
A THEOREM OF B. SEGRE

BY K. MAHLER

Recent results of B. Segre on lattice points in the star domain (see [2], [3] for
the definition and properties of star domains)

-a < xy < b (a > O,b > O)

contain as a limiting case the following theorem (see [5; Theorems 2, 3])"

TEOREM 1. Let K be the point set

-l_<xy <0.

Then every lattice of. determinant 1 has at least one point in K, but a lattice of larger
determinant need not have this property.

This theorem is of interest since K is not a star domain; it is moreover nearly
trivial that if H is any bounded subset of K, then lattices of arbitrarily small
determinant exist which contain no points of H.

In this note, I give a short proof of Theorem 1 based on Mordell’s method
(for a short account, see [4]), and discuss further the connection with continued
fractions.

1. Proof of Theorem 1. The parallelogram

II: [xTyl -< 1, x- Yl -< 2

is of area 4; except for the triangle

T: x >_ 0, y >_ 0, x+y_< 1

and the triangle -T symmetrical to T in the origin 0 (0, 0), II consists only
of points of K.

Let now h be any lattice of determinant 1. Then, by Minkowski’s theorem
on linear forms, at least one point Po (Xo, yo) 0 of h lies in II. The assertion
is proved if Po belongs to K; so let us exclude this case. Then we may assume,
without loss of generality, that Po lies in T.

Consider the straight line

L: xoy yox 1.

Since h is of determinant 1, this line contains an infinity of lattice points, the
distance between consecutive points being

-0 (x + yo)t.
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Denote by 2 that part of L which belongs to K; 2; consists of one line segment
when Po lies on the x-axis or y-axis, and otherwise of two segments, abutting the
axes of x and y, respectively.

If, firstly, Po lies on the y-axis, then Xo 0 and 0 < yo _< 1, and L is the
straight line xyo 1 0; L intersects K in the line segment

x -1/yo,O < y <_ yooflengthyo (x+y)1/2-- OPo.
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Hence either there is a point of A satisfying --1 < xy < 0 and this is an inner
point of K, or both points (-1/yo yo) and (-1/yo 0) are lattice points. In
the second case, h has the basis

Po (0, yo), PD (-1/yo, 0),

since the rectangle of vertices O, Po, Po - P, Pg lies in the region 1 _< xy <_ 0;
hence one single point of A, namely, Po - P, belongs to K, and an infinity of
points of A lie on the two axes, i.e., on the closure of K.

If, secondly, Po lies on the x-axis, then an analogous result is obtained in the
same way.

Let then, thirdly,

0 <Xo_ 1, 0 < yo_ 1, Xo-byo_ 1,

hence

0"< r-xY<(X-bY)2-2
Now L intersects the axes at the two points

Q1 (-1/yo, 0), Q. (0, 1/xo),

and it intersects the boundary xy -1 of K at the two points

( 1+ (1--4r)t 1 (1--4r)tRI= \ 2yo 2Xo ]

[ 1--(1 4r)’ 1-b (1R, \ 2yo 2xo ]

Both line segments QIR1 and Q.R. belong to 2, and they together form 2:. Since

R -Q= (.1-(1-4r)’ 1-(1-4r)’)2yo 2Xo

[ 1--(1- 4r)’ _1 --(1- 4r)’,Q, \ 2yo 2Xo ]

both line segments QIR and Q.R2 have the same length, namely

{(1 (1- 4r)’2(_1_ 1)t’2 ] \x - Yo
1 (1

27" (x -[- yo)’.

Here the right side is larger than O--Po (x, --[- yo) 1/2, because r > 0 and so

i (1 4r) 1 (1 4r-b4r)1/2- (1 4r)

Hence both line segments Q:R: and Q.R2 contain points of A which are inner
points of- K. This proves the first part of the theorem.
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If further d > 1, then the lattice of basis

(- 1, 0), (0, d)

and of determinant d contains no point belonging to K.
proof.

This completes the

2. The connection with continued fractions. Consider any lattice A without
points on the two axes, say of basis P0 (Xo yo) and P (x y), and of
determinant d(A) xoy yox A consists therefore of all points P (x, y),
where

x uxo 4- vxD, y uyo -i- vyD (u, v O, :F1, =F2, ...).

Then the indefinite quadratic form

Fo(u, v) xy (UXo 4- vxD)(uyo 4- vy[), Aou 4- 2Bouv "4-

say, is of determinant

B AoCo 1/4d(h).
We assume without loss of generality that Ao is positive and that Fo(u, v) is a
reduced form (see [1; Chapters 3, 4]), hence

_x_ > l, 0 < y- < 1.
Xo Yo

x 1 1
Xo

go 4- g 4- g. 4-

Let then

y 1 1 1

Yo g- 4- g- 4- g- 4-

be the regular continued fractions of the two positive numbers -xg/xo and
y/yo by our hypothesis, both numbers are irrational, and so the continued
fractions do not terminate.
As is shown in the theory of reduction of indefinite quadratic forms, all values

between --d(A) and d(A) assumed by Fo(u, v) belong to the set of numbers (see
[1; Chapters 3, 4])

g+ 4- 4-
1 1

(i 0, =F1, =F2,...).

d(A),(-- 1)’ where O,

Hence, if we denote by 0 the upper bound of for all positive and negative
odd indices, then no point of h is a point of the point set K considered in 1,
if and only if d(h) satisfies the inequality

d(A) > O.
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It is, however, evident that

0>1

for all indices i, hence 0 > 1; if, further, > 0 is arbitrarily small and if

g 1 for all odd indices i, g > 2/ for all even indices i,

then

< 1 -t- for all odd indices i, hence 0 < 1 -t- .
Hence every lattice of determinant 1 without points on the axes contains a
point of K (and even an infinity of such points); and if > 0, then there exist
lattices without points on the axes and of determinant less than 1 which
contain no points of K.
Both methods of this note can be extended so as to apply to the more general

sets-a

_
xy

_
b and O < a

_
xy

_
b.
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