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Suppose that
F(z, y) = ag2*+a, 22y +a, 2y +agy®

is a cubic binary form with integer coefficients, which is irreducible in the
field of all rational numbers, and that & # 0 is an integer. A special case
of Thue’s famous theorem states that the equation

Flx,y)=k

has only a finite number A (k) of solutions in integers z, y¥; more recent
researches of the author have proved that this number 4 (k) can be large
only if the integer k is the product of a great number of equal or different
prime factors. A result due to C. L. Siegel includes the inequality

S A(h) = O(),
=1
and therefore 4 (k) must be zero for nearly all integers k.

Until recently, there did not seem to exist theorems in the other
direction, ¢.e. whether the number A (k) can, in fact, be very large for
suitably chosen integers %, or whether 4 (k) is absolutely bounded. I shall
prove in this paper that 4 (k) is greater than any given number ¢ for certain
integers k, and that there is even an infinity of integers k& for which

A(k) = vlogk.

I cannot prove similar results for the ° primitive’ solutions of
F(z, y) =k, i.e. those solutions z, y for which  and y are coprime integers ;

t This paper is an extension of one previously contributed to a Festschrift for Prof.
Hellinger.
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whether their number is bounded is still an open question, and I doubt
whether it can be solved by a method similar to that of this paper.

The cubic equation F(z, y) =k defines a cubic curve of genus 1 in the
(z, y)-plane, and so such curves exist on which more than ¢ lattice points
lie, where ¢ is an arbitrary integer. Now these cubic curves F(z, y) =k
are not the most general ones, since their invariant g, is zero. A special case
of a theorem of Siegel shows that on every cubic curve of genus 1 which is
defined by an equation with rational coefficients, there are only a finite
number of lattice points. Two cubic curves which have the same absolute
invariant J can be transformed into one another by a birational trans-
formation, and this transformation has rational coefficients when there
are points with rational coordinates on both curves; also the systems of
these rational points are changed into each other by the transformation
and therefore are invariants. It is interesting to observe that a corre-
sponding result for lattice points on these curves does not exist, for I shall
prove in this paper that, for any given integer ¢ and for any given rational
value of the invariant J, there exists a cubic curve defined by an equation
with rational coefficients on which lie more than ¢ lattice points.

The method of the text is useful for the study of all curves of genus 1 in
two or more dimensions; I give a number of results obtained by it, which
perhaps are not all new. It may be remarked that curves of genus 0 with
only a finite number of lattice points may be treated also in this way; the
reader will not find it difficult to establish, for example, the existence of
rational numbers a such that there are at least ¢ lattice points on the
lemniscate

(@ +y?)?+a(@?—y?) =0,

where ¢ is an arbitrarily large integer.

1. Suppose that
F(z, y) = qy2®+a, 22 y+ay2y*+ay y°

is a cubic binary form with integer coefficients and with only simple linear
factors. The equation

Fz,y)=1

defines a cubic curve C without double points and therefore of genus 1 in
the (z, y)-plane. Its three asymptotes may be denoted by I, I'"’, IV,
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If (2 y,) is any point with integer coordinates not lying on
F’, F”, FHI’ a"nd
F(zy, y,) = E,

then k is an integer and k£ # 0; there is one and only one curve
F(z, y) =k,

say C(k), which goes through (z,, y,) and is similar and similarly situated
to the curve C relative to the origin.

2. Since C is of genus 1, a uniformisation of C,

v=d¢(u), y=~4u),

exists; here ¢(u) and () are two elliptic functions of « of order 2 or 3 and
with periods w, and w,, say. Instead of the point (z,y) on C, we shall
speak also of the point u, where  is the elliptic argument of (z, y). Then
u and «’ are the same point if and only if

u=u" (mod w,, w,),
s.e. if u=u'+h w,+hyw,

with two integers A, and h,.
Now let us take any straight line I'; it cuts C in three points.
Uy, Uy, U3 Which satisfy the congruence

U tUuytus=Cy (mod w;, w,).

Here Cis a constant, not depending on I', which may be assumed, without.
loss of generality, to be zero; then the congruence takes the simpler form

Uy +Uytu; =0 (mod w;, wy).

If, in particular, I is a tangent with «, its point of contact and u, its other
point of intersection with C, i.e. if u, is the tangential of %,, then

2u,+u, =0 (mod wy, wy).

3. Beginning with any point » on C we construct an infinite set U of
points
’u1.= u, u_z, u4, u_s, u7, u_s, ceey u3m+1, u_3m_2, cen
SER. 2. VOL. 39. wo. 2051, 2F
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on C, given by their elliptic arguments
U =1, U_,=—2u, u,=4u, ...,

Usmi1 = (3m+ 1) Wy U_gy o= — (3m+2) Uy oo
Since

2u,+tu_,=0 (mod w;, w,) and 2u_,+u,=0 (mod w;, w,),

u_, is the point of intersection of C with the tangent to C at u, and u, is the
point of intersection of C with the tangent to C at u_,. Further, since

d U_g Uy g T Usm1 =0 (M0d @y, wp) (M=2,3, ...)
an

u1+u3m+1+u-(3m+2)-='0 (mOd Wy, wz) (m =1,2, ),

the point
Ugyr (M=2,3,...)

is the point of intersection with C of the straight line through »_, and
U_gyny1; and the point

U gmin (M=1,2,...)

is the point of intersection with C of the line through %, and u,,,,,.

This construction makes use only of such properties of C as remain
unaltered by collineations, and is therefore invariant when we apply a
transformation of this kind. Now the transformation

x—>ktz, y->kty
changes C into C(k), and so changes the set U of points
Ugmirr Uoame (M=0,1,2,..)
on C into a set V of points
Vgmins V_gme (M=0,1,2,..)

on C(k), which has the same properties with regard to C(k) as U has with
regard to C. It is obvious that the line joining the point u, and the
corresponding point v, passes through the origin.

4. It is possible that some of the points of U coincide. Let us consider

the 2n points
Usm+1s U_gm—2 (m=0,1,2, .., n-1)



1934.] LATTICE POINTS ON CURVES OF GENUS 1. 435

of this set. If they are not all different, then one of the congruences
(3m;+1u= (3m,+1)u (mod wy, w,),
(3m+1l)u=—(3my+2)u (mod w,, w,),
—(3my+2)u=—(3my+2)u  (mod w,, w,)
(my, my=0, 1, ..., n—1; m; F#m,)
must be satisfied, and therefore u is of the form

hyw,+h, w,

(mod wy, wy),

where the denominator 3N is one of the numbers
3N=3,6,9, ..., 3(2n—1),

and %, and &, are any two integers. Tor every N, this gives only 9N?2
different points %, and so there are at most -

2n-1
T 9N2 (2n—1).9(2n—1)2 < 7203
N=1

different positions of » on C, say
u/, w'y e, ul? (n << 72n08),
such that the 2n first points
Ugmsty Ugme (M=0,1,.., n—1)

are not all different from one another.

5. Since C is a cubic curve, it has three points «’, »’’, «4’”’ at infinity.
It is possible that one of the first 2n points

Uamatr U_gms (M=0,1,.., n—1)
-of the set U coincides with «’ or " or #’"’. Then one of the congruences
Bm+1)u=ud (mod w,, w,) (=1,2,3; m=0,1, .., n—1),
or one of the congruences

—(Bm+2)u=uP (mod w;, w,) (#=1,2,3; m=0,1, .., n-1),
2r2
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must be satisfied, and therefore « has one of the values

Wby woy+h .
us AN (nod wy,w) (=1,2,9
—u B o, .
or U= _t.’»’”lb:)—lz_{- 292 (mod wy, w,) (=1, 2, 3),

where %, and %, are two integers. For every m this gives only
3.(3m+1)243.(3m+2)2<6.9. (m+1)2

different points 4. Hence there are at most

n—1
2 6.9.(m+1)2 < n.54n2 = 54nd

m=0

different positions of % on C, say
Uy'y Uy veey UP (v < 5403,
such that one of the 2n points
Uyt Ugme (M=0,1,...,n—1})

of the set U lies at infinity.

6. Now we draw in the (z, y)-plane the three asymptotes
r,
of O, all the straight lines
ry, ny, .., g
which go through the origin (0, 0) and one of the points

A
and all the straight lines
ry, Iy, ..., T

which go through the origin and one of the points
Uy'y Uy'’y oeny UP
The total number of these straight lines is not greater than

347203+ 54n8 < 130n8.
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But on every one of these lines I, I';, I, there are at most
13073 +1
lattice points which lie in the square ¢ defined by
max(|z|, |y]) < 657°.

Hence the number of lattice points in @, which lie on any one of the straight
lines I', T}, I',, does not exceed

130n3(130n34-1),
and so is less than the number
(130m3+41)2
of all lattice points in Q. It follows that there must be a point
(21, ¥1)

with integer coordinates satisfying the inequality

max (|7, |y,]) <6577
which does zot lie on any one of the straight lines

™, ™, I, Ty, T, .., Tp; Ty, T, .., TY.

7. The number
F(xla yl) = kl

is an integer different from zero, since (2,, ¥,) does not lie on the asymptotes
I, Ty, I's. Hence the equation

F(x, ?/) =k1

defines a cubic curve C(k,) which goes through (z,, y;). Denote by k,? the
real cube root of k;. Then the transformation

gy
klé, Y k1§’

changes C(k,) into C and the point (x,, ¥,) on C(%;) into the point
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on C. The three points
(0, 0), (24, 1), %y
lie on the same straight line, and so %, must be different from all the points
'y Uy ey W, wy, wy, L, ud),
since (x,, y;) does not lie on any one of the lines
ry, .., ., ny, ..., I

Now construct the 2n points

o Y Z_gm-. —3m—
o= (2, B20), = (5 52) m=0,1, 0 ])

of the set U belonging to %, on the curve C. Then we know that they are
all different from one another and that none of them lies at infinity. The
2n corresponding points

(m=0, 1, ..., n—1)

(Zsmi1> Yamsr) (X_sm-os Y_smsg)

on C(k,) must therefore also be different from one another, and none of
them can lie at infinity. Furthermore, when m,, m,, m; are three different
members of the set of 2n indices 3m+1, —3m—2 (m =0, 1, ..., n—1) with

my+my+my=20,
then the three points

(xmu yml)i (xme’ ymz)’ (xﬂw’ yﬂ‘m)

on C(k,) lie on the same straight line, and when m, and m, are two different,
members of this set of indices with

2m,-+my =0,
then the straight line through the two points
(xml’ ym1)’ (xmz’ ym2)

is a tangent to C(k;) at (2, Ym)-

8. We make use of the abbreviations

? 9
Fiz, 9)= g, F(@ y), Fale, y) =5, F (@, y).
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F,(z, y) and F,(z, y) vanish simultaneously only at the point z =y =0;
for the binary form F(z, y) has simple linear factors only, and its discrimi-
nant, s.e. the resultant of F,(z, ) and F,(z, y), cannot be zero.

Let (z'”, ¥'”’) be the third point of intersection of the straight line
through two points (2, ') and (2", ¥"') on C(k,) with this curve. Then

F( rrr //I) — klg

and
2 oy 1
'y l=a""y—y" )ty (@ =2 )+ (' Yy —2"y') =0,
2y o1

1224

and therefore 2’ and y"’’ must satisfy the cubic equations

Pl @ —a"), @ (' =y )+ @y '~y )= by =P,
F{ylll(xl ) (xl Il /l I) Ill(y y } kl(y y )

1224

If we expand the left-hand sides in powers of '’ or ', we get

F(x/_xll’ yl—yll)xllla+F2(xl_x y yll)(x/ r xllyl)xlllz_*_;igxlll

+#1=0,
F(x'—x", yr_yu) yu/3_F1(xf_xu’ y'_yu)(xr y// x" 1) n/2_|_ yru

24

where the asterisks denote the coefficients of x
which are of no importance.

Now we know two roots 2’ and 2", or y’ and y"’, of these cubic equations;
their third roots therefore have the values

and 1, or of '" and 1,

rrr ’ II (x, ” ,’ ’) F (x x”’ y,—y”)
r = —x—x 77
F(x —x", y'—y")

1oyt (x,y” z"’ , Fl(x —z” y y )
e A | =

)

(A1)

When we introduce homogeneous coordinates
z' :yl 0] =20 y(l) : z(l), z yu 0] =z y(z) . 2(2), z'" :yu: e] = 2®: y(a) . z(a)’
and use the abbreviations

(zy) = 20 y@— 2@ y®,  (22) = 302D — 302D, (yz) = yfD 2y D)
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and
G, (20D 2D (2 42 D)

= — (@2 +a®20) F{(wz), (y2)}—2 2P (xy) Fy{(x2), (y2)},
G, (20 YD 2D, (D (2 2(2))

= — (yP2O+yP20) F{(az2), (y2)}—202® (ay) F1{(z2), (y2)},
Gy 20, 4@y 0) = 02 F{(22), (y2)},
these formulae take the simple form

2= G (2000, g0y 0),

(A,) YO = Gy (20 gy 20, 1 g ),

20 = Gy (a0 D, 2 y®22),

The expressions @, G,, G, on the right-hand side are forms in the six
arguments z®, y@, 20, 2@ 4 @ with integer coefficients; they are of
degree four in the coordinates a2, y®, 2z, and also in the coordinates
2@, ¥y, 23 Tt is obvious that, when z®, ¥V, 20, 2® 2 2 have integral
values, so also have 2®, y®, 2®, If we write
w® = max(|z®], |y, |20)) (=1, 2, 3),

the formulae give the inequality

(Ay) w® < o, (WD),

where ¢, is a positive constant depending only on the coefficients of the cubic
form F(z, y).
Assume, in particular, that none of the three points

58 G5 6D
20 ) 7@ @) \Zo @

lies at infinity, that (2V/z®, y®/z) and (2/2/2?, ¥®/2®) do not coincide, and
that 2 £ 0 and 2® 3£ 0. Then it is obvious that the straight line through
these three points is not parallel to one of the asymptotes IV, I'"’, I''"’;

hence the point
PP C R Y
(o %)

does not lie on I or I'’” or I/, and so the number

: x(l) x(2) 1) 2)
F((xz), (yz)) = (zu)z(z))ap(le)_z(_z), %_gﬁ)
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does not vanish, and we also have
(A) 23 =220 P (22), (y2)) #0.

9. By the method of §8 we can calculate the coordinates (z"’, y''’) of

the point of intersection of C(k) with its tangent at the point (', ¥').
The result is

([ rer Y, Yo Fz(Y,7 "_’X’)(x' -X'+y’ Y’)

w2 (Y, =X ’

‘(Bl) e __ ’ Fl(y,, _X’)(x’ Xl+yl YI)
y = _2y + F(Y’, _X/) )

[X'=F,(2", y), Y' = Fyl’, y)].

‘We also arrive at these formulae by making (z’, ¥’’) tend to (2/, ¥’) in the
formulae (A,), for then

(xl_xll): (y'—y”)"éyl: (_XI)'
It is useful to remark that the binary form of degree 6,
F(Y', —X'),
is divisible by the cubic form
2 X'+y' Y =3F(x, y).
To establish this result, we show that the first form vanishes when the
second vanishes. This is trivial for 2’ =y = 0. Therefore, let 2’ (or ¥’)
be different from zero; then
x=—Yvy <or ) (A A)
z Yy
and so

Py, ~-X)=F(Y, +¥ ¥')= (-ii)sF(x y)=0

' ’ AN X_ 8 ’ "o
I:OI' —F(—-?‘X; X)-— (y’) F(x,y)-—-O:I.
Hence F(Y, —X)=—-F(, y) F*(, ¢),
‘where F*(z', y') is a certain cubic form with integer coefficients and a is

a_constant integer depending only on the coefficients of F(z, y).
If we introduce homogeneous coordinates

2y 1=V gyl gy ] =Dy @



442 K. MAHLER [April 26,

and use the abbreviations
H,(a®yW20) = — 220203 —q F, {Fy(z®, V), —F, (2D, yD)},
Hy(@0y20) = 202t a F, {Fyfa®, o), —Fy (@, o),
Hoy (20 g0 20) = o0 F (2, 4/0),
the formulae (B;) now take the form
2 = H, (a0 20),
(By) y = Hy(a )
20 = H (2040 ,0).

The expressions H,, H,, H, on the right-hand side are forms in the three
arguments 2@, y@, 20 with integer coefficients; they are of degree
four in these variables. Hence the two maxima

= max (9], |99, [#9)) (=1, 3)
are connected by the inequality
(Bs) W < oy (W),

where ¢, is a positive constant depending only on the coefficients of the
cubic form F(x, y).
If neither of the points

(x(l) y(l)>’ <£E(3) y(ﬂ))

7 ) \Fm @

is at infinity and if 2V is not zero, then the tangent to C(k,) at the first.
point cannot be parallel to one of the asymptotes I, I''’, I''""; hence

F(Y', —X')£0 and also F*(z, V) £0,
and so we have also
(B,) 29 = 2V F (g0, D) £ 0,
We add the obvious remark that, if 2O, 4@, 20 are integers, so also are

2®, Y9, 29,

10. Now we proceed to the application of the results (A) and (B) to the
study of the 2n points

Py = Tami1s Yame1)s Posma= (T_am-2> Y-3m—2) (m=0,1,..,n—1,
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on the curve C(k,). We know that P_, is the tangential of P, and P, the
tangential of P_,; that for m =2, 3, ..., n—1 the three points

P3m+1’ P—3m+l’ P-—2
are collinear; and for m =1, 2, ..., n—1 the three points

P P3m+1’ Pl

—3m—2>

are collinear. We know also that the coordinates of P, are integers and
that none of the 2n points P;,,,.,, P_,,._, lies at infinity. Hence, from the
formulae (A,) and (B,), it is obvious that the coordinates of all these points
are rational numbers, say '

2Bm+D) Sm+1) 2f-3m=2) y(-3m—2)
Lym+1 = preesip Ysm+1= Z@miD » Tam—2 = JEmn) Y-sme-2 = amoo)
where the new ’s, y’s, and #’s are integers ; in particular,
W=z, YW=y, 2V=1,
Since 2 =£0, all denominators
z(3m+1), AH—3m—2) ('m =0,1,.., n-—l)
are different from zero. If we write
wBm+) — max (Ix(3m+1)g’ |y(3m+1)l, I Z(37”+l)|),
w32 = max (|at-3m-2)|, |g-3m-2)|, |-3m-2))),
then w® =max (|z,], |y, 1) < 650,
and, using (A;) and (B;), we get the system of inequalities
WD Lep(wh), w® Leop(w=2)8,
wl®mt) Loy (w3m+ =) (m =2, 3, ..., n—1),
w3m=2 Loy (wlmtDyie (=1, 2, ..., n—1),
and so we are able to give an upper bound for all numbers

wlmHD | yf=3m=2) (=0, 1, ..., n—1).

11. We obtain, however, a much better result in a different way. The
equations

(6m—+1)+(—3m—2)+(—3m-+1)=0, (—6m—5)+(3m+1)+(3m+4) =0,
(—6m—2)+2(3m+1)=0, (6m—+4)+2(—3m—2)=0
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show that, for every m, the three points
P(Gm-}-l), _P(—3'm,—2), P(—3m+1) (m > 1)
are collinear; also the three points
P(—Gm—s), P(3m+1), P(3m+4)
are collinear; and that, of the two points
P-tm-2)  pm+l)
or of the two points

P(6m+4), P(-3m~—2)’

the first is the tangential of the second. Hence we obtain the recurrence
inequalities

WMD) ¢ (uf~3m=D g -SmiD)a g 6m+d) L o, (wi-3m-D)4,
Wtm=2) < g, (wOmHD)s,  gif—bm=5) < ¢ (f3mHD gBm+a)8,
They assume a simpler form when the new numbers
cy=max (¢,}, ¢}, 1), caulmtD=w, .\, c,wmD=w_ 4 ,
(m=0,1, ..., n—1)
are introduced; they become
Wempr S Wogm-oWogmits Wemta S Wogmeas

4 4 4
W_gm-2 < Wapmi1s W_gm—5 < Wams1 Wama-

Hence
Wy SWOHY, w0 o w372 (m=0, 1, ..., n—1),

where the arithmetical function f() is defined for all A= 1 (mod 3) by the
equations

. {f(6m+ 1) = 4(—3m—2)+4f(—3m+1), f(6m-+4)=4f(—3m—2),
f(—6m—2) = 4f(8m+1), f(—6m—5)=4f(3m-+1)+4f(3m-+4),
and the initial value f(1)=1.

12. Although f(k) is a complicated function, it is not difficult to find
a simple upper bound for its values when 4 is large.
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By applying the formulae C twice to this function, we obtain the:
system of equations
f(12m4-1) = 32f(3m+1)+16f(3m—2),
f(—12m—2) = 16f(—3m—2)+16f(—3m+-1),
f(12m4) = 16f(3m-1),
f(—12m—5) = 32f(—3m—2)4-16f(—3m+1),
F(12m417) = 16f(3m—+4)+32f(3m+-1),
f(—12m—8) = 16f(—3m—2),
f(12m+10) = 16f(3m—+4)+16f(3m-1),
f(—12m—11) = 16f(—3m—>5)+32f(—3m—2).
Now let o be a number such that
4= > 48,
and introduce the new function
g() = f(B) | B|=.

It is obvious then that, for every e > 0 and m > m(¢), we have the system.
of inequalities

g(12m-+1) < (1+¢) (T 9(3m-+ 1+ 32 9(3m—2)),
g(—12m—2) = (14 (32 9(—3m—2)+ 32 g(—3m+1),
g(12m+-4) < (1+) (0 9Bm+D)),
g(—12m—5)= (1+¢) (G2 9(—3m—2)+ 32 g(—Im+1)),
g12m+7) < (1+¢) (32 93m-+4)+ 32 g(3m+1),
o(—12m—8) = (14 (F o(—3m—2)),
9(12m+10) < (1+¢) (32 9(3m+4)+ 2 g(3m+1),

g(—12m—11) = (1+¢) (i—? g(—3m—>5)+ % g(——3m-—2)) .
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Assume that, in particular,
4* = 48(1+e),

and write max g(h)=c,.
1At 12mo(e)
h=1mod 3

"Then it can be deduced at once from the last two inequalities that, for all
integers h=1 (mod 3),

g(h) <ec,.
Hence HOESALLS
for all such values of .

13. The results in §§11 and 12 show that there are on C(k,) at least

2n rational points
P3m+1! P—3m—2 (m=0,1, .., n—1),

and that the coordinates of these points are of the form

3m+1) 3m+1) 2—3m—2) —3m—2)
Zam+1= LBmi1)’ Yams1 = z(3m+1); T_sm-2 = ZImoa> Y am-2= Jr =)

(m=0,1, ..., n—1),

where the 2’s, ¥’s, 2’s are integers which satisfy the inequalities

ma (2], g0, [#9]) < 2 wft) < - (@50ynE)r, 59 %0

(h=3m-|-1, —3m—2>
m=0,1, .. n—1/

a being a number such that
45> 48,

and ¢, being a positive constant depending only on a and the coefficients
of the form F(xz, y).
Therefore, in particular,

l z(3m+1)l < _cl_ (6 503 n3)c4 (3m+1)-’ i z(—Sm—2)| < _cl_, (6 503 n3)c; (3m+2)a
3 3

m=0,1, .., n—1),
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and the least common multiple Z of all denominators

Z0m+D) H=3m-2) (=0, 1, ..., n—1)
has a value

1
o(c*(3m+l)"+c{(3m+2)’} 1\2n» .
< (_6__) (6563?13)20*(3"’) n,

3

n—
=

2n
zZ <(—1—) (65¢,m%)""
C3
14. Let us now write
k= 23k,
and
Z%gn11 = Pamsrs LYam+1 = Tam+15 Z%—am—r2= P_am2 ZY_am—2=I-3m—2
(m=0,1, ..., n—1).
Then all the 2n points

(Psm+1 Qam+1)s (P_sm-2> Q-am—2) (m=0,1,...,n—1)
have integer coordinates; they are different from one another and they
lie on the same cubic curve C(k). Now, evidently,

0 <[y < o5 (6509,

with a positive constant ¢, depending only on the coefficients of the form
F(z, y), and so’
( 1\2n . ) 3
0<|k| <c5(65n3)31 (C—) (854 n3)20s3n) n[ .
3

Since a is restricted only by the condition
40> 48,

it may be assumed less than 3. Hence, if y is any positive constant, we
have, for »n = ny(y),
k

6 4
0< <61y7l,

and, when we replace 2n by £, the following theorem is proved.

TeEEOREM 1. If yis any positive number, then there is a positive number
ty(y) such that, corresponding to every integer t > t,(y), there exists an integer
k with

0< k| et
which can be represented by the binary form F(z, y) in at least ¢ different ways,

k=F(p,qp) *R=12 ..,1
with integers p,, q».
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15. We apply Theorem 1 to the special form
F(z, y) = 2(y*—az?),

where a # 0 is an arbitrary integer. Then we know that, for large ¢, there

exist integers k& with
0< |k| e,

such that the equation
ulgi—ap?) =k

has at least 2t different integer solutions

(Pw @) (A=1,2, ..., 20).

Solving with respect to g,, we get

*(Dn I)* = apyt+-kpy,

and hence it is obvious that to every p, there belong at most two different.
¢,- Therefore the numbers

Py Pas -+ P
assume at least ¢ different values, and we have proved
THEOREM 2. If a 70 1s any integer and t s a sufficiently large positive
integer, then there is an tnteger k with
0<|k|<e,
such that the polynomial
f(x) = azxt+-kz

is a perfect square for at least t different integer values of the argument x, and
these values of x may be assumed to divide the number k.

By a similar method we can also prove
THEOREM 3. If a 70 is any integer and tis a sufficiently large positive
inleger, then there is an integer k with
0<|k| e,

such that the polynomial
9(x) = ax’+k

35 a perfect square for at least t different integer values of the argument x, and
these values of x may be assumed to divide the number k.
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THEOREM 4. If a # 0 vs any integer and t is a sufficiently large positive.
wnteger, then there is an integer k with

0<|k|<et,
such that the polynomial
g(z) = ax®*+k

18 a perfect cube for at least t different integers x.

IL

16. The result of Theorem 1 can be generalized by a simple change in the-
method of the first chapter.
We have constructed a set of 2n rational points

Pyms1 = Tymi1 Yams1)  Poame= (Z_gm-2 Y—3m-2)
(m=0,1,...,n—1)
on the curve C(k,) with the following properties :

(@) The. corresponding points

z y L sm-2 Y-sm—2
u3m+1=<_%?i’ 3}:;;1>’ u—am—2=( ]z.lmg 2’ ]Zi) (m=0: 19“':"—1)'

on the curve C have arguments of the form
Ugmr = (Bm+-1)uy, U_ g, o= —(Bm+2)u; (m=0,1, .. n—1).
(b) If hy, by, k4 are three different indices of the set
3m+1, —3m—2 (m=0,1,.., n—1)
with hy+hy+hy =0,
then P,u, P,,, P, are collinear, and when %, and %, are two different indices
with
hy+2h, =0

then P,, is the tangential of P,,.

(¢) The 2n points

Pypity, Pgma (m=0,1,...,2—1)

are all different.

(d) None of these 2n points lies at infinity.
SER. 2. vVOL. 39. No. 2052. 26
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17. Now let us consider, also, the additional points

" i x3m+1 y3m+1 m — m—31n—2 y—-am—~2
3m-+1 ™ k1§ H klé ’ —3m—2 klg ) klg

(m=mn,n+1,n+2, ...)
on C with elliptic arguments :

Ugnyy = (Bm+1)uy, U_g, o= (—3m—2)u; (m=n,n+1,0+2, ...)

and their corresponding points

Pynir= T3mi1, Yame1)  Poam2= T gn-2 Y_gm-2)
(m=mn, nt+1, n+2, ...)
on C(k,); we arrange them with their indices in the order
1, —2,4, —5,7, —8, ..., —=3m+1, 3m+1, —3m—2, ...
Tt is obvious that the enlarged system of points
P,P, P,P P, P,..

still has the property (b); but in general the two other properties (c) and
(d) no longer hold.
It can easily be proved that all arguments

Ugm+1>  U_gm—2 (m=0,1,2,..)

are congruent (mod w,, w,) to real numbers. For the curve C has at least
one real asymptote; hence there is a real linear transformation
x=aX+BY, y=yX48Y (ad—PBy#0),
such that C takes the form
X(Y?—aX?%) =1 (a+0)
with a real constant a; then, if we write

1 n
X=—, Y=1,
3 I3

it becomes 2= £4a.

But the curve in the (¢, n)-plane corresponding to this equation has
.only one real branch; hence, as is well known, all real points of the curve
and, therefore, also all real points of C are obtained, if, and only if, «
assumes all values congruent to a real number (mod w,, w,).
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Denote by w the real fundamental period of the two functions ¢(u) and
Y(u). We may assume that %,, and so all arguments

Uzn+1s U—3m—2 (m= O: 1, 27 "‘):

are real numbers. Two real arguments »’ and %" will give the same point

on C, if, and only if,
w'=u"' (mod w),

2.e. if there is an integer h with

w =u"+hw.

18. It is possible that no two points of the system of points
Py, Pgpe (m=0,1,2,..)
on C(k,) coincide. Then, also, all points
Ugm+1: U—3m—2 (m=0,1,2,..)
-on C must be different ; there is no integer 2 7 0 with
3hu; =0 (mod w)

and therefore the quotient

%,
w

is an irrational number. Hence, by a well-known theorem, the system of

Teal numbers
Ug, U_gy Uy, U_g, Ugy Ug,y «-n

is “gleichverteilt” mod w, and the corresponding points on C will be
everywhere dense on every arc I' of this curve. To every arc I' there
belongs a positive constant y, such that, for sufficiently large N, at least

yN

.of the points
Ugmity Ugm-z (M=0,1, ..., N—1)

on ClieonT. Hence, also, at least yV of the points
Pynyss Pgpo (m=0,1,.., N-1)

lie on the arc I'(k,) on C(k,) corresponding to I' on C.
262
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Since both curves C and C(k,) are cut in only one real point by any
straight line through the origin, we may define the arcs I' and I'(,) by
conditions of the form

N

A<%<R
or the form
y\1
a<(¥) <n,

where 4 and B are any two real numbers with 4 < B.

19. If at least two points of the set
Py Pgne (m=0,1,2, ..)
coincide, then there is an index N > » such that all points
Py Py (m=0,1,..., N—1)
ar: different, while at least two of the points

P 3m+1> P

_am—z (m=0,1,..., N)
coincide. This means that all the numbers
Ugppr = (Bm+1)uy, U_gy o= (—3m—2)u, (m=0,1,...,N-1),
but not all the numbers
Ugmer = (3Mm+1)uy, % g, o= (—3m—2)u;, (m=0,1, ..., N),

are incongruent (mod w). Therefore, either

Ugyy1 =U_gyy (Mod w), t.e. 6Nu;=0 (mod w),

with 3hu; (0 (mod w) for h=1,2, ..., 2N—1;
or U_gy_g=Usyy; (mod w), se. 3(2N+41)u;=0 (mod w),
with 3hu, %0 (mod w) for h=1,2, ..., 2N.

It follows that, in the first case,

Mo
6N’

U =

and that, in the second case,
Mw

Uy = 57T

32N+1)’
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with an integer N > n and a second integer M prime to 2N or 2N +-1 respec-
tively. Hence in the first case the points

Uy U_g, Uy, Uy, «-vs Ugn_gy UgN11
are the same as the points

M(3g+1)w

=0,1, ..., 2N—1),
6N (9=0,1, ..., 2N—1)

and in the second case the points

Ugy U_gy Ugy U gy «ovy U_gN41> UsNi1
are the same as the points

M3Bg+1)w

JeN+1) =0 L e 28D,

when we disregard the order of the terms.
Therefore, for sufficiently large N, i.e. for sufficiently large n, those of

the points
Ugms1s U—gm—2 (m =0,1,2, ---);

on C which are different, will be everywhere dense on every arc of the
curve, and similarly for the corresponding points

P3m+1’ P—3m—2 (m=0,1,2,..)

on C(k,). To every such arc there belongs again a positive constant y,
such that for sufficiently large » and N at least

yN
of the different points of the set

Ugm+1> U—3m—2 (m =0,1, 2, )
on C, or of the points
P3m+1’ P—3m—2 (m=0,1,2, .--)

on C(k,), lie on that arc. Asin §18 the arc can be defined by inequalities
of the form

4<L<B

y\-1
or the form AL (—) < B,

where the real numbers 4 and B satisfy the condition 4 < B.
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20. The results of the last two paragraphs lead to the following lemma.
Assume G to be an angle about the origin (0, 0), t.e. the part of the
(z, y)-plane with

y y\*
A<L<B o A<<—x—) <B,

where A and B are two real numbers with A < B. Then there is a positive
constant cg depending only on G, such that corresponding to every integer
t> 0, there are three integers n, N, k,, and 2N points

P3m+1 = (x3m+1i y3m+1)’ P—3m—2 = (¥_gm-2s Y—3m-2) (m=0,1, .., N-—-1)
on the curve C(k,) with the following properties :

(1) AUl points Py, ., P_s,_» have rational coordinates; P, has integer
coordinates with max (|z,|, |y,]) < 65n3.

(2) AU points P,,,,,, P

—3m—-2

t-+3 of them lie in the angle G.

are different from one another; at least

(3) When hy, hy, hy are three different tndices of the set
3m+1, —3m—2 (m=0,1,.. N—1)

with hy+hy+hy =0, then P,, P,,, P,, are collinear; when h, and h, are
two of them with hy+2hy = 0, then P, is the tangential of P,,.

(4) The integers n, N, and t satisfy the inequality
n <N <cgt.

It is now possible that some, say j, of the 2V points Py, ., P_j,, o lie at
infinity ; but C(k,) being of degree 3, there are at most three such points,
andsoj=0,1,2,0or3. Callthese points P,, ..., P,j.

21. The coordinates of the points Py, ,,, P

_sm—s are rational numbers
and can be written in the form

) . 2Bm+1) i y{3m+]) ) 2(—3m—2) . y(—sm—Q)
Lam+1 = 2(8m+1)? Ysm1= 2(3m+1) : L_gm—2 = z(—3m—2)’ Y-sm-2= 2—3m—2)
(m=0,1, .., N—1),

as in §10, with integer z’s, y’s, and 2’s, which are finite and not all three
zero. The denominators z,,,,, and z_g,,_, are different from zero, with the
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exception of the j denominatcrs z,, ..., 2. We write

k1>
@M+ — ma’x(|x(3m+l)\’ [y(3m+1)]’ |z(3m+1)|)
W—3m—2) — max([ x(.—3m—2)[’ ]y(—sm—z)l’ lz(—Sm—2)l)
(m=0,1, .., N-1),
and have again
w® < 65n3.
Furthermore, it is obvious that
W <Leg (=1, 2, ...,7),

where ¢ is a positive constant depending only on the coefficients of the
form F(z, y), but not on ¢, », or N; and similarly

w2 Le, (=1, 2, ..., 9),

where the positive constant ¢, also depends only on the coefficients of the
form F(z, y). We remark that, if j > 2, then j = 3, for then P, P,,, and
P, lie on the line at infinity.

If one of these points P,, is collinear with two different finite points
P, and P,, three equations of the following form will be satisfied by the
coordinates of these finite points:

1?

20 = KU (200, gy, 200) g) — () (), g, 200),
209 = K (), o), A0) ;

here K, K{), K{)(i = 1, ..., j) denote ternary forms with integer coefficients,
of degree e say, which depend only on the coefficients of the form
F(z, y). Their actual calculation by the method in §§8 and 9 shows that
z®J is not zero, when P, and P,, are different and finite. Obviously these
equations lead to the inequality

W) < cg(wM)e

with another constant cg > 0 depending only on the coefficients of F(z, y).

22. It is possible now to obtain an upper bound for all maxima

wBmAD | yf=3m-2) (=0, 1, ..., N—1)
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by using the method of §11. As far as these maxima correspond to finite
points, they are connected by the recurrence formulae

w(em+1) < ¢ (w(—am—Z) w(—3m+l))4’ wl6m+4) < Cq w(—3m—2)4’
—6m—2) < Cy w(3m+1)4’ w(—6m~5) < ¢ (w(3m+1) w(3m+4))4.

But these formulae must be replaced by others when at least one of the
points in them lies at infinity. Hence at most three of them change into

w("i) < 66’
at most three into
w2 < ¢,
and at most six into
,w(h?) < 68 (u)(hl))c.

Therefore the results in § 12 lead to a system of inequalities
Co D L (cguw) € IGMAD ¢ guf-3m=2) L (¢ w)e S=3m=2)
(m=0,1, ..., N—1),

where ¢, is a constant depending only on the coefficients of F(x, y) and
where the arithmetical function f(h) satisfies the inequality

J(h) <cqlhl.
So we have, in particular,
1 ; o 1 s .
lz(3m+1)| < g (65¢y nB3)cs @M+ l z(—am—z)l < a (65cy n3)cs eBm+2)
(m=0,1, ..., N—1).
Now, by § 20, at least ¢+ 3 of the points
Pypiss Pgny (m=0,1,..., N—1)
lie in the angle G, and so there must be at least ¢ of these points, say
Py, Py, ..., P,

‘which lie in G and are all finite. Therefore their denominators are different
from zero and satisfy the inequalities

|| < EI; (65con3)s SR (=1, 2, ..., 1),
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80 that their least common multiple is not greater than
( L 3\cs €5(3N)* L f
1 o (65¢cym3) j

If Z is this least common multiple, we write

. Za) Zy®d . .
Axh; = W = Dis Z?/Iu= _z%{‘)— =4q; (Z =1,2, .., t)

and k= Z3Fk,.
Then the coordinates of all points

(pi’ 9;) (i: 1> 2) cuey [')

are integers; these points are finite and different and all lie in the angle
@G and on the curve C(k). For the number £ we have

0<

3
k| <cs(65n%)° {CL (65n3)°'e.-‘»(:w)'} (N < ¢qt),
9
and so for any positive constant y and sufficiently large ¢, that is, sufficiently
large » and N, we have
0<|k| e,
since the exponent « may be assumed less than 3.

We have thus proved the following generalisation of Theorem 1.

THEOREM 5. Let A and B be two real numbers with 4 < B and @ be the
angle

A Y y\1!
<L<B o A<<?) <B

about the origin, and let y be any positive number. Then there i3 a positive
number ty(4, B, v), such that to every integer t > t,(A, B, y) exists an integer
k with

0<|k| e,
for which the conditions

Flx,y)=k (z,y)in G,

have at least t different solutions in points

rz=p, y=¢ (=12,..1)

with finite integer coordinates.
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We specialize the binary form F(z, y) and the angle @ in this theorem
and obtain the two following results.

THEOREM 6. Thereis an infinite set of positive integers ky, kg, ks, ... with
1<k, <ky<ky<...,
such that the number of representations of k, as @ sum of two cubes of positive
integers is greater than +/logk,.
THEOERM 7. Thereis an infinite set of positive integers ky, kg, ks, ... with
1<k <k, <k <...,
such that the number of representations of k, in the form

k, = pq(p+q)

with positive integers p, q is greater than ~/logk,.

II1.
23. So far we have treated only cubic curves of the special kind
Fx, y)=k.

But our method suffices for the study of much more general cubic

curves. Suppose
fle, y)=0

to be the equation of a cubic curve of genus 1, and
g(x, y)=0,

the equation of another curve, of degree less than or equal to 3, both
f(z, y) and g(z, y) being polynomials with rational coefficients. Then to
every point (z', 9’) in the (z, y)-plane with rational coordinates, which is
not a point of intersection of the two curves, there belongs a rational
number A, such that the cubic curve C(A),

Jlx, y)+Ag(x, y) =0,

goes through (2’, %’), and if this point lies sufficiently near to f=0, but
not to a point of intersection of f=0, g =0, then |A| will be very small.
Now there is a uniformisation of the curve C(A),

T = ¢A(u)’ Yy= ‘/’,\ (u)’

by means of two elliptic functions

ba(w); Pa(w)
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with the same periods w{!, w{® and of order 2 or 3; as functions of the
parameter A the expressions

954\(’“)) l/‘;\(u), wg\l)’ w§‘2)

are analytic and even regular for sufficiently small |A|.
If the point (2’, y’) on C(A) has the elliptic argument %, we can
construct on this curve the set of points with arguments

Bm+1)u, (=3m—2)u (m=0,1,..,n—1)

by the same process as in § 3, for any given integer» >1. All these 2» points
will be different from one another and none lie at infinity if a certain finite
number of incongruences of the type

v (mod o, w?) (=1,2, ...,9)
are satisfied; here
vV, 2@, ..., v

denote analytical functions of A, which are regular for sufficiently small
[A|. Now for variable and sufficiently small A, every congruence

uv=o{) (mod o, w®) @G=1,2, ...,J)

represents an arc of a certain analytic curve. Hence, in order that all
2n points on C(X) with elliptic arguments

Bm+1)u, (—3m—2)u (m=0,1,...,n—1)

are different and finite, we must choose the special point (z’, ) of argument
u in such a way that it lies sufficiently near to the curve f= 0 and not on
a finite number of arcs of certain analytical curves. But here it is obvious,
that in any neighbourhood of any arc of the curve f= 0, there is a point
(2', y’) with these properties and with rational coordinates. Therefore we
arrive at the following result.

THEOREM 8. Suppose that

are the equations of two different cubic curves, of which the first has the genus
one, and that these equations have rational coefficients. Let € be any positive
number, t = 1 any integer. Then there is a rational number A with

0<[Al<e

such that at least t different finite points with rational coordinates lie on the
cubic curve

f@, y)+M(, y)=0.
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The method of the second chapter may be applied to prove that all these
¢ points can also be assumed to lie in any neighbourhood of any finite arc
of the curve f=0.

Tt is also possible to obtain an upper bound

e

for the general denominator of the coordinates of these ¢ points, when ¢ is
large enough; here a denotes an absolute positive constant.

24. We now mention some applications of Theorem 8. Take
f@, y)=2>+y*+1-34zy
with any rational number A 7 1, so that this curve has genus 1, and

g(x, y) = 3Axy.
Then we get the result:

THEOREM 9. For any given rational number A # 1, any given positive
number e, and any integer t > 1, there s a rational nun her A" with

0<|A'—4|<e,
such that the equation
23+ +23—34"2yz =0
has at least t different solutions in co-prime integers ., y, 2.

Tt is trivial that this theorem remains true also for 4 =1. For then
take a rational number 4" with

Atle <A <A+
and apply the theorem with A’ instead of 4 and }e instead of €; then
|A’—A"”| <}e and therefore 0<|4A'—4|<e.
As a second example take
f@, y) = y*— (423 —g,2—g,),
where ¢, and g, are two rational numbers with
9, —27g5% %0,
so that the curve f = 0 is of genus 1, and

g(x, y) = — (423 —g,2—g,)-
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We have

f, )+, y) = ?/2'“(1'{‘)‘)(4‘53"92:”“93)1
and so obtain the result:

THEOREM 10. For any two given ralional numbers g, and g, with.
g2"—2195* #0,

any given positive number ¢ and any integer t > 1 there exists a rational:
number A with

0<|A[<e
such that the cubic curve
y*— (14-A) (423 —g,2—g;5) =0

has at least t different points with rational coordinates.

25. The last theorem has a remarkable consequence. Evidently the:
curve

C,\(1): y2— (14+A) (423 —g,x—g,) =0

has the same absolute invariant

3
J = g2 _
92> —27g5°
as the curve
C: y:— (428 —g,x—g;) =0,

and the same is true for all curves
2 3
- Cu(2): (‘%) —(142) {4(‘%> —9: “Z—_gz} =0,

where Z # 0 is any number. Now we may choose this number Z as an.
integer in such a way that the ¢ rational points on C,(1) change into points.
on C,(Z) with integer coordinates. It is obvious also that, corresponding
to every rational value of the absolute invariant J, two rational numbers.
g»and g5 can be found with
3
7= g
Hence we have:

THEOREM 11. Corresponding to every integer ¢ 2> 1 and to every rational’
number J ,there exists a cubic curve with absolute invariant J,on which lie at least:
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% different points with integer coordinates, and which is defined by an equation
of the special form

Ay*+ Ba*+4-Cx+D =0

with integer coefficients.

26. Theorem 10 is a special case of the following more general result.

THEOREM 12. Suppose that f(x) ts a polynomial of exact degree 3 or 4 in
x with rational coefficients, and that t > 1 is an integer. Then there is an
integer k # 0 such that, for at least t different rational values of x, the polynomial
kf(x) is the square of an integer.

Proof. If f(x)=0 has a multiple root this result is rather trivial;
henceforth we assume that the roots of f(z) = 0 are all simple. Evidently
it is sufficient to prove that, for a certain rational number k; = 0, there are
at least ¢ different rational points on the curve

Cky): y2—k, f(x)=0.
The curve C(1) = C has a uniformisation
r=¢(x), y=4i),

where ¢(z) and Y (z) are two elliptic functions with the periods w,, w, say.
It is cut by every parabola

y = Aax*+4-Bx+C
in exactly four points, and the arguments u,, %,, u;, u, of these points
satisfy the congruence

Ut Uyt tu,=c (mod w,, w,),

with a certain constant ¢, which may be assumed equal to zero without loss
of generality. Of these four points of intersection, three may be given
arbitrarily, and then the last one can be found by a rational construction.
In the special case in which the parabola osculates C in the point %,, we must
.count this point thrice, and so there is only one other point of intersection
u,, given by the congruence

Uy=—3u, (mod w,, w,).
When we now construct the set ot ¢ points with arguments

uy, —3uy, +9uy, ..., (—3)1u,
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on C, there will be only a finite number of initial positions for %, for which
some of these ¢ points coincide or lie at infinity : this is shown by a method
similar to that of the first chapter. Through all these exceptional positions
of u, and through all points with f(x) =0, y =0 we draw straight lines
perpendicular to the z-axis, and then take a rational point (z,, ¥,) not lying
on any one of these lines or on the z-axis. Then there is exactly one curve

C(k,) going through this point, with
Y,

k=

)
On this curve we construct the ¢ points

(xh ?/1), (x2’ yg)’ ERRE) (xt: yt) .
such that, for m=1, 2, ..., t—1, the point (z,,,, ¥,..) is the point of
intersection with C(k;) of the parabola
y = Ax?*+ Bx+-C,

which osculates this curve in the point (z,, ¥,,). All points

(1 Y1)y (%2 Ya)y -oes (% Yy

are different and none lies at infinity, and their coordinates are rational
numbers; these facts may be shown by transforming C(%,) into C' by
replacing y by y/+/|k,|; or by actually giving a recurrence formula for
the coordinates of the (m--1)-th point, when the m-th is known. This
proves our theorem.

27. We mention two trivial consequences of the last theorem.

THEOREM 13. Let t be an arbitrary positive integer. Then there exists
a polynomial ayx®+a, (a,a, 7 0) of exact degree 2 with integer coefficients,
which 1s a perfect cube for at least t different integer values of the argument.

THEOREM 14. Let t be an arbitrary positive integer. Then there exists
a polynomial ay,zi+a, (aya, 7 0) of exact degree 2 with integer coefficients,
which is a perfect fourth power for at least t different integer values of the
argument.

To prove these two theorems we need only apply Theorem 12 to the
two polynomials

flxy=23—a and f(z)=a2—aq,

where a # 0 denotes an arbitrary integer.



464 K. ManLER [April 26,

28. So far we have considered the lattice points only on plane curves
of genus 1. Our method, however, can also be used for the study of these
points on curves of genus 1 in spaces of three or more dimensions. It
may be sufficient to give one result of this kind.

THEOREM 15. Suppose that a, b, ¢, and A, B, C are six integers with
aB—bA #£0, aC—cA #0, bC—cB#0,

and that t is an arbitrary positive integer. Then there are two inlegers k 0
and K #0 such that the system of egquations

axi+by?t-c2 =k, Axz*+By?’4-Cz2=K
has at least t different solutions in integers x, y, 2.
Proof. We choose two rational numbers &, and K such that the curve
C (kg Ky): ax?+by?tc? =k, Aa+By+02=K,

in three dimensions does not consist of single real points, but has real arcs
and is of genus unity. Then the same is true for all curves

O(kl, Kl) : ax2+by2+czz — kl’ Ax2+By2+ 022 = Kl,

where k£, and K, are two rational numbers sufficiently near to k, and K.
C(k,, K,) is not a plane curve and is of degree 4 and of genus 1. Hence it
has a uniformisation

x=¢k1K1(u)’ y=¢k1K1(u): Z=Xk1K1(u):

by means of three elliptic functions

¢k1K1(u): 'ﬁInKl(u): Xlel(u):
with the same periods w{!y, w{Zy, say. As functions of variable para-
meters &, and K, the expressions

2
¢L‘l K (u)’ l)[}k] K](u)’ XI“ K](u)’ wl(y‘li)Kl’ w}:j.)Kl

are analytic and even regular, when
|ky—ky| and |K,—K,|

are sufficiently small.
An arbitrary plane cuts C(k,, K,) in four points of elliptic arguments
Uy, Ug, Ug, Uy, SAY ; they are connected by the congruence

wyFugtugtu,=c  (mod wlp, w@y)



1934.] LATTICE POINTS ON CURVES OF GENUS I, 465

with a certain constant ¢, which may be assumed equal to zero without loss
of generality. Of these four points of intersection, three may be given
arbitrarily, and then the last one can be found by a rational construction.
In the special case when the plane osculates C(k,;, K;) in the point u,, this
point must be counted thrice, and so there is only one other point of
intersection wu,, given by the congruence

uy=—3u, (mod ‘“I(cPKu w}fl)Kl).
When we now construct the ¢ points with the elliptic arguments
Uy, —3uUy, +9%y, ..., (—3) 1y,

they will all be different from one another and none lie at infinity, when a
certain finite number of incongruences of the type

uzEvl . (mod wlllp, w@r) (=1,2,...,J)
is satisfied; here
v (= 1,2, ..,

denote analytical functions of k,, K,, which are regular for sufficiently
small |k, —ky| and |K,—K,|. Now for such %, and K, every congruence
u=vflg,  (mod wily, wffy)
represents a piece of a certain analytical surface. Hence all ¢ points
Uy, —3Uy, +9%;, ..., (—3)1u,
on C(k,, K,) will be different and finite, when the first point
u= (', y, )
is chosen in such a way that it lies sufficiently near to the curve C'(k,, K,)
and does not lie on a finite number of pieces of certain analytical surfaces.

We can satisfy these conditions by rational numbers z’, ¥', 2’.  The
point (z’, ¥, 2’) determines uniquely the numbers

k, = ax'?+by'?+cz'?, K,= Ax'®+ By'?4-Cz'?,

and so also the curve C(k,, K,); both %k, and K, are rational, and the
former method shows that the ¢ points with elliptic arguments

Uy, —-—3’!,01, +9u1: i) (—3)t—1u1

on C(k,, K,)are different and finite and have rational coordinates. Assumc
Z to be the least common multiple of the denominators of these
coordinates; then, on the curve

C(ky 22 K,Z%: ax*+by*+c?2=k, 2% Aa*+By*+4Cz2=K, 22,
SER. 2. VOL. 39. No. 2053, 2H
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there are at least ¢ different and finite lattice points, which proves our
theorem.

29. All the considerations of the previous pages were based on the
construction of rational points on a curve of genus 1, when one such
rational point was known. Evidently the method will lead to still better
results when we know more rational points on the curve and when the
elliptic arguments, say u,, %,, ..., %, of these points do not satisfy any
congruence

hyuy+hyuy +...4+h,u,=0 (mod wy, w,)

with too small integers Ay, hy, ..., b, Now we have a cubic curve through
any nine given points in the plane. We may choose their coordinates as
integers in such a way that the curve has no double point and hence is of
genus 1, and that the elliptic arguments of the nine points are sufficiently
independent in the above-mentioned sense; this will be the case when a
certain finite system of inequalities is satisfied. It is very probable that
in this way we may be able to prove the result:

“There are an infinity of cubic curves
ey
of genus 1 and with integer coefficients, on which at least
(loga)?
different lattice points lie, where

a = max (|ay|)”.

I hope to attack this question in a later paper.

Krefeld, Ross-str. 243,
Germany.



