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Let
f@)=ay+az+a 2200 . . . . . . (1)

be a convergent or divergent power series with coeflicients in a finite
algebraic field K, which formally satisfies an algebraic differential equation;
i.e. there is a polynomial F(z. ye yy,....y.)7>0 in K, such that
identically in z 1)

Fi (@ @, ... f™E)=0 . . . . . . (2
In his Groningen Thesis ?), J. POPKEN proved the following

Theorem 1: There is a positive number ¢ independent of n, such
that for all sufficiently large indices, either

a, =0, or a, _=exp (wcn (log n)? )
The proof then given was rather complicated. In this note. I give a
simpler proof, which depends on the following results of G. PorLva ¥):

Theorem 2: There is an infinite sequence ay, ay, a,. ... of positive
integers, such that all numbers a,w,(n=20,1,2,...) are algebraic in-
tegers, and such that

loga,
n (log n)? O ().

Theorem 3: There is a positive number c,, which does not depend
on n, such that for all sufficiently large indices n,

ol

e

) It suffices to suppose that the TAYLOR coeflicients « are algebraic and that f(z)

satisfies an equation (2). For then, without loss of generality, the coefficients of the
polynomial F may be assumed to be algebraic, and therefore the «'s can be expressed as
rational functions with rational coefficients in a finite number of the «’s and in the coefficients
of F.

%) Amsterdam 1935, N.V. Noord-Hollandsche Uitgeversmaatschappij, Satz 12.

3 C.R. 201 (1935), p. 444, fist two theorems. 1 need these theorems only in the
special case of rational coefficients « .
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Proof of Theorem 1: Without loss of generality, the coefficients of
the polynomial F may be assumed to be rational numbers®). Let the
field K be of degree N, and # be a generating number of this field ; hence

N

a, = X A O n=0,1,2,..., . . . . . (3
'W;O

h=

where the A,. are rational numbers. Put

fh(z)':-,iAhnz" (h=0,1,....N=1) . . . . (4

and for arbitrary ¢
N-1

=X fiG . .« .« o . . . (5)

so that
flo)=Ff=z6. . . . . . . . . . (0

Substituting in F, we get

F<z,f(zm,af(“),... me(zif)): p@we .. )

aZ ! dzm n==0

where the P, (f) are polynomials in ¢ with rational coeflicients.
Suppose now that #y, &, ..., Hn 1 are the N different conjugates of
# in the field of all complex numbers. Since by (2)

P, (#)—0 (n==0,1,2,..,
obviously also for h=0,1,..., N—1
P,(6,)—=0 (n=—0,1,2,...).

Therefore by (7), the N power series
[z 6)) (h=0,1,...., N=1). . (8)

all satisfy algebraic differential equations, viz. the same equation (2).
Now it is easily shown that if g, (z),....g. (z) are power series which
satisfy algebraic differential equations, and if Z,,....4 are constants,
then the series 4, g, (2) <. ..+ Z g. (z) also satisfies a certain algebraic
differential equation °). Therefore the N functions (4) must be solutions

4 If necessary, multiply F by its conjugate polynomials with respect to K.
5 Put iy g (=) ..., g, (2) =g (z) and suppose that Fy = 0,..., F_ =0 are the
differential equations for gi{z), ..., g,(z). By differentiating these equations a sufficient

number of times and by considering g (z) as known, we obtain so many equations for
the functions gy {(z),. ... g, (z) and their differential coefficients, that we can eliminate them.
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of algebraic differential equations; for by (5) they can be expressed
linearly with constant coeflicients by means of the functions (8).
Write the rational numbers Ay, as

_ Pu

A — Q.. (0L, N-1;n=0,1,2,..), . (9

where Py, and Q. - | are relatively prime integers. By the Theorems 2
and 3, there is a positive constant ¢,, such that for h==0,1,..., N1
and for all sufficiently large n

max( Pu . Q) exp(canilogn)?). . . . . (10)

Put

AT___l N
G =1 Qu pw=~RmG, (h=01,...,N—l:n=0,12..), (11)
h0

2

such that all p,, and ¢, | are integers, and that

A,, — P (h—=0,1,...,N—1;n=0,1,2,..). (12)

dn

Then by (10) there is a positive constant c¢;, such that for sufficiently
large n

max (qu. | pos + [P oo lpvon ) Sexp(esn(logn)?). . (13)

Now by (3)

1 N—1
Ay 2 Dhn Hh'
dn he0

Hence Theorem 1 follows immediately from (13) and from the well known ©)

Theorem 4: To every real or complex algebraic number # of degree
N, there is a positive constant ¢y, such that, if Ay Ay ..., Ay are N
integers which do not vanish simultaneously, then

PN ,

XA

b0

Toeydmax(( Ay, AL .., Ana )N,

e i

Manchester, & November 1938,

%  See ]. F. Koksma, Diophantische Approximationen, Satz 6, p. 55.



