ON MINKOWSKI'S THEORY OF REDUCTION OF POSITIVE DEFINITE QUADRATIC FORMS

By K. MAHLER (Manchester)

[Received 8 June 1938]

 $Minkowski^*$ called a positive definite quadratic form in n variables

$$F(x) = \sum_{h,k=1}^{n} a_{hk} x_h x_k$$

reduced, if, for h = 1, 2, ..., n and for all systems of n integers $x_1, ..., x_n$

$$F(x)\geqslant a_{hh},$$
 when the greatest common divisor

g.e.d. $(x_h, x_{h+1}, ..., x_n) = 1$,

and if certain n-1 other unimportant inequalities were satisfied. He proved that, for reduced forms of discriminant D,

 $\lambda_n a_{11} a_{22} \dots a_{nn} \leqslant D,$

where $\lambda_n > 0$ depends only on n. L. Bieberbach and I. Schur† showed that

at
$$\lambda_n \geqslant (rac{48}{125})^{rac{1}{5}(n^3-n)},$$

and R. Remak‡ in a recent paper improved this to

$$\lambda_n\geqslant \gamma_n(\frac{4}{5})^{\frac{1}{2}(n-3)(n-4)}$$
 where γ_n is Hermite's constant, for which $D\geqslant \gamma_n\,a_{nn}^n.$ §

As Remak's proof is rather long, I give here a very short and simple proof (which I had obtained before the paper of Remak

appeared) for the slightly weaker inequality (since
$$\frac{4}{9} < \frac{4}{5}$$
)
$$\lambda_n \geqslant 2^{-2n} (\frac{4}{9})^{\frac{1}{2}(n-1)(n-2)} \frac{\{\Gamma(\frac{1}{2})\}^{2n}}{\{\Gamma(1+\frac{1}{2}n)\}^2}.$$

My proof is valid for the reduction of arbitrary convex bodies; it employs Minkowski's theorem on the successive minima of a convex

* Gesammelte Abhandlungen, Bd. 2, 53–100.

† Sitzungsber, Preussische Akad. Wiss., phys.-math. Kl. (1928), 510-35.

† Compositio Math. 5 (1938), 368-91. § See J. F. Koksma, 'Diophantische Approximationen', Erg. d. Math. IV 4,

Kap. II, § 6. The best known result for large n is $\gamma_n\geqslantrac{\pi^n}{2^n\Gamma(2+rac{1}{2}n)^2},$

due to Blichfeldt.

|| Geometrie der Zahlen, 218.

body.

 $x_1,..., x_n$ $(n \ge 2)$ with the following properties:

(i) f(0,...,0) = 0, $f(x_1,...,x_n) > 0$ for $\sum_{h=1}^{n} x_h^2 > 0$; (ii) $f(tx_1,...,tx_n) = |t| f(x_1,...,x_n)$ for real t; (iii) $f(x_1+y_1,...,x_n+y_n) \leq f(x_1,...,x_n)+f(y_1,...,y_n)$.

Then, for t > 0, the inequality $f(x) \le t$ defines a convex body K(t)in n dimensions, of volume $J(t) = Jt^n$, where J denotes the volume

of the body K(1), say K. For every t > 0, since K(t) contains only a finite number of lattice points, it is possible to apply Minkowski's method of reduction* to the function f(x). Let M_h (h = 1,...,n) be the set of all lattice points $(x_1,...,x_n)$ whose last n-h+1 coordinates $x_h, x_{h+1},...,x_n$ are rela-

tively prime, and let $a_h = f(\delta_{h1}, \delta_{h2}, ..., \delta_{hn}) = f(\delta_h) \quad (h = 1, 2, ..., n),$

where δ_{hk} is Kronecker's symbol:

 $\delta_{hh}=1, \quad {\rm but} \quad \delta_{hk}=0 \ {\rm for} \ h
eq k \quad (h,k=1,2,...,n).$ Definition. The function f(x) and the corresponding convex body Kare called 'reduced', if for each h = 1,..., n and for all lattice points

(x) in M_h $f(x) \geqslant a_b$.

As in Minkowski's paper, it is easily proved that f(x) can be reduced by applying a suitable unimodular linear transformation $x_h \to \sum_{k=1}^{n} a_{hk} x_k \quad (h = 1, 2, ..., n)$

with integer coefficients.

2. Theorem. For reduced functions f(x)

 $a_1 a_2 ... a_n \leqslant \frac{2^n (\frac{3}{2})^{\frac{1}{2}(n-1)(n-2)}}{I}.$

Minkowski \dagger proved that there are n independent lattice points

 $(p_h) = (p_{h1}, ..., p_{hn}) \quad (h = 1, 2, ..., n)$

such that, if

 $S_h = f(p_h) = f(p_{h1}, ..., p_{hn}) \quad (h = 1, 2, ..., n),$

 $S_1 \leqslant S_2 \leqslant \dots \leqslant S_n, \qquad S_1 S_2 \dots S_n \leqslant \frac{2^n}{7},$ then

* Gesammelte Abhandlungen, Bd. 2, 53–100. † Geometrie der Zahlen, 218.

261

(1)

 $a_1 \leqslant S_1$. (More exactly $a_1 = S_1$, but we do not need this.) Suppose that we have already obtained m-1 positive absolute

Obviously, (p_1) belongs to M_1 ; hence

 $(p_2),...,(p_{h-1}).$

constants

 $a_h \leqslant \gamma_h S_h \quad (h = 1, 2, ..., m-1).$ such that (2)By (1) in particular $\gamma_1 = 1$, and we now find a similar constant γ_m for which

 $\gamma_1, \gamma_2, \ldots, \gamma_{m-1},$

 $a_m \leqslant \gamma_m S_m$. (3)The m lattice points $(p_1),...,(p_m)$ are independent. Hence at least

one of them, say $(p_i) = (p_{i1},...,p_{im})$ (i = 1 or 2 or...or m), has its last n-m+1 coordinates p_{im} , $p_{i,m+1}$,..., p_{in} not all zero. Therefore the greatest common divisor

g.c.d. $(p_{im}, p_{i,m+1}, ..., p_{in}) = d_m \neq 0$. If $d_m = 1$, then (p_i) belongs to M_m , and therefore $a_m \leqslant S_i$,

i.e. $a_m \leqslant S_m$ (4)

Suppose, however, that $d_m \ge 2$. Then we can find m-1 integers $g_1, g_2, ..., g_{m-1}$, such that

 $p_{ih} + g_h \equiv 0 \pmod{d_m}$ and $|g_h| \leq \frac{1}{2}d_m$ (h = 1, 2, ..., m-1).

Hence, writing the left-hand side in vector form,

 $\left(\frac{p_{i1}+g_1}{d_m},...,\frac{p_{i,m-1}+g_{m-1}}{d_m},\frac{p_{im}}{d_m},...,\frac{p_{in}}{d_m}\right) = \frac{1}{d_m}\left\{\sum_{i=1}^{m-1}g_h(\delta_h)+(p_i)\right\}$

is a lattice point of the set M_m . Therefore, from (ii) and (iii), since

 $d_m \geqslant 2$,

 $a_m \leqslant \frac{1}{d_m} \left\{ \sum_{i=1}^{m-1} |g_h| a_h + S_i \right\} \leqslant \frac{1}{2} \left\{ \sum_{i=1}^{m-1} \gamma_h S_h + S_m \right\},$

(5)

 $a_m \leqslant \frac{\gamma_1 + \gamma_2 + \dots + \gamma_{m-1} + 1}{2} S_m$. i.e.

 $\gamma_m = \max \left(1, \frac{\gamma_1 + \gamma_2 + \ldots + \gamma_{m-1} + 1}{2}\right).$

Put

Then, from (4), (5), we see that (3) is satisfied.

ON POSITIVE DEFINITE QUADRATIC FORMS 262 Now $\gamma_1=1, \qquad \gamma_2=\max\Bigl(1,rac{1+1}{2}\Bigr)=1,$

 $\gamma_3 = \max(1, \frac{1+1+1}{2}) = \frac{3}{2},$

Then

we have

since

as was to be proved.

Suppose in particular that

 $\gamma_4 = \max(1, \frac{1+1+\frac{3}{2}+1}{2}) = \frac{9}{4} = (\frac{3}{2})^2.$ Suppose, then, that

and so (6) holds for h = m.

On multiplying the inequalities

 $a_1 \leqslant S_1$ and $a_h \leqslant (\frac{3}{2})^{h-2}S_h$ for h = 2, 3, ..., n,

 $a_1 a_2 \dots a_n \leqslant (\frac{3}{2})^{1+2+\dots+(n-2)} S_1 S_2 \dots S_n \leqslant \frac{2^{n} (\frac{3}{2})^{\frac{1}{2}(n-1)(n-2)}}{I},$

 $\{f(x)\}^2 = F(x) = \sum_{h=1}^{n} a_{hk} x_h x_h$

is a reduced positive definite quadratic form of determinant D. Then

 $J = \frac{\{\Gamma(\frac{1}{2})\}^n}{\Gamma(1+\frac{1}{2}n)} \frac{1}{\sqrt{D}}$

is the volume of the convex body $f(x) \leq 1$, and so by our theorem

 $a_{11}a_{22}\dots a_{nn}\leqslant 2^{2n}(\frac{3}{2})^{(n-1)(n-2)}\frac{\{\Gamma(1+\frac{1}{2}n)\}^2}{\{\Gamma(\frac{1}{2})\}^{2n}}D,$

 $a_{hh} = a_h^2$ (h = 1, 2, ..., n).

 $\gamma_m = \max\left(1, \frac{3 + (\frac{3}{2})^1 + (\frac{3}{2})^2 + \dots + (\frac{3}{2})^{m-3}}{2}\right) = \frac{1}{2}\left(3 + \frac{(\frac{3}{2})^{m-2} - (\frac{3}{2})^1}{\frac{3}{2} - 1}\right) = (\frac{3}{2})^{m-2},$

 $\gamma_h = (\frac{3}{2})^{h-2}$ for h = 2, 3, ..., m-1.

(6)