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family sizes from data which is limited to the family order of birth of a group of
children. The treatment required by each problem owes its individuality only
to the fact that the method of application may be designed to simplify the com-
putation. Such simplification is attained by a suitable choice of class boundaries
for the two variates.

ON THE DENSEST PACKING OF CIRCLES
B. SEGRE and K. MAHLER, University of Manchester

1. Introduction. We show in this note that at most 4 /v/12 circles of radius 1
can be placed in a convex polygon of area 4 and with angles not greater than
2r,* such that no two of the circles overlap. This upper bound for the number
of inscribed circles is the best possible one, but the restriction on the angles is
essential. Somewhat similar results have been obtained, using an entirely differ-
ent method, by A. Thue.t More recently, the problem was studied by L. Fejest
and R. Rado.§

Apart from a simple application of differential calculus, our method is ele-
mentary. The proof is based on two lemmas which have a certain interest in
themselves.

2. The convex polygon S(P). Let 2 be a set of points P, Py, Ps, - - - in the
plane 7, such that the distance P’ P” of any two different points P/, P’ of 2 is
at least 2. Hence, if C(P), C(P1), C(Ps), - - - are the circles of radius 1 and cen-
ters P, Py, P,, - - -, then no two of these circles overlap.

Let K be any circle in II, say of radius 7, and let K’ be the concentric circle
of radius r+1. If now P/, P, ..., P® are any points of 2 in K, then the
circles C(P’), C(P"), - - -, C(P®) are contained in K’; their total area Ir is
therefore not larger than the area (r+1)2%r of K/, and so I <(r+1)2. Hence every
circle contains at most a finite number of points of Z.

For every point P of Z, denote by S(P) the set of all points Q in II for which

(1 PQ £ P,Q (k=1,2,--+).
The circle C(P) is a subset of S(P). For, if Q lies in C(P), then

P,Q=ZPP,—P0=22—-1=12P), since PO<1, PP, = 2.

Denote by A; the locus of all points Q for which PQ =P,0. Evidently A
is the line perpendicular to the line PP, which intersects the segment PPy at

* All angles in this paper are measured in radians. Moreover, we use the same symbols for the
angles and their measures in radians.

T See his note read at the Scandinavian Mathematical Congress of 1892, and the paper,
Norske Vid. Selsk. Skr. 1910, No. 1.

1 Math. Z. 46, 1940, 83-85.

§ Dr. Rado was so kind as to give us the reference to Fejes's note, and he also informed us of
his, as yet unpublished, results.
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its center, say P®. The points Q satisfying PQ < P,( form the semi-plane deter-
mined by A; containing P, and this is a convex region. Therefore, from (1), S(P)
is a closed convex region. (Fig. 1.)
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We assume from now on that S(P) is of finife area, A(P) say. Let Q%P be a
point in S(P), and denote by T; and T, the two endpoints of the diameter of
C(P) perpendicular to PQ. Since S(P) is convex, and since the three points
Q, T, T belong to S(P), the whole triangle 7707 is a subset of S(P), and so its
area is not greater than 4 (P). Now the area of this triangle is
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1T\ T, X PQ = PQ, since T11: = 2,
whence

(2) PQ < A(P) for every point Q of S(P).

By (2), S(P) lies in the circle C’(P) of center P and radius 4 (P). Hence it
has points in common only with those lines Ay which touch or pass through
C'(P). As P® is the point of A nearest to P, this requires that

PP < A(P), i.., that PP, = 2PP® < 24(P).

But since only a finite number of points P of 2 satisfy this inequality, the
boundary of S(P) meets only a finite number of the lines Az. Therefore S(P)
1s a convex polygon, say with the n sides Ay, As, - - -, A,, and the n vertices Ry, R,

-+ +, R,.. We choose the notation such that these sides and vertices lie on the
boundary of S(P) in the order of their indices, and that R; and Ry, are the ver-
tices on Ak, and so Ax—; and Ay, are the sides through R;. (The indices 0 and 741
must be replaced by # and 1, respectively.)

3. A fundamental lemma. The lines from P to the # vertices Ry, Ry, * + + , Ra
split S(P) into the » triangles

R\PRy, RyPR3, -+, R,PR,,

say of areas
R al’ a2’---’a”'

Let further the angles at P of these triangles be

a1, Qv , O
respectively. Then, evidently,

(3 a1+ a4+ - + a, = A(P),
and

@ ar o+ 4o, = 2m

In the next paragraphs, we prove the following

LEMMA 1: For every index k,

3
(5) (133 g —\/: Ay
ki3

with equality if and only if the two circles C(P) and C(P:) touch each other, and are
both touched by the circles C(Pr-1) and C(Ppyy1).
For the proof of (5), put (Fig. 2)

x = PP = 1PP.  sothat z = 1.

Further denote by T the circle of center P and radius x; then A is a tangent of



264 ON THE DENSEST PACKING OF CIRCLES [May,

TI'. The two lines from P to R; and Riyy cut off T a sector of angle o, hence of
area 3x2;. Since this sector lies entirely in the triangle Ry PRy,1 of area a:, the

i)
\
\
\\
\
L < —
&
\\\
y|p¥ ~H Ay
kv 3 VY, / PK-‘!
% /
}/
P
y
//
P
/o Ak-ﬂ

K+4

Fi1G. 2

inequality ax>ix%; holds. Hence if 1x2=+/3/x, i.e., if x> V12/72>1, then
(5) is satisfied with the sign “>” instead of “2,” and so the assertion is proved,
since C(P) and C(Pyx) obviously do not touch each other.

We may therefore exclude this case, and assume from now on that

. /12 1/‘4‘
6 15x2< — <L —_
(6) V = 3

We now prove the result:

The point P® is interior to the segment RyRy,1.

If this is not so, then Ry, R4 are two distinct points of the line A;, lying on
the same side of P®. Hence one of these points, say Ry, is nearer than the other
one to P®; and R; possibly coincides with P®,

By our notation, A;_; and Az meet at R;. Since all points of Ay_; are equidis-
tant from P and Pi_4, this implies that PRy= P, _,Rx, and so P and P;_, lie on
the circle A of center Ry and radius p = PR;. This circle contains also P, and is
divided into two arcs by the line L joining P and P;. Let A* be the arc which
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meets A at a point, H say, separated from Rg;; by Rx; then A* is separated from
Ry41 by L. Since the only common point of the line Ax_; and the angle PRyRyy1
is the vertex R; of this angle, it follows that the image Px_; of P in A;_; is sepa-
rated from Rj;1 by both the line PRy and its image RyPy in Ay = R;Ry,1; hence
P, lies on A*. On putting

2 = PH = P;H,

it is evident that for every point Q on A*,

min (PQ, PiQ)

I\

z,
and so, in particular,
min (PPi_;, PrPr_y) S 2.
Therefore, by the definition of Z,
(7) z
Next put

v
N

RkP(k) = y’
so that

p?= a4+ y* and PW®OH = RH — RP® =p — y=+/22+ y2 — y < x,
since v/ x2+y2<x-+y. Hence
22 = PP2 4 POA? < x2 4 2?2 = 242,

whence, from (6),

5 2V2x<V2E <2,

contrary to (7). This contradiction proves the result.
From the above, the line PP® divides the triangle RiPR:,; into the two
triangles R PP®, say of area by, and P®PRy,,, say of area c, so that

(8) bk + Cr = Q.
The line PP® splits o into two angles B = Ry PP*® and v, = P® PR, satisfying
9) Bi + vi = az.
By (8) and (9), Lemma 1 is proved if we can show that
V3
(10) bx = — Bu,
™
and
\/3
(1 1) k= — Yk,
i3

with equality if and only if C(P) and C(P;) touch each other, and are touched
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by C(Pk-1) in the case of the inequality (10), and by C(Pxy1) in inequality (11).
It suffices to prove the assertion (10), since (11) can be treated likewise.
As before, we denote by A the circle of center Ry and radius p = PR; (Fig. 3);

then P, P, and P; lie on this circle. The line L joining P and P divides A into

two unequal arcs (since P® and R; are distinct); let A* be the larger one, t.e.
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that arc which is separated from Ry, by L. Then, by an argument already used
we see that P;_; lies on A*,
Denote again by H the point where A* and A; intersect, and put

y-—-RkP(k), Z=—P~H“=PkH.
Then p =+/x2442, and we find as in §7 that
(12) 22 2,

but now

PO =R,H+P R, =p+y=+22F 2+ 9,
(13) 22 = PH? = PP®? L POR? = 42 4 (\/%2 F 3% + 9)?
= 2(2 + y* + 3 T .
From (12) and (13), :

2+ y 4 yv/at + 57 2 2,
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whence, on solving for y,

- 2 — x?
e Vi = x?
Since further
Y
- 1 — —_
by = 3xy,  Bx = sin™! Wiy
the inequality (10) can be written as
F(x,y) 20, where F(x, y) = mxy — /12 sin™! .
Vat+ y?
Hence the assertion (10) is proved if we can show that
(14) F(xz, y) > 0,
if
_ — x?
1S x<+4% and y2 ————> andeither x> 1 or
(15) vi—al
> 22 both
~————— or both.
Y V4 — x?
For in the excluded case, we have
1 2o® 2, F(z,y) =0
x =1, = — = , g = 2, x, = (),
y \/4 — x2 3 y

and so the equality sign holds in (10). Moreover, since z=2, every point Q= H
on A* has a distance less than 2 from either P or Pi; therefore P;_; must coin-
cide with H, i.e., the three circles C(P), C(Pi_1), C(Px) touch in pairs.

When (15) is satisfied, then

x? + y* OF(x, 2 — x%)? -
y (%, 9) = (2 + y?) —«/12§w(x2+(——————)—>—\/12
x dy 4 — 2?
47 4r
= —V122 ——— 12> 0.
4 — x? 4 —1

Hence F(x, y) is a strictly increasing function of y. To prove (14), it therefore
suffices to show that the function

2 — x? x2(2 — x? __
7}—%) = 7l"—\7(‘;1:.*“—’_22'_ ‘\/12 sin~! (1 - %xz)
— X — X

is strictly increasing, since f(1) =0. Now

@ = (=

1 —1¢
f(x) = 2g(t), where ¢t=1— 3a2 g(t) = =t I—-{t—t — /3 sin~! ¢,
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and where, by (15), ¢ satisfies the inequality
=1-3<t<1-%}=4%
On differentiating, we get

df(x) dg(?) dg(®) ~1-—t .
=TT T o T VAU

Now 3 <7 <10/3 and v/3>3/2, hence
w+VIA+H2Z2C3+PHU+H = >,

and therefore

dg(i d
B o, YW,
dt dx

as asserted. This concludes the proof of Lemma 1.

4. A second lemma. We now prove the following

LEMMA 2. The convex polygon S(P), defined in §2, is of area
(16) A(P) 2 V12,

with equality if and only if C(P) is touched by six circles C(Py), « - -, C(Ps),
whose centers form a regular hexagon of side 2 and center P.

From (3), (4), and Lemma 1, the inequality (16) follows at once. We see
moreover, that the equality sign can hold only if

ak=-\—-/—§ozg (k=1,2,---,m),
i.e., if each circle C(Py) in the set "
C(Py), C(Py), - -+, C(Pa)
is touched by both C(Py_1) and C(Pi,1), and itself touches C(P). Hence

_}3—}3—1=—P~P2="'=PPn=P1P2‘—’-P2P3="'=P,.P1=2.

Now the regular hexagon, and no other regular polygon, has the property that
its side is equal to the radius of the circumscribed circle; therefore » must be
equal to 6, and the circles C(P), C(Py), - * -, C(Ps) must be situated as asserted.

5. The theorem. We can now prove the following theorem.

Let I, be a convex polygon of angles not greater than %w, hence of at most six
sides. If A denotes the area of o, then at most A/~/12 circles of radius 1 can be
placed in Il such that no two of these circles overlap.

Proof (Fig. 4): Let Co1, Ce, - - -, Co be the circles placed in II,, and let

Ay, A, - - -, A, be the sides of II,. Denote further by II; the polygon symmetri-
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cal to II, in A, and by Cui, Che, * ¢+, Cu the circles symmetrical to Co1, Cos,
, Corin A,; these new circles lie in II;. No two of the m = (n+41)! circles

(17) C011 C02y R ,CO'l1 tet ycnly Cn2y t Tty Cnl

overlap. This is obvious, from the hypothesis, for any two circles in the same
polygon II;, and also for any two circles one of which lies in IIo. To prove the as-
sertion for two circles lying in two different polygons Iy, Iy, - - -, II,, it is
obviously sufficient to show that no two of these polygons, II; and I say (k#k),
overlap. This is evident if As, Ay are parallel, since then II,, II; lie on opposite
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sides of the strip determined by these lines. If As, A meet at a point, O say, we

consider that angle ¢ of vertex O formed by these two lines which contains II,.

Then ¢ <%, from the hypothesis for IIy, and so the images of ¢ in A; and Ag

are two non-overlapping angles of vertex O. Since one of these angles contains

II; and the other contains II;, it follows that II, and II; do not overlap.
Denote now by 2 the set of the centers

Pol,Pog,"',Pol,"’,Pnl,.Pnz,"',Pnl

of the circles (17), so that = has the properties stated in §1. In accordance with
the definition in §1, we form the convex regions

S(POI)’ B ,S(POI),' * e ,S(Pnl); v ’S(Pnl);

these m regions together fill out the plane, and no two of them overlap.
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We show next that all / polygons
(18) S(Pﬁl)y S(POZ)r Sty S(POl)

lie in II,. For consider, e.g. S(Pa), and take any side A; of II,. If Py, is the point
symmetrical to Pg in A, then every point Q of S(Py) is at least as near to Py
as to Py, hence lies on the same side of A; as Py. This is true for all indices
h=1,2, ..., n, and so Q lies in II,. We deduce then that the total area of the !l
polygons (18) is just equal to the area 4 of Il,.

By Lemma 2, each polygon S(Py) is at least of area 4/12. This implies that

4
WiZsd, 15—
h Vi2'

as asserted. Moreover, our proof shows that the equality
4

l = =
V12
holds, if and only if I is the sum set of a finite number of regular hexagons of side 2.
We finally remark that the Theorem is untrue for polygons with angles
greater than %w. For instance, the regular heptagon circumscribed to a circle
of radius 1 is of area less than v/12.

AN APPLICATION OF A THEOREM OF SYLVESTER
L. R. WILCOX, Illinois Institute of Technology

In this paper a little used theorem on determinants due to Sylvester is em-
ployed to prove a theorem in the geometry of curves which generalizes the well
known result that the tangent plane to a developable surface is the same at all
points of a fixed generator.*

1. The theorem of Sylvester. Let a matrix (a;;;4,7=0, - - - , m) be given, and
define

Qoo * Aok

Ap=1]+ + « « (h=0,---,m),A =4,
ano * Qhn
Qoo aor  Gos

pP = T (rs=h+1,---,m)),
ano * ¢ * Grh Qhe
Qrg* * * Qyp Qps

h)

B(h)-—slbn (h=0,--,m—1).

* E. P. Lane, Projective Differential Geometry of Curves and Surfaces, Chicago, 1932, pp.
37-38.



