positive integer bases (“absolute normality”).

Unfortunately, it has been very difficult to prove normality for any
number in a given base b, much less all bases simultaneously.
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Normal numbers concatenation numbers

Definition
A real constant α is b-normal if, given the positive integer b≥ 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of α with precisely the expected limiting frequency 1/bm.

The first Champernowne number proven 10-normal was:

C10 := 0.123456789101112131415161718 . . .

- 1933 by David Champernowne (1912-2000) as a student
- 1937 Mahler proved transcendental. 2012 not strongly normal

1946 Arthur Copeland and Paul Erdős proved the same holds
when one concatenates the sequence of primes:

CE(10) := 0.23571113171923293137414347 . . .

is 10-normal (concatenation works in all bases).
- Copeland–Erdős constant

Normality proofs are not known for π,e, log2,
√

2 etc.
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Normal numbers concatenation numbers

Definition
A real constant α is b-normal if, given the positive integer b≥ 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of α with precisely the expected limiting frequency 1/bm.

Theorem (Davenport-Erdös (1952))

Let p be any polynomial positive on the natural numbers. Then the
concatenation number

0.p(1)p(2)p(3) . . .p(n) . . .

is Borel normal (in the base of presentation).

Includes Champernowne’s number and 0.1491625 . . . (Besicovich)
See H. Davenport and P. Erdös, “Note on normal numbers.” Can. J.
Math., 4 (1952), 58–63.

Jonathan Borwein (University of Newcastle, Australia) Visual Theorems www.carma.newcastle.edu.au/walks

http://www.carma.newcastle.edu.au/walks


PART III: Randomness Normality Random-ish walks and ... Special functions Number walks Walks on ‘reals’ Features of our walks Other formats References

Normal numbers concatenation numbers

Definition
A real constant α is b-normal if, given the positive integer b≥ 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of α with precisely the expected limiting frequency 1/bm.

Theorem (Davenport-Erdös (1952))

Let p be any polynomial positive on the natural numbers. Then the
concatenation number

0.p(1)p(2)p(3) . . .p(n) . . .

is Borel normal (in the base of presentation).

Includes Champernowne’s number and 0.1491625 . . . (Besicovich)
See H. Davenport and P. Erdös, “Note on normal numbers.” Can. J.
Math., 4 (1952), 58–63.

Jonathan Borwein (University of Newcastle, Australia) Visual Theorems www.carma.newcastle.edu.au/walks

http://www.carma.newcastle.edu.au/walks


PART III: Randomness Normality Random-ish walks and ... Special functions Number walks Walks on ‘reals’ Features of our walks Other formats References

Contents

1 PART III: Randomness
Randomness is slippery
Pi is not 22/7
Continued fractions
Is Pi random?

2 Normality
Normality
Normality of Pi
BBP digit algorithms

3 Random-ish walks and ...
Some background
IIIa. Short rambles
Simulating densities

4 Special functions
Meijer-G
pFq

5 Number walks
Number walks (base four)

6 Walks on ‘reals’
IIIb: Study of number walks
IIIc: Stoneham numbers

7 Features of our walks
Expected distance to origin
Number of points visited
Fractal and box-dimension

8 Other formats
Fractals everywhere
3D drunkard’s walks
Chaos games
2-automatic numbers
Walks on the genome

9 References

Jonathan Borwein (University of Newcastle, Australia) Visual Theorems www.carma.newcastle.edu.au/walks

http://www.carma.newcastle.edu.au/walks


PART III: Randomness Normality Random-ish walks and ... Special functions Number walks Walks on ‘reals’ Features of our walks Other formats References

Is π 10-normal?

String Occurrences String Occurrences String Occurrences
0 99,993,942 00 10,004,524 000 1,000,897
1 99,997,334 01 9,998,250 001 1,000,758
2 100,002,410 02 9,999,222 002 1,000,447
3 99,986,911 03 10,000,290 003 1,001,566
4 100,011,958 04 10,000,613 004 1,000,741
5 99,998,885 05 10,002,048 005 1,002,881
6 100,010,387 06 9,995,451 006 999,294
7 99,996,061 07 9,993,703 007 998,919
8 100,001,839 08 10,000,565 008 999,962
9 100,000,273 09 9,999,276 009 999,059

10 9,997,289 010 998,884
11 9,997,964 011 1,001,188
...

...
...

...
99 10,003,709 099 999,201

...
...

999 1,000,905
TOTAL 1,000,000,000 TOTAL 1,000,000,000 TOTAL 1,000,000,000

Table: Counts for the first billion digits of π.
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Is π 16-normal That is, in Hex?

0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1,000,000,000,000

←↩ Counts of first trillion hex digits

2011 Ten trillion hex digits computed by Yee
and Kondo – and seem very normal. (2013:
12.1 trillion)

2012 Ed Karrel found 25 hex digits of π

starting after the 1015 position computed
using BBP on GPUs (graphics cards) at
NVIDIA (too hard for Blue Gene)

They are 353CB3F7F0C9ACCFA9AA215F2
See www.karrels.org/pi/index.html
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Modern π Calculation Records: and IBM Blue Gene/L at LBL

Name Year Correct Digits
Miyoshi and Kanada 1981 2,000,036
Kanada-Yoshino-Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000
Takahashi Jan. 2009 1,649,000,000,000
Takahashi April 2009 2,576,980,377,524
Bellard Dec. 2009 2,699,999,990,000
Kondo and Yee Aug. 2010 5,000,000,000,000
Kondo and Yee Oct. 2011 10,000,000,000,000
Kondo and Yee Dec. 2013 12,100,000,000,000
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What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you
had to generate the (order of) the entire first d digits. This is not true:

at least for hex (base 16) or binary (base 2) digits of π.

In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for
individual hex digits of π. It produces:
a modest-length string of hex or binary digits of π, beginning at
any position, using no prior bits

– is implementable on any modern computer;
– requires no multiple precision software;
– requires very little memory; and has
– a computational cost growing only slightly faster than the

digit position.

An algorithm found by computer—now used to check record π

computations and in some compilers.
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What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for π:

π =
∞

∑
i=0

1
16i

(
4

8i+1
− 2

8i+4
− 1

8i+5
− 1

8i+6

)
(2)

Millionth hex digit (four millionth bit) takes under 30 secs on a
fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.

Equation (2) was discovered numerically using integer relation
methods over months in my BC lab, CECM. It arrived coded as:

π = 4 2F1

(
1,

1
4

;
5
4
,−1

4

)
+2tan−1

(
1
2

)
− log5

where 2F1(1,1/4;5/4,−1/4) = 0.955933837 . . . is a Gaussian
hypergeometric function.

Bailey-Crandall (220) link BBP and normality.
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Edge of Computation Prize Finalist (2005)

BBP was the only mathematical finalist (of about 40) for the first
Edge of Computation Science Prize

– Along with founders of Google, Netscape, Celera and many
brilliant thinkers, ...

Won by David Deutsch — discoverer of Quantum Computing.
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Stefan Banach (1892-1945) Another Nazi casualty

A mathematician is a person who can find analogies
between theorems; a better mathematician is one who can
see analogies between proofs and the best mathematician
can notice analogies between theories. 3

3Only the best get stamps. Quoted in
www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html .
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A Little History: From a vast literature

1 2 3 4 5

0.05

0.10
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0.10
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0.30

L: Pearson posed question
about a ‘rambler’ taking unit
random steps (Nature, ‘05).

R: Rayleigh gave large n estimates of
density: pn(x)∼ 2x

n e−x2/n (Nature, 1905)
with n = 5,8 shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon,
explained why sky is blue.
The problem “is the same as that of the composition of n isoperiodic vibra-
tions of unit amplitude and phases distributed at random” he studied in 1880
(diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C 7→ K), declined knighthood.

- UNSW: Donovan and Nuyens, WWII cryptography.

- appear in graph theory, quantum chemistry, in quantum physics as
hexagonal and diamond lattice integers, etc ...
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The first walk (Venn) Why is the sky blue?
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One 1500-step ramble: a familiar picture Liouville function

1D (and 3D) easy. Expectation of RMS distance is easy (
√

n).
1D or 2D lattice: probability one of returning to the origin.
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Case study II: short rambles a less familiar picture?

1000 three-step uniform planar walks

Jonathan Borwein (University of Newcastle, Australia) Visual Theorems www.carma.newcastle.edu.au/walks

http://www.carma.newcastle.edu.au/walks


PART III: Randomness Normality Random-ish walks and ... Special functions Number walks Walks on ‘reals’ Features of our walks Other formats References

The moments of an n-step planar walk: Wn := Wn(1)

Second simplest case:

W2 =
∫ 1

0

∫ 1

0

∣∣∣e2πix + e2πiy
∣∣∣dxdy = ?

Mathematica 10 and Maple 18 still think the answer is 0 (‘bug’ or
‘feature’?).
There is always a 1-dimension reduction4

Wn(s) =
∫
[0,1]n

∣∣∣∣ n

∑
k=1

e2πxki
∣∣∣∣sd(x1, . . . ,xn−1,xn)

=
∫
[0,1]n−1

∣∣∣∣1+ n−1

∑
k=1

e2πxki
∣∣∣∣sd(x1, . . . ,xn−1)

So W2 = 4
∫ 1/4

0 cos(πx)dx = 4
π
.

4Quadrature was our first interest
Jonathan Borwein (University of Newcastle, Australia) Visual Theorems www.carma.newcastle.edu.au/walks
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Art meets science AAAS & Bridges conference

A visualization of six routes that 1000 ants took after leaving
their nest in search of food. The jagged blue lines represent
the breaking off of random ants in search of seeds.

(Nadia Whitehead 2014-03-25 16:15)

(JonFest 2011 Logo) Three-step random walks.
The (purple) expected distance travelled is 1.57459 ...

The closed form W3 is given below.

W3 =
16 3√4π2

Γ( 1
3 )

6 +
3Γ( 1

3 )
6

8 3√4π4
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Simulating the densities for n = 3,4 ANIMATION

The densities p3 (L) and p4 (R)

Simulation thanks to Cam Rogers

Jonathan Borwein (University of Newcastle, Australia) Visual Theorems www.carma.newcastle.edu.au/walks


3walk-long.mp4
Media File (video/mp4)


4walk-long.mp4
Media File (video/mp4)
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The radial densities for 3≤ n≤ 6 (simulations by A. Mattingly)
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Pearson’s original full question and comment on p5

A man starts from a point O and walks l yards in a straight
line; he then turns through any angle whatever and walks
another l yards in a second straight line. He repeats this
process n times. I require the probability that after these n
stretches he is at a distance between r and r+δ r from his
starting point, O.

“the graphical construction, however carefully reinvestigated, did
not permit of our considering the curve to be anything but a straight
line. . . Even if it is not absolutely true, it exemplifies the
extraordinary power of such integrals of J [Bessel] products to give
extremely close approximations to such simple forms as horizontal
lines.”

JMAA 2016. Our analysis of short walks extends interestingly to
arbitrary dimensions (JMB, Straub, Vignat).

Jonathan Borwein (University of Newcastle, Australia) Visual Theorems www.carma.newcastle.edu.au/walks
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The radial densities for n = 3,4 are modular functions
Let σ(x) := 3−x

1+x . Then σ is an involution on [0,3] sending [0,1] to [1,3]:

p3(x) =
4x

(3− x)(x+1)
p3(σ(x)). (3)

So 3
4 p′3(0) = p3(3) =

√
3

2π
, p(1) = ∞.

We found:

p3(α) =
2
√

3α

π (3+α2)
2F1

(
1
3 ,

2
3

1

∣∣∣∣α2
(
9−α2

)2

(3+α2)
3

)
=

2
√

3
π

α

AG3(3+α2,3(1−α2)
2/3

)
(4)

where AG3 is the cubically convergent mean iteration (1991):

AG3(a,b) :=
a+2b

3

⊗(
b · a

2 +ab+b2

3

)1/3

.

The densities p3 (L) and p4 (R)

Jonathan Borwein (University of Newcastle, Australia) Visual Theorems www.carma.newcastle.edu.au/walks
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Formula for the ‘shark-fin’ p4 SKIP

We ultimately deduce on 2≤ α ≤ 4 a hyper-closed form:

p4(α) =
2

π2

√
16−α2

α
3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16−α2)3

108α4

)
. (5)

← p4 from (5) vs 18-terms of empirical power
series

X Proves p4(2) = 27/3π

3
√

3
Γ

(
2
3

)−6
=

√
3

π
W3(−1)≈ 0.494233 < 1

2

Empirically, quite marvelously, we found
— and proved by a subtle use of
distributional Mellin transforms — that on
[0,2] as well:

p4(α)
?
=

2
π2

√
16−α2

α
ℜ 3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16−α2)3

108α4

)
(6)

(Discovering this ℜ brought us full circle.)
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p4(α)
?
=

2
π2

√
16−α2

α
ℜ 3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16−α2)3

108α4

)
(6)

(Discovering this ℜ brought us full circle.)
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The radial densities for 5≤ n≤ 8 (and large n approximation)
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Both p2n+4,p2n+5 are n-times continuously differentiable for x > 0
with pn(x)∼ 2x

n e−x2/n. So “four is small” but “eight is large.”
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Pearson wondered if p5 was linear on [0,1]. Only disproven in
sixties.
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Meijer-G (1936) form for W3 and graph on real line

Theorem (Meijer-G form for W3)

For s not an odd integer

W3(s) =
Γ(1+ s

2 )√
π Γ(− s

2 )
G21

33

(
1,1,1

1
2 ,−

s
2 ,−

s
2

∣∣∣∣14
)
.

First found by Crandall via CAS.
Proved using residue calculus methods.
W3(s) is among the first non-trivial higher order Meijer-G function
to be placed in closed form.
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Meijer-G (1936) form for W4

Theorem (Meijer form for W4)

For ℜs >−2 and s not an odd integer

W4(s) =
2s

π

Γ(1+ s
2 )

Γ(− s
2 )

G22
44

(
1, 1−s

2 ,1,1
1
2 −

s
2 ,−

s
2 ,−

s
2

∣∣∣∣1
)
. (7)

He [Gauss(or Mathematica)] is like the fox, who effaces his
tracks in the sand with his tail.— Niels Abel (1802-1829)

But we really need a formula with s = 1, that is an integer.
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Visualizing W4,W5, and W6 on the real line

• Use recursion from s > 1
• Nonnegativity of W4 was hard to prove (Wan)
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Visualizing W4 in the complex plane

Easily drawn now in Mathematica from the Meijer-G
representation
Each point is coloured differently (black is zero and white infinity).
Note the poles and zeros.
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Visualizing W4 in the complex plane: sometimes less is more

Easily drawn now in Mathematica from the Meijer-G
representation.
Each quadrant is coloured differently (black is zero and white
infinity). Note the poles and zeros.
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Visualizing W4 in the complex plane: sometimes less is more

Less easily drawn now from the Meijer-G representation.
As prepared for Springer’s Mathematical Beauties (2016).
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Simplifying the Meijer integrals for W3 and W4

We (humans and/or computers) now obtained:

Corollary (Hypergeometric forms for non-integer s >−2)

W3(s) =
tan
(

πs
2
)

22s+1

(
s

s−1
2

)2

3F2

(
1
2 ,

1
2 ,

1
2

s+3
2 , s+3

2

∣∣∣∣14
)
+

(
s
s
2

)
3F2

(
− s

2 ,−
s
2 ,−

s
2

1,− s−1
2

∣∣∣∣14
)
,

and

W4(s) =
tan
(

πs
2
)

22s

(
s

s−1
2

)3

4F3

(
1
2 ,

1
2 ,

1
2 ,

s
2 +1

s+3
2 , s+3

2 , s+3
2

∣∣∣∣1
)
+

(
s
s
2

)
4F3

(
1
2 ,−

s
2 ,−

s
2 ,−

s
2

1,1,− s−1
2

∣∣∣∣1
)
.

We (humans) were able to provably take the limit at ±1: e.g.,

W4(−1) =
π

4 7F6

(
5
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1
4 ,1,1,1,1,1

∣∣∣∣1
)

=
π

4

∞

∑
n=0

(4n+1)
(2n

n
)6

46n

=
π

4 6F5

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1,1,1,1,1

∣∣∣∣1
)
+

π

64 6F5

(
3
2 ,

3
2 ,

3
2 ,

3
2 ,

3
2 ,

3
2

2,2,2,2,2

∣∣∣∣1
)
.
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Hypergeometric values of W3: from Meijer-G values.

With much work involving moments of elliptic integrals we obtain:
Theorem (Tractable hypergeometric form for W3)

(a) For s 6=−3,−5,−7, . . . , we have

W3(s) =
3s+3/2

2π
β

(
s+

1
2
,s+

1
2

)
3F2

(
s+2

2 , s+2
2 , s+2

2

1, s+3
2

∣∣∣∣14
)
. (8)

(b) For every natural number k = 1,2, . . .,

W3(−2k−1) =

√
3
(2k

k

)2

24k+132k 3F2

( 1
2 ,

1
2 ,

1
2

k+1,k+1

∣∣∣∣14
)
.

The following formula hints at role played by Bessel functions
(Kluywer 1906 and http:
//www.carma.newcastle.edu.au/jon/walks-anu.pdf):

Wn = n
∫

∞

0
J1(x)J0(x)n−1 dx

x
≈
√

nπ

2
.
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What is a random walk (base 4)?
Pick a random number in {0,1,2,3} and move 0 =→, 1 =↑, 2 =←, 3 =↓ ANIMATION

Figure: A million step base-4 pseudorandom walk. We use the spectrum to
show when we visited each point (ROYGBIV and R).
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Random walks look similarish Chaos theory (order in disorder)

Figure: Eight different base-4 (pseudo)random5 walks of one million steps.

5Python uses the Mersenne Twister as the core generator. It has a period of 219937 −1≈ 106002 .
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Base-b random walks: Our direction choice

0

1

2

0

1
2

3

4

5
6

Figure: Directions for base-3 and base-7 random walks.
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III: Two rational numbers ANIMATION

The base-4 digit expansion of Q1 and Q2:
Q1=
0.221221012232121200122101223121001222100011232123121000122210001222
10001222100012221000012221000122201103010122010012010311033333333333
33333333333333330111111111111111111111111111100100000000300300320032
00320030223000322203000322230003022220300032223000322230003222300032
22320000232223000322230032221330023321233023213232112112121222323233
33303000001000323003230032203032030110333011103301103101111011332333
3232322321221211211121122322222122...

Q2=
0.221221012232121200122101223121001222100011232123121000122210001222
10001222100012221000012221000122201103010122010012010311033333333333
33333333333333330111111111111111111111111111100100000000300300320032
00320030223000322203000322230003022220300032223000322230003222300032
22320000232223000322230032221330023321233023213232112112121222323233
33303000001000323003230032203032030110333011103301103101111011000000
000000...
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III: Two rational numbers ANIMATION

Figure: Self-referent walks on the rational numbers Q1 (top) and Q2 (bottom).
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Two more rationals Hard to tell from their decimal expansions

The following relatively small rational numbers [G. Marsaglia, 2010]

Q3 =
3624360069
7000000001

and Q4 =
123456789012

1000000000061
,

have base-10 periods with huge length of 1,750,000,000 digits and
1,000,000,000,060 digits, respectively.

(a) Q3 (b) Q4

Figure: Walks on the first million base-10 digits of the rationals Q3 and Q4.
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Walks on the digits of numbers ANIMATION

Figure: A walk on the first 10 million base-4 digits of π.

See also D. Bailey, J. Borwein, R. Brent and M. Reisi, “Reproducibility
in computational science a case study: randomness of the digits of
Pi.” Preprint 2016.
https://www.carma.newcastle.edu.au/jon/pi-repro.pdf
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Walks on the digits of numbers
Coloured by hits (more pink is more hits)

Figure: 100 million base-4 digits of π coloured by number of returns to points.
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The Stoneham numbers αb,c = ∑
∞
n=1

1
cnbcn

1973 Richard Stoneham proved some of the following (nearly
‘natural’) constants are b-normal for relatively prime integers b,c:

αb,c :=
1

cbc +
1

c2bc2 +
1

c3bc3 + . . ..

Such super-geometric sums are Stoneham constants. To 10 places

α2,3 =
1

24
+

1
3608

+
1

3623878656
+ ...

Theorem (Normality of Stoneham constants, Bailey–Crandall ’02)

For every coprime pair of integers b≥ 2 and c≥ 2, the constant αb,c is
b-normal.

Theorem (Nonnormality of Stoneham constants, Bailey–Borwein ’12)

Given coprime b≥ 2 and c≥ 2, such that c < bc−1, the constant αb,c is
bc-nonnormal.

Since 3 < 23−1 = 4, α2,3 is 2-normal and 6-nonnormal !
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The Stoneham numbers αb,c = ∑
∞
n=1

1
cnbcn

Figure: α2,3 is 2-normal (top) but 6-nonnormal (bottom). Is seeing believing?
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The Stoneham numbers αb,c = ∑
∞
n=1

1
cnbcn

Figure: Is α2,3 3-normal or not?
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The expected distance to the origin
√

πN
2dN
→ 1

Theorem
The expected distance dN to the origin of a base-b random walk of N
steps behaves like to

√
πN/2.

Number Base Steps

Average normalized
dist. to the origin:

1
Steps

Steps
∑

N=2

distN√
πN
2

Normal

Mean of 10,000 4 1,000,000 1.00315 Yesrandom walks
Mean of 10,000 walks 4 1,000,000 1.00083 ?on the digits of π

α2,3 3 1,000,000 0.89275 ?
α2,3 4 1,000,000 0.25901 Yes
α2,3 6 1,000,000 108.02218 No

π 4 1,000,000 0.84366 ?
π 6 1,000,000 0.96458 ?
π 10 1,000,000 0.82167 ?
π 10 1,000,000,000 0.59824 ?√
2 4 1,000,000 0.72260 ?

Champernowne C10 10 1,000,000 59.91143 Yes
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Number of points visited For a 2D lattice

The expected number of distinct points visited by an N-step
random walk on a two-dimensional lattice behaves for large N
like πN/ log(N) (Dvoretzky–Erdős, 1951).

Practical problem: Convergence is slow (O
(
N log logN/(logN)2

)
).

1988 D. Downham and S. Fotopoulos gave better bounds on the
expectation. It lies in:(

π(N +0.84)
1.16π−1− log2+ log(N +2)

,
π(N +1)

1.066π−1− log2+ log(N +1)

)
.

For example, for N = 106 these bounds are (199256.1,203059.5),
while πN/ log(N) = 227396, which overestimates the expectation.
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Catalan’s constant G = 1−1/4+1/9−1/16+ · · ·

Figure: A walk on one million quad-bits of G with height showing frequency
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Paul Erdős (1913-1996) “My brain is open”

(a) Paul Erdős (Banff 1981. I was there) (b) Émile Borel (1871–1956)

Figure: Two of my favourites. Consult MacTutor.
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Number of points visited: Again π looks random

0 2000 4000 6000 8000 10000
120000

140000

160000

180000

200000

220000

240000

260000

(a) (Pseudo)random walks.

0 2000 4000 6000 8000 10000
120000

140000

160000

180000

200000

220000

240000

260000

(b) Walks built by chopping up 10 billion
digits of π.

Figure: Number of points visited by 10,000 million-steps base-4 walks.
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Points visited by various base-4 walks

Number Steps Sites visited
Bounds on the expectation of
sites visited by a random walk
Lower bound Upper bound

Mean of 10,000
1,000,000 202,684 199,256 203,060

random walks
Mean of 10,000 walks

1,000,000 202,385 199,256 203,060
on the digits of π

α2,3 1,000,000 95,817 199,256 203,060
α3,2 1,000,000 195,585 199,256 203,060
π 1,000,000 204,148 199,256 203,060
π 10,000,000 1,933,903 1,738,645 1,767,533
π 100,000,000 16,109,429 15,421,296 15,648,132
π 1,000,000,000 138,107,050 138,552,612 140,380,926
e 1,000,000 176,350 199,256 203,060√
2 1,000,000 200,733 199,256 203,060

log2 1,000,000 214,508 199,256 203,060
Champernowne C4 1,000,000 548,746 199,256 203,060
Rational number Q1 1,000,000 378 199,256 203,060
Rational number Q2 1,000,000 939,322 199,256 203,060
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Normal numbers need not be so “random” ...

Figure: Champernowne C10 = 0.123456789101112 . . . (normal).
Normalized distance to the origin: 15.9 (50,000 steps).
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Normal numbers need not be so “random” ...

Figure: Champernowne C4 = 0.123101112132021 . . . (normal).
Normalized distance to the origin: 18.1 (100,000 steps).
Points visited: 52760. Expectation: (23333, 23857).
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Normal numbers need not be so “random” ...

Figure: Stoneham α2,3 = 0.0022232032 . . .4 (normal base 4).
Normalized distance to the origin: 0.26 (1,000,000 steps).
Points visited: 95817. Expectation: (199256, 203060).
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Normal numbers need not be so “random” ...

Figure: Stoneham α2,3 = 0.0022232032 . . .4 (normal base 4).
Normalized distance to the origin: 0.26 (1,000,000 steps).
Points visited: 95817. Expectation: (199256, 203060).
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α2,3 is 4-normal but not so “random” ANIMATION
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Media File (video/mp4)
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Figure: A pattern in the digits of α2,3 base 4. We show only positions of the
walk after 3

2 (3
n +1), 3

2 (3
n +1)+3n and 3

2 (3
n +1)+2 ·3n steps, n = 0,1, . . . ,11.
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Experimental conjecture Proven 12-12-12 by Coons

Theorem (Base-4 structure of Stoneham α2,3)

Denote by ak the kth digit of α2,3 in its base 4 expansion:
α2,3 = ∑

∞
k=1 ak/4k, with ak ∈{0,1,2,3} for all k. Then, for all n= 0,1,2, . . .

one has:

(i)
3
2 (3

n+1)+3n

∑
k= 3

2 (3
n+1)

eakπ i/2 =

{
−i, n odd
−1, n even ;

(ii) ak = ak+3n = ak+2·3n if k =
3(3n +1)

2
,

3(3n +1)
2

+1, . . . ,
3(3n +1)

2
+3n−1.
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Likewise, α3,5 is 3-normal ... but not very “random” ANIMATION
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Box-dimension: Tends to ‘2’ for a planar random walk SKIP

Box-dimension = lim
side→0

log(# boxes)
log(1/side)

Norway is “frillier” — Hitchhiker’s Guide to the Galaxy

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds &
ferns not buildings & cars). Curves have dimension 1, squares dimension 2
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Box-dimension: Tends to ‘2’ for a planar random walk SKIP
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Approximate fractal dimension of Champernowne C4 in base 4: 1.09
 Steps of the walk: 1,000,000

Data
Least squares line

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds &
ferns not buildings & cars). Curves have dimension 1, squares dimension 2
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Box-dimension: Tends to ‘2’ for a planar random walk SKIP
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Approximate fractal dimension of α2,3 in base 6: 1.057
 Steps of the walk: 1,000,000

Data
Least squares line

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds &
ferns not buildings & cars). Curves have dimension 1, squares dimension 2
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Box-dimension: Tends to ‘2’ for a planar random walk SKIP
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Approximate fractal dimension of Pi in base 4: 1.842
 Steps of the walk: 1,000,000,000

Data
Least squares line

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds &
ferns not buildings & cars). Curves have dimension 1, squares dimension 2
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Fractals everywhere From Mars SKIP
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Fractals everywhere From Mars SKIP

The picture fractalized by the Barnsley’s
http://frangostudio.com/frangocamera.html
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Fractals everywhere From Space
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Fractals everywhere 1 7→ 3 or 1 7→ 8 or ...
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Fractals everywhere 1 7→ 3 or 1 7→ 8 or ...

Pascal triangle modulo two
[1] [1,1] [1,2,1] [1,3,3,1,] [1,4,6,4,1] [1,510,10,5,1] ...
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Fractals everywhere 1 7→ 3 or 1 7→ 8 or ...

Steps to construction of a Sierpinski cube
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Fractals everywhere The Sierpinski Triangle

1 7→ 3 7→ 9

http:

//oldweb.cecm.sfu.ca/cgi-bin/organics/pascalform
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Three dimensional walks: Using base six — soon on 3D screen

Figure: Matt Skerritt’s 3D walk on π (base 6), showing one million steps. But
3D random walks are not recurrent.
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Three dimensional walks: Using base six — soon on 3D screen

Figure: Matt Skerritt’s 3D walk on π (base 6), showing one million steps. But
3D random walks are not recurrent.

“A drunken man will find his way home, a drunken bird will get
lost forever.” (Kakutani)
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Three dimensional printing: 3D everywhere

Figure: The future is here ...

www.digitaltrends.com/cool-tech/the-worlds-first-plane-created-entirely-by-3d-printing-takes-flight/

www.shapeways.com/shops/3Dfractals
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Chaos games: Move half-way to a (random) corner

Figure: Coloured by frequency — leads to random fractals.
Row 1: Champernowne C3, α3,5, random, α2,3. Row 2: Champernowne C4,
π, random, α2,3. Row 3: Champernowne C6, α3,2, random, α2,3.
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Automatic numbers: Thue–Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but
fascinating rules...giving structured/boring walks:

Figure: Paper folding. The sequence of left and right folds along a strip of
paper that is folded repeatedly in half in the same direction. Unfold and read
‘right’ as ‘1’ and ‘left’ as ‘0’: 1 0 1 1 0 0 1 1 1 0 0 1 0 0
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Automatic numbers: Thue–Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but
fascinating rules...giving structured/boring walks:

Figure: Paper folding. The sequence of left and right folds along a strip of
paper that is folded repeatedly in half in the same direction. Unfold and read
‘right’ as ‘1’ and ‘left’ as ‘0’: 1 0 1 1 0 0 1 1 1 0 0 1 0 0

Thue–Morse constant (transcendental; 2-automatic, hence nonnormal):

TM2 =
∞

∑
n=1

1
2t(n)

where t(0) = 0, while t(2n) = t(n) and t(2n+1) = 1− t(n)

0.01101001100101101001011001101001 . . .
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Automatic numbers: Thue–Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but
fascinating rules...giving structured/boring walks:

(a) 1,000 bits of Thue–Morse
sequence.

(b) 10 million bits of paper-
folding sequence.

Figure: Walks on two automatic and so nonnormal numbers.
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Automatic numbers: Turtle plots look great!

(a) Ten million digits of the paper-
folding sequence, rotating 60◦.

(b) One million digits of the paper-
folding sequence, rotating 120◦ (a
dragon curve).

(c) 100,000 digits of the Thue–
Morse sequence, rotating 60◦ (a
Koch snowflake).

(d) One million digits of π, rotating
60◦.

Figure: Turtle plots on various constants with different rotating angles in base
2—where ‘0’ yields forward motion and ‘1’ rotation by a fixed angle.
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Genomes as walks: We are all base 4 numbers (ACGT/U)

The X Chromosome (34K) and Chromosome One (10K).

r Chromosomes look less like π and more like concatenation
numbers?
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DNA for Storage: We are all base 4 numbers (ACGT/U)

Figure: The potential for DNA storage (L) and the quadruple helix (R)
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The end with some fractal dessert

Thank you
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