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A PROBLEM OF DIOPHANTINE APPROXIMATION IN
QUATERNIONS

By Kurr MAHLER.
[Received 19 June, 1941.-—Read 26 June, 19t1.]

In two previous paperst I studied the upper bound of products of
two or three linear polynomials in real or complex integral variables. In
the present paper I use the same method to prove the following result:

“If a, B, v, 8, p, o are constant quaternions such that
aadd+BByy —aydf—PSya = 1,
then there are two integral quaternions x, y satisfying
[az+By+p|lye+8y+o| <3

In so far as the proof is based on special properties of the quaternions,
I am indebted to a paper of Speiser and of course to Hurwitz’s classical
book Zahlentheorie der Quaternionen.

In the first chapter, upper bounds for the maximum of |x| in certain
gets of quaternions are derived; I mention in particular Theorems 2, 8
and 10, which have some interest in themselves. The second chapter
deals chiefly with the reduction of Hermitian forms in quaternions; by
combining these results with those of the first chapter, the theorem stated
is obtained in the usual way.

I am very much indebted to Prof. Mordell for his help with the

manuscript.

t Journal London Math. Soc., 15 (1940), 215-236 and 305-320.
$ Journal fir Math., 167 (1932), 88-97.
2p2
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CHAPTER I. INBEQUALITIES.
1. Notation.

Let K be the field of all quaternions
X =Tyt 210+ Tty a0,
where z,, z,, %, Z; are arbitrary real numbers, and let
T = Ly— %11, —Lyly—L3ly,
|2] = (@242, +2,2+ 257,
S(z) = x+47% = 2x,,
N(z) = o = |2 |* = 2,2+, 2,2+ x,°
be the conjugate to z, its absolute value, its trace and its norm. We repre-
sent « by a point with rectangular coordinates (x,, %, %y, ¥3) in the
four-dimensional Euclidian space K, and call this point also . Then two
points « and y have the distance |x—y|.
By Hurwitz’s definition{, x is an integral quaternion, if it can be
written in the form
X == goJ Y1t gatatss,

where g, 91, 95, 95 arc rational integers, and j is the quaternion

Lty 4y
J= P *

Hence « is integral if all numbers 2x,, 2z, 2x,, 2x; are even or all are odd
rational integers. The set of all integral quaternions forms a laltice L
which is generated by the four points j, ¢y, ¢,, ¢;, and which is the four-
dimensional analogue to the centred cube lattice in ordinary space.

Two points 2 and y in K are called congruent, in symbols z =y, if their
difference x—y lies in L.

2. A lemma on linear tnequalities.

The following simple lemma is used repeatedly in this paper:

TurEoREM 1. Suppose that the linear inequalities with real coefficients

llll(x) = a’hlx1+--'+a’hnxn+ah 2 0 (h: 1’ 2’ LARE] m)

t ‘“Zahlentheorie der Quaternionen”, Math. Abhandlungen, 2 (1933), 303-330, in
particular p. 309.
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define a bounded set S of points x = (x4, ..., %,) 1n n-dimensional Buclidian
space. Then the maximum of

fl@) = (@442},

the distance of x from the origin, is assumed only in points of S in which
at least n of the functions l,(x) vanish simultaneously.

Proof. Since f(z) is continuous and bounded, there is at least
one point %= (z,% ..., 2,9 of S in which f(x°) takes its largest value.
If less than n of the numbers /,(x) vanish, then we can find a positive
number e and n numbers .1, ..., 2, not all zero, such that all poiunts

= (2 +tx,t, ..., 2,041t2,Y) with —e<t<<+e
belong to S. For these points,
f@)? = at?+Bi+y = ¢(t)

with real coefficients a, 8, v, of which 3¢” (0) = a = f(z?)2 > 0. Hence this
function is not a maximum for { = 0, contrary to hypothesis.

CoroLLARY. The theorem remains true when some of the inequulities
l,(x) >0, defining S, are replaced by the equations [, (x) = 0.

This follows from the last proof.

3. The sets A and A(yg).
Let A be the set of all quaternions @ = xy+2,%,+%,2,+%5%; such that
(1) || <|x—g| for every integral quaternion g.
This set has the following properties:
THEOREM 2. (a) A is determined by the linear inequalities
(2) |z <3, |7 <3, ,|x2| <h x| <8 (@[ 2e |2 | <1
(b) For all points of A,
3) 2| <4,
with equality if and only if x is one of the 24 points

@ FLUFL FLF, FLF, FoFh TaTe Tl
2 7’ 2 2 2 7 2 2

(c) To every quaternion there is a congruent one in A,
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Proof. (A) If x satisfies (2), then (3) also holds. The formulae (2)
can be written as

Faobd >0, Fo+320, Fo+3>0, Foti>0,
TFxy T2, Fr,Fr,4+1 20

Hence, by Theorem 1, the maximum of |z| is attained in a point in which
at least four of these inequalities hold in the stronger form with the sign
of equality. This clearly is possible only in the points (4), and these are
all of absolute value /3.

(B) The set (2) is identical with A. If g =goj+g1%1+gata-+gs%3 18 an
integral quaternion, then the inequality |z|<|z—g| can be written as

Yoo+ Y121 F e Tty ¥ KT

where
_ O %t 9t %t p_ 9]
Yo 2|g|: 71 2|9| s Ve 2[g| s Vs 2lg| ; P
a;nd therefol'e '}/02_}_'}/12+'}/22+'y32 == 1,

Hence the distance I' of the hyperplane

YoTpTY1%1FYe Bty =T

from the origin is } if ¢ is one of the 24 units

(5) e=FL, Fiy, Fiy, Ty, Lo rtaTh

of K, and it is greater than or equal to /%, if g # 0 is any other integral
quaternion. Therefore those inequalities (1) which are not included in
(2) are a consequence of the latter,

(C) If zis an arhitrary gnaternion, then there is an integral quaternion
h such that
x—h| <|x—g—h| for all integral quaternions g.

Hence 2’ == »—h =2z satisfies (1) and therefore lies in A. This completes
the proof.

For any quaternion g, let A(g) be the set of all points « for which z—g
belongs to A; in particular A(0) = A. A(g) can also be defined as the
set of all points whose distance from g is not larger than that from any
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other point congruent to g. If g runs over all elements of L, then the
sets A(g) together just fill up the space K without overlapping.

4. The singular vertices and the transformations of A.

The 24 points (4) on the boundary of A are called singular vertices,
or, briefly, SV ; the same name is given to all congruent points. If Z,
denotes the special SV

141
Zo == 9 1,

then all SV of A given by (4) can be written as

2= €3,
where ¢ denotes the 24 units (5) of K. The 24 transformations of K
(6) x> ex

(¢.e. the association with the point  of a new point ex, or replacing = by ex),
transform the SV (4) of A into one another; they leave all distances and
the lattice L invariant, and therefore also the set A. More generally,
the group of transformations

(7) x> ex+yg,

where ¢ is a unit and ¢ an integral quaternion, transforms the lattice L
and the set of all SV into themselves, preserves all distances, and changes
A into A(g).

To every SV, there is a sub-group of order 8 of this group (7) which
leaves this point unchanged. For the special SV Z,, this group consists
of the transformations

(8) x—Xy—>e(r—Zy), where e= TF1, Fi;, Fip Fi,.
By this group, A is transformed into the 8 sets

(9) A(g), where g¢g=0, 1, i;, 144, ——2T 2778

these being the only A(g) which meet in the SV X,
The 24 SV of A can be divided into 3 sets of 8 congruent points, namely

<:F1;:7;1’ :F1'22-'F7;3>’ <__:F12:F’;2, :{:i;q:@':;), (:Flzq:";a’ :Filjziz)’
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and all points of the first set can be written as
(10) Z=2,—9,

where y is again one of the 8 numbers (9)
Finally, every SV in K is congruent to one of the three SV

144, 1+4i, 1+i,
2 > g2 T2

and therefore can be written as

Y — g +01514@ptp sy
2 b

where the «'s are integers of which two are even and two odd.

5. The sets A¥ and D.

Let A* he the sub-set of all those points z of A which satisfy the 24
inequalities
(11) |t—3%,| <|z—X| forall SV X in (4).
TreorEM 3. (&) T'he set A% is determined by the inequalities
{ 02y <4, O, <y, max (|2, [25]) < min (2, 2,),
(12) L R M ENENENEG R

(b) To every z in A there is a unit € of K such that e 1a lies in A*,

Proof. The inequalities (11) are linear in the coordinates of z; it is
easily shown that those helonging to the § SV

s 1FG 1T 0T 0T
2 2 27 2

imply the other 16 inequalities. On writing down these 8 inequalities
and using the definition (2) of A, the formulae (12) follow at once. If
x lies in A, then let X = X be the SV nearest to it; then X, is the SV
nearest to e~lz, and therefore ¢~z lies in A%,

We define a further set D, which is to consist of all points z in K such
that

(13) |a—%,] <|]z—Z] for all SV X.
THEOREM 4. (@) D us determined by the inequality
(14) max (Jxg—4l, |o,—§])+max (|2,], |25]) <4

(b) The set A% consists of all those points of D which lie in A.
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Proof. Put

g—2p= = €o+-£10+Eatat£5ts,

S-S, =a= B +8,0, 185t +a315
3 .

Then either a is an integral quaternion, or one of the numbers of each
pair of coefficients (ay, a,) and (a,, a;) is an even and one an odd integer,
so that a is a SV.

The point ¢ satisfies the inequalities

(15) |[¢] <|€é—a| for all quaternions a;
or written explicitly,

(16) o okt £ O £y 0y £ < AT OO

The inequalities corresponding to integral « imply that ¢ lies in A; hence,
by Theorem 2,

bl <3 TGl &I &I ]+ &HE+H &S L
But these formulae are a consequence of the inequalities

A7) &+l <t &l +&6I<E [al+]6I<E [&a]+16<E
which are the inequalities (15) or (16) if @ is one of the 16 SV

+1 :F"'.2 1 :*:7;3 :File'ie '_'Fil:FiS
2 ] 2 3 2 ) 2 .

Now (17) implies (15) for all quaternions a; in order to prove this, it
suffices to assume that a is a SV. Let a, and a, be the two even, and @,
and a, the two odd coefficients of a; we may suppose without loss of
generality that

Then [£,| <3}, || <3}; hence

a.+a, _ol+a?
Iaxfx+aA§A'< _;- Ag 1- A )

since a, and a, are even and therefore

axz > 2ax: a’)\2 > 2a)\‘
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Further |£,| <3, [€.]+]€]<3; hence
la, a6, & < (@—a)| E.]4a,(|E]4E)

a, al+l _altal
<Ho—a) o, =P <P <Ot

4 H

N

since a, and a, are odd and therefore
20, <0l+1, a’>=1.

If we now replace ¢ by x= ¢+4Z%,, then (17) changes into (14). The
second assertion of the theorem is evident from (2), (12) and (14).

6. The sets 8(7), 8(r| Z), and 8% (7).
Let = be a number in the interval
(18) 0<7<4%
and 3(r) the set of all points x for which
(19) [o—3|+ 21— <7, || +]|2s| <7

For =0, 8(r) reduces to the single point Z,; for > 0, Z; is the centre
of the set.

The transformations (8) do not change £, and are easily seen to leave
8(r) invariant. Hence, if the transformation (7) changes X, into the new
SV %, then if x lies in 3(r), the point ex-g lies in a new set 8(7|Z) of
centre . This set depends only on = and X but not on the special trans-
formation (7) which changes %, into . If, in

> Gg+a,%)+a505+ a5ty
2 3

a, and a, are the two even, and a, and a, the two odd coefficients, then
8(r|Z) is determined by the inequalities

3 ap,
= x — £
2

+ Pk

a
z,— z,— E” ‘ <.

+

ay
x)\_E I <77

Since we do not use this result, T omit the simple proof.

For 7 > 0, the set 8(r) is bounded by 8 hyperplanes. There are 16 sets
of 4 of these hyperplanes which intersect in a point; these 16 points of
intersection are easily found to be

F1Fi, F1Fi TiuFie  FiFi
’ 2 .

(20) a=23%,—27s, where s= g 5 5
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They form the four-dimensional analogue to the vertices of a cube in
ordinary space.

Now let 8#(r) be that part of 8(r) which lies in A; this new set is
determined by the inequalities

(21) T} < Bty =11, T2 |42 <L
From these inequalities, we get
2, 2(1—1)—t=}—72720, 2, >72>0,
|7o—3[+|21— %] = 1—2—2, <
[#a|+|5] < 1= (@p+2y) <1—(1—7) =7,
2| ST<E @] <7<

so that x indeed belongs both to A and to §(r). But the stronger result
holds that x is also an element of A*; for from the last inequalities

T,

max (|2,|, |2,]) <7 < min (z,, 2,).
Of the vertices (20) of 8(r), only 8 belong to &§%(r), namely

(22) x=X,—2rs, where s=1§z2, 1:{2:%3, %1:2':’2’ %1?;%3.

They all lie on the hyperplane

(23) o+, =1—7
and have the same distance

(24) p(r) = (2r2—7+ 4t

from the origin.
The points (22) are the only points of intersection of (23) with sets
of 3 of the hyperplanes

zg=0o0r 4, x,=00r 4 Ty, Fr,Fr;=1.
Hence, by Theorem 1, all points of the set
0<2z, <} 02 <E 2pha, |2+ <1, 2t <1—7
satisfy the inequality

[z| <p(r).
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Therefore this is also true for all points of A* for which
otz < 1—7;
and conversely, if z lies in A% and satisfies the inequality
@] > p(r),
then x belongs to the set 8%(r), hence also to 3(r).

From this result. we deduce

THEOREM 5. Suppose that the point & has « distance not less than p(r)
Jrom every lattice point. Then thereis a SV I, such that x belongs to 8(r|X).

Proof. Let T be the SV nearest to x. By a suitable transformation
(7), we can change X, into Z, and a certain point z, in A* into x. The
assertion has already been proved for the point z,; it therefore is true
also for x, since the transformation (7) preserves all distances, and only
interchanges the domains §(r|Z).

Tt is useful to remark that if the equation
p(r)2=272—7+1

is solved for 7, then, since 0 <7 < 4,
1—4/(8p%—3 .
(25) 7(p) = __\/_(4/’__) for /2 <p<+i

Outside this interval for p, the value of = has no meaning for our problem.

7. An upper bound for the points in 8(r| Z).

Let Z be one of the 24 SV of A, and z a point in §(r|Z). If z lies in
A, then we know that || <1/} A more general result is given by

THEOREM 6. If X is a singular vertex: of A, then
(26) lz| < 2%+ 7+ )t
for all points of 8(z|Z).

Proof. The 24 sets 8(r|X) are interchanged by the transformations (6),
and these preserve all distances. Hence, without loss of generality, we
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may suppose z to be a point in 8(r). Then, by Theorem 1, the maximum of
|z| is attained in one of the 16 points (20). The 8 points (22) belong to
A and therefore have distances not greater than 4/} from the origin.
The distances from the origin of the remaining 8 points

x=X,—27s, where s

_—1F,  —1Fe, =i —4 T
2 2 2 2

are all equal to
(22,
which is not less than 4/%, and is the minimum required.
THEOREM 7. If x lies in 8(7), then the 8 points

144, T4, TFé,
2 ’

x*=x—g, where ¢g=0, 1, 1;, 141,

satisfy the inequalily
| o] < (2r2 744k
Proof. This is a special casc of the preceding theorem, since the points

x* belong to the sets 5(r| X), where X = X, —g are the 8 SV of A congruent
to X

Evidently

1+4-2p%-—+/(8p2—3)
‘) b

&

27N 2%+l =

where p is connected with 7 by the formulae (24) and (25).

8. The set d(A).
Let A be a number in the interval
(28) 0<AKL],
and d(A) the set of all quaternions satisfying
(29) O3 <oy <% <3, T2 +a,+2, <1, 2,4+2; <A
TaEorREM 8. For all points of d(A),

(30) ol <.
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Proof. We begin with the remark that if x4y =s and z > s/2, where
s is & constant, then

P ty?= s____2+(22x—s)2

is a steadily increasing function of z.
Let x be a point of d(A), in which the maximum of |z| is attained.
Then the following three statements hold :

(31) 2o+, =A.
(32) Either 2, =2,=2; or zyt+z,+z,+2,=1.
(33) If wmotxtxptaz=1, then either zy=3, or z,=um,.

For, if -+, <A and also xy+x,+2,+2; <1, then |z]| is increased
when z,, ,, ,, ; are replaced by

Xyt e, Ty, Ty, 2y for zy< 3,
and by Zg, X1+e€, Xy T3 for xmo=1%,

where ¢ >0 is a sufficiently small number; for in the second case
z, <A—} <z, If, however, o+, <A and xy+2,+2,+a3 =1, so that
Z,+2,>1—A >0 and therefore z, and x; are not both zero, then let »
be the larger index 2 or 3 for which z, 0. Now |z| again increases if
T4, Xq, T, &, are replaced by new numbers x,', ,’, x,’, ', where

2y =xy+e, z =2x,—€ for z;<i$,
and z) =z +e, x' =2—¢ for zy=14,

while the two other z’s are left unchanged.
Also, if (32) is false and therefore z, > 0, then we may add e to z, or

xy and so increase |z|.
Finally, if (33) does not hold, then we can increase |x| by replacing

z, by 2y+e€ and z, by z,—e.

We now apply Theorem 1 to the set d(A). According to this theorem,
the maximum of |z| can be assumed only on those points of the set in
which at least four of the boundary hyperplanes

Li=23=0, Ly=2,—23=0, Ly=u—2,=0, L,=z—2,=0,
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intersect. The results (31)-(33) exclude all possibilities except the
following ten cases:
Li=L,=L;=L,=0, a=A, |z]P=A% valid for 0<<A <4,
Ly=Ly=Ly=L,=0, x=3A(1+i+0+17), |z[f=A%
valid for 0 <A <4,
Ly=Ly=L;=L,=0, z=4}+A—})0+5+5), |z]?=3A2—3A+1,
valid for } <A <%,
Li=L,=Li=L,=0, x=(2A—1)+(1—A)@,+13), ||? = 6A2—SA+3,
valid for % <A<},
Li=Li=Li=L,=0, z=}+(A—315,+(1—A)i,, |z|>=2A%—3A+3,
valid for §<<A K1,

3A— 1)+ (1—A) Gy +ig+i
Ly=Ly=L=L,=0, z=4"DH0-Dlituty)

|z[2=3A%2—3A+1, valid for <A<

14+ (2A—1)2 1—A) (@42
Ly=L=Li=L,=0, z= +( )11'12‘( )("2‘*‘7'3)’

|| = 3A2—2A+1, valid for 2 <<AK1

A(1+2,41 2—3A)¢
Ly=IL=Ly=L,=0, z=201uthlt@=3),

|#|?=3A%2—3A+1, valid for }<<A<KE,

L3= L5=L6=L7= 0’ = l+(2A_1)(zl_;z2)+(3_4A)23,

|#|2=6A2—8A+3, valid for Z<<AK§,
Li=Li=Li=L,=0, =3, |z|?P=14, valid for A=1.

/

The interval conditions for A must be satisfied if the points are to lie in
the set d(A). A trivial discussion shows that all 10 points satisfy the
inequality (30), which is therefore true for all points of d(A).

9. An extremum problem.

Let ¢ be a number in the interval

(34) 0<r<vit
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and z a point in A of absolute value r. Put

(35) m(z) = mihn (|gr+Z,—h)),

where the minimum is extended over the 6 units

. 14 Fi e
g: l, ?/1, +_1_q:2 2:F 3

and over all integral quaternions 2. Obviously, m(z) is a bounded con-
tinuous function of z; it therefore assumes a maximum value

(36) M (r) = max m(z).
e

THEOREM 9. The function M (r) satisfies the inequality
(37) M) < VG-

Proof. Since the ¢g’s are units,
m(z) = min (Ja—g(h—1,)|).
0k

Now if g and A take all admissible values, then g-1(h—-2Z,), as is easily
verified, runs over all SV X. Hence

m(z) = min (|z—2X|),

where the minimum sign extends over all SV.  Let € be one of the 24 units
of K. Then with £ also ¢¥1X runs over all SV; therefore

m(ex) = min (|ez—2|) = min (jx— e 1 Z|) = min (|2 —Z|) = m(x).
b ) =
Hence, by Theorem 3, Part (b), we may restrict  to the set A%, so that

M (r) = max {min(|x—2|)}.
lzi=1x b
z in A*
But then, by Theorem 4, Part (b), Z, is the SV nearest to =, so that
M () = max (jz—Z, ).
lzl=x
Z in A*
Finally, |x -, remains unchanged if z, and z,, or x, and z; are inter-
changed, vi 11 we change the signs of x, or 3 or both. Therefore

M (r) = max (|lz—Z,|),
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the maximum being taken for the set 7' of all points z satisfying
[o|=r, 0@ <2< <P 2+ +%,+2, <L
From this formula we get

(9 = max (" —o—2,+}) = - §—min (z-+a,).

The statement follows therefore at once, since, by Theorem 8,
2o+2, = 212
for all points  such that
2] =1, 0oy <o, <2, <2< 2otz 42,42, <1
This completes the proof.

It is possible to determine M (r) explicitly, namely :

(124} —r for 0<r<d,
(12p2— -
1244 — 3+\Z_. r2—3) for § <r<v3,
MGyF=y ., , vE=2) o<
x“%'é‘—%” for Vvi<r<vi
. 2«
xz+é__'H'_\/(48_”'_'5) for V/E<r<vi.

I omit the proof, since it requires no new ideas and since we do not make
use of the result.

10. A property of special Hermitian forms.
We can now prove the following result:
THEOREM 10. Let a be a number in the interval
(38) ©1<a<ve

let X be the number

(39) A= \/(1—&1—2>

and let ¢ be a quaternion in A of absolute value | &|= A, and H(x, y|£) the
Hermitian form

(40) H(@, yy=H(z, y| §) = oN (c—y8)+— N ().

SER. 2. VOL. 48. No. 2347. ' 26
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Then to any two quaternions xy, y, there are two other quaternions x, and y,,
such that

(41) T=%, N=Y H@,y) <)

here the sign ““ <’ 'may be replaced by ‘< <, except in the case
Ty=2L;, Y=2, a=1, ¢=0, H(x,y)=N(@)+N(y),

where Z, and T, are two SV.

Proof. For every unit e in K, the congruence » = v implies
eu=ev and ue=uve.

It has been proved in Theorems 2 and 3 that to every quaternion x there
is a congruent one in A, and to every z in A there exists a unit e such that
ex lies in A*, It is further true that to this  in A there is also a unit €
such that z¢’ belongs to A*. For with x also the conjugate quaternion
T lies in A. Therefore there is a unit €* such that €*Z belongs to A¥*;
it is easily verified that also

(6%%), = ze¥i, =xe’, where & = e¥q,,
is an element of A%, and here ¢’ is a unit.
H (v, y) satisfics the identities
H(ew, ey|§) = H(z, y| §),
H(ze, y|ée) = H(z, y| £).

From this and the preceding we may assume without loss of generality
that
Yo and zg=wmy—y,¢ lie in A%,

Then by Theorem 2,
|90° <% and [z[ <}

Hence (41) is true in the stronger form with the sign ““ << instead of
“” for ;=24 and y; = y,, if

2a—1
2a2 °

—a?
either [yo|2<2a a

or |zlt<

We exclude these two trivial cases and suppose that
2a—a? 20—1

(42) lyolz 2 p) s

[20]% >
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By §6, the first inequality implies that y, belongs to 8(r,), where 7, is
determined by
2 20—a?

1—+/(8a—40%2—3)
P1 2 ) *

4

hence =, =

Therefore by Theorem 7, if ¢ is one of the 6 quaternions

g=1, iy ETuFh
then all 6 points
¥1* =Yo—9g
satisfy the inequality
; 142a—a?—+/(8a—4a%—3
< Y .

By the change of y, into y,*, z, is transformed into the 6 numbers
2¥ = 2o+9¢ = (20— Zo) + (Zo+94).
Let g and an integral quaternion h be chosen such that
lgé+2o—h|
is a minimum and therefore equal to m(£) as defined in (35); then put
B =%—h, Y1=Y—9 u=n-y{=2+g—h
Hence, by the inequality for y,#,

142a—a?—+/(8a—4a%—3)
2a

1
(43) - Ny = =4, say.

As was proved in Theorem 9,
m(E) =g+ Za—hl < MM < VA= 1/ (35— 5)
- g 0 A ~x - ag 2 .
By the second inequality (42), z, belongs to the set &(r,), where 7, is

defined by

2a—1 a—+/(8a—4—3a?)
p22 == —2_0»2— 3 hence Ty = 1a .

Now the 16 points (20) in which sets of 4 of the boundary hyperplanes
of 8(r) intersect, all have the same distance 74/2 from the centre X, of
this set. Hence, by Theorem 1, this is the maximum distance of a point
of 8(~) from X, Therefore, in particular,

- 5 a—+/(8a—4—3a?)
20— S| <y /2 = AV EAZSE) )y

262
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Hence
|zll<|g§+20—h|+lzo—zolg/\/<al_2__;_>+a_'\/(8(i;‘4—3a2) Ve
so that
(44) AN (=9, 8) <age v/(4—20) 4 L2V EAT) o)
— B, say

With the values (43) and (44) for A and B, we have proved that
(45) H(z,, y,) <A+B.

If a =1 and therefore £ = 0, then 4 = B =1, so that (41) is satisfied.
By Theorem 2, the sign of equality holds only if N(z,)=N(y,) =3}, i.e.
if both xz, and y, are SV.

Nowlet 1 <a < 4/2. Then weshow that 4 and B are both less than }.
In the case of 4, we have

l14-a—a*— v/ (8u—4a*—3)
2a

4=t

R (a—1)(@®—a*+2u—4)
¥ 2a{l+a—a*++/(8a—4a?—3)}’

Here
& —a* 20—+ = —243(a—1)+2(a—1)%+ (a—1)?
is an increasing function of @; therefore its maximum is assumed for
a=4/2, and is equal to
44/2—6 < 0.
This proves that 4 < 4.
The inequality B < 4 is equivalent to

a—+/(8a—4—3a?)
2+v/a

V(2B) = 3_7\/2-—112)+ <1l

Now
1—a?

\/(2_“2)_1=m\1 = —(a+1)(@a—1) < —2(a—1).

Hence \% V(2—a?) < l—g(av-—-;l—).
Also
—+/(8a—4—3a%) 4(a—1) | 2(a—1)2

244 *2\/u{a,+\/(8a—4'—3a2)}< ava -’
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Therefore finally

2(a—1)\ , 2(a—1)%> = 2(a—1)
ﬁ<<l— Ve >+ a+/a =1- a+/a <L

which concludes the proof.

CoroLLARY TO THEOREM 10. The assertion (41) remains true, if
H(z, y) is replaced by the Hermitian form
H(z, y|¢)=aN(z—&y)+— N(y).

For evidently H(z, y|¢)=H(, 7| €)

CHAPTER II. HERMITIAN FORMS.
11. Linear transformations.

The quaternion field K is associative; therefore the composition of
linear transformations

’

’ ’ ’
T =0, % 48,1 . . z x @, Q
n ,+ 12Y5 or in matrix form ( >=Q< ,), where Qx( 1 1"'),
Y= 00T +a5Y, Y y () Qoo

satisfies the ordinary rules. The determinant of commutative algebra,
however, loses its meaning, and has to be replaced by the expressiont

(46)  d(Q) = @11 81y Bpp Bgp 113 Byp By Bgy — 811 By Bgg Brp— 12 B Boy By,

which we call the determinant of Q. As we shall see, d(Q) is either positive
or zero; in the first case Q is called regular. For example, if

o sw=(). 7= v

where A and 7 7% 0 are quaternions, then
d8W)=1, aM)=1, d(U)=r7

gso that all three matrices are regular. These matrices have inverses,
namely

(48) SA1t=8(=A), T'=T, U)r=U("1).

1 For the general theory of generalized determinants in the quaternion field see the
beautiful paper of E. Study, Acta Mathematica, 42 (1920), 1-61,
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Every regular matrix can be written as a finite product of matrices
S, T, and U. For, since d(Q) # 0, we have either a,, # 0, or a,, =0 and
a1, 70, a9 7 0. In the first case

Q= 80\,) TU(r,) TU(ry) TS(A,),
where
TI= gy, Ty = Gig—0y 0gp Bogy, Ay = Byy Gty Ay = Gy Gy ;
and in the second case
Q= Ulay) S(ag/ ay, Ogs) TU (@) T

From this factorization of Q and from (48), we see that every regular
matrix has an inverse, obtained by taking the inverses of the factors in
the reversed order.

Tueorem 1. [ Q, and Q, are reqular matrices, and Qq = Q, Q,, then

(49) d(Qy) = d(Q,)d(Q,).

Proof. 1t suffices to consider the cases in which
a6
0, = < 11 12)
() Bgp

is an arbitrary regular matrix, and Q, is one of the three matrices S(A),
T or U(r). The assertion is obvious in the two last cases. In the first

case.
. _ (Ln, (LIIA+“12
&23 - gll S()‘) - (azl, “21 )‘+a'22) ’
hence a(Q,) = a+b+c+d,

where d = d(Q,) and
== gy gy gy M By + 0y Ay Gy Ty — Gy Gy By AA Byy — 3 AA gy @y By,
b = @y, liyy By Aligg + gy Allyg Oy Gy — Gy Ty Ggy AByp—yy Ay Gy By,
€= @), @y, Ogo NGy +01o A Byq Bgy By — @y Bgy gy A By —Byp A Bgy Gy B
11 @11 @3 A Qg T Bg A Gy gy gy — Qg Qg Bgp A By — Gyp A Ggy By By
Since real factors are commutative, obviously @ = 0. Further,
btc = N(a1) 8@ AGgy) +N (Ggy) S(a11 A8y5)

—N (1) S(@1;ATy5)— 8(@1; ATgp @y, Gyy).
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This expression vanishes, since S(ab)= S(ba), and therefore the last
termt

8(@11 A8z - @y @yy) = S (a9, @y - 343 ATyy) = N (ay,) S(ag A@ys)-

From Theorem 11, the inequality d(€2) > 0 follows at once, since it
holds for the matrices S, 7, U. We also see that the product of regular
matrices is again regular; they therefore form a group.

12. The modular group.

Let T be the set of all matrices Q of determinant 1 and with elements
which are integral quaternions. By the last theorem, the product of two
elements of I" belongs again to this set. The set contains the unit element
S(0)= E. As we now prove, it contains with every matrix Q also the
inverse matrix Q-1, and therefore it is a group, the modular group in K.

In order to establish the existence of Q-1, it suffices to show that Q can
be written as a product of a finite number of factors S(A), 7', and U(7),
where A is an integral quaternion, and = a unit. This can be done just
as for the modular group in the rational field ; all we need know is that the
Euclidian algorithm holds in K.

If the element a,, in Q vanishes, then, since d(Q)=1, both a,, and a,,
are units; hence

Q= Ufay) S(a'l_ll Q1 “2—21) TU(ay) T

is a factorization of the required kind.
If, however, a,; # 0, then by Theorem 2 there is an integral quaternion
X such that a;la,,—A lies in A; therefore

|“2_11 G—A| < V3, te, N(ayp—ayA) <4N(ay).
We now have

0=0,780, 0 =("1%), where N(aj) <i¥(ay)

’ ’

Q) Gap
since obviously (1 = Qgp— Gy A.

If still @y, # 0, then there is an integral quaternion A’ such that

Q=0 T8(), Q= (T1%), where N(ay) <iN(a;0).

Qg1 Qg

1 We note that S(aB) = S(Ba) = aS(8), if a is real.
} Loc. cit., footnote f, p. 435.
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Repeating this process, if necessary, we finally come to a matrix in which
the coefficient with indices (21) vanishes, thus to the case already dealt
with.

The factorization of Q allows us to write down the inverse merely by
taking the inverses of the factors in the reversed order.

13. The discriminant of a Hermitian form.
An expression
(50) H(x,y) = ZAx+%By-+yBe+70y,
where 4 and (' arc real numbers and B and B are conjugate quaternions,
is called o Hernatiun form in K ; we call
(51) D=AC—BB
its deserimanant. Evidently, H(z, y) can be written as

(52) Hz,y) = AN(x—§y)+§— N(y), where ¢= ——ﬁ-.

We consider only positive definite forms H(x, y), 1.e. we assume that

He,y) 2 0 for N(x)-|-N(y)> 0. The last formula shows that this is the
case if. and only if|
A0 and D> 0.

A linear transformation

5)-0()

changes H(z. y) into a new positive definite Hermitian form

H' (v, y)=zA'zs+ZBy+yB'z+50'y

of discriminant D'=A'C'—B'B'.
Here
(54) D' =Dd(Q).

For by the matrix factorization in §11, it suffices to prove this equation
for the three matrices S(A), T, U(7), and it is easily verified in these three
cases.

[f the matrix Q in (53) is an element of I', then H'(z, y) is called
equivalent (o H(x. y), i signs '~ H. Since I' is a group, this relation
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has the properties
H~H;

if H'~H, then H~H',;
of H ~H and H'~H', then H'~H.
By (54), equivalent forms have equal discriminants.

Equivalent forms evidently represent the same numbers when the

~ arguments run over all integral quaternions. It is further clear from the
definition of equivalence that, if H' ~ H, then both coefficients 4" and C”
are of the form H(x, y) with integral x and y. Hence the two sets con-
sisting respectively of the first coefficients 4’, and of the last coefficients
C’, of all forms H' ~ H, contain only a finite number of elements less than
a given constant.

14. The reduction of Hermitian forms.

The form H(z, y) is called reduced if

j A for integral x and y with N (z)-+N(y) > 0,

(55) H(z,y)= . :
[ C for integral x and y with N(y) > 0.

TueoreEM 12. The form H(xz, y) is reduced if, and only +f,

(66) AL, and ¢= —‘ZB— 18 an element.of A.

Proof. If (55) holds, then C'= H(0, 1) > 4 ; further, by (52), for ull
integral z,
. BB :
0<H(w, 1)—C=AN@—§)—=p = A(N@—§—N(§),

so that ¢ lies in A.
If (56) is true, then

H(z,0)=N(z)H(1,0) >4
for integral x = 0. Further, for every unit e,
H(t, —C=H@e?, 1)—C = A(N@e'—§)—N(£)) >0,
since £ lies in A; and, for N(y) > 2,

Hw,y)— 0 = AN@—tg)+0(N @) —1) 22 N (y)

>0+ 2 Ny)—AN(© N () > AN @) (3-N (&) >,

since 4 < C and N(§) <%.
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TueoreM 13. If H(z, y) ts not reduced, then there is an equivalent
form H*(x, y) such that

etther A*< A, or A¥=A, A*<C0*<C.
Proof. If A> C, then we may put H*(z, y)=H(y, x), so that

A*=(C < A. Suppose therefore that 4 < C, but that { = — —g does not

lie in A. Then let A be an integral quaternion such that £¢—A lies in A.

The transformation
z z
S (
(y)% @) y)

changes H(z, y) into a form H'(z, y) in which
A'=A4, B'=AX+B, C'=H(}1).
If now €' < A4, then we may put H*(x, y) = H'(y, x), so that
A*=C"<4A'=4.
If, however, C' > A, then put H*(z, y) = H'(x, y),‘so that
C¥—C=('—C=A(N(E-A)—N(£)) <0,
since £—A but not £ lies in A.

THEOREM 13. To every form H(x,y) there exists an equivalent form
H#*(x, y) which is reduced.

Proof. If H(z,y) is not itself reduced, then by the last theorem we
can find a sequence of equivalent forms

Hl(x) ?/), Hg(x, y), ees

where
either 4, <4, or 4,=A4, A4,<C,<C,
either A4,<<4,, or 4,=4,, 4,<C,<(C,,

etc. Since by the last paragraph there are only a finite number of possible
values of the first and the last coefficient of a form equivalent to H (z, y)
not exceeding a given value, this sequence of forms necessarily terminates
after a finite number of terms; its last element is the wanted reduced
form H*(z, y).
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15. The minima of a Hermitian form.

*= (i)

be a matrix of determinant different from zero, and with elements which are
integral quaternions; further let H(x, y) be a positive definite Hermitian
form, and H*(z,y) a reduced form equivalent to H(z,y). The two
expressions

M, = n;in {min (H(xp Y1), H(x,, ?/2)) } )
(57)

M,= Hiin {ma,x (H(xl» Y1), H(z,, yz))} )

where X takes all admissible values, are called the first and second minimum
of H(z,y). Tt is clear that M, is also the minimum of H(z, y) when
z and y run over all pairs of integral quaternions except the pair x = y = 0.

THEOREM 14. If A% and C* are the first and the last coefficient of
H#¥(z, y), then the two minima of H(x, y) are given by

(58) M, =A% M,=C*
Proof. Let <:) = Q(::)

be the transformation in T' for which

H(z, y) = H*(x*, y*),

x*\ (%
and let <y*) =0 <y)
be its inverse. Put
# e %
X#=01X= ("), 5o that X=0X*.
Y17 Ye

The elements of X* are also integral quaternions, and the determinant
d(X#*)=d(X)# 0. Hence the elements in one row or column of X* are
not both zero. Evidently,

H(xy, y,) = H*(x,*, y,*), Hl(z,, y,) = H*(x,*, Yo*).
Hence, by the definition of reduction,

min (H(zy, yy), H(zy, y3)) > A%, max (H(xy, y,), H(ws, ya)) > C*,
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If, in particular,
10

X*=E=<01

), x=0,
then
H(zy,y,) =H*(1,0)= A%, H(z,, y,) = H*(0,1)= C%,
so that the last formulae hold with the sign of equality.
THEOREM 15. The minima M, and M, of H (x, y) satisfy the inequalities
(59) M, <+/(2D), DKM, M,<2D.

In particular, M, = +/(2D), and also M, M, = 2D, if, and only if, A* = C*
and ¢ is one of the 24 SV of A, Further, M, M, = D if, and only if, B¥ — 0.
Proof. We have
D = A% 0¥—B* B¥* < A* C¥%,
with equality if, and only if, B*=0. Further by Theorem 12, A% < ('*¥

*
and €= -—% lies in A, so that N(§) <% and therefore

B B‘:x: < }A #$:2 < %A PY O:;e,
D= A% C%—B* B* > A% O%— 1A% C% = [A% O*.

If the sign of equality is to hold in the last formula, then A% == (/* and
N(¢)=14. The assertion follows therefore at once from Theorem 2 and

Theorem 14.
Since A is invariant for the 24 transformations (6), all forms H(z, y)

satisfying M, = 4/(2D) are equivalent to
Ho(x, y) = +/(2D) (Zx—% Zoy—F Zo+7y).

This form assumes its minimum value M, = M, = 1/(2D) for 9X 24 = 216
different pairs of integral z, y. For let ¢ be one of the 24 units of K;
then the minimum is assumed for (z, y) = (e, 0), and also for (z, y) = (x, €)
where now z is one of the 8 integral quaternions for which

N@—3je)=14.

The part of the last theorem referring to M, is due to A. Speiser?t, who
used an entirely different method in his proof.

t Journal fiir Math., 167 (1932), 88-97, in particular p. 97,
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16. The geometrical representation of Hermatian forms.

Let H(z, y) be a Hermitian form of discriminant D =1; put

! __ 5 _1
so that
(61) A=i, B:_i’ g:__f, o I /i
n 7 7 n

We interpret the four real components of ¢ together with the positive
real number 7 as the rectangular coordinates of a point (£, ) in the part
B: 7>0

of five-dimensional Buclidian space, and then there is a one-to-one corre-
spondence between the forms H (z, y) and the points (£, n) of R.

If H(x,y) of point (£, ) is equivalent to H'(x’, ') of point (¢, v),
then these points are also called equivalent. Let

(.ﬁb) _ Q(xl> o= <a11(512>

Y Yy’ Qg1 Aoy

be the transformation in I' which changes the first form into the second.
T’hen a simple calculation shows that

¢ = — (@13 —ay, @ (41— E@gp) + Ty Aop 772,
(@118 €)(@yy— €agy) + Ty Bay 7°

= = - ,
(@1 — gy €) (@1 — Eagy) 4y @py 7?

(62)

with analogous formulae involving the elements of Q! for the change-
over from (&', ') to (£, n). The second equation shows that R is trans-
Jormed into itself by all elements of I'. We write (62) for shortness as
(& m)=Q(&, n)or (§¢,7')=Q (& 5). In particular, for the generators
of I',

if Q=8(@), then & =§£¢—A, 9 =9,

if Q=1, then &=t n'=-21—,
T awe U s

. 0 , )

o= (;1 62> » then §'=erlfey, o' =1n;

in the last formula, ¢, and ¢, are assumed, to be units in K.
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Now let F be the set of all points (£, ) which belong to reduced
forms; by Theorems 2 and 12, F is determined by

(63) | €] <|€—g] for all integral quaternions g; ¢£€+4+72> 1.
The point (¢, n) is an inner point of F if
| €| <|€é—g| for all integral quaternions g #0; ¢€4+n2>1;

denote by F, the set of all inner points of F. The proof of Theorem 12
shows that the form H(z, y) belongs to a point of F, if, and only if, for
all integral pairs (z, ¥),

A wheén (z,y)#(0, 0), # (e, 0),

64 Hz,y)>
(64) (@ 9) {0 when y#0 and (z,9)% (0, €),

where ¢ denotes the 24 units of K ; in particular 4 < C.
Suppose now that H(x, y) belongs to an inner point of F and that
H'(x',y’) is a reduced form equivalent to H(x,y). Let

(-2 ==(2)
Yy y' gy Wop
be the transformation in I' which changes one form into the other. Then
by Theorem 14,
4=4" C=0C,;

hence
A = H(ay, ay), C=H(a,, ay).

By (64), the first formula requires that a;, = ¢,, @y, = 0, the second one
that @, =0, ay; = ¢,, where ¢, and ¢, are any two units; therefore the
transformation is of the type
, _ (&0
(65) Q= (0 €2> )
1t follows that these are the only transformations which change at least
one inner point of ¥ into a point of F. Since the inverse of Q has the
same form, all 24 X 24 transformations (65) leave the set F, invariant.
Denote by Q1 F (and Q-1 F,) the sets of all points (£, ') for which
(& 1) =Q(&, %) lies in F (in Fy). The last results show that F, and
the transformed set Q' F, either are identical, or have no common
points. Hence, by the group property of I', any two sets Qi! F, and
Qz! F, either coincide or are without common points. Therefore, finally,
two sets Q' F and Qzl F either have no common inner points, or they
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are identical. This shows that the sets Q-1 F together fill up the space R
without overlapping, and also without gaps since to every point there is
an equivalent one in F.

If ¢; and €, are two units, and A is an integral quaternion, then the set

Q-1F, where Q= (61 A >,
0 e
contains points with arbitrarily large », since this is true for F, and the
131 @19
(g1 Qoo
element of I' with a,, % 0, then 7 is bounded for all points in Q-1 F.
There are, however, points with arbitrarily small positive » in the set
Q-1 F, as seen from (62), and these satisfy

transformation leaves 5 invariant. When, however, Q = ( ) is an

(66) lim ¢ = a3} a,,.
7—>0

It follows that if a continuous curve in R tends to a point (a, 0) in
n =0, where a is an irrational quaternion (¢.e. not of the form a-16 with
integral quaternions @ £ 0 and b), then this curve passes through an
infinity of different sets Q-!F. For if it passed only through a finite
number, then it would ultimately lie in one set and so by (66) tend to a
point (a7} a,,, 0).

17. On special Hermitian forms.

THEOREM 16. Let A= (ag) be a matrix of determinant d(A)=1
Y

with elements in K, t o positive parameter, F,(z,y) the Hermitian form of

discriminant 1

(67) Fy(w, ) = N (az+y) + N (yz+dy),
and
(68) Fj#(x, y) =ZA,2+ZB,y+yBx+5C,y

the reduced form equivalent to F(z,y). Then, for at least one value of t,
At = C‘.

Further, if a=1 B is not « rational quaternion, then there are arbitrarily large ¢
with this property.
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Proof. Since
tF (@, y) = E(dat?+yy) v+ (@Bt*+78) y +§ (Bat® +8y) v+ 7 (BB +-8) y,

the point (¢, n) corresponding to F,(z, y) is given by

__wpt4ys ¢ £, o BRA+88
£= aat?+yy’ = aat®+yy’ §tn'= aati+yy’

If ¢ assumes all positive values, then (£, n) describes the semicircle G
which is perpendicular to the hyperplane n =0 at the two points
(—a1B, 0) and (—y~18,0). For t—>o0, (£ 7) tends to the first point
(-—a"1B, 0); hence, by the preceding paragraph, if a=!8 is irrational, then
C passes through an infinity of different sets Q-1 F. (It is possible that
just one of the two numbers a and y vanishes; then G degenerates into a
straight line perpendicular to n = 0.)

Suppose that a point P: t =7 of C, lies in the set Q-1 F. The trans-

formation <;>—> Q(;) changes Q-1F into F, C into a new semicircle or

straight line C* perpendicular to 5 = 0, and the point P on C into a point
PiE(g% n*) on C*. Then P# lies in ¥, so that

¢% belongs to A; ¢¥E¥4n2 1,

Evidently £%* corresponds to the reduced form F *(x,y). The point
divides C# into two parts; let ¢c* be that part of G¥ for whose points

7] g,r):;:’

Let g =g(&) be any integral quaternion such that £é—g lies in A. If
there is more than one quaternion g with this property, then, by the
definition of A, N(£—g) has the same value for all of them.

Denote now by § the hypersurface in R defined by

(69) (6—9)(E—g)+n=1.

"Then 7 is a continuous single-valued function of ¢, and so § is a continuous
and connected hypersurface; it is clearly transformed into itself by all
translations of R,

(70) (;)»Sw(;), ie. E>EA mm,

where A runs over all integral quaternions.
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The point P* belongs to F and therefore either lies on & or has a
larger coordinate n* than the point of S with the same value ¢* of ¢, In
the second case the arc ¢* of C* intersects § in at least one point, since
it Joins P* to a point in n = 0. By a suitable translation (70), this point
of ¢* changes into one on § and inside F. It follows that there is a
transformation in I' which changes C into a semicircle or straight line
intersecting 'S in a point of F. If ¢ = ¢, is the parameter value belonging
to this point of intersection, then, for the reduced form (68), 4, = C,,
as follows from (61) since £—g in (69) has now been replaced by ¢.

If a—18 is irrational, then there are an infinity of ways of changing C
into a semicircle or straight line which intersects § in a point of F. For
now C passes through an infinity of different sets Q-1 /7 in the neighbour-
hood of (a8, 0). A transformation which changes one of these sets into
F transforms at most a finite number of the others into sets S(Ay-1..
This proves the assertion.

18. The product of two linear polynomials.

THEOREM 17. Let A = (a ’g) be a matrix of determinant d(d) =1 with
Y

elements wn K. Corresponding to any quaternions x, and v, thcre are lwo

other quaternions, x, and ¥y,, such that

(A) =%, Y=Y, |(ox;4By1)(yx+8y,)| < ).

If a—1B is irrational, then (A) has a solution with arbitrarily small value of

| az;+ By, |-

Proof. Consider the forms (67) and (68). By Theorem 16, there is
a value ¢ =t, for which 4, = C,. If a~!B is irrational, then t{, may be
taken arbitrarily large. Let

()=al) o= (o)

be the transformation in I' which changes F, (z, y) into Fi¥(2', y'), and let

' '
Xy = 03 Tog+C13Y0 Yo = %91 %o+ o Yo

By the corollary to Theorem 10 and by (52), there are two quaternions
z," and y," such that

=z, y'=9,, Fi(z,9,) <1
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Then, if 2; and y, are the quaternions defined by
2 =0y %405, Y1 = Oy T1t0Y1,
obviously

1
Ty =% Y15 Yo, Fto(xl’ Y1) = bty N (az,+By1)+ E(')‘ N(yz,+8y,) <1,

and so (A) follows by the theorem of the arithmetic and geometric means.
For the solution so obtained,

1
N(az+Byy) < ‘i;s

where - can be made arbitrarily small for irrational a=*8.
0
‘Ihe equality sign holds in (A), if a=8=1, B=9 =0, and both x,
and ¢, are singular vertices. Theorem 17 is therefore the best possible
result.
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