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Outreach: images and animations led to high-level research which went viral
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Some early conclusions: So I am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Maths can be done experimentally (it is fun)
- using computer algebra, numerical

computation and graphics: SNaG
- computations, tables and pictures are

experimental data
- but you can not stop thinking

Making mistakes is fine
- as long as you learn from them
- keep your eyes open (conquer fear)

You can not use what you do not know
- and what you know you can usually use
- you do not need to know much before

you start research (as we shall see)

DHB and JMB, Exploratory Experimentation in Mathematics (2011), www.ams.org/notices/201110/rtx111001410p.pdf

Borwein and Aragón (University of Newcastle, Australia) Walking on real numbers www.carma.newcastle.edu.au/walks

www.ams.org/notices/201110/rtx111001410p.pdf
http://www.carma.newcastle.edu.au/walks


Introduction Randomness Normality Random walks Features of random walks Other tools & representations

Some early conclusions: So I am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Maths can be done experimentally (it is fun)
- using computer algebra, numerical

computation and graphics: SNaG
- computations, tables and pictures are

experimental data
- but you can not stop thinking

Making mistakes is fine
- as long as you learn from them
- keep your eyes open (conquer fear)

You can not use what you do not know
- and what you know you can usually use
- you do not need to know much before

you start research (as we shall see)

DHB and JMB, Exploratory Experimentation in Mathematics (2011), www.ams.org/notices/201110/rtx111001410p.pdf

Borwein and Aragón (University of Newcastle, Australia) Walking on real numbers www.carma.newcastle.edu.au/walks

www.ams.org/notices/201110/rtx111001410p.pdf
http://www.carma.newcastle.edu.au/walks


Introduction Randomness Normality Random walks Features of random walks Other tools & representations

Some early conclusions: So I am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Maths can be done experimentally (it is fun)
- using computer algebra, numerical

computation and graphics: SNaG
- computations, tables and pictures are

experimental data
- but you can not stop thinking

Making mistakes is fine
- as long as you learn from them
- keep your eyes open (conquer fear)

You can not use what you do not know
- and what you know you can usually use
- you do not need to know much before

you start research (as we shall see)

DHB and JMB, Exploratory Experimentation in Mathematics (2011), www.ams.org/notices/201110/rtx111001410p.pdf

Borwein and Aragón (University of Newcastle, Australia) Walking on real numbers www.carma.newcastle.edu.au/walks

www.ams.org/notices/201110/rtx111001410p.pdf
http://www.carma.newcastle.edu.au/walks


Introduction Randomness Normality Random walks Features of random walks Other tools & representations

Some early conclusions: So I am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Maths can be done experimentally (it is fun)
- using computer algebra, numerical

computation and graphics: SNaG
- computations, tables and pictures are

experimental data
- but you can not stop thinking

Making mistakes is fine
- as long as you learn from them
- keep your eyes open (conquer fear)

You can not use what you do not know
- and what you know you can usually use
- you do not need to know much before

you start research (as we shall see)

DHB and JMB, Exploratory Experimentation in Mathematics (2011), www.ams.org/notices/201110/rtx111001410p.pdf

Borwein and Aragón (University of Newcastle, Australia) Walking on real numbers www.carma.newcastle.edu.au/walks

www.ams.org/notices/201110/rtx111001410p.pdf
http://www.carma.newcastle.edu.au/walks


Introduction Randomness Normality Random walks Features of random walks Other tools & representations

Some early conclusions: So I am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Maths can be done experimentally (it is fun)
- using computer algebra, numerical

computation and graphics: SNaG
- computations, tables and pictures are

experimental data
- but you can not stop thinking

Making mistakes is fine
- as long as you learn from them
- keep your eyes open (conquer fear)

You can not use what you do not know
- and what you know you can usually use
- you do not need to know much before

you start research (as we shall see)

DHB and JMB, Exploratory Experimentation in Mathematics (2011), www.ams.org/notices/201110/rtx111001410p.pdf

Borwein and Aragón (University of Newcastle, Australia) Walking on real numbers www.carma.newcastle.edu.au/walks

www.ams.org/notices/201110/rtx111001410p.pdf
http://www.carma.newcastle.edu.au/walks


Introduction Randomness Normality Random walks Features of random walks Other tools & representations

Contents

1 Introduction
The researchers
Some early conclusions
The CARMA walks pages

2 Randomness
Randomness is slippery

3 Normality
Normality of Pi

4 Random walks
Number walks base four

Walks on numbers
The Stoneham numbers

5 Features of random walks
Expected distance to origin
Number of points visited

6 Other tools & representations
Fractal and box-dimension
3D drunkard’s walks
Chaos games
2-automatic numbers
Genomes as walks

Borwein and Aragón (University of Newcastle, Australia) Walking on real numbers www.carma.newcastle.edu.au/walks

http://www.carma.newcastle.edu.au/walks


Introduction Randomness Normality Random walks Features of random walks Other tools & representations

Almost all I mention is at http://carma.newcastle.edu.au/walks/
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We shall explore things like: How random is Pi?
Remember: π is area of a circle of radius one (and perimeter is 2π).

First true calculation of π was due to Archimedes of Syracuse
(287–212 BCE). He used a brilliant scheme for doubling inscribed
and circumscribed polygons

6 7→ 12 7→ 24 7→ 48 7→ 96 to obtain the estimate

3
10
71

< π < 3
10
70

.
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Randomness
The digits expansions of π,e,

√
2 appear to be “random”:

π= 3.141592653589793238462643383279502884197169399375 . . .
e = 2.718281828459045235360287471352662497757247093699 . . .
√

2= 1.414213562373095048801688724209698078569671875376 . . .

Are they really?

1949 ENIAC (Electronic Numerical Integrator and Calculator)
computed of π to 2,037 decimals (in 70 hours)—proposed by
polymath John von Neumann (1903-1957) to shed light on
distribution of π (and of e).
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Two continued fractions Change representations often

Gauss map. Remove the integer, invert the fraction and repeat: for
3.1415926 and 2.7182818 to get the fractions below.

e =
1
1
+

1
1
+

1
2
+

1
6
+

1
24

+
1

120
+

1
720

+ . . .

Leonhard Euler (1707-
1783) named e and π.

“Lisez Euler, lisez Euler, c’est
notre maı̂tre à tous.” Simon
Laplace (1749-1827)
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Are the digits of π random?

Digit Ocurrences
0 99,993,942
1 99,997,334
2 100,002,410
3 99,986,911
4 100,011,958
5 99,998,885
6 100,010,387
7 99,996,061
8 100,001,839
9 100,000,273

Total 1,000,000,000

Table : Counts of first
billion digits of π. Second
half is ‘right’ for law of
large numbers.

Pi is Still Mysterious. We know π is not
algebraic; but do not ‘know’ (in sense of
being able to prove) whether ....

The simple continued fraction for π is
unbounded

– Euler found the 292

– e has a fine continued fraction

There are infinitely many sevens in
the decimal expansion of π

There are infinitely many ones in the
ternary expansion of π

There are equally many zeroes and
ones in the binary expansion of π

Or pretty much anything else...
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What is “random”? A hard question

It might be:
Unpredictable (fair dice or coin-flips)?
Without structure (noise)?
Algorithmically random (π is not)?
Quantum random (radiation)?
Incompressible (‘zip’ does not help)?

Conjecture (Borel) All irrational
algebraic numbers are b-normal

Best Theorem [BBCP, 04] (Fee-
ble but hard) Asymptotically all
degree d algebraics have at least
n1/d ones in binary (should be
n/2)
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ble but hard) Asymptotically all
degree d algebraics have at least
n1/d ones in binary (should be
n/2)
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Randomness in Pi? http://mkweb.bcgsc.ca/pi/art/
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Normality A property random numbers must possess

Definition
A real constant α is b-normal if, given the positive integer b≥ 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of α with precisely the expected limiting frequency 1/bm.

Given an integer b≥ 2, almost all real numbers, with probability
one, are b-normal (Borel).

Indeed, almost all real numbers are b-normal simultaneously for
all positive integer bases (“absolute normality”).

Unfortunately, it has been very difficult to prove normality for any
number in a given base b, much less all bases simultaneously.
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Normal numbers concatenation numbers
Definition
A real constant α is b-normal if, given the positive integer b≥ 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of α with precisely the expected limiting frequency 1/bm.

The first constant proven 10-normal (and already proven
transcendental by Mahler) was:

C10 := 0.123456789101112131415161718 . . .

- 1933 by David Champernowne (1912-2000) as a student
- Champernowne constant (2012 proven not strongly normal)

1946 Arthur Copeland and Paul Erdős proved the same holds
when one concatenates the sequence of primes:

CE(10) := 0.23571113171923293137414347 . . .

is 10-normal (concatenation works in all bases).
- Copeland–Erdős constant

Normality proofs are not known for π,e, log2,
√

2 etc.
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Is π 10-normal?

String Occurrences String Occurrences String Occurrences
0 99,993,942 00 10,004,524 000 1,000,897
1 99,997,334 01 9,998,250 001 1,000,758
2 100,002,410 02 9,999,222 002 1,000,447
3 99,986,911 03 10,000,290 003 1,001,566
4 100,011,958 04 10,000,613 004 1,000,741
5 99,998,885 05 10,002,048 005 1,002,881
6 100,010,387 06 9,995,451 006 999,294
7 99,996,061 07 9,993,703 007 998,919
8 100,001,839 08 10,000,565 008 999,962
9 100,000,273 09 9,999,276 009 999,059

10 9,997,289 010 998,884
11 9,997,964 011 1,001,188
...

...
...

...
99 10,003,709 099 999,201

...
...

999 1,000,905
TOTAL 1,000,000,000 TOTAL 1,000,000,000 TOTAL 1,000,000,000

Table : Counts for the first billion digits of π.
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Is π 16-normal That is, in Hex?

0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1,000,000,000,000

←↩ Counts of first trillion hex digits

2011 Ten trillion hex digits computed by Yee
and Kondo – and seem very normal

2012 Ed Karrel found 25 hex digits of π

starting after the 1015 position computed
using BBP on GPUs (graphics cards) at
NVIDIA (too hard for Blue Gene)

They are 353CB3F7F0C9ACCFA9AA215F2
See www.karrels.org/pi/index.html
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Stefan Banach (1892-1945) Another Nazi casuality

A mathematician is a person who can find analogies
between theorems; a better mathematician is one who can
see analogies between proofs and the best mathematician
can notice analogies between theories. 1

1Only the best get stamps. Quoted in
www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html .
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What is a (base four) random walk ?
Pick a random number in {0,1,2,3} and move according to 0 =→, 1 =↑, 2 =←, 3 =↓
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What is a (base four) random walk ?
Pick a random number in {0,1,2,3} and move according to 0 =→, 1 =↑, 2 =←, 3 =↓

11222330
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What is a random walk (base 4)?
Pick a random number in {0,1,2,3} and move 0 =→, 1 =↑, 2 =←, 3 =↓ ANIMATION

Figure : A million step base-4 pseudorandom walk. We use the spectrum to
show when we visited each point (ROYGBIV and R).
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Random walks look similarish Chaos theory (order in disorder)

Figure : Eight different base-4 (pseudo)random2 walks of one million steps.

2Python uses the Mersenne Twister as the core generator. It has a period of 219937 −1≈ 106002 .
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Base-b random walks: Our direction choice

0

1

2

0

1
2

3

4

5
6

Figure : Directions for base-3 and base-7 random walks.
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Two rational numbers ANIMATION

The base-4 digit expansion of Q1 and Q2:

Q1=
0.221221012232121200122101223121001222100011232123121000122210001222
10001222100012221000012221000122201103010122010012010311033333333333
33333333333333330111111111111111111111111111100100000000300300320032
00320030223000322203000322230003022220300032223000322230003222300032
22320000232223000322230032221330023321233023213232112112121222323233
33303000001000323003230032203032030110333011103301103101111011332333
3232322321221211211121122322222122...

Q2=
0.221221012232121200122101223121001222100011232123121000122210001222
10001222100012221000012221000122201103010122010012010311033333333333
33333333333333330111111111111111111111111111100100000000300300320032
00320030223000322203000322230003022220300032223000322230003222300032
22320000232223000322230032221330023321233023213232112112121222323233
33303000001000323003230032203032030110333011103301103101111011000000
000000...
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Two rational numbers ANIMATION

Figure : Self-referent walks on the rational numbers Q1 (top) and Q2 (bottom).
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Two more rationals Hard to tell from their decimal expansions

The following relatively small rational numbers [G. Marsaglia, 2010]

Q3 =
3624360069
7000000001

and Q4 =
123456789012

1000000000061
,

have base-10 periods with huge length of 1,750,000,000 digits and
1,000,000,000,060 digits, respectively.

(a) Q3 (b) Q4

Figure : Walks on the first million base-10 digits of the rationals Q3 and Q4.
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Walks on the digits of numbers ANIMATION

Figure : A walk on the first 10 million base-4 digits of π.
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Walks on the digits of numbers
Coloured by hits (more pink is more hits)

Figure : 100 million base-4 digits of π coloured by number of returns to points.
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The Stoneham numbers αb,c = ∑
∞
n=1

1
cnbcn

1973 Richard Stoneham proved some of the following (nearly
‘natural’) constants are b-normal for relatively prime integers b,c:

αb,c :=
1

cbc +
1

c2bc2 +
1

c3bc3 + . . ..

Such super-geometric sums are Stoneham constants. To 10 places

α2,3 =
1

24
+

1
3608

+
1

3623878656
+ ...

Theorem (Normality of Stoneham constants, Bailey–Crandall ’02)

For every coprime pair of integers b≥ 2 and c≥ 2, the constant αb,c is
b-normal.

Theorem (Nonnormality of Stoneham constants, Bailey–Borwein ’12)

Given coprime b≥ 2 and c≥ 2, such that c < bc−1, the constant αb,c is
bc-nonnormal.

Since 3 < 23−1 = 4, α2,3 is 2-normal and 6-nonnormal !
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The Stoneham numbers αb,c = ∑
∞
n=1

1
cnbcn

Figure : α2,3 is 2-normal (top) but 6-nonnormal (bottom). Is seeing believing?
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The Stoneham numbers αb,c = ∑
∞
n=1

1
cnbcn

Figure : Is α2,3 3-normal or not?
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The expected distance to the origin
√

πN
2dN
→ 1

Theorem
The expected distance dN to the origin of a base-b random walk of N
steps behaves like to

√
πN/2.

Number Base Steps

Average normalized
dist. to the origin:

1
Steps

Steps
∑

N=2

distN√
πN
2

Normal

Mean of 10,000 4 1,000,000 1.00315 Yesrandom walks
Mean of 10,000 walks 4 1,000,000 1.00083 ?on the digits of π

α2,3 3 1,000,000 0.89275 ?
α2,3 4 1,000,000 0.25901 Yes
α2,3 6 1,000,000 108.02218 No

π 4 1,000,000 0.84366 ?
π 6 1,000,000 0.96458 ?
π 10 1,000,000 0.82167 ?
π 10 1,000,000,000 0.59824 ?√
2 4 1,000,000 0.72260 ?

Champernowne C10 10 1,000,000 59.91143 Yes
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Number of points visited For a 2D lattice

The expected number of distinct points visited by an N-step
random walk on a two-dimensional lattice behaves for large N
like πN/ log(N) (Dvoretzky–Erdős, 1951).

Practical problem: Convergence is slow (O
(
N log logN/(logN)2

)
).

1988 D. Downham and S. Fotopoulos gave better bounds on the
expectation. It lies in:(

π(N +0.84)
1.16π−1− log2+ log(N +2)

,
π(N +1)

1.066π−1− log2+ log(N +1)

)
.

For example, for N = 106 these bounds are (199256.1,203059.5),
while πN/ log(N) = 227396, which overestimates the expectation.
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Practical problem: Convergence is slow (O
(
N log logN/(logN)2

)
).

1988 D. Downham and S. Fotopoulos gave better bounds on the
expectation. It lies in:(

π(N +0.84)
1.16π−1− log2+ log(N +2)

,
π(N +1)

1.066π−1− log2+ log(N +1)

)
.

For example, for N = 106 these bounds are (199256.1,203059.5),
while πN/ log(N) = 227396, which overestimates the expectation.

Borwein and Aragón (University of Newcastle, Australia) Walking on real numbers www.carma.newcastle.edu.au/walks

http://www.carma.newcastle.edu.au/walks


Introduction Randomness Normality Random walks Features of random walks Other tools & representations

Number of points visited For a 2D lattice

The expected number of distinct points visited by an N-step
random walk on a two-dimensional lattice behaves for large N
like πN/ log(N) (Dvoretzky–Erdős, 1951).
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Catalan’s constant G = 1+1/4+1/9+1/16+ · · ·

Figure : A walk on one million
quad-bits of G with height showing
frequency Figure : http://www.ams.org/notices/201307/
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Paul Erdős (1913-1996) “My brain is open”

(a) Paul Erdős (Banff 1981. I was there) (b) Émile Borel (1871–1956)

Figure : Two of my favourites. Consult MacTutor.
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Number of points visited: Again π looks random

0 2000 4000 6000 8000 10000
120000

140000

160000

180000

200000

220000

240000

260000

(a) (Pseudo)random walks.

0 2000 4000 6000 8000 10000
120000

140000

160000

180000

200000

220000

240000

260000

(b) Walks built by chopping up 10 billion
digits of π.

Figure : Number of points visited by 10,000 million-steps base-4 walks.
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Points visited by various base-4 walks

Number Steps Sites visited
Bounds on the expectation of
sites visited by a random walk
Lower bound Upper bound

Mean of 10,000
1,000,000 202,684 199,256 203,060

random walks
Mean of 10,000 walks

1,000,000 202,385 199,256 203,060
on the digits of π

α2,3 1,000,000 95,817 199,256 203,060
α3,2 1,000,000 195,585 199,256 203,060
π 1,000,000 204,148 199,256 203,060
π 10,000,000 1,933,903 1,738,645 1,767,533
π 100,000,000 16,109,429 15,421,296 15,648,132
π 1,000,000,000 138,107,050 138,552,612 140,380,926
e 1,000,000 176,350 199,256 203,060√
2 1,000,000 200,733 199,256 203,060

log2 1,000,000 214,508 199,256 203,060
Champernowne C4 1,000,000 548,746 199,256 203,060
Rational number Q1 1,000,000 378 199,256 203,060
Rational number Q2 1,000,000 939,322 199,256 203,060
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Normal numbers need not be so “random” ...

Figure : Champernowne C10 = 0.123456789101112 . . . (normal).
Normalized distance to the origin: 15.9 (50,000 steps).
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Normal numbers need not be so “random” ...

Figure : Champernowne C4 = 0.123101112132021 . . . (normal).
Normalized distance to the origin: 18.1 (100,000 steps).
Points visited: 52760. Expectation: (23333, 23857).
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Normal numbers need not be so “random” ...

Figure : Stoneham α2,3 = 0.0022232032 . . .4 (normal base 4).
Normalized distance to the origin: 0.26 (1,000,000 steps).
Points visited: 95817. Expectation: (199256, 203060).
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Normal numbers need not be so “random” ...

Figure : Stoneham α2,3 = 0.0022232032 . . .4 (normal base 4).
Normalized distance to the origin: 0.26 (1,000,000 steps).
Points visited: 95817. Expectation: (199256, 203060).
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α2,3 is 4-normal but not so “random” ANIMATION
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Figure : A pattern in the digits of α2,3 base 4. We show only positions of the
walk after 3

2 (3
n +1), 3

2 (3
n +1)+3n and 3

2 (3
n +1)+2 ·3n steps, n = 0,1, . . . ,11.
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Experimental conjecture Proven 12-12-12 by Coons

Theorem (Base-4 structure of Stoneham α2,3)

Denote by ak the kth digit of α2,3 in its base 4 expansion:
α2,3 = ∑

∞
k=1 ak/4k, with ak ∈{0,1,2,3} for all k. Then, for all n= 0,1,2, . . .

one has:

(i)
3
2 (3

n+1)+3n

∑
k= 3

2 (3
n+1)

eakπ i/2 =

{
−i, n odd
−1, n even ;

(ii) ak = ak+3n = ak+2·3n if k =
3(3n +1)

2
,

3(3n +1)
2

+1, . . . ,
3(3n +1)

2
+3n−1.
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Likewise, α3,5 is 3-normal ... but not very “random” ANIMATION
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Box-dimension: Tends to ‘2’ for a planar random walk

Box-dimension = lim
side→0

log(# boxes)
log(1/side)

Norway is “frillier” — Hitchhiker’s Guide to the Galaxy

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds &
ferns not buildings & cars). Curves have dimension 1, squares dimension 2
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Box-dimension: Tends to ‘2’ for a planar random walk

6 5 4 3 2 1 0
log(1/side)

6

7

8

9
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11

12

13

lo
g(

#
bo
x
es

)

Approximate fractal dimension of Champernowne C4 in base 4: 1.09
 Steps of the walk: 1,000,000

Data
Least squares line

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds &
ferns not buildings & cars). Curves have dimension 1, squares dimension 2
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Box-dimension: Tends to ‘2’ for a planar random walk
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Approximate fractal dimension of α2,3 in base 6: 1.057
 Steps of the walk: 1,000,000

Data
Least squares line

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds &
ferns not buildings & cars). Curves have dimension 1, squares dimension 2
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Box-dimension: Tends to ‘2’ for a planar random walk
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Approximate fractal dimension of Pi in base 4: 1.842
 Steps of the walk: 1,000,000,000

Data
Least squares line

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds &
ferns not buildings & cars). Curves have dimension 1, squares dimension 2
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Three dimensional walks: Using base six — soon on 3D screen

Figure : Matt Skerritt’s 3D walk on π (base 6), showing one million steps. But
3D random walks are not recurrent.
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Three dimensional walks: Using base six — soon on 3D screen

Figure : Matt Skerritt’s 3D walk on π (base 6), showing one million steps. But
3D random walks are not recurrent.

“A drunken man will find his way home, a drunken bird will get
lost forever.” (Kakutani)
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Three dimensional printing: 3D everywhere

Figure : The future is here ...

www.digitaltrends.com/cool-tech/the-worlds-first-plane-created-entirely-by-3d-printing-takes-flight/

www.shapeways.com/shops/3Dfractals
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Chaos games: Move half-way to a (random) corner

Figure : Coloured by frequency — leads to random fractals.
Row 1: Champernowne C3, α3,5, random, α2,3. Row 2: Champernowne C4,
π, random, α2,3. Row 3: Champernowne C6, α3,2, random, α2,3.
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Automatic numbers: Thue–Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but
fascinating rules...giving structured/boring walks:

Figure : Paper folding. The sequence of left and right folds along a strip of
paper that is folded repeatedly in half in the same direction. Unfold and read
‘right’ as ‘1’ and ‘left’ as ‘0’: 1 0 1 1 0 0 1 1 1 0 0 1 0 0
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Automatic numbers: Thue–Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but
fascinating rules...giving structured/boring walks:

Figure : Paper folding. The sequence of left and right folds along a strip of
paper that is folded repeatedly in half in the same direction. Unfold and read
‘right’ as ‘1’ and ‘left’ as ‘0’: 1 0 1 1 0 0 1 1 1 0 0 1 0 0

Thue–Morse constant (transcendental; 2-automatic, hence nonnormal):

TM2 =
∞

∑
n=1

1
2t(n)

where t(0) = 0, while t(2n) = t(n) and t(2n+1) = 1− t(n)

0.01101001100101101001011001101001 . . .
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Automatic numbers: Thue–Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but
fascinating rules...giving structured/boring walks:

(a) 1,000 bits of Thue–Morse
sequence.

(b) 10 million bits of paper-
folding sequence.

Figure : Walks on two automatic and so nonnormal numbers.
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Automatic numbers: Turtle plots look great!

(a) Ten million digits of the paper-
folding sequence, rotating 60◦.

(b) One million digits of the paper-
folding sequence, rotating 120◦ (a
dragon curve).

(c) 100,000 digits of the Thue–
Morse sequence, rotating 60◦ (a
Koch snowflake).

(d) One million digits of π, rotating
60◦.

Figure : Turtle plots on various constants with different rotating angles in
base 2—where ‘0’ yields forward motion and ‘1’ rotation by a fixed angle.
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Genomes as walks: ... we are all base 4 numbers (ACGT/U)

The X Chromosome (34K) and Chromosome One (10K).

r Chromosomes look less like π and more like concatenation
numbers?
Thank you!
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