ON HECKE'S THEOREM ON THE REAL ZEROS OF THE
L-FUNCTIONS AND THE CLASS NUMBER OF QUADRATIC
FIELDS
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[EBatracted from the Journal of the London Mathematical Society, Vol. 9, Part 4.]

Prof. Mordell, by generalizing a method of Deuringf, proves] that
Riemann’s hypothesis for {(s) is true if an infinity of different imaginary
quadratic fields K (1/—d) exists with the same value of the class number
h(—d). The proof depends on an asymptotic formula for {(s)L,(s) for
d — oo, where L,(s) denotes the L-series belonging to the field.

I find that the same asymptotic formula may be applied to the study of
L,(s) instead of {(s), and that it leads to relations between the class number
h(—d) and the real zeros of L,(s). The following result, including that due
to Hecke§, will be proved in this note:

Suppose that

a, 22 +b, xy+c,y? (n=1,2,.., k)

is the system of all reduced positive quadratic forms of fundamental
discriminant —d =b,2—4a, ¢, <0, and that 2’ denotes the quotient
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Then, when d is sufficiently large, corresponding to given constants
y>0, g >0, there exist constants I'=I'(y) > 0, G = G(g) > 0, such that
if L;(s) has at least one zero in the interval

Y
1= ford <5 <L

rvVe .

then h Togd’

N

and if L,(s) has no zero in the interval

1— 9
0g

A

s <1,

—
IS

/ Vd
then =G fogd "
1. Suppose that
Q = ax*+buy+ey?

is a reduced quadratic form with integer coefficients and negative

discriminant
—d = b%2—4ac <0,

so that 0<a<+/(3d).

From Mordell’s paper, formulae (4), (11), for d << —4,

-+ “+

2= & ¥ g
et
= 205 {(28)+2d}-s a1 (C(Zs—l IF(S) %) \/77'_{_0(1))

uniformly in the interval

L <s <1

Dot

as d—> 0.
The zeta function {;(s) of the imaginary quadratic field K(4/—d)
satisfies the equations

Ca(8) = §(s) Lu(s) = % Eo(s)s

where L ,i(g)__ 2 <_n_@> ns

is the corresponding L-series, and the summation in ) refers to all different
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reduced forms . Hence

6) Lals) = als) L@20) 0= fy(1—s) (MBI IOV L ),

where f;(s) is the finite Dirichlet series
f(l (8) =Xa®,
Q

and where a,(s) denotes a real function of s, which is uniformly bounded in
the interval
1<s<1

when d tends to infinity.
Now take an arbitrary constant o, with

F<oy<l.

Then there exist five positive numbers ¢, ..., ¢;, which depend only on
oy, such that, for sufficiently large d,

<L) ey 0y PEEDTE=N V(=D

I'(s) lad(s)l < €5

uniformly in s in the interval

Hence, if ¢; denotes the number

Cs
= maXx <O‘0, — é—c— s
5
the inequality

=23 2 3 <Z(2s—l

T %’V"+uﬂg>@_1y<c S

holds uniformly for s in
o <s <1,
as d tends to infinity. We write

day =120, Byfe)= (MEZUTEDVI L ) o),

and then have the result:

“There exist a constant o, with § < o, < 1, and also four positive con-
stants ¢y, ¢,, ¢g, ¢;, such that

£05) Luls) = A,4(8) fule)— 21 ars f,1—),
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where ey <Ay(s) ey, g <By(s) <e
uniformly in s for the interval J or

o, <s <1,

for all sufficiently large positive integers d.”

2. We write h=f;(0), 7n=[;(1).
Since 0<a<y/(3d) <+d
for reduced forms, we have obviously

B9 < fy(1—8) <,

and n <f(l(8) < ndé‘(l—-s).

Therefore B9 < fa(1—s) .
fd (8)

where —

Hence the two functions

(1—=8) L(s) Ly(s) _ (1=8) {(s) Ly(s)
Xd(s)zw» Yals)= B—(s_ﬁ——dlﬁ’

which in .J have the same sign as {(s)L4(s) and hence the opposite sign to
L,(s), satisfy the inequalities

Ay(s) fal—s8) . ¢ %
(1) Xd(s) = BZ(S) (1_8) If(l d- S —cg“ (1_"8)"—W
and
_ﬁA (8) —(1—8 f((l——S) 1~ 0y —(1-s) __ W
(2) Y,(s)= BZ(s) (1—s)d-9— lfd(s) dt>= Ci (1—s)d-0-9 vk

When s lies in the interval J and is sufficiently near to s = 1, then obviously
both functions are negative.

3. It is clear from (1) that — X ,(s), and therefore also L,(s), is always
positive in the interval

max <01, 1— z“ {;?l) <s<1l
2

We obtain as a special case

THEOREM 1. Suppose that y is a positive constant and that the integer
d > 0 is greater than a certain number dy which depends only on y. Then,
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iof the L-series L,(s) has at least one zero in the interval

Y
1 logd sssb

there exists a number T' > 0, depending only on y, such that

, \Vd
ST

Next, in the inequality (2), the term

A (1—s)d-a-9

Cq

has its maximum at s = 1—(log d)~%, and is then equal to

in the interval

it assumes every value between this maximum and zero. Hence, when

' Vd
W<G logd’
where G is a positive number with
¢y et

there exists a second positive number g with g <1, such that ¥ ,(s), and so
also L,(s), changes its sign at least once in the interval

9
1= fogq <5 <L

This result proves

TrEOREM 2. Suppose that g is a positive constant and that the integer
d > 0 is greater than a certain number d, which depends only on g. Then,
if the L-series L,(s) has no zero in the interval

__9
1 iogd<8<1’

there exists a number G > 0, depending only on g, such that

, \d
=6
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