Seeing Things by Walking on Real Numbers

Jonathan Borwein FRSC FAAS FAA FBAS (Joint work with Francisco Aragón, David Bailey and Peter Borwein)

CARMA

School of Mathematical \& Physical Sciences
The University of Newcastle, Australia

http://carma.newcastle.edu.au/meetings/evims/

For 2014 Presentations

(1)
Introduction

- Dedications
(2) Randomness
- Randomness is slippery
(3) Normality
- Normality of Pi
- BBP Digit Algorithms
(4) Random walks
- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited

6 Other tools \& representations

- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
(7) Media coverage \& related stuff
- 100 billion step walk on π
- Media coverage

Me and my collaborators

MAA 3.14

http://www. carma.newcastle.edu.au/jon/pi-monthly.pdf

My collaborators

Outreach:

images and animations led to high-level research which went viral

This rendering of the first 100 bilition digits of pl proves theyre random - untess you see a pattern

Spotashape and reinvent maths

Wired UK August 2013

Sporastape and reinvent maths

This rendering of the tirst 100 bilizon dialts of pl proves they'so random = unless you see a pattern

Ihis image is a representation of the first tow billion atisity of oil. "I was imierested ic: see what IVG Bet by turempo mumber into
 from the Universiry of Nemeastip in Ausiratia. whol collaborated with programmer fran Aragon, "We watsted to growt, with the imethe. that the digits of pe are reinly ranbom." eqphiss Arason. "If they weren't, the sleture weald have a structure or a specifisaliy repeatins shape. Hite a circle, or same brocesili.'

This imane is cyurnatete to fotoco phatus from
 sigapane The teshangue detsen't anly coufirm estahllahedrhowries-Is prowhletimsights:durime the dramiex of a suppresedly farsom sereitice
 a rigularly occurring shape withit tho figure. We woreable to show thet the Stomehumamber is not rancom in base 6.7 be explalins. We would newor lave knewn this without visurlais?
 aH Phemit shtm.

Outreach:

images and animations led to high-level research which went viral

- 100 billion base four digits of π on Gigapan
- Really big pictures are often better than movies

Contents

9
 Introduction
 - Dedications

2) Randomness

- Randomness is slippery
(3) Normality
- Normality of Pi
- BBP Digit AlgorithmsRandom walks
- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited

6 Other tools \& representations

- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers

0
Media coverage \& related stuff

- 100 billion step walk on π
- Media coverage

Dedication: To my father and colleague David Borwein (1924-)

A) ilmacs com

uncoming events

* Abliverts
+ Thery st s Clance.
+ Wers at a Bleror
- Boar as Enent
- Preluind Peesentricios
* SFUCeminity Engaponest Selest
* Srupasamon OMan Seset
* BMU Besraph Mirumoins
- Couns © Coast Seine
fens
- Colioquipra
+ Melay
+ Cindirierse 5 Withilap
- Oubsech
* Ins Anser inumes they
- Wershog - Doiel Borion

- Mupal Eveis
- Wheop-Sconts

Premention

+ Coant Conal Samer Seles
- spur Cemininty Eromponan Semas
- BRU Mastertans Sinina Becas
- sruflemanch Oias sermer servs.
- Cadopaten
* Conlerenoes a Wodahops
+ CnC Sminno Seies
 Catrpian

Itome > Woknhep - Disuls Monesin

Workshop - David Borwein at 90

Workshop in Honour of David Borwein at 90

$$
\text { April 16, } 2014
$$

The IRMACS Centre, SFU, Burnaby, BC
Meving wethored mose than 130 patlicrisots in a span of 53 yeark. Died flonivin is one of tes most vignilicast conflbutors to te develeprnent of
 descondars of G.4. Hevos. Diedd is koone for his resoweh in Be womuatity theory of seles and inogralh, messam theory and peobabily feosci and in munber heog. He has alse pellihet co gwneralized vebgrallents and coderivations, and an the immarkable propelias of singl- and many varikile
 in restach.
Dewd Bonuen served as presidens of The Canasan Mathemancas Socety (CMS) tiven 19t5 - 1987. To the wider Conalien mathonalical commanty David Bonsein in khown as the eporym of the CME Distingeiahed Carear Ansurd.

Schedvie:

120-135	Openiep Remaka and Weloune ly Prer Bortes
138.220	
239.3 -35	
215-370	Cothe limak
135-475	
475-5m	
$560-8.15$	
$5.75-8.25$	

Dedication: To my friend

Dedication: To my friend

- A remarkable man and a brilliant (physical and computational) scientist and inventor, from Reed College
- Chief scientist for NeXT
- Apple distinguished scientist
- and High Performance Computing head

Dedication: To my friend

- A remarkable man and a brilliant (physical and computational) scientist and inventor, from Reed College
- Chief scientist for NeXT
- Apple distinguished scientist
- and High Performance Computing head
- Developer of the Pixar compression format
- and the iPod shuffle
http://en.wikipedia.org/wiki/Richard_Crandall

Some early conclusions:

Key ideas: randomness, normality of numbers, planar walks, and fractals

How not to experiment

Some early conclusions:

Key ideas: randomness, normality of numbers, planar walks, and fractals
Maths can be done experimentally (it is fun)

- using computer algebra, numerical computation and graphics: SNaG

- computations, tables and pictures are experimental data
- but you can not stop thinking

[^0]
Some early conclusions:

Key ideas: randomness, normality of numbers, planar walks, and fractals
Maths can be done experimentally (it is fun)

- using computer algebra, numerical computation and graphics: SNaG

- computations, tables and pictures are experimental data
- but you can not stop thinking

Making mistakes is fine

- as long as you learn from them
- keep your eyes open (conquer fear)

How not to experiment

Some early conclusions:

Key ideas: randomness, normality of numbers, planar walks, and fractals
Maths can be done experimentally (it is fun)

- using computer algebra, numerical computation and graphics: SNaG

How not to experiment

- computations, tables and pictures are experimental data
- but you can not stop thinking Making mistakes is fine
- as long as you learn from them
- keep your eyes open (conquer fear)

You can not use what you do not know

- and what you know you can usually use
- you do not need to know much before you start research (as we shall see)

Some early conclusions:

Key ideas: randomness, normality of numbers, planar walks, and fractals
Maths can be done experimentally (it is fun)

- using computer algebra, numerical computation and graphics: SNaG

How not to experiment

- computations, tables and pictures are experimental data
- but you can not stop thinking

Making mistakes is fine

- as long as you learn from them
- keep your eyes open (conquer fear)

You can not use what you do not know

- and what you know you can usually use
- you do not need to know much before you start research (as we shall see)

It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment.

It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment.

When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again; the never-satisfied man is so strange if he has completed a structure, then it is not in order to dwell in it peacefully, but in order to begin another.

I imagine the world conqueror must feel thus, who, after one kingdom is scarcely conquered, stretches out his arms for others.

Carl Friedrich Gauss
(1777-1855)

It is not knowledge, but the act of learning, not possession but the act of getting there, which grants the greatest enjoyment.

When I have clarified and exhausted a subject, then I turn away from it, in order to go into darkness again; the never-satisfied man is so strange if he has completed a structure, then it is not in order to dwell in it peacefully, but in order to begin another.

I imagine the world conqueror must feel thus, who, after one kingdom is scarcely conquered, stretches out his arms for others.

Carl Friedrich Gauss (1777-1855)

- In an 1808 letter to his friend Farkas (father of Janos Bolyai)
- Archimedes, Euler, Gauss are the big three

Walking on Real Numbers

A Multiple Media Mathematics Project

MOTIVATED by the desire to visualize large mathematical data sets, especially in number theory, we offer various tools for re: floating point numbers as planar (or three dimensional) walks and for quantitatively measuring their "randomness". This is ou homepage that discusses and showcases our research Come back regularly for updates.

RESEARCH TEAM: Francisco 1. Aragón Artacho, David H. Bailey, Jonathan M. Borwein. Peter B. Borwein with the assistance of Ja Fountain and Matt Skerritt CONTACT: EranAragon

A TPQLE OF SLIGHTLY WRONG ECOATIONS AND IDENTITES USOUL RER APPROXIMATIONS mory TROUNG TEAGHERS (FOUOUSNG A ThX OF BNL:NO-URCR fu. uns rec Sifo ovies mense vien		
R2minat		Anouer
acioreven	$9{ }^{4}$	${ }_{\sim}^{\text {acm }}$
Eech swncen	$\left(0^{4}\right.$	${ }_{\sim}^{\text {acma }}$
O006\% ruytem	9	${ }_{0} 0 \times 0$
Sumes matbr	\%	
Scags maypr	585100-60	
ACEOTE Divose (ouen	15^{*}	${ }_{\sim}^{\text {or }} 10 \times 10$
PNos Conew	$\frac{1}{300^{21}}$	${ }_{\sim 106}$
ficsmactes cosint	$\frac{1}{140}$	[497]
$\begin{aligned} & \text { Focment } \\ & \text { Opfe } \end{aligned}$	$\frac{3}{4 x^{*}{ }^{\text {² }}}$	
We nase		
$\begin{aligned} & \text { Joans } \\ & \text { Concent } \end{aligned}$	$\left(7^{\text {H }}\right.$	

A surprising fan?

> He [David Attenborough] described current pop music as "hugely sexual and even lets slip that if he were not one of the world's most famous broadcasters, he would like to try his hand at academia. "I wish I was a mathematician, he said.
> "I know a mathematician would talk about the beauty of an equation. And you can sense that when you hear a five-part fugue by Bach, which also has a mathematical beauty.

Contents

Introduction
 - Dedications

(2) Randomness

- Randomness is slippery
- Normality of Pi
- BBP Digit AlgorithmsRandom walks
- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited

6 Other tools \& representations

- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
©
Media coverage \& related stuff
- 100 billion step walk on π
- Media coverage

We shall explore things like:

Remember: π is area of a circle of radius one (and perimeter is 2π).

We shall explore things like:

How random is Pi ?

Remember: π is area of a circle of radius one (and perimeter is 2π). First true calculation of π was due to Archimedes of Syracuse (287-212 BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons

We shall explore things like:

How random is Pi ?

Remember: π is area of a circle of radius one (and perimeter is 2π). First true calculation of π was due to Archimedes of Syracuse (287-212 BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons

We shall explore things like:

How random is Pi ?

Remember: π is area of a circle of radius one (and perimeter is 2π). First true calculation of π was due to Archimedes of Syracuse (287-212 BCE). He used a brilliant scheme for doubling inscribed and circumscribed polygons

nate

Where Greece was:

Magna Graecia

Where Greece was:

Magna Graecia

1. Syracuse
2. Troy
3. Byzantium Constantinople
4. Rhodes (Helios)
5. Hallicarnassus (Mausolus)
6. Ephesus (Artemis)
7. Athens (Zeus)

Where Greece was:

Magna Graecia

1. Syracuse
2. Troy
3. Byzantium Constantinople
4. Rhodes (Helios)
5. Hallicarnassus (Mausolus)
6. Ephesus (Artemis)
7. Athens (Zeus)

The others of the Seven Wonders of the Ancient World: Lighthouse of Alexandria, Pyramids of Giza, Gardens of Babylon

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{gathered}
\pi=3.141592653589793238462643383279502884197169399375 \ldots \\
e=2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2}=1.414213562373095048801688724209698078569671875376 \ldots
\end{gathered}
$$

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{gathered}
\pi=3.141592653589793238462643383279502884197169399375 \ldots \\
e=2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2}=1.414213562373095048801688724209698078569671875376 \ldots
\end{gathered}
$$

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{gathered}
\pi=3.141592653589793238462643383279502884197169399375 \ldots \\
e=2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2}=1.414213562373095048801688724209698078569671875376 \ldots
\end{gathered}
$$

Are they really?

Randomness

- The digits expansions of $\pi, e, \sqrt{2}$ appear to be "random":

$$
\begin{gathered}
\pi=3.141592653589793238462643383279502884197169399375 \ldots \\
e=2.718281828459045235360287471352662497757247093699 \ldots \\
\sqrt{2}=1.414213562373095048801688724209698078569671875376 \ldots
\end{gathered}
$$

Are they really?

- 1949 ENIAC (Electronic Numerical Integrator and Calculator) computed of π to 2,037 decimals (in 70 hours) -proposed by polymath John von Neumann (1903-1957) to shed light on distribution of π (and of e).

Two continued fractions

Change representations often

Gauss map. Remove the integer, invert the fraction and repeat: for 3.1415926 and 2.7182818 to get the fractions below.

Two continued fractions

Gauss map. Remove the integer, invert the fraction and repeat: for 3.1415926 and 2.7182818 to get the fractions below.

Two continued fractions

Gauss map. Remove the integer, invert the fraction and repeat: for 3.1415926 and 2.7182818 to get the fractions below.

Leonhard Euler (17071783) named e and π.
"Lisez Euler, lisez Euler, c'est notre maître à tous." Simon Laplace (1749-1827)

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
$-e$ has a fine continued fraction

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
- e has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
$-e$ has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0}$

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
$-e$ has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π
- There are equally many zeroes and ones in the binary expansion of π

Are the digits of π random?

Digit	Ocurrences
0	$99,993,942$
1	$99,997,334$
2	$100,002,410$
3	$99,986,911$
4	$100,011,958$
5	$99,998,885$
6	$100,010,387$
7	$99,996,061$
8	$100,001,839$
9	$100,000,273$
Total	$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$

Table : Counts of first billion digits of π. Second half is 'right' for law of large numbers.

Pi is Still Mysterious. We know π is not algebraic; but do not 'know' (in sense of being able to prove) whether

- The simple continued fraction for π is unbounded
- Euler found the 292
$-e$ has a fine continued fraction
- There are infinitely many sevens in the decimal expansion of π
- There are infinitely many ones in the ternary expansion of π
- There are equally many zeroes and ones in the binary expansion of π
- Or pretty much anything else...

What is "random"?

A hard question

What is "random"?

A hard question

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)?
- Incompressible ('zip’ does not help)?

What is "random"?

A hard question

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)?
- Incompressible ('zip’ does not help)?

Conjecture (Borel) All irrational algebraic numbers are b-normal

What is "random"?

A hard question

TOUR OF ACCOUNTING	
OVER HERE WE HAVE OUR RANDOM NUMBER GENERATOR.	

It might be:

- Unpredictable (fair dice or coin-flips)?
- Without structure (noise)?
- Algorithmically random (π is not)?
- Quantum random (radiation)?
- Incompressible ('zip' does not help)?

Conjecture (Borel) All irrational algebraic numbers are b-normal

Best Theorem [BBCP, 04] (Feeble but hard) Asymptotically all degree d algebraics have at least $n^{1 / d}$ ones in binary (should be $n / 2$)

Randomness in Pi?

http://mkweb.bcgsc.ca/pi/art/

Normality

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- Given an integer $b \geq 2$, almost all real numbers, with probability one, are b-normal (Borel).

Normality

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- Given an integer $b \geq 2$, almost all real numbers, with probability one, are b-normal (Borel).
- Indeed, almost all real numbers are b-normal simultaneously for all positive integer bases ("absolute normality").

Normality

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- Given an integer $b \geq 2$, almost all real numbers, with probability one, are b-normal (Borel).
- Indeed, almost all real numbers are b-normal simultaneously for all positive integer bases ("absolute normality").
- Unfortunately, it has been very difficult to prove normality for any number in a given base b, much less all bases simultaneously.

Normal numbers

concatenation numbers

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- The first Champernowne number proven 10-normal was:

$$
C_{10}:=0.123456789101112131415161718 \ldots
$$

- 1933 by David Champernowne (1912-2000) as a student
- 1937 Mahler proved transcendental. 2012 not strongly normal

Normal numbers

concatenation numbers

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- The first Champernowne number proven 10-normal was:

$$
C_{10}:=0.123456789101112131415161718 \ldots
$$

- 1933 by David Champernowne (1912-2000) as a student
- 1937 Mahler proved transcendental. 2012 not strongly normal
- 1946 Arthur Copeland and Paul Erdős proved the same holds when one concatenates the sequence of primes:

$$
C E(10):=0.23571113171923293137414347 \ldots
$$

is 10-normal (concatenation works in all bases).

- Copeland-Erdős constant

Normal numbers

concatenation numbers

Definition

A real constant α is b-normal if, given the positive integer $b \geq 2$ (the base), every m-long string of base- b digits appears in the base- b expansion of α with precisely the expected limiting frequency $1 / b^{m}$.

- The first Champernowne number proven 10-normal was:

$$
C_{10}:=0.123456789101112131415161718 \ldots
$$

- 1933 by David Champernowne (1912-2000) as a student
- 1937 Mahler proved transcendental. 2012 not strongly normal
- 1946 Arthur Copeland and Paul Erdős proved the same holds when one concatenates the sequence of primes:

$$
C E(10):=0.23571113171923293137414347 \ldots
$$

is 10-normal (concatenation works in all bases).

- Copeland-Erdős constant
- Normality proofs are not known for $\pi, e, \log 2, \sqrt{2}$ etc.

Contents

Introduction

- Dedications

Randomness

- Randomness is slippery
(3) Normality
- Normality of Pi
- BBP Digit Algorithms

Random walks

- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
(7) Media coverage \& related stuff
- 100 billion step walk on π
- Media coverage

String	Occurrences	String	Occurrences	String	Occurrences
0	$99,993,942$	00	$10,004,524$	000	$1,000,897$
1	$99,997,334$	01	$9,998,250$	001	$1,000,758$
2	$100,002,410$	02	$9,999,222$	002	$1,000,447$
3	$99,986,911$	03	$10,000,290$	003	$1,001,566$
4	$100,011,958$	04	$10,000,613$	004	$1,000,741$
5	$99,998,885$	05	$10,002,048$	005	$1,002,881$
6	$100,010,387$	06	$9,995,451$	006	999,294
7	$99,996,061$	07	$9,993,703$	007	998,919
8	$100,001,839$	08	$10,000,565$	008	999,962
9	$100,000,273$	09	$9,999,276$	009	999,059
		10	$9,997,289$	010	998,884
		11	$9,997,964$	011	$1,001,188$
		\vdots	\vdots	\vdots	\vdots
		99	$10,003,709$	099	999,201
				\vdots	\vdots
				999	$1,000,905$
TOTAL	$1,000,000,000$	TOTAL	$1,000,000,000$	TOTAL	$1,000,000,000$

Table: Counts for the first billion digits of π.

Is π 16-normal

\hookleftarrow Counts of first trillion hex digits

0	62499881108
1	62500212206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	$\underline{\mathbf{6 2 5 0 0 2} 16752}$
9	62500120671
A	62500266095
B	62499955595
C	62500188610
D	62499613666
E	62499875079
F	62499937801
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

\hookleftarrow Counts of first trillion hex digits

0	62499881108
1	62500212206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	$\underline{62500216752}$
9	62500120671
A	62500266095
B	62499955595
C	62500188610
D	62499613666
E	62499875079
F	62499937801
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

\hookleftarrow Counts of first trillion hex digits

0	62499881108
1	62500212206
2	62499924780
3	62500188844
4	62499807368
5	62500007205
6	62499925426
7	62499878794
8	$\underline{62500216752}$
9	62500120671
A	62500266095
B	62499955595
C	62500188610
D	62499613666
E	62499875079
F	62499937801
Total	$\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

- 2011 Ten trillion hex digits computed by Yee and Kondo - and seem very normal. (2013: 12.1 trillion)
- 2012 Ed Karrel found 25 hex digits of π starting after the 10^{15} position computed using BBP on GPUs (graphics cards) at NVIDIA (too hard for Blue Gene)

Is $\pi 16$-normal

\hookleftarrow Counts of first trillion hex digits

- 2011 Ten trillion hex digits computed by Yee and Kondo - and seem very normal. (2013: 12.1 trillion)
- 2012 Ed Karrel found 25 hex digits of π starting after the 10^{15} position computed using BBP on GPUs (graphics cards) at NVIDIA (too hard for Blue Gene)
- They are 353CB3F7F0C9ACCFA9AA215F2

See www.karrels.org/pi/index.html

/

OCTOPI

Modern π Calculation Records:

Name	Year	Correct Digits
Miyoshi and Kanada	1981	$2,000,036$
Kanada-Yoshino-Tamura	1982	$16,777,206$
Gosper	1985	$17,526,200$
Bailey	Jan. 1986	$29,360,111$
Kanada and Tamura	Sep. 1986	$33,554,414$
Kanada and Tamura	Oct. 1986	$67,108,839$
Kanada et. al	Jan. 1987	$134,217,700$
Kanada and Tamura	Jan. 1988	$201,326,551$
Chudnovskys	May 1989	$480,000,000$
Kanada and Tamura	Jul. 1989	$536,870,898$
Kanada and Tamura	Nov. 1989	$1,073,741,799$
Chudnovskys	Aug. 1991	$2,260,000,000$
Chudnovskys	May 1994	$4,044,000,000$
Kanada and Takahashi	Oct. 1995	$6,442,450,938$
Kanada and Takahashi	Jul. 1997	$51,539,600,000$
Kanada and Takahashi	Sep. 1999	$206,158,430,000$
Kanada-Ushiro-Kuroda	Dec. 2002	$1,241,100,000,000$
Takahashi	Jan. 2009	$1,649,000,000,000$
Takahashi	April 2009	$2,576,980,377,524$
Bellard	Dec. 2009	$2,699,999,990,000$
Kondo and Yee	Aug. 2010	$\mathbf{5 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$
Kondo and Yee	Oct. 2011	$\mathbf{1 0 , 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$
Kondo and Yee	Dec. 2013	$\mathbf{1 2 , 1 0 0 , 0 0 0 , 0 0 0 , 0 0 0}$

Contents

Introduction

- Dedications

Randomness

- Randomness is slippery
(3) Normality
- Normality of Pi
- BBP Digit Algorithms

Random walks
- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
(7) Media coverage \& related stuff
- 100 billion step walk on π
- Media coverage

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string of hex or binary digits of π, beginning at any position, using no prior bits

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string of hex or binary digits of π, beginning at any position, using no prior bits
- is implementable on any modern computer;

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string of hex or binary digits of π, beginning at any position, using no prior bits
- is implementable on any modern computer;
- requires no multiple precision software;

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string of hex or binary digits of π, beginning at any position, using no prior bits
- is implementable on any modern computer;
- requires no multiple precision software;
- requires very little memory; and has

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string of hex or binary digits of π, beginning at any position, using no prior bits
- is implementable on any modern computer;
- requires no multiple precision software;
- requires very little memory; and has
- a computational cost growing only slightly faster than the digit position.

What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of π, you had to generate the (order of) the entire first d digits. This is not true:

- at least for hex (base 16) or binary (base 2) digits of π.
- In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for individual hex digits of π. It produces:
- a modest-length string of hex or binary digits of π, beginning at any position, using no prior bits
- is implementable on any modern computer;
- requires no multiple precision software;
- requires very little memory; and has
- a computational cost growing only slightly faster than the digit position.
- An algorithm found by computer

What BBP Is?

Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{1}
\end{equation*}
$$

What BBP Is?
 Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{1}
\end{equation*}
$$

- Millionth hex digit (four millionth bit) takes under 30 secs on a fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.

What BBP Is?
 Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{1}
\end{equation*}
$$

- Millionth hex digit (four millionth bit) takes under 30 secs on a fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.

What BBP Is?
 Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{1}
\end{equation*}
$$

- Millionth hex digit (four millionth bit) takes under 30 secs on a fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.

Equation (1) was discovered numerically using integer relation methods over months in my BC lab, CECM. It arrived coded as:

What BBP Is?
 Reverse Engineered Mathematics

This is based on the following then new formula for π :

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left(\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right) \tag{1}
\end{equation*}
$$

- Millionth hex digit (four millionth bit) takes under 30 secs on a fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.

Equation (1) was discovered numerically using integer relation methods over months in my BC lab, CECM. It arrived coded as:

$$
\pi=4_{2} \mathrm{~F}_{1}\left(1, \frac{1}{4} ; \frac{5}{4},-\frac{1}{4}\right)+2 \tan ^{-1}\left(\frac{1}{2}\right)-\log 5
$$

where ${ }_{2} \mathrm{~F}_{1}(1,1 / 4 ; 5 / 4,-1 / 4)=0.955933837 \ldots$ is a Gaussian hypergeometric function.

Edge of Computation Prize Finalist

EdgeThe Third Culture

Home	About Edge	Features	Edge Editions	Press	The Reality Club	Third Culture	Digerati	Edge Search

THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

Edge of Computation Prize Finalist

Edge The Third Culture

Home	About Edge	Features	Edge Editions	Press	The Reality Cliub	Third Culture	Digerati	Edge Search

THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize

Edge of Computation Prize Finalist

EdgeThe Third Culture

Home	About Edge	Features	Edge Editions	Press	The Reality Club	Third Culture	Digerati	Edge Search

THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize
- Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...

Edge of Computation Prize Finalist

EdgeThe Third Culture

Home	About Edge	Features	Edge Editions	Press	The Reality Club	Third Culture	Digerati	Edge Search

THE \$100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea, performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is a $\$ 100,000$ prize initiated and funded by science philanthropist Jeffrey Epstein.

- BBP was the only mathematical finalist (of about 40) for the first Edge of Computation Science Prize
- Along with founders of Google, Netscape, Celera and many brilliant thinkers, ...
- Won by David Deutsch — discoverer of Quantum Computing.

Stefan Banach (1892-1945)
 Another Nazi casuality

A mathematician is a person who can find analogies between theorems; a better mathematician is one who can see analogies between proofs and the best mathematician can notice analogies between theories. ${ }^{1}$

[^1]
Contents

Introduction

- Dedications

Randomness

- Randomness is slipperyNormality
- Normality of Pi
- BBP Digit Algorithms

4. Random walks

- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
(7) Media coverage \& related stuff
- 100 billion step walk on π
- Media coverage

One 1500-step ramble: a familiar picture

One 1500-step ramble: a familiar picture

- 1D (and 3D) easy. Expectation of RMS distance is easy (\sqrt{n}).

One 1500-step ramble: a familiar picture

- 1D (and 3D) easy. Expectation of RMS distance is easy (\sqrt{n}).
- 1D or 2D lattice: probability one of returning to the origin.

1000 three-step rambles: a less familiar picture?

Art meets science

AAAS \& Bridges conference

Art meets science

AAAS \& Bridges conference

A visualization of six routes that 1000 ants took after leaving their nest in search of food. The jagged blue lines represent the breaking off of random ants in search of seeds.
(Nadia Whitehead 2014-03-25 16:15)

Art meets science

AAAS \& Bridges conference

A visualization of six routes that 1000 ants took after leaving their nest in search of food. The jagged blue lines represent the breaking off of random ants in search of seeds.
(Nadia Whitehead 2014-03-25 16:15)
(JonFest 2011 Logo) Three-step random walks.
The (purple) expected distance travelled is 1.57459 ...
The closed form W_{3} is given below.

$$
W_{3}=\frac{16 \sqrt[3]{4} \pi^{2}}{\Gamma\left(\frac{1}{3}\right)^{6}}+\frac{3 \Gamma\left(\frac{1}{3}\right)^{6}}{8 \sqrt[3]{4} \pi^{4}}
$$

A Little History:

From a vast literature

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

A Little History:

From a vast literature

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.

A Little History:

From a vast literature

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.

Karl Pearson (1857-1936): founded statistics, eugenicist \& socialist, changed name ($C \mapsto K$), declined knighthood.

A Little History:

From a vast literature

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.
The problem "is the same as that of the composition of n isoperiodic vibrations of unit amplitude and phases distributed at random" he studied in 1880 (diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist \& socialist, changed name $(C \mapsto K)$, declined knighthood.

A Little History:

From a vast literature

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.
The problem "is the same as that of the composition of n isoperiodic vibrations of unit amplitude and phases distributed at random" he studied in 1880 (diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist \& socialist, changed name $(C \mapsto K)$, declined knighthood.

- UNSW: Donovan and Nuyens, WWII cryptography.

A Little History:
 From a vast literature

L: Pearson posed question about a 'rambler' taking unit random steps (Nature, '05).

R: Rayleigh gave large n estimates of density: $p_{n}(x) \sim \frac{2 x}{n} e^{-x^{2} / n}$ (Nature, 1905) with $n=5,8$ shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon, explained why sky is blue.
The problem "is the same as that of the composition of n isoperiodic vibrations of unit amplitude and phases distributed at random" he studied in 1880 (diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist \& socialist, changed name $(C \mapsto K)$, declined knighthood.

- UNSW: Donovan and Nuyens, WWII cryptography.
- appear in graph theory, quantum chemistry, in quantum physics as hexagonal and diamond lattice integers, etc

Why is the sky blue?

MY HOBBY: TEACHING TRICKY QUESTIONS TO
THE CHILDREN DF MY SCIENIIST FRIENDS.

Contents

Introduction

- Dedications

Randomness

- Randomness is slipperyNormality
- Normality of Pi
- BBP Digit Algorithms

(4) Random walks

- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
(7)

Media coverage \& related stuff

- 100 billion step walk on π
- Media coverage

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
1=\uparrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
1=\uparrow
$$

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$
$2=\leftarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$
$2=\leftarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$2=\leftarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$3=\downarrow$

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
3=\downarrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

$$
0=\rightarrow
$$

What is a (base four) random walk ?

Pick a random number in $\{0,1,2,3\}$ and move according to $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

11222330

What is a random walk (base 4)?

Pick a random number in $\{0,1,2,3\}$ and move $0=\rightarrow, 1=\uparrow, 2=\leftarrow, 3=\downarrow$

Figure : A million step base-4 pseudorandom walk. We use the spectrum to show when we visited each point (ROYGBIV and R).

Random walks look similarish

Figure : Eight different base-4 (pseudo)random ${ }^{2}$ walks of one million steps.

[^2]

Figure : Directions for base-3 and base-7 random walks.

We are all base-four numbers (AGCT/U)

Contents

Introduction

- Dedications

Randomness

- Randomness is slipperyNormality
- Normality of Pi
- BBP Digit Algorithms

(4) Random walks

- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
(7) Media coverage \& related stuff
- 100 billion step walk on π
- Media coverage

Two rational numbers

The base-4 digit expansion of $Q 1$ and $Q 2$:

Q1=
0.221221012232121200122101223121001222100011232123121000122210001222 10001222100012221000012221000122201103010122010012010311033333333333 33333333333333330111111111111111111111111111100100000000300300320032 00320030223000322203000322230003022220300032223000322230003222300032 22320000232223000322230032221330023321233023213232112112121222323233 33303000001000323003230032203032030110333011103301103101111011332333 3232322321221211211121122322222122...

Q2 $=$
0.221221012232121200122101223121001222100011232123121000122210001222 10001222100012221000012221000122201103010122010012010311033333333333 33333333333333330111111111111111111111111111100100000000300300320032 00320030223000322203000322230003022220300032223000322230003222300032 22320000232223000322230032221330023321233023213232112112121222323233 33303000001000323003230032203032030110333011103301103101111011000000 000000 ...

Two rational numbers

Figure : Self-referent walks on the rational numbers $Q 1$ (top) and $Q 2$ (bottom).

Two more rationals

The following relatively small rational numbers [G. Marsaglia, 2010]

$$
Q 3=\frac{3624360069}{7000000001} \text { and } Q 4=\frac{123456789012}{1000000000061},
$$

have base-10 periods with huge length of 1,750,000,000 digits and $\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 6 0}$ digits, respectively.

Two more rationals

The following relatively small rational numbers [G. Marsaglia, 2010]

$$
Q 3=\frac{3624360069}{7000000001} \text { and } Q 4=\frac{123456789012}{1000000000061},
$$

have base-10 periods with huge length of 1,750,000,000 digits and $\mathbf{1 , 0 0 0 , 0 0 0 , 0 0 0 , 0 6 0}$ digits, respectively.

Figure : Walks on the first million base-10 digits of the rationals $Q 3$ and $Q 4$.

Walks on the digits of numbers

Figure : A walk on the first 10 million base- 4 digits of π.

Walks on the digits of numbers

Figure : 100 million base- 4 digits of π coloured by number of returns to points.

Contents

Introduction

- Dedications

Randomness

- Randomness is slipperyNormality
- Normality of Pi
- BBP Digit Algorithms

4 Random walks

- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers

O
Media coverage \& related stuff

- 100 billion step walk on π
- Media coverage

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{c^{n}}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{\pi}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

Theorem (Normality of Stoneham constants, Bailey-Crandall '02)
For every coprime pair of integers $b \geq 2$ and $c \geq 2$, the constant $\alpha_{b, c}$ is b-normal.

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{n}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

Theorem (Normality of Stoneham constants, Bailey-Crandall '02)
For every coprime pair of integers $b \geq 2$ and $c \geq 2$, the constant $\alpha_{b, c}$ is b-normal.

Theorem (Nonnormality of Stoneham constants, Bailey-Borwein '12)

Given coprime $b \geq 2$ and $c \geq 2$, such that $c<b^{c-1}$, the constant $\alpha_{b, c}$ is $b c$-nonnormal.

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{m^{n}}}
$$

1973 Richard Stoneham proved some of the following (nearly 'natural') constants are b-normal for relatively prime integers b, c :

$$
\alpha_{b, c}:=\frac{1}{c b^{c}}+\frac{1}{c^{2} b^{c^{2}}}+\frac{1}{c^{3} b^{c^{3}}}+\ldots
$$

Such super-geometric sums are Stoneham constants. To 10 places

$$
\alpha_{2,3}=\frac{1}{24}+\frac{1}{3608}+\frac{1}{3623878656}+\ldots
$$

Theorem (Normality of Stoneham constants, Bailey-Crandall '02)
For every coprime pair of integers $b \geq 2$ and $c \geq 2$, the constant $\alpha_{b, c}$ is b-normal.

Theorem (Nonnormality of Stoneham constants, Bailey-Borwein '12)

Given coprime $b \geq 2$ and $c \geq 2$, such that $c<b^{c-1}$, the constant $\alpha_{b, c}$ is $b c$-nonnormal.

- Since $3<2^{3-1}=4, \alpha_{2,3}$ is 2-normal and 6-nonnormal !

Figure : $\alpha_{2,3}$ is 2 -normal (top) but 6 -nonnormal (bottom). Is seeing believing?

The Stoneham numbers

$$
\alpha_{b, c}=\sum_{n=1}^{\infty} \frac{1}{c^{n} b^{x}}
$$

Figure: Is $\alpha_{2,3}$ 3-normal or not? Is it strongly 2-normal?

Contents

(9)Introduction - Dedications

(2)Randomness

- Randomness is slipperyNormality
- Normality of Pi
- BBP Digit AlgorithmsRandom walks
- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers

O Media coverage \& related stuff

- 100 billion step walk on π
- Media coverage

The expected distance to the origin

Theorem

The expected distance d_{N} to the origin of a base-b random walk of N steps behaves like to $\sqrt{\pi N} / 2$.

Theorem

The expected distance d_{N} to the origin of a base-b random walk of N steps behaves like to $\sqrt{\pi N} / 2$.
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Number } & \text { Base } & \text { Steps } & \begin{array}{c}\text { Average normalized } \\ \text { dist. to the origin: } \\ \frac{1}{\text { Steps }} \sum_{N=2}^{\text {Steps }} \frac{\text { dist }}{N}\end{array} & \text { Normal } \frac{\sqrt{\pi N}}{2}\end{array}\right]$

Contents

(1)Introduction - Dedications Randomness

- Randomness is slippery Normality
- Normality of Pi
- BBP Digit Algorithms

(4)Random walks

- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
(7) Media coverage \& related stuff
- 100 billion step walk on π
- Media coverage

Number of points visited

- The expected number of distinct points visited by an N-step random walk on a two-dimensional lattice behaves for large N like $\pi N / \log (N)$ (Dvoretzky-Erdős, 1951).

Number of points visited

- The expected number of distinct points visited by an N-step random walk on a two-dimensional lattice behaves for large N like $\pi N / \log (N)$ (Dvoretzky-Erdős, 1951).
- Practical problem: Convergence is slow $\left(O\left(N \log \log N /(\log N)^{2}\right)\right)$.

Number of points visited

- The expected number of distinct points visited by an N-step random walk on a two-dimensional lattice behaves for large N like $\pi N / \log (N)$ (Dvoretzky-Erdős, 1951).
- Practical problem: Convergence is slow $\left(O\left(N \log \log N /(\log N)^{2}\right)\right)$.
- 1988 D. Downham and S. Fotopoulos gave better bounds on the expectation. It lies in:

$$
\left(\frac{\pi(N+0.84)}{1.16 \pi-1-\log 2+\log (N+2)}, \frac{\pi(N+1)}{1.066 \pi-1-\log 2+\log (N+1)}\right) .
$$

Number of points visited

- The expected number of distinct points visited by an N-step random walk on a two-dimensional lattice behaves for large N like $\pi N / \log (N)$ (Dvoretzky-Erdős, 1951).
- Practical problem: Convergence is slow $\left(O\left(N \log \log N /(\log N)^{2}\right)\right)$.
- 1988 D. Downham and S. Fotopoulos gave better bounds on the expectation. It lies in:

$$
\left(\frac{\pi(N+0.84)}{1.16 \pi-1-\log 2+\log (N+2)}, \frac{\pi(N+1)}{1.066 \pi-1-\log 2+\log (N+1)}\right) .
$$

- For example, for $N=10^{6}$ these bounds are (199256.1,203059.5), while $\pi N / \log (N)=227396$, which overestimates the expectation.

Catalan's constant

$$
G=1+1 / 4+1 / 9+1 / 16+\cdots
$$

Figure : A walk on one million quad-bits of G with height showing frequency

Paul Erdős (1913-1996)

"My brain is open"

(a) Paul Erdős (Banff 1981. I was there)

(b) Émile Borel (1871-1956)

Figure : Two of my favourites. Consult MacTutor.

Number of points visited:

Again π looks random

(a) (Pseudo)random walks.

(b) Walks built by chopping up 10 billion digits of π.

Figure : Number of points visited by 10,000 million-steps base- 4 walks.

Points visited by various base-4 walks

Number	Steps	Sites visited	Bounds on the expectation of sites visited by a random walk	
			Lower bound	Upper bound
Mean of 10,000 random walks	1,000,000	202,684	199,256	203,060
Mean of 10,000 walks on the digits of π	1,000,000	202,385	199,256	203,060
$\alpha_{2,3}$	1,000,000	95,817	199,256	203,060
$\alpha_{3,2}$	1,000,000	195,585	199,256	203,060
π	1,000,000	204,148	199,256	203,060
π	10,000,000	1,933,903	1,738,645	1,767,533
π	100,000,000	16,109,429	15,421,296	15,648,132
π	1,000,000,000	138,107,050	138,552,612	140,380,926
e	1,000,000	176,350	199,256	203,060
$\sqrt{2}$	1,000,000	200,733	199,256	203,060
$\log 2$	1,000,000	214,508	199,256	203,060
Champernowne C_{4}	1,000,000	548,746	199,256	203,060
Rational number Q_{1}	1,000,000	378	199,256	203,060
Rational number Q_{2}	1,000,000	939,322	199,256	203,060

Normal numbers need not be so "random" ...

Figure : Champernowne $C_{10}=0.123456789101112 \ldots$ (normal). Normalized distance to the origin: 15.9 (50,000 steps).

Normal numbers need not be so "random"

Figure : Champernowne $C_{4}=0.123101112132021 \ldots$ (normal). Normalized distance to the origin: 18.1 (100,000 steps). Points visited: 52760. Expectation: $(23333,23857)$.

Normal numbers need not be so "random" ...

Figure : Stoneham $\alpha_{2,3}=0.0022232032 \ldots 4$ (normal base 4).
Normalized distance to the origin: 0.26 (1,000,000 steps).
Points visited: 95817. Expectation: $(199256,203060)$.

Normal numbers need not be so "random" ...

Figure : Stoneham $\alpha_{2,3}=0.0022232032 \ldots 4$ (normal base 4).
Normalized distance to the origin: 0.26 (1,000,000 steps).
Points visited: 95817. Expectation: $(199256,203060)$.

$\alpha_{2,3}$ is 4-normal but not so "random"

Figure : A pattern in the digits of $\alpha_{2,3}$ base 4 . We show only positions of the walk after $\frac{3}{2}\left(3^{n}+1\right), \frac{3}{2}\left(3^{n}+1\right)+3^{n}$ and $\frac{3}{2}\left(3^{n}+1\right)+2 \cdot 3^{n}$ steps, $n=0,1, \ldots, 11$.

Experimental conjecture

Proven 12-12-12 by Coons

Theorem (Base-4 structure of Stoneham $\alpha_{2,3}$)

Denote by a_{k} the $k^{\text {th }}$ digit of $\alpha_{2,3}$ in its base 4 expansion: $\alpha_{2,3}=\sum_{k=1}^{\infty} a_{k} / 4^{k}$, with $a_{k} \in\{0,1,2,3\}$ for all k. Then, for all $n=0,1,2, \ldots$ one has:
(i) $\sum_{k=\frac{3}{2}\left(3^{n}+1\right)}^{\frac{3}{2}\left(3^{n}+1\right)+3^{n}} e^{a_{k} \pi i / 2}=\left\{\begin{array}{lc}-i, & n \text { odd } \\ -1, & n \text { even }\end{array}\right.$;
(ii) $a_{k}=a_{k+3^{n}}=a_{k+2 \cdot 3^{n}}$ if $k=\frac{3\left(3^{n}+1\right)}{2}, \frac{3\left(3^{n}+1\right)}{2}+1, \ldots, \frac{3\left(3^{n}+1\right)}{2}+3^{n}-1$.

Contents

(1)Introduction - Dedications Randomness

- Randomness is slippery
- Normality of Pi
- BBP Digit Algorithms

(4)Random walks

- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited

6 Other tools \& representations

- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
 Media coverage \& related stuff
- 100 billion step walk on π
- Media coverage

Box-dimension:

$$
\text { Box-dimension }=\lim _{\text {side } \rightarrow 0} \frac{\log (\# \text { boxes })}{\log (1 / \text { side })}
$$

Norway is "frillier" - Hitchhiker's Guide to the Galaxy

Box-dimension:

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds \& ferns not buildings \& cars). Curves have dimension 1 , squares dimension 2

Box-dimension:

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds \& ferns not buildings \& cars). Curves have dimension 1 , squares dimension 2

Box-dimension:

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds \& ferns not buildings \& cars). Curves have dimension 1 , squares dimension 2

Contents

(1)Introduction - Dedications Randomness

- Randomness is slippery Normality
- Normality of Pi
- BBP Digit Algorithms

(2)Random walks

- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited

6 Other tools \& representations

- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers

D
Media coverage \& related stuff

- 100 billion step walk on π
- Media coverage

Fractals everywhere

From Mars

Fractals everywhere

From Mars

The picture fractalized by the Barnsley's

http://frangostudio.com/frangocamera.html

Fractals everywhere

From Space

Fractals everywhere

Fractals everywhere

Fractals everywhere

Pascal triangle modulo two

$$
[1][1,1][1,2,1][1,3,3,1,][1,4,6,4,1][1,510,10,5,1] \ldots
$$

Fractals everywhere

Steps to construction of a Sierpinski cube

Fractals everywhere

The Sierpinski Triangle

$$
1 \mapsto 3 \mapsto 9
$$

Fractals everywhere

The Sierpinski Triangle

$$
1 \mapsto 3 \mapsto 9
$$

Fractals everywhere

The Sierpinski Triangle

$$
1 \mapsto 3 \mapsto 9
$$

Fractals everywhere

The Sierpinski Triangle

$$
1 \mapsto 3 \mapsto 9
$$

http:
//oldweb.cecm.sfu.ca/cgi-bin/organics/pascalform

Contents

(1)Introduction - Dedications Randomness

- Randomness is slippery Normality
- Normality of Pi
- BBP Digit Algorithms

Random walks

- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited

6 Other tools \& representations

- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers

D
Media coverage \& related stuff

- 100 billion step walk on π
- Media coverage

Three dimensional walks:

Figure : Matt Skerritt's 3D walk on π (base 6), showing one million steps. But 3D random walks are not recurrent.

Three dimensional walks:

Figure : Matt Skerritt's 3D walk on π (base 6), showing one million steps. But 3D random walks are not recurrent.
"A drunken man will find his way home, a drunken bird will get lost forever." (Kakutani)

Three dimensional printing:

Figure : The future is here ...
www.digitaltrends.com/cool-tech/the-worlds-first-plane-created-entirely-by-3d-printing-takes-flight/
www.shapeways.com/shops/3Dfractals

Contents

(1)Introduction - Dedications Randomness

- Randomness is slippery Normality
- Normality of Pi
- BBP Digit Algorithms

Random walks

- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited

6 Other tools \& representations

- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers

OMedia coverage \& related stuff

- 100 billion step walk on π
- Media coverage

Chaos games:

Figure : Coloured by frequency - leads to random fractals. Row 1: Champernowne $C_{3}, \alpha_{3,5}$, random, $\alpha_{2,3}$. Row 2: Champernowne C_{4}, π, random, $\alpha_{2,3}$. Row 3: Champernowne $C_{6}, \alpha_{3,2}$, random, $\alpha_{2,3}$.

Contents

(1)Introduction - Dedications Randomness

- Randomness is slippery Normality
- Normality of Pi
- BBP Digit Algorithms

(4)Random walks

- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited

6 Other tools \& representations

- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers

O
Media coverage \& related stuff

- 100 billion step walk on π
- Media coverage

Automatic numbers: Thue-Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but fascinating rules...giving structured/boring walks:

Figure : Paper folding. The sequence of left and right folds along a strip of paper that is folded repeatedly in half in the same direction. Unfold and read 'right' as ' 1 ' and 'left' as ' 0 ': 10110011100100

Automatic numbers: Thue-Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but fascinating rules...giving structured/boring walks:

Figure : Paper folding. The sequence of left and right folds along a strip of paper that is folded repeatedly in half in the same direction. Unfold and read 'right' as ' 1 ' and 'left' as ' 0 ': 10110011100100

Thue-Morse constant (transcendental; 2-automatic, hence nonnormal):

$$
\begin{gathered}
T M_{2}=\sum_{n=1}^{\infty} \frac{1}{2^{t(n)}} \text { where } t(0)=0, \text { while } t(2 n)=t(n) \text { and } t(2 n+1)=1-t(n) \\
0.01101001100101101001011001101001 \ldots
\end{gathered}
$$

Automatic numbers: Thue-Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but fascinating rules...giving structured/boring walks:

Figure : Walks on two automatic and so nonnormal numbers.

Automatic numbers:
 Turtle plots look great!

(a) Ten million digits of the paperfolding sequence, rotating 60°.

(c) 100,000 digits of the ThueMorse sequence, rotating 60° (a Koch snowflake).
(b) One million digits of the paperfolding sequence, rotating 120° (a dragon curve).

(d) One million digits of π, rotating 60°.

Figure : Turtle plots on various constants with different rotating angles in base 2 -where ' 0 ' yields forward motion and ' 1 ' rotation by a fixed angle.

Genomes as walks:

we are all base 4 numbers (ACGT/U)

Chromosome X

$$
\begin{aligned}
& c=|1.0| \\
& g=|0,1| \\
& t=|-1,0| \\
& \alpha=|0,-1|
\end{aligned}
$$

Chromosome 1

Genomes as walks:

Chromosome X

$$
\begin{aligned}
& c=|1.0| \\
& g=|0,1| \\
& t=|-1,0| \\
& \alpha=|0,-1|
\end{aligned}
$$

Chromosome 1

The X Chromosome (34K) and Chromosome One (10K).

Genomes as walks:

The X Chromosome (34K) and Chromosome One (10K).
® Chromosomes look less like π and more like concatenation numbers?

DNA for Storage:

we are all base 4 numbers (ACGT/U)

News Science ${ }^{\text {Biochemistry and molecular biology }}$
Shakespeare and Martin Luther King demonstrate potential of DNA storage All 154 Shakespeare sonnets have been spelled out in DNA to demonstrate the vast potential of genetic data storage

Ian Sample, science correspondent
The Guardian, Thursday 24 January 2013
Jump to comments (...)

When written in DNA, one of Shakespeare's sonnets weighs 0.3 millionths of a millionth of a gram. Photograph: Oli Scarff/Getty

Figure : The potential for DNA storage (L) and the quadruple helix (R)

Contents

(9)Introduction - Dedications Randomness

- Randomness is slipperyNormality
- Normality of Pi
- BBP Digit AlgorithmsRandom walks
- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
(7) Media coverage \& related stuff - 100 billion step walk on π
- Media coverage

2012 walk on π (went viral)

Biggest mathematics picture ever?

Computation: took roughly a month where several parts of the algorithm were run in parallel with 20 threads on CARMA's MacPro cluster.

Figure : Walk on first 100 billion base-4 digits of π (normal?).
http://gigapan.org/gigapans/106803

Contents

(1)Introduction - Dedications Randomness

- Randomness is slippery
- Normality of Pi
- BBP Digit Algorithms

Random walks

- Some background
- Number walks base four
- Walks on numbers
- The Stoneham numbers
(5) Features of random walks
- Expected distance to origin
- Number of points visited
(6) Other tools \& representations
- Fractal and box-dimension
- Fractals everywhere
- 3D drunkard's walks
- Chaos games
- 2-automatic numbers
(7) Media coverage \& related stuff
- 100 billion step walk on π
- Media coverage

Sive some motins. About the Aperiodica

Setn some good new researcin?

WLTM real number. Must be normal and enjoy long walks on the plane

Something that whipped round Twitter over the weekend is an early version of a paper by Francisco Aragón Artacho, David Bailey, Jonathan Borvein and Peter Borvein, investigating the usefulness of planar walks on the digits of real numbers as a way of measuring their randomness

A problem with real numbers is to decide whether thesir digits (in whatever base) are "random" or not. As always, a stnct definition of randomness is up to either the individual or the enlightened metaphysicist, but one definition of randomness is normality - every finite string of digits occurs with uniform asymptotic frequency in the decimal (or octal or whatever) representation of the number Not many results on this subject east, so people try visual tools to see what randomness looks like. comparing potentially normal numbers like π with pseudorandom and non-random numbers. In fact, the (very old) question of whether π is normal was one of the main motivators for this study.

TH s

The Aperiodcast - an irregular audio roundup of what's interesting on the site Podcast RSSe / TTunes

Features

Interesting Esoterica Summation. volume 5

View all features Subscribe by RSS a

Maths
formul
Report flind
http://aperiodical.com/2012/06/wltm-real-number-must-be-normal-and-enjoy-long-walks-on-the-plane/

Figure : Is Grandma's letter normal?

Especially in Japan

Figure : Decisions, decisions

 4xtious

wottist tamic

I fiscreners.anar.
szantaceniminse:
http://wired.jp/2012/06/15/a-random-walk-with-pi/

HOTTEST TOPIC

1276 RT
一つ工福党化
2 186 RT
新MacBook Prola •」とんしど信理不可能」
390 RT
ママッブルとグーグル
 すとき
485 RT
4ターグルマッブと別 か アッッブルは成功へ の道を走れるか
5^{85} RT
－赤れ坊のように言挐を学ぶロボット：動画

RANKING

2 新MacBook Prolł「高とんで例理不可能 1
3 アッブルとグーグル が，GPS恵用㜔末を殺 すとき
4 クーグルマッブと別 た アッジルは成功へ の道を走わるか
$5 \frac{\text { 「新MacBook Prola }}{\text { 锺の進化だ」 }}$

HOTTEST TOPIC

1276 RT
一つ工視党化
2186 RT
－新MacBook Prold「ほとんど修理不可能1
390 RT
3 アッブルとグーグル が，GPS恵用続末を湨 すとき
485 RT
4 グーグルマッブと別 そ，アッブルは成功へ の道を走れるか
$5 \begin{aligned} & 85 \text { RT } \\ & \text { 赤た坊のように言集を }\end{aligned}$学ぶロボット：䡃画

RANKING

－クモ福壹化
2 新MacBook Prola「言とんじ修理不可能」
3 マッブルとグーグル
が，GPS恵用䍚末を殺 すとき
4 クーグルマップと別
れ，アッブルは成功へ の道を走れるが
$5 \frac{\text { 「新MacBook Prold }}{\text { 偅の進化だ」 }}$

HOTTEST TOPIC

1 276RT
－Random walk in the Pi visualization
2186 RT
－The new MacBook Pro is＂almost impossible to repair＂
390 RT
3 Apple and Google are，kill a dedicated terminal at GPS
485 RT
4 Google Maps and separation，or Apple can run on the road to success
585 RT
5 Video：Robots learn the language like a baby

RANKING

1 Random walk in the Pi visualization
2 The new MacBook Pro is＂almost
－impossible to repair＂
3 Apple and Google are，kill a dedicated
－terminal at GPS
4 Google Maps and separation，or Apple
can run on the road to success
5 ＂The evolution of species＇ 5 new
MacBook Pro＂

National Science Foundation
 WHERE DISCOVERIES BEGIN

INTERNATIONAL SCIENCE \& ENGNEERING VISUALIZATION CHALLENGE

SCIENCE AND ENGINEERING'S MOST POWERFUL STATEMENTS ARE NOT MADE FROM WORDS AL.ONE

[^3]
Vote For Your Favorite Entries!

The entry that receives the most votes in each category will be designated the People's Choice
Public Voting ended on Nov 12, 2012 11:59 PM
\qquad $*$

Walking on pi

By Francisco Javier Aragón Artacho Sep 21,2012

Learn about Pi at http://www.carma.newcastle.edu.au/jon/pi-2012.pdf

December 2012: Normality of Pi and Stoneham numbers

Our analysis of 5 trillion hex-digits suggests π is very probably normal!
http://www.pourlascience.fr/ewb_pages/f/fiche-article-etre-normal-pas-si-facile-30713.php

image cache

What Is This?

3 Jamie Condillie is

This ragged cloud of color looks messy and
anstructured-but in fact it's a rare and unusual view of one of the most fundamental thangs in science. Can you work out what it is?

Sadly for you, we're going to let you puzale over the answer for a little while. To stop you all going round in circles, though, here are a couple of elues: it was generated by a computer and the thing it depnets is used in every branch of science, from mathematios to engineering.

Well post the solution here in an hour or so. Until then, try and work out exactly what it is amongst yourselves in the comments-without cheating and resorting to Google Images.

Update: You can find the answer bere.

January 10, 2013 http://gizmodo.com/5974779/what-is-this

- Spiegel. The mysterious circular number: Pi contains Goethe (not Shakespeare)

yrne 1 (14
9
$9 \rightarrow$
Plethiter
Presenmernan

Berlin - Stelen Sie sich ver, es pete in Buch in dem ale je wan

So ein dches buch kam es oar nock geben, werden Se sapen und haben domit un Grusbe redte Doch tridadem evabiet deses Buct
 dit wethatesis.

 dirchwore.
Wr komen suctaster probiembs int Zavien keokren, en conoued

April 29, 2013 www.spiegel.de/wissenschaft/mensch/mathematik-ist-die-kreiszahl-pi-normal-a-895876.html

Thenguntian

Pi Day: pi transformed into incredible $\quad 5=$ art - in pictures

March 14, 2014 www.theguardian.com/science/alexs-adventures-in-numberland/gallery/2014/mar/14/
pi-day-pi-transformed-into-incredible-art-in-pictures

Main References

```
http://carma.newcastle.edu.au/walks/
```

M. Barnsley: Fractals Everywhere, Academic Press, Inc., Boston, MA, 1988.
F.J. Aragón Artacho, D.H. Bailey, J.M. Borwein, P.B. Borwein: Walking on real numbers, The Mathematical Intelligencer 35 (2013), no. 1, 42-60.
D.H. Bailey and J.M. Borwein: Normal numbers and pseudorandom generators, Proceedings of the Workshop on Computational and Analytical Mathematics in Honour of JMB's 60th Birthday. Springer Proceedings in Mathematics and Statistics 50, pp. 1-18.
D.H. Bailey and R.E. Crandall: Random generators and normal numbers, Experimental Mathematics 11 (2002), no. 4, 527-546.
D. G. Champernowne: The construction of decimals normal in the scale of ten, Journal of the London Mathematical Society 8 (1933), 254-260.
A.H. Copeland and P. Erdős: Note on normal numbers, Bulletin of the American Mathematical Society 52 (1946), 857-860.
D.Y. Downham and S.B. Fotopoulos: The transient behaviour of the simple random walk in the plane, J. Appl. Probab. 25 (1988), no. 1, 58-69.
A. DvoretZky and P. Erdős: Some problems on random walk in space, Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability (1951), 353-367.
G. MARSAGLIA: On the randomness of pi and other decimal expansions, preprint (2010).
R. Stoneham: On absolute (j, ε)-normality in the rational fractions with applications to normal numbers, Acta Arithmetica 22 (1973), 277-286.

[^0]: How not to experiment

[^1]: ${ }^{1}$ Only the best get stamps. Quoted in
 www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html.

[^2]: ${ }^{2}$ Python uses the Mersenne Twister as the core generator. It has a period of $2^{19937}-1 \approx 10^{6002}$.

[^3]: Tweet E. Recommend E 400 people recormend this. Be the first of your hirends.

