ON A SPECIAL CLASS OF DIOPHANTINE EQUATIONS: 1

KURT MAHLER ...

[Extracted from the Journal of the London Mathematical Society, Vol. 13, 1938.]

The following theorem is proved in this paper:

Suppose that f(x, y) is a polynomial in x and y with integer coefficients, which is irreducible in the field of all rational numbers, and that there is an infinity of lattice points (x, y) on the curve f(x, y) = 0, for which the greatest prime factor of x and y is bounded. Then

$$f(x, y) \equiv qx^m + ry^n,$$

[†] Received 19 January, 1938; read 20 January, 1938.

greater than or equal to zero, but not both zero.

This result shows that the equation $F(u^x, v^y) = 0.$

where
$$F(x, y)$$
 is a polynomial with rational coefficients and where u and v are two integers greater than or equal to 2, has in general only a finite

number of solutions in integers $x \ge 0$ and $y \ge 0$, and determines all exceptional cases.

there lies an infinite set
$$S$$
 of lattice points (x, y) , such that xy is divisible only by a finite number of given prime numbers P_1, P_2, \ldots, P_t . Curves of this kind are, $e.g.$

e.g.
$$x-a = 0$$
 or $y-b = 0$.

where
$$a$$
, b are non-vanishing integers. We exclude these trivial cases, and we also suppose, without loss of generality, that $f(x, y)$ is irreducible

in the field of all rational numbers. Then, for the elements of
$$S$$
, both $|x|$ and $|y|$ must tend to ∞ . For, if for an infinity of elements of S , the abscissa x has the same value $c \neq 0$, then the straight line $x-c=0$ has an infinite number of points of intersection

the straight line x-c=0 has an infinite number of points of intersection

with
$$C$$
, and therefore forms a part of this curve, so that $f(x, y)$ would be reducible, contrary to hypothesis; similarly with the ordinate y .

By the theory of algebraic curves, for sufficiently large x , y can be

reducible, contrary to hypothesis; similarly with the ordinate
$$y$$
.

By the theory of algebraic curves, for sufficiently large x , y can be expressed as one of a finite number of descending power series

(2)
$$y = \sum_{k=0}^{\infty} a_{hk} x^{(m_h - k)/n}, \ a_{h0} \neq 0 \ (h = 1, 2, ..., H),$$
 where n is a positive integer, $m_1, m_2, ..., m_H$ are integers, and the a_{hk} are algebraic numbers. Hence, to every element (x, y) of S with sufficiently large coordinates, there belongs an index $h = h(x, y)$ for which the correspondence of the sum of the correspondence of the sum of the s

large coordinates, there belongs an index h = h(x, y), for which the corresponding equation (2) is satisfied. But h has only a finite number of possible values. Hence, for an infinite subset S' of S, h has always the same value, and therefore for all elements of S'

(3) $y = a_0 x^{m/n} + a_1 x^{(m-1)/n} + a_2 x^{(m-2)/n} + \dots \quad (a_n \neq 0),$ and the a_k are the a_{bk} with a certain fixed index h. Since y is bounded for

only a finite number of elements of S', the exponent m/n must be positive, and therefore m is a positive integer. 2. The coordinates of every element (x, y) of S' can be written as

 $x = \epsilon_1 P_1^{u_1} P_2^{u_2} \dots P_r^{u_t}, \quad y = \epsilon_2 P_1^{v_1} P_2^{v_2} \dots P_r^{v_t}.$ where $\epsilon_1 = \pm 1$, $\epsilon_2 = \pm 1$, and the u_τ, v_τ are non-negative integers. Suppose

that
$$u_\tau=u_\tau{'}'n+u_\tau{''},\ v_\tau=v_\tau{'}'m+v_\tau{''}\quad (\tau=1,\ 2,\ ...,\ t),$$
 where the $u_\tau{'},\ v_\tau{'}$ are non-negative integers, while the $u_\tau{''},\ v_\tau{''}$ are integers

satisfying the inequalities

$$0\leqslant u_\tau^{\;\prime\prime}\leqslant n-1,\quad 0\leqslant v_\tau^{\;\prime\prime}\leqslant m-1\quad (\tau=1,\;2,\;...,\;t).$$
 Then the system of $2t$ numbers

 $u_1'', u_2'', \ldots, u_t'', v_1'', v_2'', \ldots, v_t''$

$$u_1^{\prime\prime},\quad u_2^{\prime\prime},\quad ...,\quad u_t^{\prime\prime},\quad v_1^{\prime\prime},\quad v_2^{\prime\prime},\quad ...,\quad v_t^{\prime\prime}$$
 has only $(mn)^t$ different possibilities, and so for an infinite subset $S^{\prime\prime}$ of S^{\prime}

 $u_{\tau}^{\prime\prime} = u_{\tau}^*, \quad v_{\tau}^{\prime\prime} = v_{\tau}^* \quad (\tau = 1, 2, ..., t),$

where the integers u_{τ}^* , v_{τ}^* are constants. We now write $X = P_1^{u_1'} P_2^{u_2'} \dots P_t^{u_t'}, \quad Y = P_1^{v_1'} P_2^{v_{t'}} \dots P_t^{v_{t'}},$

$$A = P_1^{u_1^*} P_2^{u_2^*} \dots P_t^{u_t^*}, \quad B = P_1^{v_1^*} P_2^{v_2^*} \dots P_t^{v_t^*},$$

so that

(4)
$$x = \epsilon_1 A X^n, \quad y = \epsilon_2 B Y^m.$$

Then A and B are positive integers, which do not depend on the elements

(X, Y), replacing S'', if necessary, by one of its infinite subsets.

(x, y) of S'', while X and Y are positive integers, which become arbitrarily large, and which are both divisible only by the prime numbers P_1, P_2, \ldots P_t . We may suppose that ϵ_1 and ϵ_2 are independent of (x, y), that is, of

3. By formula (3), for large x,

3. By formula (3), for large
$$x$$
,
$$y^n \sim a_0^n x^m$$

and therefore, by (4),

$$\frac{Y^{mn}}{X^{mn}} \to \frac{a_0^n (\epsilon_1 A)^m}{(\epsilon_2 B)^n}.$$

Obviously

where Hence

(5)

(6)

 $\frac{Y}{\overline{Y}} \to \lambda$

where λ is one of the real values of $a_0^{1/m}(\epsilon, A)^{1/n}(\epsilon, B)^{-1/m} \neq 0.$

$$Y^m = \lambda^m X^m (1 + \alpha_1 X^{-1} + \alpha_2 X^{-2} + \dots),$$

 $a_k = \frac{a_k}{a_0} (\epsilon_1 A)^{-k/n} \quad (k = 1, 2, 3, \ldots).$

 $Y = \lambda X (1 + \beta_1 X^{-1} + \beta_2 X^{-2} + ...),$

and here the β_k are constants, which all vanish if and only if all α_k ,

i.e. all a_k (k=1, 2, 3, ...), are zero. The power series converges when

X is a sufficiently large number, and then, when X belongs to an element of S^* , gives the value of Y. 4. Suppose now that at least one of the coefficients $\beta_1, \beta_2, \beta_3, \dots$ does

not vanish, and let

 $X = (X, Y) \xi, \quad Y = (X, Y) \eta.$ Both ξ and η have no other prime factors than $P_1, P_2, ..., P_t$. By (5).

Here the right-hand side tends to the limit λ , but, by the theory of power series, it will be different from this limit, as soon as X is sufficiently large.

Hence both ξ and η must tend to infinity for the elements of S^* . Thus we have obtained an infinite set of rational numbers ξ/η , for which

 $\frac{\eta}{\xi} = \lambda (1 + \beta_1 X^{-1} + \beta_2 X^{-2} + \dots).$

 $\left| \frac{\eta}{\xi} - \lambda \right| \leqslant c \, |\xi|^{-1},$

with a certain positive constant c, for $|X| \ge |\xi|$. This result, however, at once leads to a contradiction. For, since the greatest prime divisor of $\xi \eta$ lies under a given bound and since λ does not vanish and is an algebraic number, the inequality (6) possesses at most a

finite number of such solutions; compare Satz 3 of my previous paper. † Proc. Royal Acad. Amsterdam, 39 (1937), 633-640, 729-737.

the polynomials can differ only by a constant, non-vanishing factor.

It follows that all β_k , and therefore also all a_1, a_2, a_3, \ldots , must be zero. Hence, for the elements of S, $u^n = a_0^n x^m$.

On a special class of Diophantine equations: I.

173

This

Suppose that m and n are chosen as coprime integers. Then obviously a_0^n is a rational number and the polynomial

 $q(x, y) = y^n - a_0^n x^m$ is irreducible. We have proved that an infinity of lattice points on

f(x, y) = 0

lie also on the irreducible curve

$$g(x,\ y)=0.$$
 Hence $f(x,\ y)$ is divisible by $g(x,\ y)$, and since also $f(x,\ y)$ is irreducible,

completes the proof.

Mathematical Department, The University, Manchester.