.

On the solutions of algebraic differential equations

KONINKLIJKE NEDERLANDSCHE AKADEMIE VAN WETENSCHAPPEN

K. MAHLER

Reprinted from: Proceedings Vol. XLII, No. 1, 1939

Mathematics. — On the solutions of algebraic differential equations. By K. Mahler. (Communicated by Prof. J. G. van der Corput).

(Communicated at the meeting of December 17, 1938).

Let

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots$$
 (1)

be a convergent or divergent power series with coefficients in a finite algebraic field K, which formally satisfies an algebraic differential equation; i.e. there is a polynomial $F(z, y_0, y_1, \ldots, y_m) \not\equiv 0$ in K, such that identically in z^{-1}

$$F(z, f(z), f'(z), \ldots, f^{(m)}(z)) = 0. \ldots (2)$$

In his Groningen Thesis 2), J. POPKEN proved the following

 $a_n = 0$, or $|a_n| \ge \exp(-c n (\log n)^2)$. The proof then given was rather complicated. In this note. I give a simpler proof, which depends on the following results of G. Polya 3):

integers, such that all numbers $a_n a_n (n = 0, 1, 2, ...)$ are algebraic integers, and such that $\frac{\log a_n}{n (\log n)^2} = O(1).$

Theorem 2: There is an infinite sequence a_0, a_1, a_2, \ldots of positive

on n, such that for all sufficiently large indices n, $|a_n| \leq n!^{c_1}$.

special case of rational coefficients a_n .

rational functions with rational coefficients in a finite number of the a's and in the coefficients of F.

²) Amsterdam 1935, N.V. Noord-Hollandsche Uitgeversmaatschappij, Satz 12. 3) C. R. 201 (1935), p. 444, first two theorems. I need these theorems only in the

¹⁾ It suffices to suppose that the TAYLOR coefficients a_n are algebraic and that f(z)satisfies an equation (2). For then, without loss of generality, the coefficients of the polynomial F may be assumed to be algebraic, and therefore the a's can be expressed as

Proof of Theorem 1: Without loss of generality, the coefficients of the polynomial F may be assumed to be rational numbers 4). Let the field K be of degree N, and θ be a generating number of this field; hence

 $a_n = \sum_{h=0}^{N-1} A_{hn} \, \theta^h \qquad (n = 0, 1, 2, \ldots), \ldots$ (3) where the A_{hn} are rational numbers. Put

$$f_h\left(z\right) = \sum\limits_{n=0}^{\infty} A_{hn}\,z^n \qquad (h=0,\,1,\,\ldots,\,N-1) \quad . \quad . \quad . \quad (4)$$
 and for arbitrary t

$$f(z|t) = \sum_{h=0}^{N-1} t^h f_h(z), \dots$$
 (5)

g in
$$F$$
, we get

in
$$F$$
, we get

Substituting in
$$F$$
, we get

$$F\left(z, f(z|t), \frac{\partial f(z|t)}{\partial z}, \dots, \frac{\partial^m f(z|t)}{\partial z^m}\right) = \sum_{n=0}^{\infty} P_n(t) z^n, \quad . \quad . \quad (7)$$

where the
$$P_n(t)$$
 are poly

where the
$$P_n(t)$$
 are polynomials in t with rational coefficients.
Suppose now that $\theta_0, \theta_1, \ldots, \theta_{N-1}$ are the N different conjugate to θ_0 and θ_0 are the θ_0 different conjugate θ_0 and θ_0 are the θ_0 different conjugate θ_0 and θ_0 different conjugate θ_0 different conjug

Suppose now that
$$\theta_0, \theta_1, \ldots, \theta_{N-1}$$
 are the N different conjugates of in the field of all complex numbers. Since by (2)

$$\theta$$
 in the field of all complex numbers. Since by (2)

$$P_n(\theta)$$
 so obviously also for $h = 0, 1, ..., N-1$

obviously also for
$$h=0$$

obviously also for
$$h=0$$

obviously also for
$$n=0$$

Therefore by (7), the
$$N$$

Therefore by (7), the
$$N$$
 power series

Therefore by (7), the
$$N$$

Therefore by (7), the
$$N$$

the
$$N$$
 power series
$$f(z \mid \theta_h) \qquad (h = 0, 1, \dots, N-1). \qquad (8)$$

all satisfy algebraic differential equations, viz. the same equation (2). Now it is easily shown that if $g_1(z), \ldots, g_r(z)$ are power series which satisfy algebraic differential equations, and if $\lambda_1, \ldots, \lambda_r$ are constants, then the series $\lambda_1 g_1(z) + \ldots + \lambda_r g_r(z)$ also satisfies a certain algebraic differential equation 5). Therefore the N functions (4) must be solutions

4) If necessary, multiply F by its conjugate polynomials with respect to K.

5) Put $\lambda_1 g_1(z) + \ldots + \lambda_r g_r(z) = g(z)$ and suppose that $F_1 = 0, \ldots, F_r = 0$ are the differential equations for $g_1(z), \ldots, g_r(z)$. By differentiating these equations a sufficient number of times and by considering g(z) as known, we obtain so many equations for the functions $g_1(z), \ldots, g_r(z)$ and their differential coefficients, that we can eliminate them.

$$P_n(\theta_h) = 0$$

$$P_{n}(\theta) = 0$$

$$, N-1$$

 $(n = 0, 1, 2, \ldots),$

 $(n = 0, 1, 2, \ldots).$

 $A_{hn} = \frac{P_{hn}}{Q_{hn}}$ (h = 0, 1, ..., N-1; n = 0, 1, 2, ...), . (9)

of algebraic differential equations; for by (5) they can be expressed

linearly with constant coefficients by means of the functions (8).

and 3, there is a positive constant c_2 , such that for h = 0, 1, ..., N-1and for all sufficiently large n

$$max\left(\mid P_{hn}\mid,\mid Q_{hn}\mid\right)\leqslant exp\left(c_{2}\ n\ (log\ n)^{2}\right). \quad . \quad . \quad . \quad (10)$$
 Put

where P_{hn} and $Q_{hn} \ge 1$ are relatively prime integers. By the Theorems 2

Now by (3)

 $q_n = \prod_{h=0}^{N-1} Q_{hn}, \ p_{hn} = A_{hn} \ q_n \qquad (h = 0, 1, \dots, N-1; n = 0, 1, 2, \dots),$ (11)

Write the rational numbers A_{hn} as

such that all p_{hn} and $q_n \geqslant 1$ are integers, and that

that all
$$p_{hn}$$
 and $q_n \geqslant 1$ are integers, and that $A_{hn} = rac{p_{hn}}{q_n}$ $(h=0,1,\ldots,N-1;n=0,1,2,\ldots).$ (12)

Then by (10) there is a positive constant c_3 , such that for sufficiently large n $max(q_n, |p_{0n}|, |p_{1n}|, ..., |p_{N-1n}|) \leq exp(c_3 n (log n)^2).$ (13)

Theorem 4: To every real or complex algebraic number θ of degree N, there is a positive constant c_4 , such that, if $A_0, A_1, \ldots, A_{N-1}$ are N

 $a_n = \frac{1}{\alpha} \sum_{k=1}^{N-1} p_{hn} \, \theta^h.$

$$a_n = \frac{1}{q_n} \sum_{h=0}^{\infty} p_{hn} \, \theta^h.$$
 Hence Theorem 1 follows immediately from (13) and from the well known 6)

integers which do not vanish simultaneously, then

 $\left| egin{array}{c} egin{arr$

$$h=0$$

Manchester, 8 November 1938.

⁶⁾ See J. F. Koksma, Diophantische Approximationen, Satz 6, p. 55.