Randomness Normality 0000000 0000 Random walks

Features of random walks

Other tools & representations

Seeing Things by Walking on Real Numbers

Jonathan Borwein FRSC FAAS FAA FBAS

(Joint work with Francisco Aragón, David Bailey and Peter Borwein)

School of Mathematical & Physical Sciences The University of Newcastle, Australia

http://carma.newcastle.edu.au/meetings/evims/

57th AustMS Meeting Number Theory Session Sydney, October 2013

Revised 16-09-2013

Randomness Normality

Random walks

Features of random walks

Other tools & representations

Contents:

One message is "Try drawing numbers"

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi
- 4 Random walks
 - Number walks base four

- Walks on numbers
- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited
- Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

Randomness

Normality

Random walks

Features of random walks

Other tools & representations

Contents

Introduction

The researchers

- Some early conclusions
- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi

4 Random walks

Number walks base four

- Walks on numbers
- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited
- Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

Randomness

Normali 0000 Random walks

Features of random walks

Other tools & representations

My collaborators

Randomness Normality

Random walks

Features of random walks

Other tools & representations

Outreach:

images and animations led to high-level research which went viral

tobe How

Wired UK August 2013

Spot a shape and reinvent maths

This rendering of the first 100 billion digits of pi proves they're random – unless you see a pattern

This image is a representation of the first 100 billion digits of pt. 1 was interested to a picture," asys mathematician of no Borwein, from the University of Newcesstle in Australia, who collaborated with programmer Fran Aragon. "The wanted to prove, with the image, Aragon." The worrent, the picture would have a structure or a specifically repeating hape. like a circle, or some broccol."

This image is equivalent to 10.000 photos from a term-megapies (amera, and it can be explored in Gigapan. The technique doesn't only confirm established theories – it provides insights: during the drawing of a supposedly random sequence called the "Stoneham number", Aragon noticed a regularly occurring shape within the figure. "We were able to show that the Stoneham number is not t random in base 6." he

explains. "We would never have known this without visualising it." MV carma.newcastle.edu. aw'piwalk.shtml

D Tap to watch the first 100 billion digits of pi (0'29") Wi-Fi or 3G required

GOING FOR A RANDOM WALK

STAR

Borwein and Aragon drew the image using a classic tool called the "random walk" – a path described by the sequence of digits in a random advector of the walk depend on the number's base. I the base is 4, the algorithm can draw in at force/tions, as the do in this figure, For 1, you go "for 1, you go tof, 1 is to the

Borwein and Aragón (University of Newcastle, Australia)

Spot a shape

and reinvent maths

This rendering of the first 100 billion digits of pi proves they're

random - unless you see a pattern

Walking on real numbers

www.carma.newcastle.edu.au/walks

Randomness

Normality Rando

Random walks

Features of random walks

Other tools & representations

Contents

Introduction

The researchers

Some early conclusions

- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi

4 Random walks

Number walks base four

- Walks on numbers
- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited
- Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Introduction Randomness Normality Random walks Other tools & representations

Some early conclusions:

So I am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Maths can be done experimentally (it is fun)

- using computer algebra, numerical computation and graphics: SNaG
- computations, tables and pictures are experimental data
- but you can not stop thinking

Introduction Randomness Normality Random walks Other tools & representations

Some early conclusions:

So I am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Maths can be done experimentally (it is fun)

- using computer algebra, numerical computation and graphics: SNaG
- computations, tables and pictures are experimental data
- but you can not stop thinking

Making mistakes is fine

- as long as you learn from them
- keep your eyes open (conquer fear)

Introduction Randomness Normality Random walks Features of random walks Other tools & representations

Some early conclusions:

So I am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Maths can be done *experimentally* (it is fun)

- using computer algebra, numerical computation and graphics: SNaG
- computations, tables and pictures are experimental data
- but you can not stop thinking

Making mistakes is fine

- as long as you learn from them
- keep your eyes open (conquer fear)

You can not use what you do not know

- and what you know you can usually use
- you do not need to know much before you start research (as we shall see)

Introduction Randomness Normality Random walks Other tools & representations

Some early conclusions:

So I am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Maths can be done *experimentally* (it is fun)

- using computer algebra, numerical computation and graphics: SNaG
- computations, tables and pictures are experimental data
- but you can not stop thinking

Making mistakes is fine

- as long as you learn from them
- keep your eyes open (conquer fear)

You can not use what you do not know

- and what you know you can usually use
- you do not need to know much before you start research (as we shall see)

DHB and JMB, Exploratory Experimentation in Mathematics (2011), www.ams.org/notices/201110/rtx111001410p.pdf

Randomness

Normality 0000 Random walks

Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
- Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi
- A Random walks
 - Number walks base four

- Walks on numbers
- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited
- Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

Almost all I mention is at http://carma.newcastle.edu.au/walks/

Randomness Normality

Random walks

Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages

2 Randomness

- Randomness is slippery
- 3 Normality
 - Normality of Pi

4 Random walks

Number walks base four

- Walks on numbers
- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited
- Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

Randomness Normality

Introduction

Random walks

Features of random walks

Other tools & representations

We shall explore things like:

How random is Pi?

Remember: π is area of a circle of radius one (and perimeter is 2π).

Introduction Randomness Normality Random walks Features of random walks Other tools & representations Ownerstand Ownerstand Ownerstand Ownerstand Ownerstand Other tools & representations We shall explore things like: How random is Pi?

Remember: π is area of a circle of radius one (and perimeter is 2π). First true calculation of π was due to Archimedes of Syracuse (**287–212** BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons

Introduction Randomness Normality Random walks Features of random walks Other tools & representations Ownerstand Ownerstand Ownerstand Ownerstand Ownerstand Other tools & representations We shall explore things like: How random is Pi?

Remember: π is area of a circle of radius one (and perimeter is 2π). First true calculation of π was due to Archimedes of Syracuse (**287–212** BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons

 $\mathbf{6}\mapsto\mathbf{12}\mapsto\mathbf{24}\mapsto\mathbf{48}\mapsto\mathbf{96}$

Introduction Randomness Normality Random walks Features of random walks Other tools & representations OBCORD OBCORD

Remember: π is area of a circle of radius one (and perimeter is 2π). First true calculation of π was due to Archimedes of Syracuse (**287–212** BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons

 $\mathbf{6} \mapsto \mathbf{12} \mapsto 24 \mapsto 48 \mapsto \mathbf{96}$

to obtain the estimate

Borwein and Aragón (University of Newcastle, Australia)

Walking on real numbers

Introduction	Randomness	Normality	Random walks	Features of random walks	Other tools & representations
	000000				

Randomness

- The digits expansions of π , e, $\sqrt{2}$ appear to be "random":
 - $\pi = 3.141592653589793238462643383279502884197169399375...$
 - $e = 2.718281828459045235360287471352662497757247093699\dots$

 $\sqrt{2} = 1.414213562373095048801688724209698078569671875376...$

Introduction	Randomness	Normality	Random walks	Features of random walks	Other tools & representations
	000000				

Randomness

- The digits expansions of π , e, $\sqrt{2}$ appear to be "random":
 - $\pi = 3.141592653589793238462643383279502884197169399375...$
 - $e = 2.718281828459045235360287471352662497757247093699\dots$

 $\sqrt{2} = 1.414213562373095048801688724209698078569671875376...$

Introduction	Randomness	Normality 0000	Random walks	Features of random walks	Other tools & representations

Randomness

- The digits expansions of π , e, $\sqrt{2}$ appear to be "random":
 - $\pi = 3.141592653589793238462643383279502884197169399375...$
 - $e = 2.718281828459045235360287471352662497757247093699\dots$
 - $\sqrt{2} = 1.414213562373095048801688724209698078569671875376...$

Are they really?

Randomness

- The digits expansions of π , e, $\sqrt{2}$ appear to be "random":
 - $\pi = 3.141592653589793238462643383279502884197169399375...$

 $e = 2.718281828459045235360287471352662497757247093699\ldots$

 $\sqrt{2} = 1.414213562373095048801688724209698078569671875376...$

Are they really?

• **1949 ENIAC** (*Electronic Numerical Integrator and Calculator*) computed of π to **2,037** decimals (in **70** hours)—proposed by polymath John von Neumann (**1903-1957**) to shed light on distribution of π (and of *e*).

Borwein and Aragón (University of Newcastle, Australia)

Randomness

Normality

Random walks

Features of random walks

Other tools & representations

Two continued fractions

Change representations often

Gauss map. Remove the integer, invert the fraction and repeat: for 3.1415926 and 2.7182818 to get the fractions below.

Randomness

Normali 0000 Random walks

Features of random walks

Other tools & representations

Two continued fractions

Change representations often

Gauss map. Remove the integer, invert the fraction and repeat: for 3.1415926 and 2.7182818 to get the fractions below.

 $e = \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \dots$

Randomness

Normali 0000 Random walks

Features of random walks

Other tools & representations

Two continued fractions

Change representations often

Gauss map. Remove the integer, invert the fraction and repeat: for 3.1415926 and 2.7182818 to get the fractions below.

$$e = \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} + \dots$$

Leonhard Euler (1707-1783) named e and π .

"Lisez Euler, lisez Euler, c'est notre maître à tous." Simon Laplace (**1749-1827**)

Introduction 0000000	Randomness 0000●00	Normality 0000	Random walks	Features of random walks	Other tools & representations
Are th	e digits	of π ra	andom?		

Digit	Ocurrences
0	99,993,942
1	99,997,334
2	100,002,410
3	99,986,911
4	100,011 ,958
5	99,998 ,885
6	100,010,387
7	99,996,061
8	100,001,839
9	100,000,273
Total	1,000,000,000

Table : Counts of first billion digits of π . Second half is 'right' for law of large numbers.

Introduction $e^{\text{Randommess}}$ Normality $e^{\text{Random walks}}$ $e^{\text{Random walks}}$

Ocurrences
99,993,942
99,997,334
100,002,410
99,986,911
100,011 ,958
99,998 ,885
100,010,387
99,996,061
100,001,839
100,000,273
1,000,000,000

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

Table : Counts of first billion digits of π . Second half is 'right' for law of large numbers.

Are the digits of π random?

= · ·	-
Digit	Ocurrences
0	99,993,942
1	99,997,334
2	100,002,410
3	99,986,911
4	100,011 ,958
5	99,998 ,885
6	100,010,387
7	99,996,061
8	100,001,839
9	100,000,273
Total	1,000,000,000

Table : Counts of first billion digits of π . Second half is 'right' for law of large numbers.

- The simple continued fraction for *π* is unbounded
 - Euler found the 292
 - e has a fine continued fraction

Introduction Randomness Normality Random walks occorrections occorrectio

Are the digits of π random?

Digit	Ocurrences
0	99,993,942
1	99,997,334
2	100,002,410
3	99,986,911
4	100,011 ,958
5	99,998 ,885
6	100,010,387
7	99,996,061
8	100,001,839
9	100,000,273
Total	1,000,000,000

Table : Counts of first billion digits of π . Second half is 'right' for law of large numbers.

- The simple continued fraction for π is unbounded
 - Euler found the 292
 - e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π

Are the digits of π random?

Diait	
Digit	Ocurrences
0	99,993,942
1	99,997,334
2	100,002,410
3	99,986,911
4	100,011 ,958
5	99,998 ,885
6	100,010,387
7	99,996,061
8	100,001,839
9	100,000,273
Total	1,000,000,000

Table : Counts of first billion digits of π . Second half is 'right' for law of large numbers.

- The simple continued fraction for π is unbounded
 - Euler found the 292
 - e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π

Are the digits of π random?

Digit	Ocurrences
0	99,993,942
1	99,997,334
2	100,002,410
3	99,986,911
4	100,011 ,958
5	99,998 ,885
6	100,010,387
7	99,996,061
8	100,001,839
9	100,000,273
Total	1,000,000,000

Table : Counts of first billion digits of π . Second half is 'right' for law of large numbers.

- The simple continued fraction for *π* is unbounded
 - Euler found the 292
 - e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π
- There are equally many zeroes and ones in the binary expansion of π

Are the digits of π random?

= · ·	-
Digit	Ocurrences
0	99,993,942
1	99,997,334
2	100,002,410
3	99,986,911
4	100,011 ,958
5	99,998 ,885
6	100,010,387
7	99,996,061
8	100,001,839
9	100,000,273
Total	1,000,000,000

Table : Counts of first billion digits of π . Second half is 'right' for law of large numbers.

- The simple continued fraction for *π* is unbounded
 - Euler found the 292
 - e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π
- There are equally many zeroes and ones in the binary expansion of π
- Or pretty much anything else...

Randomness No 00000€0 0

What is "random"?

Random walks

Features of random walks

Other tools & representations

A hard question

Randomness Normality

What is "random"?

Random walks

Features of random walks

Other tools & representations

A hard question

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)?
- Incompressible ('zip' does not help)?

Randomness

What is "random"?

Normality

Random walks

Features of random walks

Other tools & representations

A hard question

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)?
- Incompressible ('zip' does not help)?

Conjecture (Borel) All irrational algebraic numbers are *b*-normal

Randomness Normality

What is "random"?

Random walks

Features of random walks

Other tools & representations

A hard question

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)?
- Incompressible ('zip' does not help)?

Conjecture (Borel) All irrational algebraic numbers are *b*-normal

Best Theorem [BBCP, 04] (Feeble but hard) Asymptotically all degree *d* algebraics have at least $n^{1/d}$ ones in binary (should be n/2)

Features of random walks

000000 Randomness in Pi?

Randomness

http://mkweb.bcgsc.ca/pi/art/

Norma	ality		A pro	perty random num	bers must possess
Introduction 0000000	Randomness 0000000	Normality	Random walks	Features of random walks	Other tools & representations

Definition

A real constant α is *b*-normal if, given the positive integer $b \ge 2$ (the base), every *m*-long string of base-*b* digits appears in the base-*b* expansion of α with precisely the expected limiting frequency $1/b^m$.

Norm	olity				
Introduction	Randomness 0000000	Normality	Random walks	Features of random walks	Other tools & representations

Normality

A property random numbers must possess

Definition

A real constant α is *b*-normal if, given the positive integer $b \ge 2$ (the base), every *m*-long string of base-*b* digits appears in the base-*b* expansion of α with precisely the expected limiting frequency $1/b^m$.

 Given an integer b ≥ 2, almost all real numbers, with probability one, are b-normal (Borel).

Introduction 0000000	Randomness 0000000	Normality 0000	Random walks	Features of random walks	Other tools & representations	
Normality						

Normality

A property random numbers must possess

Definition

A real constant α is *b*-normal if, given the positive integer $b \ge 2$ (the base), every *m*-long string of base-*b* digits appears in the base-*b* expansion of α with precisely the expected limiting frequency $1/b^m$.

- Given an integer b ≥ 2, almost all real numbers, with probability one, are b-normal (Borel).
- Indeed, almost all real numbers are *b*-normal simultaneously for all positive integer bases ("absolute normality").

Norm		0000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
Introduction	Randomness	Normality	Random walks	Features of random walks	Other tools & representations

Normality

A property random numbers must possess

Definition

A real constant α is *b*-normal if, given the positive integer $b \ge 2$ (the base), every *m*-long string of base-*b* digits appears in the base-*b* expansion of α with precisely the expected limiting frequency $1/b^m$.

- Given an integer b ≥ 2, almost all real numbers, with probability one, are b-normal (Borel).
- Indeed, almost all real numbers are *b*-normal simultaneously for all positive integer bases ("absolute normality").
- Unfortunately, it has been very difficult to prove normality for any number in a given base *b*, much less all bases simultaneously.

Walking on real numbers

Normality

Random walks

Features of random walks

Other tools & representations

Normal numbers

Randomness

concatenation numbers

Definition

A real constant α is *b*-normal if, given the positive integer $b \ge 2$ (the base), every *m*-long string of base-*b* digits appears in the base-*b* expansion of α with precisely the expected limiting frequency $1/b^m$.

• The first constant proven 10-normal (and already proven transcendental by Mahler) was:

 $C_{10} := 0.123456789101112131415161718\dots$

- 1933 by David Champernowne (1912-2000) as a student
- Champernowne constant (2012 proven not strongly normal)

Normality

Random walks

Features of random walks

Other tools & representations

Normal numbers

Randomness

concatenation numbers

Definition

A real constant α is *b*-normal if, given the positive integer $b \ge 2$ (the base), every *m*-long string of base-*b* digits appears in the base-*b* expansion of α with precisely the expected limiting frequency $1/b^m$.

• The first constant proven 10-normal (and already proven transcendental by Mahler) was:

 $C_{10} := 0.123456789101112131415161718\dots$

- 1933 by David Champernowne (1912-2000) as a student
- Champernowne constant (2012 proven not strongly normal)
- **1946** Arthur Copeland and Paul Erdős proved the same holds when one concatenates the sequence of primes:

CE(10) := 0.23571113171923293137414347...

- is 10-normal (concatenation works in all bases).
 - Copeland–Erdős constant

Normality

Random walks

Features of random walks

Other tools & representations

Normal numbers

Randomness

concatenation numbers

Definition

A real constant α is *b*-normal if, given the positive integer $b \ge 2$ (the base), every *m*-long string of base-*b* digits appears in the base-*b* expansion of α with precisely the expected limiting frequency $1/b^m$.

• The first constant proven 10-normal (and already proven transcendental by Mahler) was:

 $C_{10} := 0.123456789101112131415161718\dots$

- 1933 by David Champernowne (1912-2000) as a student
- Champernowne constant (2012 proven not strongly normal)
- **1946** Arthur Copeland and Paul Erdős proved the same holds when one concatenates the sequence of primes:

CE(10) := 0.23571113171923293137414347...

- is 10-normal (concatenation works in all bases).
 - Copeland–Erdős constant
- Normality proofs are not known for π , e, $\log 2$, $\sqrt{2}$ etc.

Borwein and Aragón (University of Newcastle, Australia)

Walking on real numbers

Randomness Normality

Random walks

Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages

Randomness

- Randomness is slippery
- 3 |

Normality

Normality of Pi

4 Random walks

Number walks base four

- Walks on numbers
- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited
- 6 Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

$l_{0} = 10$ mermel ²							
0000000	0000000	0000	00000000000000	0000000000000	000000000000		
Introduction	Randomness	Normality	Random walks	Features of random walks	Other tools & representations		

	10				
Is π		-n	\mathbf{n}	m	
13 1					

String	Occurrences	String	Occurrences	String	Occurrences
0	99,993,942	00	10,004,524	000	1,000,897
1	99,997,334	01	9,998,250	001	1,000,758
2	100,002,410	02	9,999,222	002	1,000,447
3	99,986,911	03	10,000,290	003	1,001,566
4	100,011,958	04	10,000,613	004	1,000,741
5	99,998,885	05	10,002,048	005	1,002,881
6	100,010,387	06	9,995,451	006	999,294
7	99,996,061	07	9,993,703	007	998,919
8	100,001,839	08	10,000,565	008	999,962
9	100,000,273	09	9,999,276	009	999,059
		10	9,997,289	010	998,884
		11	9,997,964	011	1,001,188
		:	÷	:	:
		99	10,003,709	099	999,201
				:	
				999	1,000,905
TOTAL	1,000,000,000	TOTAL	1,000,000,000	TOTAL	1,000,000,000

Table : Counts for the first billion digits of π .

Is π 10	6-norm	al			That is, in Hex?
Introduction 0000000	Randomness	Normality 00●0	Random walks	Features of random walks	Other tools & representations

0	62499881108
1	62500212206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	<u>62500</u> 216752
9	62500120671
A	62500266095
В	62499955595
С	62500188610
D	62499613666
Ε	62499875079
F	62499937801
Total	1,000,000,000,000

-

 $\longleftrightarrow \ \text{Counts of first trillion hex digits} \\$

Is π 16-normal

That is, in Hex?

Counts of first trillion hex digits

• 2011 Ten trillion hex digits computed by Yee and Kondo – and seem very normal

ion Randomness

ls π 16-normal

Normality 00●0 Random walks

Features of random walks

Other tools & representations

That is, in Hex?

→ Counts of first trillion hex digits

- 2011 Ten trillion hex digits computed by Yee and Kondo and seem very normal
- **2012** Ed Karrel found 25 hex digits of π starting *after* the 10¹⁵ position computed using **BBP** on GPUs (graphics cards) at NVIDIA (too hard for Blue Gene)

on Randomness

ls π 16-normal

Normality 00●0 Random walks

Features of random walks

Other tools & representations

That is, in Hex?

- → Counts of first trillion hex digits
- 2011 Ten trillion hex digits computed by Yee and Kondo and seem very normal
- **2012** Ed Karrel found 25 hex digits of π starting *after* the 10¹⁵ position computed using **BBP** on GPUs (graphics cards) at NVIDIA (too hard for Blue Gene)
- They are 353CB3F7F0C9ACCFA9AA215F2

See www.karrels.org/pi/index.html

 Introduction
 Randomness
 Normality
 Random walks
 Features of random walks
 Other tools & representations

 Stefan Banach (1892-1945)
 Another Nazi casuality

A mathematician is a person who can find analogies between theorems; a better mathematician is one who can see analogies between proofs and the best mathematician can notice analogies between theories. ¹

15,00 Birder Brand

¹Only the best get stamps. Quoted in

www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html.

Borwein and Aragón (University of Newcastle, Australia)

Walking on real numbers

Randomness Normality

 Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi
- 4 Random walks
 - Number walks base four

- Walks on numbers
- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited
- Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

Borwein and Aragón (University of Newcastle, Australia) Walking on real numbers www.ca

$$2 = \leftarrow$$

$$3 = \downarrow$$

Figure : A million step base-4 pseudorandom walk. We use the spectrum to show when we visited each point (ROYGBIV and R).

Borwein and Aragón (University of Newcastle, Australia)

Walking on real numbers

Figure : Eight different base-4 (pseudo)random² walks of one million steps.

²Python uses the *Mersenne Twister* as the core generator. It has a period of $2^{19937} - 1 \approx 10^{6002}$.

Introduction	Randomness 0000000	Normality 0000	Random walks 000000000000000000000000000000000000	Features of random walks	Other tools & repres

Base-*b* random walks:

Our direction choice

Figure : Directions for base-3 and base-7 random walks.

Randomness

Normality 0000 Random walks

Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi

4 Random walks

Number walks base four

Walks on numbers

- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited
- Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

Randomness

Normality

Random walks

Features of random walks

Other tools & representations

Two rational numbers

The base-4 digit expansion of *Q*1 and *Q*2:

Q1=

Q2=

Randomness

Normality 0000 Random walks

Features of random walks

Other tools & representations

Two rational numbers

Figure : Self-referent walks on the rational numbers Q1 (top) and Q2 (bottom).

The following relatively small rational numbers [G. Marsaglia, 2010]

$$Q3 = \frac{3624360069}{7000000001}$$
 and $Q4 = \frac{123456789012}{100000000061}$,

have base-10 periods with huge length of **1,750,000,000** digits and **1,000,000,000,060** digits, respectively.

The following relatively small rational numbers [G. Marsaglia, 2010]

$$Q3 = \frac{3624360069}{700000001}$$
 and $Q4 = \frac{123456789012}{100000000611}$,

have base-10 periods with huge length of **1,750,000,000** digits and **1,000,000,000,060** digits, respectively.

Figure : Walks on the first million base-10 digits of the rationals Q3 and Q4.

Randomness

Random walks Features of random walks

ANIMATION

Walks on the digits of numbers

Figure : A walk on the first 10 million base-4 digits of π .

Borwein and Aragón (University of Newcastle, Australia) Walking on real numbers Introduction Randomness

Random walks Features of random walks

Walks on the digits of numbers Coloured by hits (more pink is more hits)

Figure : 100 million base-4 digits of π coloured by number of returns to points.

Randomness Normality

Random walks

Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi

4 Random walks

Number walks base four

Walks on numbers

• The Stoneham numbers

- Features of random walks
 - Expected distance to origin
 - Number of points visited
- Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

Normality

Randomness

Introduction

Features of random walks

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are *b*-normal for relatively prime integers *b*,*c*:

Random walks

$$\alpha_{b,c} := \frac{1}{cb^c} + \frac{1}{c^2b^{c^2}} + \frac{1}{c^3b^{c^3}} + \dots$$

Such super-geometric sums are Stoneham constants. To 10 places

$$\alpha_{2,3} = \frac{1}{24} + \frac{1}{3608} + \frac{1}{3623878656} + \dots$$

Normality

Randomness

Introduction

Other tools & representations

Features of random walks

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are *b*-normal for relatively prime integers *b*,*c*:

Random walks

$$\alpha_{b,c} := \frac{1}{cb^c} + \frac{1}{c^2b^{c^2}} + \frac{1}{c^3b^{c^3}} + \dots$$

Such super-geometric sums are Stoneham constants. To 10 places

$$\alpha_{2,3} = \frac{1}{24} + \frac{1}{3608} + \frac{1}{3623878656} + \dots$$

Theorem (Normality of Stoneham constants, Bailey–Crandall '02)

For every coprime pair of integers $b \ge 2$ and $c \ge 2$, the constant $\alpha_{b,c}$ is *b*-normal.

Normality

Randomness

Introduction

Other tools & representations

Features of random walks

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are *b*-normal for relatively prime integers *b*,*c*:

Random walks

$$\alpha_{b,c} := \frac{1}{cb^c} + \frac{1}{c^2b^{c^2}} + \frac{1}{c^3b^{c^3}} + \dots$$

Such super-geometric sums are Stoneham constants. To 10 places

$$\alpha_{2,3} = \frac{1}{24} + \frac{1}{3608} + \frac{1}{3623878656} + \dots$$

Theorem (Normality of Stoneham constants, Bailey–Crandall '02)

For every coprime pair of integers $b \ge 2$ and $c \ge 2$, the constant $\alpha_{b,c}$ is *b*-normal.

Theorem (Nonnormality of Stoneham constants, Bailey–Borwein '12)

Given coprime $b \ge 2$ and $c \ge 2$, such that $c < b^{c-1}$, the constant $\alpha_{b,c}$ is *bc*-nonnormal.

Normality

Randomness

Introduction

 $\alpha_{b,c} = \sum_{n=1}^{\infty} \frac{1}{c^n b^{c^n}}$

Other tools & representations

Features of random walks

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are *b*-normal for relatively prime integers *b*,*c*:

Random walks

$$\alpha_{b,c} := \frac{1}{cb^c} + \frac{1}{c^2b^{c^2}} + \frac{1}{c^3b^{c^3}} + \dots$$

Such super-geometric sums are Stoneham constants. To 10 places

$$\alpha_{2,3} = \frac{1}{24} + \frac{1}{3608} + \frac{1}{3623878656} + \dots$$

Theorem (Normality of Stoneham constants, Bailey–Crandall '02)

For every coprime pair of integers $b \ge 2$ and $c \ge 2$, the constant $\alpha_{b,c}$ is *b*-normal.

Theorem (Nonnormality of Stoneham constants, Bailey–Borwein '12)

Given coprime $b \ge 2$ and $c \ge 2$, such that $c < b^{c-1}$, the constant $\alpha_{b,c}$ is *bc*-nonnormal.

• Since $3 < 2^{3-1} = 4$, $\alpha_{2,3}$ is 2-normal and 6-nonnormal !

Randomness No

Random walks

Features of random walks

Other tools & representations

The Stoneham numbers

 $\alpha_{b,c} = \sum_{n=1}^{\infty} \frac{1}{c^n b^{c^n}}$

Figure : $\alpha_{2,3}$ is 2-normal (top) but 6-nonnormal (bottom). Is seeing believing?

Randomness I

Normalit 0000 Random walks

Features of random walks

Other tools & representations

The Stoneham numbers

 $\alpha_{b,c} = \sum_{n=1}^{\infty} \frac{1}{c^n b^{c^n}}$

Figure : Is $\alpha_{2,3}$ 3-normal or not?

Borwein and Aragón (University of Newcastle, Australia) Walking on real numbers www.carma.new

Randomness

Normality 0000 Random walks

Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi

4 Random walks

Number walks base four

- Walks on numbers
- The Stoneham numbers
- 5 Features of random walks
 - Expected distance to origin
 - Number of points visited
 - Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

Introduction Randomness Random walks Features of random walks $\frac{\sqrt{\pi N}}{2 d u} \rightarrow 1$

The expected distance to the origin

Theorem

The expected distance d_N to the origin of a base-b random walk of N steps behaves like to $\sqrt{\pi N}/2$.

Theorem

The expected distance d_N to the origin of a base-*b* random walk of *N* steps behaves like to $\sqrt{\pi N}/2$.

Number	Base	Steps	Average normalized dist. to the origin: $\frac{1}{\text{Steps}} \sum_{N=2}^{\text{Steps}} \frac{\text{dist}_N}{\sqrt{\frac{N}{2}}}$	Normal
Mean of 10,000 random walks	4	1,000,000	1.00315	Yes
Mean of 10,000 walks on the digits of π	4	1,000,000	1.00083	?
$\alpha_{2,3}$	3	1,000,000	0.89275	?
$\alpha_{2,3}$	4	1,000,000	0.25901	Yes
$\alpha_{2,3}$	6	1,000,000	108.02218	No
π	4	1,000,000	0.84366	?
π	6	1,000,000	0.96458	?
π	10	1,000,000	0.82167	?
π	10	1,000,000,000	0.59824	?
$\sqrt{2}$	4	1,000,000	0.72260	?
Champernowne C ₁₀	10	1,000,000	59.91143	Yes

Borwein and Aragón (University of Newcastle, Australia)

Randomness

Normality 0000 Random walks

Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi

4 Random walks

Number walks base four

- Walks on numbers
- The Stoneham numbers
- 5 Features of random walks
 - Expected distance to origin
 - Number of points visited
 - Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

• The expected number of distinct points visited by an *N*-step random walk on a two-dimensional lattice behaves for large *N* like $\pi N/\log(N)$ (Dvoretzky–Erdős, **1951**).

www.carma.newcastle.edu.au/walks

- The expected number of distinct points visited by an *N*-step random walk on a two-dimensional lattice behaves for large *N* like π*N*/log(*N*) (Dvoretzky–Erdős, **1951**).
- Practical problem: Convergence is slow ($O(N \log \log N / (\log N)^2)$).

- The expected number of distinct points visited by an *N*-step random walk on a two-dimensional lattice behaves for large *N* like $\pi N/\log(N)$ (Dvoretzky–Erdős, **1951**).
- Practical problem: Convergence is slow $(O(N \log \log N / (\log N)^2))$.
- 1988 D. Downham and S. Fotopoulos gave better bounds on the expectation. It lies in:

 $\left(\frac{\pi(N+0.84)}{1.16\pi-1-\log 2+\log(N+2)},\frac{\pi(N+1)}{1.066\pi-1-\log 2+\log(N+1)}\right).$

- The expected number of distinct points visited by an *N*-step random walk on a two-dimensional lattice behaves for large *N* like $\pi N/\log(N)$ (Dvoretzky–Erdős, **1951**).
- Practical problem: Convergence is slow $(O(N \log \log N / (\log N)^2))$.
- **1988** D. Downham and S. Fotopoulos gave better bounds on the expectation. It lies in:

 $\left(\frac{\pi(N+0.84)}{1.16\pi-1-\log 2+\log(N+2)},\frac{\pi(N+1)}{1.066\pi-1-\log 2+\log(N+1)}\right).$

• For example, for $N = 10^6$ these bounds are (199256.1,203059.5), while $\pi N/\log(N) = 227396$, which overestimates the expectation.

ion Randomness

Normal 0000 Random walks

Features of random walks

Other tools & representations

Catalan's constant

Figure : A walk on one million quad-bits of *G* with height showing frequency

Figure : http://www.ams.org/notices/201307/

Randomness Nor

Random walks

Features of random walks

Other tools & representations

Paul Erdős (1913-1996)

"My brain is open"

(a) Paul Erdős (Banff 1981. I was there) (b) Émile Borel (1871–1956)

Figure : Two of my favourites. Consult MacTutor.

(a) (Pseudo)random walks.

(b) Walks built by chopping up 10 billion digits of π .

Figure : Number of points visited by 10,000 million-steps base-4 walks.

Norm

Randomness

Random walks

Features of random walks

Other tools & representations

Points visited by various base-4 walks

Number	Steps	Sites visited	Bounds on the expectation of sites visited by a random walk	
			Lower bound	Upper bound
Mean of 10,000 random walks	1,000,000	202,684	199,256	203,060
Mean of 10,000 walks on the digits of π	1,000,000	202,385	199,256	203,060
$\alpha_{2,3}$	1,000,000	95,817	199,256	203,060
$\alpha_{3,2}$	1,000,000	195,585	199,256	203,060
π	1,000,000	204,148	199,256	203,060
π	10,000,000	1,933,903	1,738,645	1,767,533
π	100,000,000	16,109,429	15,421,296	15,648,132
π	1,000,000,000	138,107,050	138,552,612	140,380,926
е	1,000,000	176,350	199,256	203,060
$\sqrt{2}$	1,000,000	200,733	199,256	203,060
log 2	1,000,000	214,508	199,256	203,060
Champernowne C ₄	1,000,000	548,746	199,256	203,060
Rational number Q_1	1,000,000	378	199,256	203,060
Rational number Q_2	1,000,000	939,322	199,256	203,060

Normal numbers need not be so "random" ...

Figure : Champernowne $C_{10} = 0.123456789101112...$ (normal). Normalized distance to the origin: 15.9 (50,000 steps).

Borwein and Aragón (University of Newcastle, Australia)

Normal numbers need not be so "random" ...

Figure : Champernowne $C_4 = 0.123101112132021...$ (normal). Normalized distance to the origin: 18.1 (100,000 steps). Points visited: 52760. Expectation: (23333, 23857).

Borwein and Aragón (University of Newcastle, Australia)

Randomness Nor

Random walks

Features of random walks

Other tools & representations

Normal numbers need not be so "random" ...

Figure : Stoneham $\alpha_{2,3} = 0.0022232032..._4$ (normal base 4). Normalized distance to the origin: 0.26 (1,000,000 steps). Points visited: 95817. Expectation: (199256, 203060).

Borwein and Aragón (University of Newcastle, Australia)

Randomness Nor

Random walks

Features of random walks

Other tools & representations

Normal numbers need not be so "random" ...

Figure : Stoneham $\alpha_{2,3} = 0.0022232032..._4$ (normal base 4). Normalized distance to the origin: 0.26 (1,000,000 steps). Points visited: 95817. Expectation: (199256, 203060).

Borwein and Aragón (University of Newcastle, Australia)

Randomness

Norma 0000 Random walks

Features of random walks

Other tools & representations

$\alpha_{2,3}$ is 4-normal but not so "random"

Figure : A pattern in the digits of $\alpha_{2,3}$ base 4. We show only positions of the walk after $\frac{3}{2}(3^n+1), \frac{3}{2}(3^n+1)+3^n$ and $\frac{3}{2}(3^n+1)+2\cdot 3^n$ steps, n = 0, 1, ..., 11.

Randomness Norm

Random walks

Features of random walks

Other tools & representations

Experimental conjecture

Proven 12-12-12 by Coons

Theorem (Base-4 structure of Stoneham $\alpha_{2,3}$)

Denote by a_k the k^{th} digit of $\alpha_{2,3}$ in its base 4 expansion: $\alpha_{2,3} = \sum_{k=1}^{\infty} a_k/4^k$, with $a_k \in \{0, 1, 2, 3\}$ for all k. Then, for all n = 0, 1, 2, ... one has:

(i)
$$\sum_{k=\frac{3}{2}(3^{n}+1)+3^{n}}^{\frac{3}{2}(3^{n}+1)+3^{n}} e^{a_{k}\pi i/2} = \begin{cases} -i, & \text{n odd} \\ -1, & \text{n even} \end{cases};$$

(ii) $a_{k} = a_{k+3^{n}} = a_{k+2\cdot3^{n}} \text{ if } k = \frac{3(3^{n}+1)}{2}, \frac{3(3^{n}+1)}{2} + 1, \dots, \frac{3(3^{n}+1)}{2} + 3^{n} - 1.$

Randomness Norr

Random walks

Features of random walks

Other tools & representations

Likewise, $\alpha_{3,5}$ is 3-normal ... but not very "random"

ANIMATION

Randomness

Normality 0000 Random walks

Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi
- 4 Random walks
 - Number walks base four

- Walks on numbers
- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited

Other tools & representations

- Fractal and box-dimension
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
- Genomes as walks

Randomness Nor

Random walks

Features of random walks

Other tools & representations

Box-dimension:

Tends to '2' for a planar random walk

Randomness

Norm

Random walks

Features of random walks

Other tools & representations

Box-dimension:

Tends to '2' for a planar random walk

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds & ferns not buildings & cars). Curves have dimension 1, squares dimension 2

Borwein and Aragón (University of Newcastle, Australia)

Randomness

Normality

Random walks

Features of random walks

Other tools & representations

Box-dimension:

Tends to '2' for a planar random walk

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds & ferns not buildings & cars). Curves have dimension 1, squares dimension 2

Box-dimension:

Randomness

Introduction

Tends to '2' for a planar random walk

Other tools & representations

Features of random walks

Random walks

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds & ferns not buildings & cars). Curves have dimension 1, squares dimension 2

Borwein and Aragón (University of Newcastle, Australia)

Randomness

Normality 0000 Random walks

Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi
- 4 Random walks
 - Number walks base four

- Walks on numbers
- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited
- Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

Introduction Randomness 0000000 0000000

Normali 0000 Random walks

Features of random walks

Other tools & representations

Three dimensional walks:

Using base six — soon on 3D screen

Figure : Matt Skerritt's 3D walk on π (base 6), showing one million steps. But 3D random walks are not recurrent.

Introduction Randomness Normality Random walks Features of random walks **Other tools & representations**

Three dimensional walks:

Using base six — soon on 3D screen

Figure : Matt Skerritt's 3D walk on π (base 6), showing one million steps. But 3D random walks are not recurrent.

"A drunken man will find his way home, a drunken bird will get lost forever." (Kakutani)

Borwein and Aragón (University of Newcastle, Australia)

Introduction Randomness

Random walks

Features of random walks

Other tools & representations

Three dimensional printing:

Figure : The future is here ...

www.digitaltrends.com/cool-tech/the-worlds-first-plane-created-entirely-by-3d-printing-takes-flight/

www.shapeways.com/shops/3Dfractals

Borwein and Aragón (University of Newcastle, Australia) Walking on real numbers

Randomness

Normality 0000 Random walks

Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi
- 4 Random walks
 - Number walks base four

- Walks on numbers
- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited
- Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks

Chaos games

- 2-automatic numbers
- Genomes as walks

Random walks

Features of random walks

Other tools & representations

Chaos games:

Randomness

Move half-way to a (random) corner

Figure : Coloured by frequency — leads to random fractals. Row 1: Champernowne C_3 , $\alpha_{3,5}$, random, $\alpha_{2,3}$. Row 2: Champernowne C_4 , π , random, $\alpha_{2,3}$. Row 3: Champernowne C_6 , $\alpha_{3,2}$, random, $\alpha_{2,3}$.

Borwein and Aragón (University of Newcastle, Australia)

Walking on real numbers

www.carma.newcastle.edu.au/walks

Randomness

Normality 0000 Random walks

Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi
- 4 Random walks
 - Number walks base four

- Walks on numbers
- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited
- Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

Automatic numbers: Thue–Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but fascinating rules...giving structured/boring walks:

Figure : **Paper folding**. The sequence of left and right folds along a strip of paper that is folded repeatedly in half in the same direction. Unfold and read right' as '1' and 'left' as '0': $1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0$

Automatic numbers: Thue–Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but fascinating rules...giving structured/boring walks:

Figure : **Paper folding**. The sequence of left and right folds along a strip of paper that is folded repeatedly in half in the same direction. Unfold and read 'right' as '1' and 'left' as '0': $1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0$

Thue-Morse constant (transcendental; 2-automatic, hence nonnormal):

 $TM_2 = \sum_{n=1}^{\infty} \frac{1}{2^{t(n)}}$ where t(0) = 0, while t(2n) = t(n) and t(2n+1) = 1 - t(n)

0.01101001100101101001011001101001...

Introduction Randomness Normality Random walks Features of random walks Other tools & representations Automatic numbers: Thue–Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but fascinating rules...giving structured/boring walks:

Figure : Walks on two automatic and so nonnormal numbers.

Randomness Nor

Random walks

Features of random walks

Other tools & representations

Automatic numbers:

(a) Ten million digits of the paper-folding sequence, rotating 60° .

(c) 100,000 digits of the Thue–Morse sequence, rotating 60° (a Koch snowflake).

Turtle plots look great!

(b) One million digits of the paper-folding sequence, rotating 120° (a dragon curve).

(d) One million digits of π , rotating 60° .

Figure : Turtle plots on various constants with different rotating angles in base 2—where '**0**' yields forward motion and '**1**' rotation by a fixed angle.

Borwein and Aragón (University of Newcastle, Australia)

Randomness

Normality 0000 Random walks

Features of random walks

Other tools & representations

Contents

Introduction

- The researchers
- Some early conclusions
- The CARMA walks pages
- 2 Randomness
 - Randomness is slippery
- 3 Normality
 - Normality of Pi
- 4 Random walks
 - Number walks base four

- Walks on numbers
- The Stoneham numbers
- Features of random walks
 - Expected distance to origin
 - Number of points visited
- Other tools & representations
 - Fractal and box-dimension
 - 3D drunkard's walks
 - Chaos games
 - 2-automatic numbers
 - Genomes as walks

0000000	0000000	0000	000000000000000000000000000000000000000	000000000000	000000000000000		
Introduction	Randomness	Normality	Random walks	Features of random walks	Other tools & representations		

... we are all base 4 numbers (ACGT/U)

					00000000000000		
Introduction	Randomness	Normality	Random walks	Features of random walks	Other tools & representations		

... we are all base 4 numbers (ACGT/U)

The X Chromosome (34K) and Chromosome One (10K).

\sim					
					0000000000000
Introduction	Randomness	Normality	Random walks	Features of random walks	Other tools & representations

... we are all base 4 numbers (ACGT/U)

The X Chromosome (34K) and Chromosome One (10K).

 (\mathbb{R}) Chromosomes look less like π and more like concatenation numbers?

0000000	0000000	0000	000000000000000000000000000000000000000	0000000000000	00000000000000		
Introduction	Randomness	Normality	Random walks	Features of random walks	Other tools & representations		

... we are all base 4 numbers (ACGT/U)

The X Chromosome (34K) and Chromosome One (10K).

- (\mathbb{R}) Chromosomes look less like π and more like concatenation numbers?
 - Thank you!

Introduction Randomness

Normal 0000 Random walks

Features of random walks

Other tools & representations

Main References

http://carma.newcastle.edu.au/walks/

M. BARNSLEY: Fractals Everywhere, Academic Press, Inc., Boston, MA, 1988.

F.J. ARAGÓN ARTACHO, D.H. BAILEY, J.M. BORWEIN, P.B. BORWEIN: Walking on real numbers, The Mathematical Intelligencer 35 (2013), no. 1, 42–60.

D.H. BAILEY AND J.M. BORWEIN: Normal numbers and pseudorandom generators, Proceedings of the Workshop on Computational and Analytical Mathematics in Honour of Jonathan Borwein's 60th Birthday, Springer, in press 2013.

D.H. BAILEY AND R.E. CRANDALL: Random generators and normal numbers, Experimental Mathematics 11 (2002), no. 4, 527–546.

D.G. CHAMPERNOWNE: The construction of decimals normal in the scale of ten, Journal of the London Mathematical Society 8 (1933), 254–260.

A.H. COPELAND AND P. ERDŐS: Note on normal numbers, Bulletin of the American Mathematical Society 52 (1946), 857–860.

D.Y. DOWNHAM AND S.B. FOTOPOULOS: The transient behaviour of the simple random walk in the plane, J. Appl. Probab. 25 (1988), no. 1, 58–69.

A. DVORETZKY AND P. ERDŐS: Some problems on random walk in space, Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability (1951), 353–367.

G. MARSAGLIA: On the randomness of pi and other decimal expansions, preprint (2010).

