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Let ¢ be a real irrational number,

1 1
a e
its simple continued fraction, and
Do _ % pr_ %ot 1 p:
@ 1’ (V3 a %’

the sequence of its approximations. The following theorems have been proved:
THEOREM OF LAGRANGE: If p/q is a rational number, such that

_p _<_| _ Pn
li’ (I‘— 3 qn

for a certain index n = 1, then | ¢ | = ¢ , with equality if and only z'f% = Pn

n

TueoREM oF HurwiTz-BoREL:® For at least one of any three consecutive indices n
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but to every € > 0, there is an irrational number ¢, such that

1 _
2 (g5 o)
for all sufficiently large n.

THEOREM OF KHINTCHINE:' There are arbitrarily large positive integers t, for
which the inequalities

<

— P-
L

=Pl L, o<lals

have no solution in integers p, q.

DO =~

1 Q0. Perron, Die Lehre von den Keltenbriichen, Leipzig-Berlin 1929, §15.
2], ¢c. 1, §14.

1 J. F. Koksma, Diophantische Approximaiionen, Berlin 1936, p. 36 f.
8
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THEOREM OF TCHEBYCHEFF:' If ¢ is an irrational, 9 an arbitrary real number,
then there are arbitrarily large positive integers t, for which the inequalities

1 t
lﬁ“l"aléz, l(I]éi

have an integer solution p, q.

(Though the statement of the last two theorems does not mention continued
fractions, their proof is much simpler if these are used.)

In the present paper, I derive analogous results for P-adic numbers, when P
is an arbitrary positive prime number; see the Theorems 17-26 in Part II.
For this purpose it is necessary to develop a P-adic algorithm similar to that
of the continued fractions in the real field. In two earlier papers,® I have
previously studied and applied an algorithm of this kind; the method there was
purely arithmetical and based on Minkowski’s Theorem on linear forms. It
had, however, some disadvantages, e.g. it did not lead to analogues to the
Theorems of Hurwitz-Borel and Khintchine with good values of the constants.

For this reason, I shall use in this paper a geometrical method, by which the
best approximations of a given P-adic integer { can always be obtained. (The
restriction to P-adic integers is unimportant, since, if necessary, 1/¢ instead of ¢
may be considered.) This method forms something like a P-adic counterpart
to Hermite’s method of introduction of continuous variables in the theory of
forms.® It is based on the following idea:

Let
'
Ta = (Z:’q”) (n=01,2,-...)
be an infinite sequence of integer matrices with the following properties:
(a): Padn — Pngs = P".
(b): (@n, qu) = L.
(c): All matrices T Tyry1 = Qa1 bave integer elements.

Then it is easily verified that to every n there is an integer A, , such that
0< A4, =P -1, p.+ ¢.A, = 0 (mod P"), pr + ¢nA. = 0 (mod P"),
and such that

An+l = A,.(mod P").
There exists, therefore, a P-adic integer { as the P-adic limit

¢ = lim A4,.

n=—+o0

‘]l.c.3, p. 76 f.
5 Nieuw Arch. Wiskde (2), 18 (1934), 22-34, and Mathematica B (Zutphen), VII (1938), 5 p.
¢ Ch. Hermite, Ocuvres, vol. 1, Paris 1905, 100-163, 164-193, 200-263, and 1. c. 3, p. 40 f.
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This number is determined uniquely by the sequence {T.}, and it is related to
its elements T, by the inequalities

|pn + gutle < P77, | pn +qnile S P

14
¢ = lim (—- ’ﬁ‘> or lim (— ’—’;).
n—so Qn n=+o n

We say that the sequence {T.} defines {. Conversely, every P-adic integer
can be defined by a sequence {T,}; it is sufficient to take

P" — A, 3
Tn‘—(o 1) (n_0;1727"')7

where A, is any integer for which

and the equations’

|¢ — Aa|p S P7".

Then (A, — A,)/P" is an integer, and therefore also all matrices

—1 - —P (An+l - A-n)-P_"n
Tn Tn+1 - ( 0 _1

are integral. The three conditions (a), (b), (c) are therefore satisfied.

Let us consider two sequences {T.} and {Tx} as equivalent if they define
the same number {. This is the case if and only if to every indexn = 0, 1,2, - .-
there is an element P, of the modular group (i.e. an integer matrix of deter-
minant 1), such that

T = T,P,.

Among all equivalent sequences {T,}, which define {, we can choose one as the
reduced sequence. This we may do, for instance, in the following way:

Let ®(X, Y) be the distance function of an arbitrary convex domain
®(X,Y) £ 1 of area J in the (X, Y)-plane with center at the origin; thus

$0,0) =0, X, ¥Y)>0 for X*+ Y* >0,
(X, tY) = |t]| ¥(X,Y) for real ¢,
(X, + Xo, Vi + Vo) £ &(Xy1, V1) + ®(Xa, V).

!
With every element T, = (p" p;.) of {T,} we form the new convex function

qnqn

.(X, Y) = @.X + pnY, ¢.X + ¢.Y);

7 One of these limits may be different from ¢.
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the domain ®,(X, Y) =< 1 is again convex with center at the origin, and its area
is P7"J. Suppose now that for every n = 0, 1, 2, ... the function ®,(X, Y)
satisfies the inequalities

(d): ®a(1, 0) = 2a(0, 1) = Pu(—=1,1) = ®u(1, 1);

then we say that the sequence {T,} is reduced. By Minkowski,® it follows
from (d) that

(©: 2" < 8.1, 0,00, 1) = 2

T
Hence in particular, for all indices » simultaneously

- 2p"”?
f): nt @flp S P ®(Pn, gn) S .
® [Pn + @asle = n> 40) =~ 5

It is not difficult to show that there is one and only one reduced sequence which
defines ¢; by (f), the elements of this sequence lead to approximations —p./¢x
for {.—It can also be shown that if {T,} is reduced, then every term of the
allied sequence

Qo1 = TalTan n=012...)

belongs to a finite set, of matrices, which depends only on P and on the function
®(X, Y), but not on {. By means of this result, it is possible to determine
indices n, for which the inequalities (f) can be improved, provided that such
indices exist; it is further possible to obtain results analogous to the Theorem
of Khintchine.

This is carried through in the present paper for the case in which

®(X, Y)! = AX* 4+ 2BXY + CY’

is a positive definite quadratic form of determinant 1. In this case, the in-
equalities (e) and (f) can be improved a little. It is more important, however,
that the conditions (d) now become the well known conditions for a reduced
positive definite quadratic form, viz.

if
®,(X,Y) = A.X* 4+ 2B, XY + C,Y%
Therefore, if in the usual way® we represent the form &,(X, Y) by the point 2,

in the upper half of the complex plane which satisfies the equation ®.(z, 1) = 0,
then z, will lie in the fundamental domain F of the modular group. Hence,

8 Geometrie der Zahlen, Leipzig-Berlin 1910, 193-196.
9 P. Bachmann, Quadratische Formen II, Leipzig-Berlin 1923, p. 17 f.
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as a geometrical representative of {, we get an infinite set of points z, in F.
Two consecutive points of this set are connected by the equation

/
(2): _ On41Zn41 + A
g) . Zﬂ, -— 7 )
Bat12n41 + Bat1

4
if Q1 = (‘;"“ ‘;7“). As we have already remarked, the matrices 2,1 have
n41 n+l

only a finite number of possibilities independent of {; it is quite easy to find
all these for a given prime number P. We can, therefore, study the elements
of the sequence {z,} without specializing {; for instance, we can find lower
bounds for lim sup y,, where z, = =, + 4y, . Since

n—+00

|pa + qul |p S P, |pn+auflp S P
and
P P (&h + 4
®(pn, ga)° = I d(pr, qu) = M,

these properties of {z,} are equivalent to results on Diophantine approxima-
tions to . We give this investigation of {z,} in the first part, and the applica-
tions in the second part, of the paper.

It is quite obvious that in a similar way matrices of any order may be con-
sidered; we then shall get results on the simultaneous approximations of a
system of P-adic numbers. I intend to study this problem and the analogous
one in the real field in a later paper.

Part I: THE REPRESENTATIVE OF A P-apic INTEGER

1. The sequences Z({) and z({)
Let T' be the modular group of all substitutions

/

1): z=T21"

@ @z+q
with integer coefficients and determinant 1. Two points Z and z in the complex
upper half-plane H, which are related by (1) are called equivalent. As is

proved in the theory of T, to every point Z in H there is exactly one equivalent
point z in the domain F of all points z = x + y¢, for which

(r¢/ —1'qg=1)

2): —3=z<} 2+¢>1, or —j=2=0, 4y =1;

this domain F is called the fundamental domain of I".—It is useful to define the
distance between two points z; and z; in F by
)

then the neighborhood of a point z; in F consists of all points z; in F, which are
sufficiently near either to z; or one of the equivalent points 2, + 1, 2z — 1, or

1
zl+_‘ ’

22

. 1
p(zl,22)=mm(|zl—zgl,[z1—-22+1{,[21—22—1[, ;—I—zz
1
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—1/z;. In the following considcrations, A denotes a number in F, which is
fixed, but arbitrary.
Let P be a natural prime number and ¢ a P-adic integer:

l¢lr = L
For every n = 0, 1, 2, - - . we define two integers 4, and a, by
(3): |¢ — Anlp = P77, 0<A4A,=P" -1 (4o = 0),
and
4): a,,=41'f—lp—:—ﬁ4—", sothat 0 L£a, S P -1 (ap = Ay),
and

{=lm A4, = a + a1 P + a: PP+ ...
Therefore { is known if the sequence A (¢) of all A, or the sequence a({) of all
a, are given.
By means of A(¢), the sequence Z({) of all numbers

A, +\
3): z, = Aot (Zo =N
in H is determined; obviously
Zn+1 = Z'n ; an.

A second sequence z(¢) of complex numbers z, is obtained, if by 2. (n = 0,
1, 2, --. ) we understand the number in F which is equivalent to Z,. This
sequence z(¢) is called the representative of {.

2. The matrices T, and ,

IJ(‘)t
/ / ’
©): Z, = ;zwi_;. or 2, = _qizﬁ__iri (raghs — gurs = 1)
be the modular substitution which connects Z, with z, , and put
(7): pn = P'rn — Augn, pn = P rn — Auqn.
Then from (5)
/ ’ /

8): Nz Dot P TO A P

qnin + qn q")\ — Pn

or symbolically
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where T, denotes the matrix

(9): Tn = ( " p:)-
gn qn

Since 'r,,q',, — r',,q,. = 1, T, has the determinant
(10): Pagn — Pngn = P",

and its two lower elements ¢, and ¢, are relatively prime. At least one of the
¢’s, therefore, is not divisible by P, say q’,': ; by p: we denote the element of T,
above q: . In particular for n = 0,

1 0
To=E = , D=0, @ =1,
(0 1>

since Zo = X\ lies in F' and therefore Z, = 2 .
The sequence T({) of all matrices T. has a number of simple properties.

Obviously
pP* ——A,.) Tn Tu
T, = ")
0 1 gn Qn

Therefore, if forn = 0,1, 2, - ..

’
Ontl COpil
(11) Qupr = T;lTn—{»l = ( ’ >7
Bn+1 Bn-}-l

say, then 2,1 has the determinant

(12): an—(—lﬂ;—{-l — a’n+l[3n+1 = P.

Also
ra TR\ [P" —A4.\'/P —Anp1 [Toi T;+1
Qn+1 = ’ ’ ’
gn Qn 0 1 0 1 qn+1 Qn+l

or after a simplification

o "o\ [P —an\ [Tat1 Tnu
Q1|,+1 = - ’ / 4
Qn qn 0 ]- Qn+1 Qn+l
so that all elements of Q. are integers. We denote the sequence of all Q.4
by 2(¢). It can be determined from T({) by means of (11); conversely
(13): Ty = E, T, =% ---Q for n=1,23, . ..,
so that T(¢) follows also from Q(¢). Obviously from (8) and (11)

/ 14 ’
QAni12n41 T Qnpa P | _ —Brtazn + ann1
Znyl = Qn—{»—lzn - -

(14) 2n = Qn+12n+1 = -
) .
Bn+lzn+1 + ,Bn+1 Bn-i—lzn — On4l
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Hence all 2, have the following important property: If Q..1F denotes the
domain of all points 2’ = Q,,12, where z lies in F, then F and Q..F have at
least one common point.

3. The theorem of finiteness

From the last remark, we deduce the result:

THEOREM 1: All terms Q.41 of the sequence Q(¢) belong to a finite set M(P) of
integer matrices of determinant P, which depends only on P.

Proor: Since it is just as easy, we prove a more general result. Suppose
that @ is an arbitrary positive integer; let M(Q) denote the set of all integer
matrices @ of determinant @, for which the two domains F and QF have at
least one common point. Then we prove that M(Q) is a finite set. Now
every integer matrix Q of determinant @ can be written as

Q = PZ,

()

uw = Q, u > 0, w > 0, 0v=w-—1.

where P is an element of T', and

is an integer matrix, such that

Obviously, there are only a finite number of matrices £ with these properties,
say the matrices

Zh (h=1,2,...,0).
The transformed domains
ZWF
all lie entirely in the part of the z-plane given by
lz| =Q y=z \2%,
and therefore enter only a finite number of triangles of the modular division
of the z-plane. Hence to every Z, there can be only a finite number of elements

Pux (k=1,2,"',Ph)
of T, such that Pu.Z, belongs to M(Q), and the theorem follows at once.

4. The cases P = 2, P = 3 and P = 5 of Theorem 1

The last proof gives a method for the actual determination of M(Q) and
in particular of M(P). We give here the results for the smallest prime
numbers P.

For this purpose we divide M (P) into three subsets M1(P), Mo(P) and M;(P).
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An element Q of M (P) belongs to the first, second or third of these sets, according
as the set of the common points of F' and QF has positive area, or forms an arc
of a curve, or consists of a single point. For P = 2 both My(P) and M;(P)
are empty, but this is not true for any larger prime number P.

In the following tables, the elements of M ;(P) (j = 1, 2, 3) are arranged in
such a way that any two of them stand one above the other, if their product is
equal to +PE, and that they stand alone, if their square has this value. With
Q also —Q belongs to M;(P); these two matrices lead to the same relation
between points of F and therefore are not essentially different.

Case P = 2:
M(2) = M1(2) has 26 elements:

(2 0 (2 1 {2 -1
e e FE ) @)
+<-—1 0)’ /(-1 0 (-1 1 (-1 -1

+
Y
| o
_)
~—"

-+
VN
[
o N
\‘/

M,(3) has 26 elements:
({3 0 —
(0 3) +(0 1)’ +( 1
-1 0/ /-1 o\ —f—=1 1\ -f—=1 =1\ —f/—1 3
(o %) #(3 4) #5 D) #(S Y

F

M,(3) has 4 elements:
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M3(3) has 6 elements:

T

CR

2 1

M,(5) has 58 elements:
—f(5 0 —(5 1 —f5 -1 —f(5 2
-1 0/ _/—-1 o —-1 1 —(—1 -1 —(—-1 2

M2(5) has 6 elements:

M ;(5) has 4 elements:

M (7) has 90, M»(7) has 6, M3(7) has 10, M;(11) has 190 elements, ete.
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5. The first existence theorem

In this and the following paragraphs we shall prove some theorems, which
show that every element of M (P) actually occurs in the set Q(¢) of a certain
P-adic number ¢; if the element lies in M,(P) or M3(P), then it may, however,
be necessary to choose \ appropriately.

THEOREM 2: Let

/
{Q‘n-{-l} = {91,92’Q3’ }’ Qn+1 = (an+l; ar-\t—l),
6n+1 ’ 3n+1

be an infinite sequence of tnteger matrices of determinant P, and define a second
sequence of matrices

{Tﬂ} = {TO)Terzx"'}
by

4
To = E, Tn=Q1Qz---Q,,=(qp" z;?) for n=1,23,..-.

Then there 1s a P-adic integer ¢ such that {Qu.11} = Q) and {T.} = TE), of
/ !
and only if (gn, ¢4) = 1and%9;_*i5?fuesmb’forn ~0,1,2 ..
Proor: That the conditions are necessary, was already shown in §2; there-
fore we have only to prove that they are sufficient.
Asin §2, let q» be that one of the two numbers ¢, and ¢ which is not divisible

by P, and p: the corresponding other element of T.. Then there is exactly
one integer A, such that

pn + ¢aA. = 0 (mod P™), 0<A,. P -1,
and since P £ qr and Pagn — Pugs = P”, obviously
Pn + ¢, = 0 (mod P"), pn + gnAn. = 0 (mod P™).
Therefore there are two integers r, and r, such that
Pn = P'rn — Augn, P; = P"r, — A,,q:,,
and the determinant r.q, — rngn = 1. Thus if

4 /
=An+>\ and 2z, = —QnZn+ Ta

Zﬂ Pn ann — Tn ’

then

_ —gu) + ps
g = ——n= " fn
oA — Pn

lies in F by hypothesis.
I assert that

Anps = A, (mod P).
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For
Prnlni + p:l Bﬂ+1) pna;.+l + p:n. B:l+1
Tatr = Tallopy = ’ ’ AN ’
GnOni1 + qn Bn+l, QnQni + qn Bn+1
hence
pn+1 + qn+1An = pn+1 + Qn+1An+1 = p:|+1 + q;-{-lAn
= Pat1 + gnpdnp = 0 (mod P,

from which the congruence follows immediately. If ¢ is defined by
¢ = lim 4,,

n—+rc0

then this limit exists as a P-adic integer and satisfies all the conditions.
/
COROLLARY: Let T = (p p,) be an integer matrix of determinant P", such

, —g¢N+9p,. . . ..

that (g, ¢') = 1, and - liesin F. Then there is a P-adic integer ¢, such

that T s the element of T({) with index n.
Proor: We define the integer A, by

p+ Ang =9 + 4.4 = 0 (mod P), A, £ P" -1,

< P7"; then by the proof

IA

0

and take a P-adic integer ¢, for which |{ — A. |p
of the last theorem, { satisfies all conditions.

6. The second existence theorem
THreorEM 3: Let z* be an arbitrary number in F, a and B two relatively prime
integers, e an arbitrarily small positive number. Then there is an index n > 0

/
and a P-adic integer ¢, such that the elements T, = (2’ ’Z:‘) of T(¢) and z, of 2(¢)

satisfy the conditions
ags + Bgn = F1 (mod P),

ProorF: Since (a, 8) = 1, there is an integer unimodular matrix
a o
Q= .
B B
Let D be the set of all points z in the upper half plane H, for which

az + o

“ =T

lzn_z*l ée-

satisfies the conditions

Qz liesin F, | Q2 — 2*| = e

Obviously this set has at least one inner point, say the point u.
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0

For n = 41, consider the matrix &, = (1

—UP> of determinant P, and the

corresponding substitution

Obviously, this can be written as

2z’+n—(1—4p)%___ 22+ — (1 — 4P)}
22 + 9 + (1 — 4P)? 2z + 97+ (1 — 4P)¥’

where the factor

g1 = (1 —4P)}
7+ (1 — 4P)}
82 complex number of modulus 1. Since
1
&8 - = =
+ (2 P)0 +1 =0,
¢ is not an algebraic integer, and therefore not a root of unity. Hence the
powers 3, 8, 9, ... lie everywhere dense on the unit circle in the complex
plane.

Therefore, if Z is an arbitrary point in the upper half-plane H, and K,(Z)
the circle

2z+n—(1—4P)*\_ 2z+n—(1—4P)*1
22+ + (1 —4P}| |22+ + (1 — 4P)}

through this point, then with z also &,z lies on K,(Z), and the points
% (I)n_lza cp;,_zz, (I);:—Bz’ e (fb,,_lz = f______)

obtained from z by repeated application of ®," lie everywhere dense on this
circle.

Now it is easy to see that we can connect N\ with p by means of a continuous
curve C, which consists of arcs of the two circles K_;(A\) and K_;(u) and of

circles K,(k + 3 + (1 — 4P)"), where n = Fland k = 0,1, 2, .- ; for any
two circles K_i(k + 2 + (1 — 4P)}) and Kn(k + 3 + (1 — 4P)Y), where
k=20,1,2 --.and k — 3 < x < k + 3/2, intersect. Let \, Ny, Ay, -+ ) Ay,

p be the successive end points of the arcs composing C. Then by alternate
applications of powers of ®; and ®;1, we can transform \ successively into
points arbitrarily near to Ay, N2, - -+ , X\¢, and finally into a point z** near to u,
which lies in D. In this way, we obtain an integer matrix

* *7/
= (B P) = atotiats ety
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where the exponents h, k arc integers = 0, such that
N = TH*z** or 2** = T* )

the determinant of T* is a power of P, say P". Since

P, = <(1) 0) (mod P),

n
necessarily
0 0
R Y
T* = (+1 +1) (mod P).
Now put
’
2o = Wt T, =T = (p" p:‘),
dn Qn
so that

AN=T.2, and =z, = T;l)\,
and, by the definition of D,

zoliesin F, and |z, — 2*| =< e

. _ =pnp}aa’=0_(_)> .
T =T (qn qn>(3 B’>_(-T-1 +1) (mod B);

agn + Bqn = F1 (mod P),

We have

therefore

and from pags — ¢up» = P"in particular (¢, ¢») = 1. Hence, by the corollary
to Theorem 2, the theorem follows immediately.

7. An application of Theorem 3

To every element @ of M (P) belongs a certain set S(Q) of points z in F, such
that the transformed points Q 'z also lie in F; this set has inner points, or con-
sists of an arc of a curve, or of a single point, according as @ belongs to M,(P),
or to My(P), or to M,(P).

THEOREM 4: Let Q be an element of M,(P). Then there is a P-adic inieger ¢,
such that Q is an element of the sequence Q({). Provided that \ ts chosen suitably,
this 1s also true, if Q belongs to Mo(P) or M3(P).

ProoF: Suppose that z* is a point of S(2), in particular an inner point, if Q
belongs to My(P). IfQ = (g ;) then either (e, 8) = 1 or (o, 8') = 1, for
af’ — o' = P. Denote the pair, which is relatively prime, by o*, 8*. Then,
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by the last theorem, we can find a P-adic integer ¢, for which z, is arbitrarily

’
near to z*, and for which T, = (p " Pr) satisfies the condition

o*¢n + B*qn = F1 3 0 (mod P).

Thus, in particular, if

/
Toys = <Pn+1 p,n+1) = T.Q,
n+l  Gn+1

then (qms1, gni1) = 1, since one of the ¢’s is not divisible by P.

Now, if @ lies in M;(P), then we can choose {, in such a way that z, lies in
S(Q). If, however, @ is an element of M»(P) or M3(P), then by a slight change
of \, so that z, remains in F, we can again obtain a {, for which z, lies in S(22).
Hence in both cases the number

—1 -1
ny1 = Q 'z, = Tn+1>\

lies in . Therefore by the corollary to Theorem 2 there is another P-adic
integer ¢, such that € and z,., are the elements of @(¢) and z(¢) with index
n + 1. The proof of Theorem 2 shows that necessarily | — (o lp £ P 7
hence T, also belongs to T(¢), and Q is an element of (¢).

8. The sets m(P) and m’(P)

Let Q = (a (;,) be an element of M(P). Then the fix points of the substi-

tution

, _ a2+

“= Bz_-i:'%’ =
satisfy the quadratic equation
B + (B — a)z — o =0,
and are therefore
a—f F (@ =) +48) _a—p F («a+8) — 4P)}
28 28 ’

if 8 % 0. Let us suppose that 8 > 0, and that both roots (15) are conjugate
complex numbers, i.e., that 2 = Qz is an elliptic substitution. Then if

_a—f+(atp) 4P o= = («t+p) 4P
28 ’ 2 28 ’

f1is the fix point with positive imaginary part, and f. the conjugate one. Ob-
viously, 2/ = Qz can be written as

(15):

(16) f1

(17): R
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where the multiplicator

(18): 9= fh _atp —((a+p) —aP)
' a—pfz at+p + (a+8)— 4P)}

satisfies the quadratic equation

(19): & + (2 _ e 41-0/3')2> $4+1=0.

Let us now denote by m'(P) and m(P) the subset of those elements @ of M (P),
which are elliptic, whose fix point f; lies in F, and whose multiplicator 4 is a
root of unity, or is not a root of unity, respectively.

For the elements © of m/(P), the coefficient

_ a4+ Y
2= =—p

in (19) obviously must be equal to 0, or to +1, or to +2. Hence necessarily
P=2anda+ g =+ 2 0or P=3and a + 8 = +3, or P is arbitrary and
a + 8 = 0. By the tables in §4, m’(2) has six elements

(1 1 (-1 1 (0 2\,

m’(3) has six elements

(2 1 (-1 1 _ (0 3).
) FE ) F=(G00)

and m’(5) has four elements

—(1 3 (0 5
#(L5) = (G

If P = 5 and @ belongs to m’(P), then « + 8’ = 0, so that

Q= (a @ ) and therefore @ = —PE.

B —a
Also in the case of m/(2) and m/(3)
-1 1\ _ (0 -1
) =20 %),
-1 1V 0 -1
AR

1 1y 0 1
(5 1) -2(5 o)
2 1y 1 1
(& 1) -2 o)
Hence no element Q@ of m'(P) can occur twice in succession in the sequence Q(¢),
since otherwise all elements T, of T({) with sufficiently large n would no longer
satisfy the condition (¢» , qn) = 1.

and
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For the clements of m(P),
(20): a + B8’ # 0 (mod P).
For Q is elliptic, and therefore
(@ + B) —4P <0, ie. |a+ B | <2VP,
and so, if (20) were not true,
P <2y/P or P <4
The tables in §4 show, however, that (20) holds also for P = 2 and P = 3.

9. A congruence for the powers of a matrix

’
a

Let@ =2 %,
° (B 8
matrix with determinant P’ (g = 1), for which (20) is satisfied. Then the

equation

) be an element of m(P), or more generally any elliptic integer

’
a— ¢ o

B B —e

has two different {‘oots ¢1 and ¢q in the field of the P-adic numbers. For define
((a 4 B")* — 4P%)" as a P-adic integer by the convergent series

(21): l=¢2—(a+6’)¢+P”=0

g Nne _ AL I o ’ —_ . __4_P_a_*
(o + §) — 4P} = ( +ﬁ){1 (a+1_3’)2}

2P  2°P"  1.3.2°P% _}
(@+p8) (e+8)%20 (a+8)°3! ’

= (a+ 6’){1 -

then these roots are given by

1

_oat Bt (atp) —4P) et - (et B) - 4P

(22): 3 5
Obviously
(23): o =a+ B #0 (mod P), ¢2 = 0 (mod P).

It is well known that for every integer k = 0

(24): R T
PL— @2 P2 — @1
Hence, from (23),
(25): & = (a + 8)'Q (mod P) fork = 1.

/
More generally, if T = (5 2;,) is an integer matrix of determinant P™, put
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Then, from (25),
(26): T* = (« + 8)"'TQ (mod P) fork = 1.
Therefore (¢*, ¢*') = 1, if
(¢, ) =1 and oag + B¢ # 0 (mod P), or
(a,8) =1 and o'q + B¢’ # 0 (mod P).
From the definition of 1,
(1 — e2)p* = o1{p(a — ¢2) + P'B} — ea{pla — @1) + '8},
(1 — e2)g* = eifa(a — ¢2) + 0B} — exlala — 1) + ¢'B},

and therefore

27) *_p(a_¢2)+p’ﬁ * B
@) P q(a—m)+q’ﬁq gla — @) + ¢'B

This identity shows that —p*/¢* tends to a P-adic limit for £ — o, since
| 2 |r < 1, and that this limit lies in the quadratic field given by (21).

o5 P™.

10. The third existence theorem

In §1, we defined a generalized distance p(z; , 22) between two points z; and 2,
in . With this definition, the following theorem holds:

!

THEOREM 5: Let Q2 = (; §,> be an element of m(P), fi1ts fix pointin F.  Then
to every e > 0 there is a P-adic integer ¢ such that for all sufficiently large n
p(2za, f1) £ e

Proor: Let 6 > 0 be a constant to be assigned later, and o*, g* the pair «, 8
or o', B/, for which (a*, 8*) = 1. By Theorem 3, we can determine an index m

7
and a P-adic integer ¢, for which T, = (p"‘ pT) and z,, satisfy the conditions

m qm
@*¢n + B*n # 0 (mod P),  |zm — fi| 4.
Suppose that
Tw = U ¢+ - Qp

where @1, Q;, - -+, Qn are the m first elements of Q({o).
Let us form the matrices
* *7
Tt = ( Fte p’;‘?‘") = T,0 k=1,23,--.),
qm+k Gm+k

and the numbers

Z::+k = Q—kzm ’ k=1,23, .- '))
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which lie in H. From (17) in §8, obviously

z:;+k - N = g* Zm — i

z:z-!—k - f2 m — f2,
where f; and f; are the fix points and ¢ the multiplicator of €. Since © belongs
to m(P), ¢ is a complex number of modulus 1, which is not a root of unity.

Hence the points zpm,i for k = 1,2, 3, - - . lie on a circle K given by
N _ |
25— fy Zm — fol’

and lie everywhere dense on K. To every point z* on K, there is a point z,
equivalent with respect to I', in F'; it is obvious that we can choose é and there-
fore also the radius of K so small that all these points satisfy the inequality

p(z, f1) S e
Hence, in particular, if 2., is the point in ¥ which is equivalent to z:.+;,. , then
PZmik, f1) £ € k=1,2,3,.--.).
Now by the definition of equivalence,
toik = PoiiZmik k=1,2,3---)

where P,,.x 1s an element of I'.  Similarly

*
Zmikil = Pomyry1Zmiksr -

From
Domikit = Zmik
and from the two preceding equations,
(28): Zmik = Qmiki1@miki1 k=123 .-)
where

—1
Qm+k+l = Pm+kQPm—+—k+l .

1f
Qm+l = QPm—{—l,
then (28) holds also for £k = 0.

Put
T, = (p" p;‘) = TiP, = T,Q"™P, (n > m),
q» qn
so that
T, = Qs - Qu, 2, = THA for n = m.
Then

(gn, qn) = 1.
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For if*both ¢- and ¢, were divisible by P, then the same would be true for ¢
and ¢, in

* *7

T = (p;‘ p;‘,) = T,P;' = T, Q"™
Gn qn

But by the last paragraph

Th = (@ + )" ™ T, (mod P) (nzm+ 1),

and therefore by the construction of T.. , either ¢x or g5’ is not divisible by P.
It is now clear that the sequence of matrices

To=E  To=QU.  -Q n=1223...)

satisfies the conditions of Theorem 2. Hence there is a P-adic integer ¢ (for
which, by the way, obviously | ¢ — & |p = P ™), such that {T,} = T(¢) and
1.} = (). By construction, the elements z, of z(¢) with n = m + 1 satisfy
the required inequality p(z., fi) < e
CoOROLLARY: If { s the P-adic integer given by Theorem 5, then, for an infinity
of indices,
Tw = TQ"™, Q= Q.

In particular, these two equations are true for all sufficiently large n, if the fix
point fi of Q is an inner point of F.

Proor: Let K be the circle defined in the proof of the preceding theorem.
Since f; belongs to F, the points of K in F will form an arc of positive length;
if, in particular, f; is an inner point of F, and e, i.e. & is sufficiently small, then
K lies entirely in F. Hence in the former case an infinity of T , in the latter
case all zn.x with k& = 0, will lie in F, and the statements follow immediately
from the proof of Theorem 5.

REMARK: Since T, = T,2" " for an infinity of indices n, formula (27) in §9
shows that ¢ is a quadratic irrational P-adic number. Its sequence Q2({) will
consist only of matrices © for large indices, if f, is an inner point of F and e is
sufficiently small; hence in this case Q(¢) will be periodic. If, on the other
hand, f; is not an inner point of F, or € is not small enough, then the points
z:+k will not all belong to F, and since ¢ is not a root of unity, it is easy to
see that Q(¢) is not periodic for large indices. Hence Lagrange’s Theorem
on the periodicity of the continued fraction of a real quadratic irrational number
has no analogue for P-adic numbers.

11. The function Y (P)

For every element Q of m(P), let y(Q) be the imaginary part of the fix point
fiof @in F, and put

(29): Y (P) = min y(Q),

where the minimum refers to all elements of m(P). Obviously

(30): Y(P) 2 -‘-;i‘
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For P =< 5, the tables in {4 give

Y@ = ‘g7, Y(3) = v/2,  Y() =1,
corresponding to the matrices

G %) G 2)

! +—_‘\/‘ _-7 ’ + '\/_2; 'T_i;

with fix points

|
|
|

and multiplicators

THeorREM 6: Y(P) = 1/3, if and only if P = 1 (mod 6).

2
Proor: We have to find all matrices @ = (‘; ‘;
-1+ -3

fiatp = — This condition will be satisfied if

,) of m(P) with their fix point

B’ + (B — a)p — ' =0,
or, since p is a root of the irreducible equation p* + p + 1 = 0, if

o = —B and B = a + 8.
Therefore

Q=(g a—:}—ﬁﬁ> and o + of + 82 = L{(2a + B)’ + 38°} = P.

Hence either P = 3 or P = 1 (mod 6). If P = 3, then necessarily

1 -1 -1 1
Q—(l 2) or Q—(_l _2>,

and these matrices do not belong to m(P). If, however, P = 1 (mod 6), then
B 1s not divisible by P, so that

_latp) 36
2 =-2+>5

1s not an integer; hence the matrix @ = (a —h ) now does belong to m(P)

B a+p

and has p as its fix point f; .
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It is very probable that
lim Y(P) = %é,

P—ro0

but so far I have not been able to prove this.*
For P £ 103, Y (P) is given in the following table:

P=2YP)=+(1/2 P=29 YP)=++v091)/10 P =67YP)=+3)/2

3 V(2) 31 V(3)/2 71 5.4/(11)/18

5 1 37 V(3)/2 73 V(3)/2

7 V(3)/2 41 Vv (8)/3 79 V(3)/2
11 V/(35)/6 43 V(3)/2 83 V(74)/9
13 V(3)/2 47 V/(187)/14 89 2.4/(10)/7
17 V(8)/3 53 V/(91)/10 97 V(3)/2
19 V(3)/2 59 V/(55)/8 101 V/(65)/9
23 v/(91)/10 61 V(3)/2 103 V(3)/2

12. The function Y (¢)

Let x, and y, be the real and imaginary parts of the n-th element z, = z. + tya
of the representative z(¢) of a P-adic integer {. Suppose that

(31): Y(§) = lim sup ya;

n—+o0

i.e. Y(¢) is the greatest number, such that for every ¢ > 0 and an infinity of
indices

Ya 2 Y() — e
Obviously
32): Y¢) =z v(3)/2.
THEOREM 7: T'o every positive number €, there is a P-adic integer ¢, for which
YE) = Y(P) + e

Proor: Let @ be an element of m(P), such that Y (P) is the imaginary part of
its fix point f; in . By Theorem 5, there is a P-adic integer { for any given
6 > 0, such that

)ss

1
Zn +.'f_l‘

1
y é;+fn

o(n, ) = min(lzn-—fxl, ow =it 1] l2a—fi— 1],

for all sufficiently large n. This implies in particular

Iyn"‘Y(P)léér

% Addendum: This equation has now been proved by H. Davenport; see the following
paper, these Annals, pp. 59-62.
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if & is chosen sufficiently small. For all points in the domain F’:
lzl =3 lzl21,

which are equivalent to f, , obviously have the same imaginary part Y(P) as fi ;
therefore the statement follows immediately from the continuity of the function
P(z) f 1)°

Probably the following conjecture holds:

“For every prime number P, and for every P-adic integer ¢,

Y§) 2z Y(P).”

For P = 1 (mod 6), thus in particular for P = 7, this conjecture is indeed
true, as is evident from Theorem 6 and the trivial inequality (32). I shall prove
the following three theorems, which show that it also holds for P = 2, P = 3,
and P = 5, and therefore for all prime numbers less than 10.

13. The lower bound of Y(¢{) for P = 2, P = 3,and P = 5
TaEOREM 8: For every index n and for any diadic integer ¢
V7

max (yn, Ynt1, yﬂ+2) 2 ’—2- .

Hence itn particular for all diadic integers ¢
7
Y(t) 2 % = Y(2).

THEOREM 9: For every index n and for any triadic integer ¢
max (Yn , Yat1 ) Yniz) = V2,
Hence in particular for all triadic integers ¢
Y(§) 2 v2 =Y(@3).
TureorREM 10: For every index n and for any pentadic integer ¢
max (Yn , Yns1) = 1.
Hence in particular for all pentadic integers ¢
Y§) z1=Y().

The proofs of these three theorems depend on the following simple con-
siderations. In

(33): Zn = Qnyi@n41,

Q.+1 must be an element of M (P), and both 2, = 2, + tYa and 2Zp41 = Tap1 + Wan
must be points in F and therefore also in the closed domain F’:

lz] =3, |zlz L
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All we have to do is to determine, for every @ in M(P), the greatest partial
domains S, of points z, and S,,: of points z,,; in F’, which are related by (33)
with Q.11 = @. In certain cases, these domains may degenerate into an arc of a
circle or a segment of a straight line, or into a single point; if they contain inner
points, then they are mapped conformally one upon the other.

For some of the elements of M (P), one or the other of the domains S., Sat1
will contain only points, for which the ordinate y.(y.i1) is sufficiently large,
eg. = +7/2for P = 2. In other cases, both y, and y.;1 may assume values
smaller than the required bound, but not simultaneously, so that one of them
always remains sufficiently large. In still other cases, both ¥, and .41 will
become too small at the same time. Then it is necessary to consider two consecu-
tive (equal or different) elements Q,,1, Qni2 of Q({), one of which is equal to €,
and the three numbers z, , Zni1, Znr2 = Ttz + 2Yni2 connected by

(34): Zn = Qni1Znt1, Zng1 = QnioZnia .

As in the simpler case above, there will be the three greatest domains S5, Sui1,
8112 of POINtS 2y , Znt1, Znse in F’, which are connected by (34). The necessity
for considering these sets of three domains will arise only in the proofs of The-
orems 8 and 9. In all instances it will be easy to show that at least one of the
numbers ¥, , Yn+1, Ynte 18 always sufficiently large. Only those combinations
Qut1, Qnte have to be considered for which the simpler method fails; and when
the product Q,,1Q,,9 is divisible by P, then also this combination can be excluded
(compare §8).

Matrices Q.41 and —Q,,; lead to the same relations (33) or (34), so that only
one of them has to be considered. Also our method is symmetrical in y, and
Yn+1 1D the case of a single matrix, and symmetrical in y, and y.42 in the case of
two matrices. Hence in the first case, if one of the ordinates is sufficiently large
for Q,.1 = €, then the same will be true for 2,4, = FPQ; and in the second
case, combinations Q1 , 2n42 lead to the same bounds as PQ,4,, PQnia.

We arrange the steps of the proofs in the form of tables, so as to render them
clearer.

14. Proof of Theorem 8

F(G) (32

of M(2) satisfy the equations

(31 D N 2(—01 (1>>

The elements
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Hence at least one of any two consecutive terms of 2(¢) is different from these
four matrices.

For the remaining elements of M (2), the inequality

7
max (Ya, Ynt1) 2 —\g—
is satisfied, as follows from the following table:
Inequalities for e~ 1 Similar
Qi Sa Sup . —-PQ, ., | resultsfor
Yns Ynia the matrices
max (|z.|, |3n+1l)
= V2,
Iznl =4
0 2 |xn+1| E R
-1 0
hence
max (Y, Yns1)
> V7
2
(2 0) lzn] = 4, [2on| = % V15 AT (._1 0)
n g —_— >
0 1 l2al 2 2 lzanlz1 | =72 72 NO -2
G )
21y | 05254 |~iszas-} VI (-1 1 0 1/
0.1 lza—1122 | l2zanlZ1 2 —2 (—1 ~1
0 -2
'z"—2|§.2) Izﬂ+l'—1|§2: \/7 (01 21 ’
0 -2 -1 2 - =
D] iz fimatnze| w2y (00 (2
zn S % Tap S % -1 0

15. Proof of Theorem 9
We divide M (3) into three subsets S;, Sz, and S;, where S; consists of the

6 elements
—f 2 1\ —-/-—1 1 -1 -2
#(2)F(3 L)=G )

S of the 4 elements
—f 1 2\ - /-1 2
f(C 22
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and S; of the remaining 26 elements of M (3). The relations

4 i)(—21 D:?’(—ll <1J> (—21 i)(:i 2

3

(3 2
(0 3, 1
(5 0G0 )
(T )G D)= o)
G G )G L)

(2 LX)
(2 )

I

33

show that at least one of any two consecutive terms of ©({) does not belong to S; .

Similarly it is evident from the equations

(—11 3(—21 i)=3(—01 (1))

1 2\/—-1 =2\ _ 3 10
-1 1)\2 1/ °“\1 )0
-1 —2\/—-1 2\ _ 3 1 0
2 1 /\-1 —-1)  “\-1 1)’
that two consecutive terms of Q(¢) cannot have the form

1 2
9"“:(—1 1)’

Qn+2 1n Sl or Q,.+1 in Sl,

(2 D 4
(2, D@ 2)-3(3 L) (O ) A

)

Qﬂ.—{-2 = (

)<

i

-1
-1

In the twelve remaining cases, we obtain the table shown on page 34.

Next, it is obvious from

(2 DE 2= 20 D=

0

that two consecutive elements of Q(¢) cannot be

1 2
Hnn = (—1 1)’

0
-1

0
1

)

-1

0

-1
-1

-1
0

2)

)

)
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-1 2 1 2
Q"“:(—1 —1)’ Q"+2=(—1 1)'

It is, however, possible that Q.11 = Qnye = (_11 2), or

or

1
o= fnt2 Tt gy = nt2 T2
" —2Zna + 1 —22p40 — 1’ " —2Zni2 + I
Then
YYn+e 3Yni2

Yn Ynt1 =

@+ D'+ 200
Suppose that yn1 £ V2, Ynie £ V2, so that

(Tnge — 1)* + 4yhie

SYn+e 2 3
< — —
(@2 — )P + yhye = V2, @nz = 1)° 2 Ynia (\/2 Yni2 | -

Since v3/2 < ynie SV2,and y <$2 ~ y) assumes its minimum in any inter-

val in one of its end points,
. 3 V3[ 3 V3
— 2 > o — JANRNAY R A _
(py2 — 1)° = min (\/2 <\/2 \/2>, 5 <\/2 5 )) 1.
Therefore —% < .42 < 0, and finally

Wiz

- — (4+/2 Yny2 — (2 — yn+2)
y"gl+4yf‘+2“\/2+ Z V2.

1+ 4y‘i+2

-1 2
S2n+1 = &2,;_*_2 = (_1 _1>.

Our discussion has now exhausted all cases in which two consecutive elements
of Q(¢) belong to S; or S;. There remain the clements of S;; for these the
table shown on page 36 is obtained.

A similar proof holds if

16. Proof of Theorem 10

For P = 5, it is not necessary to consider {wo conseculive elements of Q(¢),
as we shall find that the theorem holds in its stronger form with only two
ordinates.

M (5) has 68 elements (seec §4). Of these, only the following eight

= =7 L) =G D)6 D)

require particular cxamination.
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0 I—\ (f1— 1—\| /0 1- < % sy €S |1 -z S V2 B S
e 1) (e 0) G 0)| #<ux s2iz 4] [BSle=ln2lel(e )
€= 0\ T O\l/e— 0 <% sy 2|z T 0
- ﬂlv AT.. mVAﬁ ﬁlv N gne t—-5S™zSE— |gZ|1—"2|§5 || A~ mv
O I G 9
0 I- gen Iz 45 |™e|| eZ (2|45 || 0 ¢
z -
<— %
AT
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2 2
@ns + 2) + (y,.ﬂ - g) _ (g)

Yo— 1 = —
@1 + 2)° + Yo

Now every point z,41 for which

0=zwn =%, |zanl2Z1,  yan <1,
lies inside the circle

@ni1 — $) + v = @),

and every point for which

—% S Tan =0, | 2aa | 2 1, Y < 1,
lies inside the second circle

@1 4+ 2)" + Yo — 9" = B)”.

Hence in the first case |z, | < 1, so that 2,41 does not belong to S, ; in the
second case y, > 1. This proves that max (Y., yay1) = 1 generally. The
1

-2 -1 2 -1\
same result holds for( 1 _2) = —5(1 9 ) .

Similarly, if Q1 = (‘21 :f) then

4\? 5\’
(%4—1 - —-) + y3.+1 - (—)
lz2aP—1 = —3 3 3

(2xn+1 - 1)2 + 4y'i+1 ’

1\’ 5\} [5Y\
4( - 5) M (y N §) - (s)
(2201 — 1)* + 4yaia

Hence again the points 2,1 for which

Yo — 1 = —

———% g Tni1 é 0, ‘z,._HI g 1, Ynt1 < 1, i.e. (:Un-}-l - ‘3‘)2 + y:+l - (%)2 > 0:
do not belong to S,.1, and y, > 1 for all points 2,1 for which
0= Tni1 = %7 lznﬂl! = 1) Yni1 < 1; ie. (xﬂ-i-l - %)2 + (ny-l - %)2 - (%)2 <0.

Thus always max 4., ¥a.+1) = 1, and the same result holds for

(2 7)=-(3 2"

For the remaining 60 elements of M (5), the table shown on page 38 is obtained:
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17. A characteristic property of a rational number

Let us return to the case of a general prime number P, and divide the elements

/
Q= (g g,) of M (P) into two sets M’(P) and M"'(P), such that

B #~ 0 for the elements of M’ (P),
and B8 = 0 for the elements of M'"'(P).

THEOREM 11. Suppose that ¢ is a P-adic integer. A mecessary and sufficient
condition that all elements of Q) with sufficiently large index belong to M’ (P),
18 that ¢ ©s a rational number.

Proor: A) The condition is sufficient. Suppose that 2, belongs to M’ (P),
say for all indicesn = m + 1. Put

Qm.n = Qm+19m+2 e Qn;
so that
Tn = TQO.n .

_(FP @
Q"“"‘(0 P”)’

where @ = 0, b = 0 and @ are rational integers, and where a + b = n — m.
Since both 2z, and z, lie in F, and

2o = P %, — P°Q,

Obviously

necessarily
(35): lim b = + o.

n —>0

( " p;) _ (pm pé.) (P“ Qb> _ (P“pm Qpn + Pbp;’,.)
qrn  Q4n am Qm 0 P Pq, QQm+Pme !
and therefore by §2

P'(pm + gmt) = 0 (mod P"), ie. Pm + gut = 0 (mod P™).
Hence, from (35),

But

¢ = P-adic lim (-— I—)ﬂ> = — &”—,
n—r0 dm nm
as was to be proved.
B) The condition is necessary. Suppose that { = —p/q, where ¢ = 1, and
(p, @) = 1. Since ¢ is a P-adic integer, (P, ¢) = 1.
To every index 7, there is an integer A, , such that

0<A4,=2P' -1, p + qA, = 0 (mod P7),
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and a second integer r, , for which

p + qA. = r.P".
Hence
(36): (g, 7a) = 1,
since every common divisor of ¢ and 7, is a divisor of p.

From (36), the equation
37): TeQn — Tug = 1
has integer solutions; if ¢, = qn, 7w = T» is one of them, then the general solution
is given by
Gn = Gn + kg,  Th = Tn + kra,

where k is an arbitrary integer. We assume that this integer k is chosen such
that the real part of the complex number

gn P
(38): 2= — 2 —

¢ q(p—qN
satisfies the inequalities

Obviously the imaginary part of ‘the complex number is positive.

_r
q(p — qN)
Hence, if n is sufficiently large, 2, is a point in F.

Now, if as in §1,

_AdatN_ —(p—gN) + P

Z" Pr an ?
then it is easily verified that
(39): 7. = Tazn + T
qzn + q;

Hence z, 1s the z,, of §1 for all sufficiently large n.
From (38), for two consecutive indices n and n + 1,

2 + a' ql P ’
, —
(40) Zn = l'*‘l—_f:tl, where «, 4= lﬂ_qu .

P q
Now A, = A, + a,P" with an integer a,, hence
p+qA, = r,P" and p + ¢4, + a.P") = r.aP"",
and therefore

Tn = Prasa — qaa .
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Substituting this for #, in (37) and subtracting the same equation with n + 1
in place of n,

ra1(Pgn — a2 + q(ran — ¢'an — 12) = 0,
and finally from (.41, 9) = 1,
Pgsn — @u41 = 0 (mod g).

Hence a,,41 in (40) is an integer, and the matrix

Q _ 1 a:.+1
n+l — 0 P

of the transformation (40) is indeed an element of M'/(P), as was to be proved.
CoRrOLLARY: For a rational P-adic integer ¢,

(41): lim y, = +oo.

n—»00

Proor: Immediate from (38).

18. A characteristic property of an irrational number

As we shall now prove, formula (41) is not true for irrational P-adic numbers.
Put

(42): y(¢) = lim inf y,,

n —oo

so that

V3 2 4) 5 YO

THEOREM 12: If { is an irrational P-adic integer, then for an infinily of indices n
Yn = VP,
and therefore
(43): y() = VP

Proor: By Theorem 11, there are arbitrarily large indices n + 1, for which

/
Quyr = (ZMLI (;7“) does not belong to M’/ (P), so that Bn+1 # 0. Hence
n41 n+l

4
Qni12a41 + anpa

Zn = 7
ﬂn+l zn+l + ﬂn+1

can be written as
([3,..;.127,, - an+1)(6n+1z'n+l + B:l+l) = —P.

min (

Therefore
QAnil

B,

1
Za1 + 2T
ﬁn+1

ﬁ n+l

Zn— ]

) i

= an+1|,
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or

VP
Bn+l | ’
and the statement follows immediately, since | 8,41 | = 1.
The question arises, whether the constant /P in Theorem 12 is the best
possible. This question is answered in the affirmative by the following
THEOREM 13: To every ¢ > 0, there s an irrational P-adic integer ¢, for which

y() =2 VP — e

Proor: Let g be a large positive integer, and Q the elliptic matrix

0o p*
o= (= 0

of determinant P**'; we suppose that g is so large that the fix point

min (?/ﬂ) yn+1) é l

_ -1 + (1 _ 4P20+1)}
2P7

fi
of @ in F satisfies the inequality

lfl—\/—Pléar

where 6 is a positive constant to be assigned later.
By Theorem 3, there is a P-adic integer {, and a positive integer m, such that if

4
T, = (p"‘ p7.> and z,, are the elements of T({) and z({) of index m, then

m qm
(44): gn # 0 (mod P), l2m — f1] < 6.
Put
0o P _ )
(_1 O) for h=1
1 0)
for h=23,..-,¢9
. (0 P ’ Land k = 0,
Lotk @g+D+h = 3 1.2
1 y ) L ) 3

for h=¢g+1

for h=g+2,g+3,---,2g+1)

x ok .
Ty = (fl’:: Z::,) = TrmQni1 gz - - .
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Since

0 P\/1 o\ '(1 1\/P oY
Do ko141 Dotk 4 42 * - - Dot 4D @ 4D =(__1 0><0 P) (0 P)( 0 1) =0,

obviously

* e ¥ *
Trik@or+h = Tol Qmik@ornr -+ Cmik@otn+h

and in particular
Trikotd = Tnll'.
Hence, by formuls (26) in §9,
4
T:+k(2g+1) = (—l)k—leQ = ('—' l)k (g 27‘ (mod P).

From the first condition (44), therefore, (q: L) = 1forn = m+ k(29 + 1),
and this must remain true also for all other indices n = m + 1, since T: is a
left-hand divisor of all T:+k(29+1) with greater index.

Let z» be the complex number

* * * *k\—1 *—1
Zn = (Qmi1Qmiz -+ ) 2m = Ty A (n=m+1),
so that in particular
* —k * —P
Zmik@otd = & Zm  ADA  Zmpketna = g -
Zmt+k (20-+1)

Asin §10, since © has the fix point f; ,
| 2tk — fi] £ & fork=0,1,2, ...,

and therefore
P
Zmir@o+n1 + 7. < 62 fork=0,1,2, ...,

where both 8, > 0 and §; > 0 only depend on & and tend to zero with §. In the
second inequality

P14 (1—4P¥™}

T h 2P
Suppose now that e < %, and that é is so small that

max (3 + 61,0 + 6) < e

Then, from the definition of g and from the last formulae,
lz:+k(2a+1)+h_—\/—Pl§5 for h = 0 or 1:k=07 1, 2) )
so that in particular all points

* *®
Zmik(20+1) 5 Sm4-k(20+1)+1
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lie in F, and their imaginary parts satisfy
(45): SCmikaernin) = VP — ¢ forh=00rl, k=012 --
The remaining zy are given by

(P*zmi@gsns1 for h=2,3 ....¢
P"z:+k(gh+1)+1—l for h=¢ +1
Pl z‘::+k(2a+l)+l — poht

for h=9g+2,9g+4+3,.--,2¢

andtk=0,1,2, ...,

*
Zmtk(Qg+)+h = T

so that for these numbers
(46): 3(z::+k(20+1)+h) 2 P(VP — ¢ forh=2,3,-..,29,k=0,1,2, ...

Suppose now that for n = m + 1, 2, is the point in F equivalent to z» with
respect to I, and that

Zn = Pun,
where P, belongs toI'. Evidently
Zmik@orD4h = Zmik(gtDh Pmikory+r = E forh=0o0rl,k=10,1,2, ...,
and
47): F(za) = S(zw) forn = m + 1.
Put
Uit = Qs1Pmis = Qrn, Q. = P7LOIP, forn=m + 2,
and
T, = (p: 2’:’:‘) = Ty Qi1 Oys - - Lo forn = m + 1,
so that
T, = TP,

and therefore in particular

*
Tmikgtny+h = Tmir@o1+n forh=0o0rl,k=0,1,2,....

Since (¢n , ¢%") = 1 and T, is a left-hand divisor of T} = T.P,', obviously also
(gn, qn) = 1 (n=m+ 1)
Furthermore, all numbers
z2n = T\

lie in F, as follows from the construction of z, and T, .
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Hence, if
{QI;Q?)"';Qm}) {TO)Tla“':Tm}f {zO;zl;""zm}

are the elements of (), T({), and z(¢) with indices n < m, we can apply
Theorem 2 to the infinite sequences

{Qlaﬂ2)937"‘}1 {TOyleT2""}y {20,21,22,---}.
We obtain the existence of a P-adic integer ¢ (for which, by the way, | — {0 =

P™™), such that {Q,} = Q¢), {T.} = T®), {2.} = 2(¢). This number is irra-
tional by Theorem 12, since

0o P
ikt = Uik uar = <__1 0) (k=0,1,2,...)

does not belong to M'/(P). (Formula (27) in §9 shows that { lies in a quadratic
field; compare the proof of the next theorem.) Also from (45), (46), and (47)

yng\/P—ey

for all n = m, so that { satisfies all conditions of Theorem 13.

19. Additions to the last theorems
TaEOREM 14: If { is the P-adic integer of Theorem 13, then

VP — e £y, = VP, ]pn+9n§_]P=P—n

for an infinity of indices.
Proor: We specialize the formulae in §9 by taking

0o pt! Pm p:n
Q_(—P" —1>’ T—Tm_(qm )’

4
T* = T _ [ Dmtk@e+D)  Dmk(20+D
- m+-k(29+1) — ’ y
Om+k2g+1)  Gm+k(29+1)

where these matrices are the same as those defined in the proof of the last theo-
rem. The equation for ¢; and ¢; becomes

(PZ +(p + P20+l — O,

and its two roots satisfy

letle =1, |@|p = P7*",
By (27),
1 - i
Pm+k(2g+) — P _g‘pz + p, Qm+k(20+1) = ———f:———,'
qu P2 + Qm qu P2 + qm

Here | P™%¢y |» < 1/P, and | @m |» = 1 by construction; hence

_ mevU‘P2 + prln

= -
qu g‘P2 + q:n
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is a P-adic integer, for which

kpm
P ~(m
(48): | Prtraosny + Gmikaon( |p = | 2 | = pTimHEDL,
QmP P2 + qm P
i.e. ¢ is the number of Theorem 13.

All points zm k2041 lie on a circle K, whose points z satisfy the inecqualities
|z —V-P[=¢

since f1 is an inner point of K and since J(fi1) < +/P, K must have an arc C, for
whose points §(z) = v/P. Now the multiplicator & of @ is not a root of unity,
if, as we assume, g is sufficiently large. Hence there are arbitrarily large integer
values of k, for which z,4x@+1y lies on C, so that the theorem follows immediately.

The number ¢ of the last two theorems had the property that all elements of
Q(¢) with sufficiently large indices were either equal to + (_01 I;) or belonged
to M"(P). This is not accidental, as the following theorem shows:

TaeorREM 15: If an infinity of elements of Q(¢) belong to M’ (P), but are different

—( 0 P
from-<}—<__1 0>,then

(4P — 1)}

y() = 5

< +/P.

To every € > 0, there ©s a number ¢ with thes property, for which

!

Proor: Let Q.4 = (a"“ a?“) # -T-( 0 P> belong to M’(P), so that
Brt1  Ban -1 0

3n+1 ;é 0 and

(Bn+12n - an+1)(Bn+lzn+l + B;»H) = —P.
If | Bay1 | 2 2, then, as in §18,
vP _ (4P - 1)

min Wn, Yapt) £ o, <
(s ) | Bata] 2
If | Bata | = 1,’an+1ﬁ;+1 #= 0, then | Boy1Zn — otny1 | = 3,
| Bri1Znsr — Bryr | = 3; sincemin (| za |, | 211 |) £ VP,
i 4P — 1)}
min (o, ya) S (VP — (% = CE 210
Finally, if | Bay1| = 1 and anBrs1 = 0, then Q.4 is one of the matrices

—f 0 1 —f—a 1 —({ 0 P —f(—a P
(%) #(o) (D) (30
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e . . . —( 0 1 —(—a 1
where a is an integer. Of these matrices, + (__ P a) and + (_ P 0) do not,
0

belong to M(P). If Q. = + (_1 5), thena x0and 2z, = —P/(2ns1 — a);
hence

y — Pyn+1 4Pyn+1>
Y @ — @)+ ha T 1+ 4y
since | 41 — a | = 3, and therefore
(4P — 1) _ —2(4P — 1)} (4P — 1)*)( 1 )
— < B oM. ) | YR . a—
Yn 2 = T34, U Y1 T o@P — i)

(4P — 1)}
—-

A

so that again min (¥, , Yay1) =

—f—a 1
The second part of the Theorem is obtained immediately from Theorem 5, by

. 0 P
taking Q —(_1 1).

20. An application of the preceding results

A similar proof applies to Q41 =

FFor complex z = z + yz, let

o = EFDW 2D+ s),

and, if { is a P-adic integer, define

T(¢) = lim inf #(z,).

n—,o0

The results in §§17--19 lead to the following
THEOREM 16: If { is rational, then

T() = o.
If ¢ is irrational, then for an infinity of indices

P+1
t(zn) = i

and therefore
P+1
4P "

Finally, to every ¢ > 0, there 1s a P-adic integer ¢(which evidently must be irra-
tional), for which

Tk) =

P41 _
4/P
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Proor: The first part of the theorem follows immediately from the corollary
to Theorem 11, since z, is bounded.
Now let ¢ be irrational. The identity

@+ ) A=z +9)—¥A+¢)=lz|0 = |zD{z]|0 - |z]) — 2"}
shows that for all zin F

@+ )0~ 12) +9) =51+,
and therefore
1+
4y

The function (1 + y*)/4y has its minimum at y = 1, and increases with increas-
ing |y — 1|. Hence, by Theorem 12, for an infinity of n

t(z) <

-+ (7)
{e) < max 2) 1+ WP’ _P+1
M= 4 (}_/_3_') ’ 44/P 4/P’
2
since (P + 1)/4+/P increases with P, and
7 3
§v3 = ive'

The last part of the theorem follows from the proof of Theorem 13, by which,
to every & > 0 there is a P-adic integer ¢ such that

|2a — vV~P| <
for an infinity of n, and

for all other sufficiently large indices. For, if § is chosen sufficiently small, then
for the indices of the first class

P+1 <
& t( n) 4'\/P = e)
and for those of the second class
Yo _ PV P+1
2 ) > 20 > . - =
t('-'n) = = 4 € > 4‘\/P 6,

as was to be proved.—
For P £ 19, the expression (P + 1)/4+/P is given in the following table:

P 2 3 5 7 11 13 17 19

3 1 3 2 3 7 9 5

(P +1)/4+/P 42 V3 25 AT A/11 213 2v/17  4/19°




50 KURT MAHLER

If ¢ satisfies the conditions of Theorem 15, then the upper bound for T'(¢)
can be improved to

4P + 3

S ———mm o

TG®) = 8(4P — 1)¥
but this is probably not the best possible result.

FinaL REmMARK: It is clear that if f(x, y) is an arbitrary function, then the
limits

lim inf f(z,, y»),  lim sup f(zx, yn)
can be investigated in the same way as for the special cases we have considered.
It would be useful to consider in particular the cases f(z, y) = z/y and f(z, y) =
2 2
z +y

; the formulae (52) in the next paragraph show why these functions are of

interest.

PartT II: DIOPHANTINE APPROXIMATIONS IN THE FIELD OF THE
P-Apic NUMBERS

21. Introduction of a binary quadratic form

We shall now use the results of the first part to obtain theorems about Diophan-
tine Approximations in the P-adic field. This problem is connected in a very
simple way with the properties of the representative 2({) by means of the theory
of positive definite binary and ternary quadratic forms.

As usual, if z = x + yiis an arbitrary complex number, we denote its complex
conjugate number by a bar: 2 = z — yi. Let X be the same number as in the
first part, and ®(X, Y) the positive definite binary quadratic form

2(X — A\Y)(X —XY)

#(X,Y) = = AX? + 2BXY + CY2

| — A
Obviously its determinant
2 _ac - AN
B AC-DT—XI?_ 1,

and since X\ lies in F, ® is a reduced form. In particular

X,Y) =X"+7 if N =1,

_2X*+XY+VYHy .. —14++/-3
¥(X,Y) = = ;=TI

Forn =0,1,2, ... put
(49): ®.(X,Y) = ®(p.X + puY, .X + ¢.Y) = A,X* 4+ 2B, XY + C,Y?,
so that the determinant of ®, is

(50): B: — A,C, = —P™.
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By formula (8) in §2,

(51): ®,(X,Y) = A(X — 2, Y)(X — 2,Y),
and therefore from (50), if 2z, = x. + yat,
n n ny 2 2
(52): A= g P o Pty
Yn Yn Yn
On the other hand, from (49):
A, = ®(ps, qn),
(53): B. = Ap.pn + B(pagn + Putn) + Cgugn

C. = ®(p, , gn).

By construction, z, lies in F. Hence all forms

q’"(X) Y) (n=0;1)2;)
are reduced, so that
(54): —A, S 2B, <A =C., P "< AC,<$P", A, < \% P".

Therefore, in particular:
THEOREM 17: For any P-adic integer ¢ and for every positive integer n, there are
two integers p, and qn. , such that

_ 2
n n, S n, @ nyYn é‘_—Pn.
| o+ gul |p S P 0 < ®(pn, gn) 7

22. The P-adic analogue to the Theorem of Lagrange
The following considerations depend on the identity
) ’ ’ _ P 2 2y 12
(55):  ®PuX + paY, . X + ¢, Y) = — {X* — 22, XY + (xn + ya) Y},

which follows immediately from (52) and (53), and on the inequality
(56): | XY — X'Y )P = (X, V)®(X', Y"),
which is obvious from the identity
(AC — B)(XY’' — X'Y)?
= ®(X, V)®(X’, Y') — {AXX' + B(XY' + X'Y) + CYY'}™

!
THEOREM 18: Let ¢ be a P-adic integer, T, = (p,. p 7) the element of T(¢{)

n n

with index n, and p, q two integers, such that

lp+qle = P7, ®(p, q) > 0.
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Then

®(p, ) = P(pn, ),
with equality if and only if either

Izﬂl >1 and P = NPn, q = nQn, (77 = "T']-)’
or
V3
2] =1, ya> -5 and p = qp. q = ngn, OF _
2 ’ ’ ("7 = +1)9
p=1pn, q=1gn,
or
~1+ v-3
Zn = —— s~ and P = npn qQ = 1Gn, oOr _
2 ’ ’ (n = F1).
D=0, q=1Gn, 8 D= nPs—Dr), q=1(gn— qn),
Proor: Suppose that
lp+alp =P, 0<dp,q = 2(Pn,qn)-
Then, from (56),
| pgn — Png |’ < ®(pa, g2)®(p1 , q2) < % P,
| Pig — P@a ° S ®(Dn, ¢)B(Pn, ¢a) S $ P,
while on the other hand
l pq; - p:,q IP
=g @+ ) —qpn +gud) S max((p+ ¢ |, | Pn + gu |p) £ P77,

| Prg — Dgn|p

=g+ qut) —@u(p+ @) | S max (| pa+ gl lp, [P+ gt |p) £ P

Therefore each of the two numbers

! '
X = Pqn — Pnq and Y = Pnq Pqn

’

[} ’ ’
Prndn — DPnQn PnQn — Pnn
is equal either to 0, or to +1, or to —1. Now obviously
p=pX+p.Y, ¢=a¢X+dq?,

so that one of the following four cases occur, where n = +1:

I

a) p = 7P, q = ngn - b) p = 7pn, q

’
Nqn -

e) p=1pn+ Pn), ¢=ng+gn). d)p =1~ Pn)y ¢= G — ¢n)-
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The first case is trivial. In case b), from (52),

PGt P
(p(p) Q) = (I)(p;, (];) = A(—'x“’ig“)' é (I)(pN.) q",) = 7,
so that necessarily |z, | = 1. In case ¢), from (55),
P*(1 — 2z, 2 . )
®(p, ) = B(pa + Pr, g + ¢) = 2 xy+ zn yn) < ®(pa, gn) = )

which is impossible for all points z, in F. Finally in case d), from (55),

, P'(1 + 2z, 2 2 P,
‘b(p; (I) = q)(pn - pny gn — q;.) = “”&_hm&+ it;*_’ty_) é (I’(pn, (I'n) = y 3

which requires that z, = T—l-j—;—\/—_? .

23. P-adic analogues to the Theorem of Hurwitz-Borel

The results in §§12-16, the formulae in the last two paragraphs, and Theorem
18 give immediately the following theorems, which form improvements on
Theorem 17:

TareoreMm 19: A) To every diadic integer ¢ and for at least one of any three
consecutive tndices n, there are two integers pn , ¢. , for wkich

o 2 .
P+ @t 0 =27, 0 < &(pn,q.) < -2-.2m

B) To every € > 0, there is a diadic integer §, such that
- 2 n
lp+agtle=27, 0<®(P:Q)§<7§—‘e).2

has no integer solution p, q for sufficiently large n.
TueoreM 20: A) To every triadic integer ¢ and for at least one of any threc
consecutive indices n, there are two tntegers P , ¢ , for which

lp‘" + qﬂf t3 é 3—71, 0< <I>(p.,‘ ) qn) § 3n

1

V2
B) To every ¢ > 0, there is a triadic integer §, such that

—n 1 i

lp+qt s =377, 0<fb(p,q)§(_\7é__e>,d

has no integer solution p, q for sufficiently large n.
TaEOREM 21: A) To every pentadic tnteger ¢ and for al least one of any two
consecutive indices n, there are two tntegers p., qn , for which

1p" + Qn§ '15 é 5*,1) () < (b(pﬂ y qn) é 5"-
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B) To every e > 0, there is a pentadic integer ¢, such that
lp+a¢ls=5", 0<®@pq = (1 —¢-5"

has no integer solution p, q for sufficiently large n.

TaeorEM 22: If P = 1 (mod 6), then to every € > 0 there is a P-adic integer ¢,
such that

lp+gtlr s P, 0<<I>(p,q)§<:/_2§_.e>.p"

has no integer solution p, q for sufficiently large n.
Probably for any prime number P and for any P-adic integer ¢

.. . ®(p, q) 1
lim inf 1) < ,
e psmipzen Pr S Y(P)

®(p.g)>0

where Y (P) is the arithmetical function defined in §11; but so far I could prove
this only for P < 7. That 1/Y(P) cannot, in general, be replaced by any
smaller number, follows from Theorem 7.

24. The P-adic analogue to the Theorem of Khintchine
The results in §§18-19, the formulac in §21, and Theorem 18 lead immediately
to the following results:
THEOREM 23: A) To cvery trrational P-adic integer ¢ there is an infinity of
tndices n for which the conditions

n

—n P
lp+qtlr = P, 0<<I)(p,q)<.\7-,

have no integer solution p, q.
B) To every ¢ > 0, therc is an irrational P-adic integer ¢, such that for all
sufficiently large n there are two integers p», qn , for which

—n 1 .
Ip"+q"§-IP§P ’ O<(I)(pﬂ)qn)§(—\7p+€>P7

whale for an infinity of indices

p" 1
< < (== "
THEOREM 24: A) If an infinity of elements of Q(¢) belong to M'(P), but are

|pn + @ut|p = P77,

different from + (_?1 i)) , then there is an infinity of tndices n for which the in-
equalities
— 2P
| < n —_—

have no tnteger solution p, ¢.—
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B) To every € > 0, there vs a P-adic integer ¢ with the last property, such that
Jor all sufficiently large n there are two integers p. , q. , for which

n 2 n
lpﬂ+qn§|P§P ’ 0<‘b(pm9n)§<m+ e)P

25. The P-adic analogue to the Theorem of Tchebycheff

Ch. Hermite proved the following theorem:"
THEOREM 25: Let

o(X,Y) = AX® + 2BXY + CY?

be a reduced positive definite quadratic form, X, and Y, two real numbers. Then
there are two integers X and Y, such that

AC(A — 2|B| + C)

o(X — Xo, Y — Yo = 2(AC — BY)

By means of this lemma and the results in §20, we shall prove:
THEOREM 26: Let ¢ and ¢ be two P-adic inlegers, of which ¢ is trrational.

Then there is an infinity of indices n, for which there are two integers u. and v, ,
such that

—n P+1 ..
< <t T2,
|un + o8 + 0 |p < P77, ®(Uup, vn) < Wz P".

Proor: For every index n let E, be the integer defined by
|0 — E.|p <P", O0Z<E,<P —1.
By Theorem 25, there are two integers X, and Y, , such that

AnCn(An - 2an| + Cﬂ)

3(p, X, 2Y. =B, quXn+qnY,) < )
PnXn +p @n Xn + ¢n ) 4(A,C. — BY)

since
(X + puY, . X + ¢»Y) = ®,(X, Y) = A, X" + 2B, XY + C,Y’

is a reduced positive definite form. Obviously, from (52),

ArCu(An — 2|Ba| + C) _ pn (0 + y2) (1 = [0 ])” + 33)

= P"t(z,);

hence, by Theorem 16, for an infinite sequence of indices »

'y, — ! <P+l
@(an” + pn Y.n En, ann + qu Yﬂ) = 4‘\/P P .

10 Hermite, 1. ¢. 6, 94-99.
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Now put

Un = @uXn + qnY,, Wy = TnXpn 4 0¥ 0, Un = P'w, — Avn — E, ,

where A, , r., r, are defined as in §§1-2. Since
Prn = Pnrn - Aﬂqn y p:z = Pnr; - Anq::y
obviously

Un = Pn(ran + T:l Y'n) - A471((]an + (];Yn) - En = ann + P; )rn - ]gn y

and therefore

On the other hand
Un + Apvn + En = P'w,, ie. |up+ (v, + 3 < P7°,

so that u, and v, have the required properties.—

If Q(¢) contains an infinity of elements of M'(P) different from ?(_?

1)
o)

then the constant (P + 1)/4+/P in the last theorem can be replaced by the
smaller number (4P + 3)/4(4P — 1)!. 1t is nearly certain that both these
constants are not the best possible ones; so far, however, I have not heen able

to obtain the true values.
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