Seeing Things by Walking on Real Numbers

Jonathan Borwein FRSC FAAS FAA FBAS
 (Joint work with Francisco Aragón, David Bailey and Peter Borwein)

 The university ofNEWCASTLE australia

School of Mathematical \& Physical Sciences
The University of Newcastle, Australia

http://carma.newcastle.edu.au/meetings/evims/

57th AustMS Meeting
 Number Theory Session
 Sydney, October 2013

Revised 16-09-2013

(1)
Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
(2) Randomness
- Randomness is slippery
(3) Normality
- Normality of Pi

4. Random walks

- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited

6 Other tools \& representations

- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

Contents

(1) Introduction

- The researchers
- Some early conclusions
- The CARMA walks pagesRandomness
- Randomness is slippery
(3) Normality
- Normality of PiRandom walks
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(5) Other tools \& representations
- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

My collaborators

sporasiape and reinvent maths

This rendering of the first 100 billion digits of pi proves they're random - unless you see a pattern

This image is a representation of the first 100 billion digits of pi. "I was interested to see what I'd get by turning a number into a picture," says mathematician Jon Borwein, from the University of Newcastle in Australia, who collaborated with programmer Fran Aragon. "We wanted to prove, with the image, that the digits of pi are really random," explains Aragon. "If they weren't, the picture would have a structure or a specifically repeating shape, like a circle, or some broccoli."

This image is equivalent to 10,000 photos from a ten-megapixel camera, and it can be explored in Gigapan. The technique doesn't only confirm established theories -it provides insights: during the drawing of a supposedly random sequence called the "Stoneham number", Aragon noticed a regularly occurring shape within the figure. "We wereable to show that the Stoneham number is not random in base 6 ," he explains. "We would never have known this without visualising it." MV carma.newcastle.edu. au/piwalk.shtml
(D) Tap to watch the first 100 Wi-F or 3 G required

Contents

(1) Introduction

- The researchers
- Some early conclusions
- The CARMA walks pagesRandomness
- Randomness is slipperyNormality
- Normality of PiRandom walks
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(5) Other tools \& representations
- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

Some early conclusions:

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Some early conclusions:

Key ideas: randomness, normality of numbers, planar walks, and fractals
Maths can be done experimentally (it is fun)

- using computer algebra, numerical computation and graphics: SNaG

- computations, tables and pictures are experimental data
- but you can not stop thinking

How not to experiment

Some early conclusions:

Key ideas: randomness, normality of numbers, planar walks, and fractals
Maths can be done experimentally (it is fun)

- using computer algebra, numerical computation and graphics: SNaG

- computations, tables and pictures are experimental data
- but you can not stop thinking

Making mistakes is fine

- as long as you learn from them
- keep your eyes open (conquer fear)

How not to experiment

Some early conclusions:

Key ideas: randomness, normality of numbers, planar walks, and fractals
Maths can be done experimentally (it is fun)

- using computer algebra, numerical computation and graphics: SNaG

How not to experiment

- computations, tables and pictures are experimental data
- but you can not stop thinking

Making mistakes is fine

- as long as you learn from them
- keep your eyes open (conquer fear)

You can not use what you do not know

- and what you know you can usually use
- you do not need to know much before you start research (as we shall see)

Some early conclusions:

Key ideas: randomness, normality of numbers, planar walks, and fractals
Maths can be done experimentally (it is fun)

- using computer algebra, numerical computation and graphics: SNaG

- computations, tables and pictures are experimental data
- but you can not stop thinking

Making mistakes is fine

- as long as you learn from them
- keep your eyes open (conquer fear)

You can not use what you do not know

- and what you know you can usually use
- you do not need to know much before you start research (as we shall see)

Contents

(1) Introduction

- The researchers
- Some early conclusions
- The CARMA walks pagesRandomness
- Randomness is slipperyNormality
- Normality of PiRandom walks
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(5) Other tools \& representations
- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

Walking on Real Numbers

A Multiple Media Mathematics Project

MOTNATED by the desire to visualize large mathematical data sets，especially in number theory．we offer various tools for re： floating point numbers as planar（or three dimensional）walks and for quantitatively measuring their＂randomness＂．This is ou homepage that discusses and showcases our research．Come back regularly for updates．

RESEARCH TEAM：Francisco 1．Aragon Artacho，David H．Bailey，Jonathan M．Borwein，Peter B．Borwein with the assistance of Ja Fountain and Matt Skerritt．

CONTACT：EranAragon

A TA SLIGHTLY EQUATIONS USE APPROX TROUING （FOUND USiNG A MU MAF CTATICA，AND R AU UNTS ARES SI MKS	BLE OF WRO AND IDENTI ル FOR IMATIO D／OR TEACHE OF TRHL－AND sort Munffo＇s UNESS OTERW	NG IES S RS ERROR 2e5－701．） E Noter．
RELATION：		$\begin{aligned} & \text { ACCuRARE } \\ & \text { D WUITIN: } \end{aligned}$
ONE LGMTER（ ${ }^{\text {a }}$	998	$\begin{aligned} & \text { ak epart } \\ & \text { in } 40 \end{aligned}$
EFRTH SURACE（m）	69^{8}	$\begin{aligned} & \text { OIEPART } \\ & \mathbb{N} 130 \end{aligned}$
	919	$\begin{aligned} & \text { OEPPR } \\ & \mathrm{N} 70 \end{aligned}$
SECONDS INA YEAR	75^{4}	$\begin{aligned} & \text { OEPPRer } \\ & \text { N } 400 \end{aligned}$
SECONDS NA YEAR （REVT NEINOD）	525，600＊60	$\begin{aligned} & \text { OLEPNeT } \\ & \text { NHOD } \end{aligned}$
AGE OFTIE UNNERSE（scomes）	15^{15}	ak parf
PAAKK＇S CONSTANT	$\frac{1}{300^{\pi^{e}}}$	$\begin{aligned} & \text { OEfART } \\ & \text { N } 110 \end{aligned}$
FINE STRUCTURE CONSTANT	$\frac{1}{140}$	
FUNDPFENTRL OHPGE	$\frac{3}{14 \pi^{\pi^{\text {T }}}}$	$\begin{aligned} & \text { OEFPAR } \\ & \text { N } 500 \end{aligned}$
WHITE HOUSE 5WITCHBOARD		
JENNYS CONSTANT	$\left(7^{\frac{9}{1-1}}\right.$	

A TRBLI OF SLIGHTY WRONG Eaxilios fin donites APPROXIIVATIONS NG TROUNG TEAGGERS 		
RLamion：		
aciantion	m ${ }^{8}$	
вян smemen	$4{ }^{4}$	${ }^{\text {a }}$
cosar munem	9	\％ener
Stumbs matier	万	
Semak maxime	55500．50	
$\begin{gathered} \text { Ascorre } \\ \text { whesc frome } \end{gathered}$	15^{*}	
	$\frac{1}{30^{\pi^{*}}}$	
pacsincter	$\frac{1}{140}$	
FWOCHENTL Otace	$\frac{3}{4 \pi^{2}}$	
	$e^{\frac{1}{\sqrt[51+5]{3}}}$	
Jenvis	$\left(7^{*+9}-9\right)$	
Lemp raverwor bianc Wiskno Nuw smane 14 ｜ 		
	$\frac{S_{4}}{\text { c }}$	
Lentrex（ma）	2^{4228}	primem
$5 \sin (8) \cdot \frac{\pi}{2}=\frac{8}{2}$		
$\sqrt{5}-\frac{2 e}{\pi}$		Okiom
7 thaxame	$\frac{1}{17}$	（06）
futwaterer	$\frac{5}{7}$	（060x
$\sqrt{5-\frac{2}{e} \cdot \frac{3}{2}}$		
Angurcs mamex	$67^{11^{5}}$	
Glentilioni． consent G	$\frac{1}{e^{(m+1)^{\text {ma }}}}$	${ }^{9080000}$
R presinsam）	（en）$\sqrt{5}$	
	$6 \pi^{*}$	¢06000
UTEFS A AGLON	$3+\frac{\pi}{4}$	
9	6－htr ${ }^{\text {a }}$	
Mus mice：	$\frac{e^{t}-10}{\phi}$	$\begin{gathered} \text { Ormich } \\ 5000000 \end{gathered}$
	$\frac{1}{100}$	［哃］
MENERKRACNS	$5^{\text {c }}$ \％	［號）
$\sqrt{2}=\frac{3}{5}+\frac{\pi}{7 x}$ $\cos \frac{\pi}{7} \cdot \cos \frac{3}{7} \cdot \cos \frac{5}{4}=\frac{1}{2}$ 1		
$7=\frac{2}{3}+\frac{1}{5} \sqrt{5}=\frac{5}{2}$		

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages

(2) Randomness

- Randomness is slippery
(3) Normality
- Normality of PiRandom walks
- Number walks base four
- Walks on numbers
- The Stoneham numbers

Features of random walks

- Expected distance to origin
- Number of points visited
- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

We shall explore things like:

Remember: π is area of a circle of radius one (and perimeter is 2π).

We shall explore things like:

How random is Pi ?

Remember: π is area of a circle of radius one (and perimeter is 2π). First true calculation of π was due to Archimedes of Syracuse (287-212 BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons

We shall explore things like:

How random is Pi ?

Remember: π is area of a circle of radius one (and perimeter is 2π). First true calculation of π was due to Archimedes of Syracuse (287-212 BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons

$$
\mathbf{6} \mapsto \mathbf{1 2} \mapsto 24 \mapsto 48 \mapsto \mathbf{9 6}
$$

We shall explore things like:

How random is Pi ?

Remember: π is area of a circle of radius one (and perimeter is 2π). First true calculation of π was due to Archimedes of Syracuse (287-212 BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons

nate

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{aligned}
\pi & =3.141592653589793238462643383279502884197169399375 \ldots \\
e & =2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2} & =1.414213562373095048801688724209698078569671875376 \ldots
\end{aligned}
$$

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{aligned}
\pi & =3.141592653589793238462643383279502884197169399375 \ldots \\
e & =2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2} & =1.414213562373095048801688724209698078569671875376 \ldots
\end{aligned}
$$

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{gathered}
\pi=3.141592653589793238462643383279502884197169399375 \ldots \\
e=2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2}=1.414213562373095048801688724209698078569671875376 \ldots
\end{gathered}
$$

Are they really?

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{gathered}
\pi=3.141592653589793238462643383279502884197169399375 \ldots \\
e=2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2}=1.414213562373095048801688724209698078569671875376 \ldots
\end{gathered}
$$

Are they really?

- 1949 ENIAC (Electronic Numerical Integrator and Calculator) computed of π to 2,037 decimals (in 70 hours)—proposed by polymath John von Neumann (1903-1957) to shed light on distribution of π (and of e).

Two continued fractions

Change representations often

Gauss map. Remove the integer, invert the fraction and repeat: for 3.1415926 and 2.7182818 to get the fractions below.

Two continued fractions

Change representations often

Gauss map. Remove the integer, invert the fraction and repeat: for 3.1415926 and 2.7182818 to get the fractions below.

Two continued fractions

Gauss map. Remove the integer, invert the fraction and repeat: for 3.1415926 and 2.7182818 to get the fractions below.

Leonhard Euler (17071783) named e and π.
"Lisez Euler, lisez Euler, c'est notre maître à tous." Simon Laplace (1749-1827)

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Table: Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

Table: Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
$-e$ has a fine continued fraction

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
- e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
- e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
$-e$ has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π
- There are equally many zeroes and ones in the binary expansion of π

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
$-e$ has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π
- There are equally many zeroes and ones in the binary expansion of π
- Or pretty much anything else...

What is "random"?

A hard question

What is "random"?

A hard question

TOUR OF ACCOUNTING		ARE
OVER HERE WE HAVE OUR RANDOM NUMBER GENERATOR.	NINE NINE NINE NINE	

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)?
- Incompressible ('zip' does not help)?

What is "random"?

A hard question

TOUR OF ACCOUNTING
OVER HERE
WE HAVE OUR
RANDOM NUMBER
GENERATOR.
Bns
B

It might be:

- Unpredictable (fair dice or coin-flips)?

Conjecture (Borel) All irrational algebraic numbers are b-normal

- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)?
- Incompressible ('zip' does not help)?

What is "random"?

A hard question

TOUR OF ACCOUNTING
OVER HERE
WE HAVE OUR
RANDOM NUMBER
GENERATOR.
Bas
ST

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)?
- Incompressible ('zip' does not help)?

Conjecture (Borel) All irrational algebraic numbers are b-normal

Best Theorem [BBCP, 04] (Feeble but hard) Asymptotically all degree d algebraics have at least $n^{1 / d}$ ones in binary (should be $n / 2$)

Randomness in Pi?

http://mkweb.bcgsc.ca/pi/art/

Normality

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

Normality

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- Given an integer $b \geq 2$, almost all real numbers, with probability one, are b-normal (Borel).

Normality

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- Given an integer $b \geq 2$, almost all real numbers, with probability one, are b-normal (Borel).
- Indeed, almost all real numbers are b-normal simultaneously for all positive integer bases ("absolute normality").

Normality

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- Given an integer $b \geq 2$, almost all real numbers, with probability one, are b-normal (Borel).
- Indeed, almost all real numbers are b-normal simultaneously for all positive integer bases ("absolute normality").
- Unfortunately, it has been very difficult to prove normality for any number in a given base b, much less all bases simultaneously.

Normal numbers

concatenation numbers

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- The first constant proven 10-normal (and already proven transcendental by Mahler) was:

$$
C_{10}:=0.123456789101112131415161718 \ldots
$$

- 1933 by David Champernowne (1912-2000) as a student
- Champernowne constant (2012 proven not strongly normal)

Normal numbers

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- The first constant proven 10-normal (and already proven transcendental by Mahler) was:

$$
C_{10}:=0.123456789101112131415161718 \ldots
$$

- 1933 by David Champernowne (1912-2000) as a student
- Champernowne constant (2012 proven not strongly normal)
- 1946 Arthur Copeland and Paul Erdős proved the same holds when one concatenates the sequence of primes:

$$
C E(10):=0.23571113171923293137414347 \ldots
$$

is 10-normal (concatenation works in all bases).

- Copeland-Erdős constant

Normal numbers

concatenation numbers

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- The first constant proven 10-normal (and already proven transcendental by Mahler) was:

$$
C_{10}:=0.123456789101112131415161718 \ldots
$$

- 1933 by David Champernowne (1912-2000) as a student
- Champernowne constant (2012 proven not strongly normal)
- 1946 Arthur Copeland and Paul Erdős proved the same holds when one concatenates the sequence of primes:

$$
C E(10):=0.23571113171923293137414347 \ldots
$$

is 10-normal (concatenation works in all bases).

- Copeland-Erdős constant
- Normality proofs are not known for $\pi, e, \log 2, \sqrt{2}$ etc.

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pagesRandomness
- Randomness is slippery
(3) Normality
- Normality of Pi
(4) Random walks
- Number walks base four
- Walks on numbers
- The Stoneham numbers

Features of random walks

- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

Is $\pi 10$-normal?

String	Occurrences	String	Occurrences	String	Occurrences
0	$99,993,942$	00	$10,004,524$	000	$1,000,897$
1	$99,997,334$	01	$9,998,250$	001	$1,00,758$
2	$100,002,410$	02	$9,999,222$	002	$1,000,447$
3	$99,986,911$	03	$10,000,290$	003	$1,001,566$
4	$100,011,958$	04	$10,000,613$	004	$1,000,741$
5	$99,998,885$	05	$10,002,048$	005	$1,002,881$
6	$100,010,387$	06	$9,995,451$	006	999,294
7	$99,996,061$	07	$9,993,703$	007	998,919
8	$100,001,839$	08	$10,000,565$	008	999,962
9	$100,000,273$	09	$9,999,276$	009	999,059
		10	$9,997,289$	010	998,884
		11	$9,997,964$	011	$1,001,188$
		\vdots	\vdots	\vdots	\vdots
		99	$10,003,709$	099	999,201
				\vdots	\vdots
				999	$1,000,905$
TOTAL	$1,000,000,000$	TOTAL	$1,000,000,000$	TOTAL	$1,000,000,000$

Table : Counts for the first billion digits of π.

Is π 16-normal

0	62499881108
1	62500212206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	$\underline{62500216752}$
9	62500120671
A	62500266095
B	62499955595
C	62500188610
D	62499613666
E	62499875079
F	62499937801
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

\hookleftarrow Counts of first trillion hex digits

Is π 16-normal

0	62499881108
1	62500212206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	62500216752
9	62500120671
A	62500266095
B	62499955595
C	62500188610
D	62499613666
E	62499875079
F	62499937801
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

\hookleftarrow Counts of first trillion hex digits

- 2011 Ten trillion hex digits computed by Yee and Kondo - and seem very normal
\hookleftarrow Counts of first trillion hex digits
- 2011 Ten trillion hex digits computed by Yee and Kondo - and seem very normal
- 2012 Ed Karrel found 25 hex digits of π starting after the 10^{15} position computed using BBP on GPUs (graphics cards) at NVIDIA (too hard for Blue Gene)

Is $\pi 16$-normal

0	62499881108
1	62500212206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	$\underline{62500216752}$
9	62500120671
A	62500266095
B	62499955595
C	62500188610
D	62499613666
E	62499875079
F	62499937801
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

\hookleftarrow Counts of first trillion hex digits

- 2011 Ten trillion hex digits computed by Yee and Kondo - and seem very normal
- 2012 Ed Karrel found 25 hex digits of π starting after the 10^{15} position computed using BBP on GPUs (graphics cards) at NVIDIA (too hard for Blue Gene)
- They are 353CB3F7F0C9ACCFA9AA215F2

See www.karrels.org/pi/index.html

Stefan Banach (1892-1945)

Another Nazi casuality

A mathematician is a person who can find analogies between theorems; a better mathematician is one who can see analogies between proofs and the best mathematician can notice analogies between theories. ${ }^{1}$

[^0]
Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages

Randomness

- Randomness is slipperyNormality
- Normality of Pi

4 Random walks

- Number walks base four
- Walks on numbers
- The Stoneham numbers
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
1=\uparrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
1=\uparrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$
$2=\leftarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$
$2=\leftarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$2=\leftarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
0=\rightarrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

11222330

What is a random walk (base 4)?

Pick a random number in $\{0,1,2,3\}$ and move $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

Figure : A million step base-4 pseudorandom walk. We use the spectrum to show when we visited each point (ROYGBIV and R).

Random walks look similarish

Figure : Eight different base-4 (pseudo)random ${ }^{2}$ walks of one million steps.

[^1]
Base-b random walks:

Figure : Directions for base-3 and base-7 random walks.

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pagesRandomness
- Randomness is slipperyNormality
- Normality of Pi

4 Random walks

- Number walks base four
- Walks on numbers
- The Stoneham numbers (5) Features of random walks
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

Two rational numbers

The base-4 digit expansion of $Q 1$ and $Q 2$:

Q1=
0.221221012232121200122101223121001222100011232123121000122210001222 10001222100012221000012221000122201103010122010012010311033333333333 33333333333333330111111111111111111111111111100100000000300300320032 00320030223000322203000322230003022220300032223000322230003222300032 22320000232223000322230032221330023321233023213232112112121222323233 33303000001000323003230032203032030110333011103301103101111011332333 3232322321221211211121122322222122...

Q2 $=$
0.221221012232121200122101223121001222100011232123121000122210001222 10001222100012221000012221000122201103010122010012010311033333333333 33333333333333330111111111111111111111111111100100000000300300320032 00320030223000322203000322230003022220300032223000322230003222300032 22320000232223000322230032221330023321233023213232112112121222323233 33303000001000323003230032203032030110333011103301103101111011000000 000000 ...

Two rational numbers

Figure : Self-referent walks on the rational numbers $Q 1$ (top) and $Q 2$ (bottom).

Two more rationals

The following relatively small rational numbers [G. Marsaglia, 2010]

$$
Q 3=\frac{3624360069}{7000000001} \text { and } Q 4=\frac{123456789012}{1000000000061},
$$

have base-10 periods with huge length of 1,750,000,000 digits and $1,000,000,000,060$ digits, respectively.

Two more rationals

The following relatively small rational numbers [G. Marsaglia, 2010]

$$
Q 3=\frac{3624360069}{7000000001} \text { and } Q 4=\frac{123456789012}{1000000000061},
$$

have base-10 periods with huge length of 1,750,000,000 digits and $1,000,000,000,060$ digits, respectively.

Figure : Walks on the first million base-10 digits of the rationals $Q 3$ and $Q 4$.

Walks on the digits of numbers

Figure : A walk on the first 10 million base- 4 digits of π.

Walks on the digits of numbers

Figure : 100 million base- 4 digits of π coloured by number of returns to points.

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pagesRandomness
- Randomness is slipperyNormality
- Normality of Pi

4 Random walks

- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{c^{n}}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{n}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

Theorem (Normality of Stoneham constants, Bailey-Crandall '02)
For every coprime pair of integers $b \geq 2$ and $c \geq 2$, the constant $\alpha_{b, c}$ is b-normal.

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{n}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

Theorem (Normality of Stoneham constants, Bailey-Crandall '02)
For every coprime pair of integers $b \geq 2$ and $c \geq 2$, the constant $\alpha_{b, c}$ is b-normal.

Theorem (Nonnormality of Stoneham constants, Bailey-Borwein '12)
Given coprime $b \geq 2$ and $c \geq 2$, such that $c<b^{c-1}$, the constant $\alpha_{b, c}$ is $b c$-nonnormal.

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{n}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

Theorem (Normality of Stoneham constants, Bailey-Crandall '02)
For every coprime pair of integers $b \geq 2$ and $c \geq 2$, the constant $\alpha_{b, c}$ is b-normal.

Theorem (Nonnormality of Stoneham constants, Bailey-Borwein '12)

Given coprime $b \geq 2$ and $c \geq 2$, such that $c<b^{c-1}$, the constant $\alpha_{b, c}$ is $b c$-nonnormal.

- Since $3<2^{3-1}=4, \alpha_{2,3}$ is 2-normal and 6-nonnormal!

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{n}}
$$

Figure : $\alpha_{2,3}$ is 2-normal (top) but 6-nonnormal (bottom). Is seeing believing?

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{x}}
$$

Figure : Is $\alpha_{2,3} 3$-normal or not?

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages

Randomness

- Randomness is slipperyNormality
- Normality of PiRandom walks
- Number walks base four
- Walks on numbers
- The Stoneham numbers

5 Features of random walks

- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

The expected distance to the origin

Theorem

The expected distance d_{N} to the origin of a base-b random walk of N steps behaves like to $\sqrt{\pi N} / 2$.

The expected distance to the origin

Theorem

The expected distance d_{N} to the origin of a base-b random walk of N steps behaves like to $\sqrt{\pi N} / 2$.

Number	Base	Steps	Average normalized dist. to the origin: $\frac{1}{\text { Steps }} \sum_{N=2}^{\text {Steps }} \frac{\text { dist }}{N}$	Normal $\frac{\sqrt{\pi N}}{2}$

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pagesRandomness
- Randomness is slipperyNormality
- Normality of PiRandom walks
- Number walks base four
- Walks on numbers
- The Stoneham numbers

5 Features of random walks

- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

Number of points visited

- The expected number of distinct points visited by an N-step random walk on a two-dimensional lattice behaves for large N like $\pi N / \log (N)$ (Dvoretzky-Erdős, 1951).

Number of points visited

- The expected number of distinct points visited by an N-step random walk on a two-dimensional lattice behaves for large N like $\pi N / \log (N)$ (Dvoretzky-Erdős, 1951).
- Practical problem: Convergence is slow $\left(O\left(N \log \log N /(\log N)^{2}\right)\right)$.

Number of points visited

- The expected number of distinct points visited by an N-step random walk on a two-dimensional lattice behaves for large N like $\pi N / \log (N)$ (Dvoretzky-Erdős, 1951).
- Practical problem: Convergence is slow $\left(O\left(N \log \log N /(\log N)^{2}\right)\right)$.
- 1988 D. Downham and S. Fotopoulos gave better bounds on the expectation. It lies in:

$$
\left(\frac{\pi(N+0.84)}{1.16 \pi-1-\log 2+\log (N+2)}, \frac{\pi(N+1)}{1.066 \pi-1-\log 2+\log (N+1)}\right) .
$$

Number of points visited

- The expected number of distinct points visited by an N-step random walk on a two-dimensional lattice behaves for large N like $\pi N / \log (N)$ (Dvoretzky-Erdős, 1951).
- Practical problem: Convergence is slow $\left(O\left(N \log \log N /(\log N)^{2}\right)\right)$.
- 1988 D. Downham and S. Fotopoulos gave better bounds on the expectation. It lies in:

$$
\left(\frac{\pi(N+0.84)}{1.16 \pi-1-\log 2+\log (N+2)}, \frac{\pi(N+1)}{1.066 \pi-1-\log 2+\log (N+1)}\right) .
$$

- For example, for $N=10^{6}$ these bounds are (199256.1,203059.5), while $\pi N / \log (N)=227396$, which overestimates the expectation.

Catalan's constant

Figure : A walk on one million quad-bits of G with height showing frequency

Figure : http: //wwnw ams. org/notices/201307/

(a) Paul Erdős (Banff 1981. I was there)

(b) Émile Borel (1871-1956)

Figure : Two of my favourites. Consult MacTutor.

Number of points visited:

Again π looks random

(a) (Pseudo)random walks.

(b) Walks built by chopping up 10 billion digits of π.

Figure : Number of points visited by 10,000 million-steps base- 4 walks.

Points visited by various base-4 walks

Number	Steps	Sites visited	Bounds on the expectation of sites visited by a random walk	
			Lower bound	Upper bound
Mean of 10,000 random walks	1,000,000	202,684	199,256	203,060
Mean of 10,000 walks on the digits of π	1,000,000	202,385	199,256	203,060
$\alpha_{2,3}$	1,000,000	95,817	199,256	203,060
$\alpha_{3,2}$	1,000,000	195,585	199,256	203,060
π	1,000,000	204,148	199,256	203,060
π	10,000,000	1,933,903	1,738,645	1,767,533
π	100,000,000	16,109,429	15,421,296	15,648,132
π	1,000,000,000	138,107,050	138,552,612	140,380,926
e	1,000,000	176,350	199,256	203,060
$\sqrt{2}$	1,000,000	200,733	199,256	203,060
$\log 2$	1,000,000	214,508	199,256	203,060
Champernowne C_{4}	1,000,000	548,746	199,256	203,060
Rational number Q_{1}	1,000,000	378	199,256	203,060
Rational number Q_{2}	1,000,000	939,322	199,256	203,060

Normal numbers need not be so "random" ...

Figure : Champernowne $C_{10}=0.123456789101112 \ldots$ (normal). Normalized distance to the origin: 15.9 (50,000 steps).

Normal numbers need not be so "random" ...

Figure : Champernowne $C_{4}=0.123101112132021 \ldots$ (normal). Normalized distance to the origin: 18.1 (100,000 steps). Points visited: 52760. Expectation: (23333, 23857).

Normal numbers need not be so "random" ...

Figure : Stoneham $\alpha_{2,3}=0.0022232032 \ldots 4$ (normal base 4).
Normalized distance to the origin: 0.26 ($1,000,000$ steps).
Points visited: 95817. Expectation: (199256, 203060).

Normal numbers need not be so "random" ...

Figure : Stoneham $\alpha_{2,3}=0.0022232032 \ldots 4$ (normal base 4).
Normalized distance to the origin: 0.26 (1,000,000 steps).
Points visited: 95817. Expectation: $(199256,203060)$.

$\alpha_{2,3}$ is 4-normal but not so "random"

Figure : A pattern in the digits of $\alpha_{2,3}$ base 4 . We show only positions of the walk after $\frac{3}{2}\left(3^{n}+1\right), \frac{3}{2}\left(3^{n}+1\right)+3^{n}$ and $\frac{3}{2}\left(3^{n}+1\right)+2 \cdot 3^{n}$ steps, $n=0,1, \ldots, 11$.

Experimental conjecture

Proven 12-12-12 by Coons

Theorem (Base-4 structure of Stoneham $\alpha_{2,3}$)

Denote by a_{k} the $k^{\text {th }}$ digit of $\alpha_{2,3}$ in its base 4 expansion: $\alpha_{2,3}=\sum_{k=1}^{\infty} a_{k} / 4^{k}$, with $a_{k} \in\{0,1,2,3\}$ for all k. Then, for all $n=0,1,2, \ldots$ one has:
(i) $\sum_{k=\frac{3}{2}\left(3^{n}+1\right)}^{\frac{3}{2}\left(3^{n}+1\right)+3^{n}} e^{a_{k} \pi i / 2}=\left\{\begin{array}{lc}-i, & \mathrm{n} \text { odd } \\ -1, & \mathrm{n} \text { even }\end{array}\right.$;
(ii) $a_{k}=a_{k+3^{n}}=a_{k+2 \cdot 3^{n}}$ if $k=\frac{3\left(3^{n}+1\right)}{2}, \frac{3\left(3^{n}+1\right)}{2}+1, \ldots, \frac{3\left(3^{n}+1\right)}{2}+3^{n}-1$.

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages

Randomness

- Randomness is slipperyNormality
- Normality of PiRandom walks
- Number walks base four
- Walks on numbers
- The Stoneham numbers

Features of random walks

- Expected distance to origin
- Number of points visited

6 Other tools \& representations

- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

Box-dimension:

Tends to '2' for a planar random walk

$$
\text { Box-dimension }=\lim _{\text {side } \rightarrow 0} \frac{\log (\# \text { boxes })}{\log (1 / \text { side })}
$$

Norway is "frillier" - Hitchhiker's Guide to the Galaxy

Box-dimension:

Tends to '2' for a planar random walk

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds \& ferns not buildings \& cars). Curves have dimension 1 , squares dimension 2

Box-dimension:

Tends to '2' for a planar random walk

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds \& ferns not buildings \& cars). Curves have dimension 1 , squares dimension 2

Box-dimension:

Tends to '2' for a planar random walk

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds \& ferns not buildings \& cars). Curves have dimension 1 , squares dimension 2

Contents

(1)Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages

Randomness

- Randomness is slipperyNormality
- Normality of PiRandom walks
- Number walks base four
- Walks on numbers
- The Stoneham numbers

Features of random walks

- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

Three dimensional walks:

Using base six - soon on 3D screen

Figure : Matt Skerritt's 3D walk on π (base 6), showing one million steps. But 3D random walks are not recurrent.

Three dimensional walks:

Using base six - soon on 3D screen

Figure : Matt Skerritt's 3D walk on π (base 6), showing one million steps. But 3D random walks are not recurrent.
"A drunken man will find his way home, a drunken bird will get lost forever." (Kakutani)

Three dimensional printing:

Figure : The future is here ...
www.digitaltrends.com/cool-tech/the-worlds-first-plane-created-entirely-by-3d-printing-takes-flight/
www.shapeways.com/shops/3Dfractals

Contents

(1)Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages

Randomness

- Randomness is slipperyNormality
- Normality of PiRandom walks
- Number walks base four
- Walks on numbers
- The Stoneham numbers

Features of random walks

- Expected distance to origin
- Number of points visited

6 Other tools \& representations

- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

Chaos games:

Figure : Coloured by frequency - leads to random fractals. Row 1: Champernowne $C_{3}, \alpha_{3,5}$, random, $\alpha_{2,3}$. Row 2: Champernowne C_{4}, π, random, $\alpha_{2,3}$. Row 3: Champernowne $C_{6}, \alpha_{3,2}$, random, $\alpha_{2,3}$.

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages

Randomness

- Randomness is slipperyNormality
- Normality of PiRandom walks
- Number walks base four
- Walks on numbers
- The Stoneham numbers

Features of random walks

- Expected distance to origin
- Number of points visited

6 Other tools \& representations

- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

Automatic numbers: Thue-Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but fascinating rules...giving structured/boring walks:

Figure : Paper folding. The sequence of left and right folds along a strip of paper that is folded repeatedly in half in the same direction. Unfold and read 'right' as ' 1 ' and 'left' as ' 0 ': 10110011100100

Automatic numbers: Thue-Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but fascinating rules...giving structured/boring walks:

Figure : Paper folding. The sequence of left and right folds along a strip of paper that is folded repeatedly in half in the same direction. Unfold and read 'right' as ' 1 ' and 'left' as '0': 10110011100100

Thue-Morse constant (transcendental; 2-automatic, hence nonnormal):

$$
\begin{gathered}
T M_{2}=\sum_{n=1}^{\infty} \frac{1}{2^{t(n)}} \text { where } t(0)=0, \text { while } t(2 n)=t(n) \text { and } t(2 n+1)=1-t(n) \\
0.01101001100101101001011001101001 \ldots
\end{gathered}
$$

Automatic numbers:

Thue-Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but fascinating rules...giving structured/boring walks:

Figure : Walks on two automatic and so nonnormal numbers.

Automatic numbers:

Turtle plots look great!

(a) Ten million digits of the paperfolding sequence, rotating 60°.

(c) 100,000 digits of the ThueMorse sequence, rotating 60° (a Koch snowflake).
(b) One million digits of the paperfolding sequence, rotating 120° (a dragon curve).

(d) One million digits of π, rotating 60°.

Figure : Turtle plots on various constants with different rotating angles in base 2 -where ' 0 ' yields forward motion and ' 1 ' rotation by a fixed angle.

Contents

(1)Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages

Randomness

- Randomness is slipperyNormality
- Normality of PiRandom walks
- Number walks base four
- Walks on numbers
- The Stoneham numbers

Features of random walks

- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

Genomes as walks:

Chromosom	
c	$=[1,0]$
g	$=[0,1]$
t	$=[-1,0]$
a	$=[0,-1]$

Chromosome 1
$c=[1,0]$
$g=[0,1]$
$t=[-1,0]$
$a=[0,-1]$

Genomes as walks:

... we are all base 4 numbers (ACGT/U)

The X Chromosome (34K) and Chromosome One (10K).

Genomes as walks:

The X Chromosome (34K) and Chromosome One (10K).
® Chromosomes look less like π and more like concatenation numbers?

Genomes as walks:

The X Chromosome (34K) and Chromosome One (10K).
® Chromosomes look less like π and more like concatenation numbers?

- Thank you!

Main References

M．Barnsley：Fractals Everywhere，Academic Press，Inc．，Boston，MA， 1988.
F．J．Aragón Artacho，D．H．Bailey，J．M．Borwein，P．B．Borwein：Walking on real numbers，The Mathematical Intelligencer 35 （2013），no．1，42－60．
D．H．Bailey and J．M．Borwein：Normal numbers and pseudorandom generators， Proceedings of the Workshop on Computational and Analytical Mathematics in Honour of Jonathan Borwein＇s 60th Birthday，Springer，in press 2013.
D．H．Bailey and R．E．Crandall：Random generators and normal numbers，Experimental Mathematics 11 （2002），no．4，527－546．
D．G．Champernowne：The construction of decimals normal in the scale of ten，Journal of the London Mathematical Society 8 （1933），254－260．

A．H．Copeland and P．Erdős：Note on normal numbers，Bulletin of the American Mathematical Society 52 （1946），857－860．

D．Y．Downham and S．B．Fotopoulos：The transient behaviour of the simple random walk in the plane，J．Appl．Probab． 25 （1988），no．1，58－69．
A．Dvoretzky and P．Erdős：Some problems on random walk in space，Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability（1951），353－367．
\square G．MARSAGLIA：On the randomness of pi and other decimal expansions，preprint（2010）．
圊
R．Stoneham：On absolute（ j, ε ）－normality in the rational fractions with applications to normal numbers，Acta Arithmetica 22 （1973），277－286．

[^0]: ${ }^{1}$ Only the best get stamps. Quoted in
 www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html.

[^1]: ${ }^{2}$ Python uses the Mersenne Twister as the core generator. It has a period of $2^{19937}-1 \approx 10^{6002}$.

