LATTICE POINTS IN TWO-DIMENSIONAL STAR DOMATNS (III)

By Kurt Mahler.

[Received 14 May, 1942.-Read 21 May, 1942.]

If

$$
f(x, y)=a x^{2}+2 b x y+c y^{2}
$$

is a positive definite binary quadratic form of determinant

$$
a c-b^{2}=1,
$$

and E denotes the domain

$$
f(x, y) \leqslant 1,
$$

bounded by the ellipse $f(x, y)=1$, then by a classical result \dagger,

$$
\Delta(E)=\sqrt{\frac{3}{4}} .
$$

There exists a continuous infinity of critical lattices Λ. Every such lattice contains just six points $\pm P_{1}, \pm P_{2}, \pm P_{3}$ on the boundary of E. It is possible to choose the notation such that

$$
P_{1}+P_{2}+P_{3}=O .
$$

Conversely, six arbitrary boundary puints of this type generate a critical lattice, any two independent points among them forming a basis.

The present fourth chapter of this paper deals with the more complicated domain K obtained by combining two concentric ellipses each of area π. An algorithm is developed for determining $\Delta(K)$, which turns out to be a rather complicated function of the simultaneous invariant of the two ellipses.

A similar method can be applied to all domains obtained by combining two convex domains with centre at $O, e . g$. the star-shaped octagon investigated by Prof. Mordell.

[^0]
Chapter IV. The domain bounded by two ellipses.

25. The invariant J.

Let

$$
\begin{equation*}
f_{1}(x, y)=a_{1} x^{2}+2 b_{1} x y+c_{1} y^{2} \quad \text { and } \quad f_{2}(x, y)=a_{2} x^{2}+2 b_{2} x y+c_{2} y^{2} \tag{50}
\end{equation*}
$$ be two positive definite binary quadratic forms of determinants

$$
\begin{equation*}
a_{1} c_{1}-b_{1}^{2}=a_{2} c_{2}-b_{2}^{2}=1 . \tag{51}
\end{equation*}
$$

Further, let

$$
\begin{equation*}
J=a_{1} c_{2}-2 b_{1} b_{2}+c_{1} a_{2} \tag{52}
\end{equation*}
$$

be the simultaneous invariant of these two forms. If an affine transformation of determinant unity,

$$
\begin{equation*}
x=\alpha x^{\prime}+\beta y^{\prime}, \quad y=\gamma x^{\prime}+\delta y^{\prime}, \quad \text { where } \quad a \delta-\beta \gamma=1, \tag{53}
\end{equation*}
$$

changes f_{1} and f_{2} into the new forms

$$
f_{1}^{\prime}\left(x^{\prime}, y^{\prime}\right)=a_{1}^{\prime} x^{\prime 2}+2 b_{1}^{\prime} x^{\prime} y^{\prime}+c_{1}^{\prime} y^{\prime 2}
$$

and

$$
f_{2}^{\prime}\left(x^{\prime}, y^{\prime}\right)=a_{2}^{\prime} x^{\prime 2}+2 b_{2}^{\prime} x^{\prime} y^{\prime}+c_{2}^{\prime} y^{\prime 2}
$$

then by the invariantive property of the determinants and of J,

$$
a_{1}^{\prime} c_{1}^{\prime}-b_{1}^{\prime 2}=a_{2}^{\prime} c_{2}^{\prime}-b_{2}^{\prime 2}=1, \quad a_{1}^{\prime} c_{2}^{\prime}-2 b_{1}^{\prime} b_{2}^{\prime}+c_{1}^{\prime} a_{2}^{\prime}=J
$$

It is always possible to choose the transformation (53) so that f_{1}^{\prime} and f_{2}^{\prime} take the canonical forms

$$
\begin{equation*}
f_{1}^{\prime}\left(x^{\prime}, y^{\prime}\right)=x^{\prime 2}+y^{\prime 2} \quad \text { and } \quad f_{2}^{\prime}\left(x^{\prime}, y^{\prime}\right)=\lambda x^{\prime 2}+\frac{1}{\lambda} y^{\prime 2} \tag{54}
\end{equation*}
$$

where λ is a positive number. In this case

$$
\begin{equation*}
J=\lambda+\frac{\mathrm{l}}{\lambda} . \tag{55}
\end{equation*}
$$

I assume in this chapter that f_{1} and f_{2}, and so also $f_{1}{ }^{\prime}$ and $f_{2}{ }^{\prime}$, are not identical. Hence $\lambda \neq 1$, and therefore, from (55),

$$
\begin{equation*}
J>2 \tag{56}
\end{equation*}
$$

We may further suppose without loss of generality that $\lambda>1$.
26. The domain K.

Let now K be the domain of all points (x, y) satisfying at least one of the two inequalities

$$
f_{1}(x, y) \leqslant 1 \quad \text { and } \quad f_{2}(x, y) \leqslant 1
$$

Hence K is formed by combining two concentric ellipses each of area π. It is svident that K is a simple star domain; we can then consider the lower bound $\Delta(K)$.

The affine transformation (53) changes K into a domain K^{\prime} formed by the points $\left(x^{\prime}, y^{\prime}\right)$ satisfying at least one of the inequalities

$$
f_{1}^{\prime}\left(x^{\prime}, y^{\prime}\right) \leqslant 1 \quad \text { and } \quad f_{2}^{\prime}\left(x^{\prime}, y^{\prime}\right) \leqslant 1
$$

Hence K^{\prime} is of the same type as K.
We can assert that

$$
\begin{equation*}
\Delta(K)=\Delta\left(K^{\prime}\right) \tag{57}
\end{equation*}
$$

For (53) changes K-admissible lattices into K^{\prime}-admissible lattices, and critical lattices of K into critical lattices of K^{\prime}; and it leaves the determinant of two points and so also the determinant of a lattice invariant.

Choose the transformation (53) so that f_{1}, f_{2} change into the two forms (54). Then K^{\prime} becomes the set of all points (x^{\prime}, y^{\prime}) for which at least one of the inequalities

$$
x^{\prime 2}+y^{\prime 2} \leqslant 1 \quad \text { and } \quad \lambda x^{\prime 2}+\frac{1}{\lambda} y^{\prime 2} \leqslant 1
$$

holds: Here λ is determined uniquely as a function of J by

$$
\lambda=\frac{J+\sqrt{ }\left(J^{2}-4\right)}{2}
$$

Hence the lower bound $\Delta(K)=\Delta\left(K^{\prime}\right)$ becomes a function of J, say

$$
\begin{equation*}
\Delta(K)=D(J) . \tag{58}
\end{equation*}
$$

27. A property of the critical lattices.

By the last paragraph, we may assume from now on that

$$
f_{1}(x, y)=x^{2}+y^{2}, \quad f_{2}(x, y)=\lambda x^{2}+\frac{1}{\lambda} y^{2}
$$

The two ellipses $f_{1}=1$ and $f_{2}=1$ intersect at the four points

$$
Q_{1}:(\mu, \nu), \quad Q_{2}:(-\mu, \nu), \quad Q_{3}:(-\mu,-\nu), \quad Q_{4}:(\mu,-\nu),
$$

where

$$
\mu=\sqrt{\left.\left(\frac{1}{\lambda+1}\right), \quad \nu=\sqrt{\left(\frac{\lambda}{\lambda+1}\right.}\right) ~}
$$

Denote by C_{1} and C_{2} those arcs of $f_{1}=1$ and $f_{2}=1$, respectively, which together form the boundary $C=C_{1}+C_{2}$ of K. Hence, on describing C in a positive direction, the arc of C

> from Q_{4} to Q_{1} belongs to C_{1},
> from Q_{1} to Q_{2} belongs to C_{2}
> from Q_{2} to Q_{3} belongs to C_{1},
> from Q_{3} to Q_{4} belongs to C_{2}.

We use the convention of counting every one of the four points $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ twice, once in C_{1} and once in C_{2}.

The affine transformation of determinant unity,

$$
\begin{equation*}
x \rightarrow \lambda^{-\frac{1}{y}} y, \quad y \rightarrow \lambda^{\ddagger} x, \tag{59}
\end{equation*}
$$

evidently transforms K into itself, interchanges the parts C_{1} and C_{2} of C_{2} and permutes the points $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ cyclically, and by the last paragraph it changes critical lattices again into critical lattices. Hence to every critical lattice with just m points on C_{1} and n points on C_{2} there corresponds a second critical lattice with just n points on C_{1} and m points on C_{2}.

Theorem 23. A critical lattice Λ of K has at most six points on C_{1}. If it contains six points on C_{1}, then these are of the form $\pm P_{1}, \pm P_{2}, \pm P_{3}$, where $P_{1}+P_{2}+P_{3}=O$. Further,

$$
\begin{equation*}
\Delta(K)=d(\Lambda)=\sqrt{\frac{3}{4}}, \tag{60}
\end{equation*}
$$

and there are also six lattice points of the same type on $C_{2} \dagger$.
Proof. The lattice Λ is admissible with respect to the circle $f_{1} \leqslant 1$, and so, by the introduction, cannot contain more than six points on its boundary. If it has six points on C_{1}, then these are of the mentioned form, and the lattice is critical with respect to the circle; hence (60) is satisfied. Then Λ must also be critical with respect to the ellipse $f_{2} \leqslant 1$; for otherwise, since $d(\Lambda)=\sqrt{ } \frac{3}{4}$, at least one lattice point $P \neq O$ would be an inner point of the ellipse and so also an inner point of K. Hence there are also exactly six points of Λ on C_{2}.

Theorem 24. Let Λ be a critical lattice with less than six points on C_{1}. Then there are just four lattice points $\pm P_{1}, \pm P_{2}$ on C_{1}, and four lattice points $\pm P_{3}, \pm P_{4}$ on $C_{2} \dagger$.

[^1]Proof. First, let Λ be a singular lattice. Then, by Theorem 14, its only points on C are $Q_{1}, Q_{2}, Q_{3}, Q_{4}$; the assertion is therefore true. Secondly, let Λ be regular; then it has at least six points on C. We may assume, by the last theorem, that there are just four points of Λ on C_{1}; otherwise we apply the transformation (59) and thus obtain a regular lattice with this property.

Let, then, the four lattice points on C_{1} be $\pm P_{1}, \pm P_{2}$, and assume that there are only two symmetrical lattice points $\pm P_{3}$ on C_{2}. Then at most one of the two pairs of symmetrical points Q_{1}, Q_{3} and Q_{2}, Q_{4} belong to Λ. Hence there exists a sufficiently small angle a such that the rotation

$$
x \rightarrow x \cos \alpha-y \sin \alpha, \quad y \rightarrow x \sin \alpha+y \cos \alpha
$$

changes Λ into a new lattice Λ^{*} with only four points $\pm P_{1}^{*}, \pm P_{2}^{*}$ on C_{1} and containing no further points $P \neq 0$ of K. This lattice is therefore K-admissible, but not critical. Hence there exist lattices of smaller determinants. But this is impossible, since obviously $d\left(\Lambda^{*}\right)=d(\Lambda)$.

By Theorem 11, any two points of Λ on C_{1}, or any two such points on C_{2}, form a basis. Hence, if for brevity we write

$$
\begin{equation*}
Y=D(J), \quad \text { then } \quad \sqrt{ } \frac{3}{4} \leqslant Y \leqslant 1 \tag{61}
\end{equation*}
$$

For K contains the circle $f_{1}=1$; further, $|(P, Q)| \leqslant 1$ for any two points P and Q on C_{1}, or on C_{2}.

28. A sufficient condition for admissible lattices.

'The construction of the critical lattices of K makes use of
Theorem 25. Suppose that the lattice Λ of determinant

$$
d(\Lambda) \geqslant \sqrt{ } \frac{3}{4}
$$

has a basis consisting of two points P_{1}, P_{2} on $f_{1}=1$, and a second basis consisting of two points P_{3}, P_{4} on $f_{2}=1$. Then Λ is K-admissible.

Proof. It suffices to show that no lattice point $P \neq O$ is an inner point of $f_{2}=1$; the analogous result for $f_{1} \leqslant 1$ is proved similarly.

Every point $P:(x, y)$ can be written as

$$
\begin{equation*}
P=u P_{3}+v P_{4}, \quad \text { where } \quad u=\frac{\left(P, P_{4}\right)}{\left(P_{3}, P_{4}\right)}, \quad v=-\frac{\left(P, P_{3}\right)}{\left(P_{3}, P_{4}\right)} \tag{62}
\end{equation*}
$$

The new coordinates u, v are integers if, and only if, P is a lattice point. The result of replacing x, y by u, v is that f_{2} takes the form

$$
\begin{equation*}
f_{2}(x, y)=f_{2}^{*}(u, v)=u^{*}+2 s u v+v^{2} \tag{63}
\end{equation*}
$$

since the two points $u=1, v=0$ and $u=0, v=1$ lie on $f_{2}{ }^{*}=1 . \quad$ By the invariance property of the determinant of a quadratic form,

$$
\begin{equation*}
1-s^{2}=\left(P_{3}, P_{4}\right)^{2}=d(\Lambda)^{2} \geqslant \frac{3}{4} \tag{64}
\end{equation*}
$$

so that

$$
\begin{equation*}
-\frac{1}{2} \leqslant s \leqslant \frac{1}{2} \tag{65}
\end{equation*}
$$

Hence $f_{2}{ }^{*}$ is a reduced form \dagger. Its minimum for integral u, v not both zero is then 1 , as asserted.

Henceforth let $S(J)$ be the set of lattices Λ with the following properties:
(a) Λ has a busis P_{1}, P_{2} on $f_{1}=1$, and a basis P_{3}, P_{4} on $f_{2}=1$.
(b) The determinant $d(\Lambda) \geqslant \sqrt{ } \frac{3}{4}$.

We shall prove later that $S(J)$ has only a finite number of elements, say the lattices

$$
\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{n}
$$

By Theorem 25, these lattices are K-admissible; by Theorems 23 and 24, all critical lattices Λ belong to $S(J)$. Hence

$$
\begin{equation*}
D(J)=\min _{v=1,2, \ldots, n} d\left(\Lambda_{\nu}\right) \tag{66}
\end{equation*}
$$

and so the critical lattices of K are just those elements Λ_{ν} of $S(J)$ for which $d\left(\Lambda_{\nu}\right)$ assumes the minimum value $D(J)$.
29. Construction of the set $S(J)$.

Let Λ be a lattice in $S(J)$. We may assume, without loss of generality, that the two bases

$$
P_{1}:\left(x_{1}, y_{1}\right), P_{2}:\left(x_{2}, y_{2}\right) \text { and } P_{3}:\left(x_{3}, y_{3}\right), P_{4}:\left(x_{4}, y_{4}\right)
$$

of Λ satisfy the inequalities

$$
\begin{equation*}
\left(P_{1}, P_{2}\right)>0 \quad \text { and } \quad\left(P_{3}, P_{4}\right)>0 ; \tag{67}
\end{equation*}
$$

hence

$$
\begin{equation*}
d(\Lambda)=\left(P_{1}, P_{2}\right)=\left(P_{3}, P_{4}\right)=x_{1} y_{2}-x_{2} y_{1}=x_{3} y_{4}-x_{4} y_{3} \tag{68}
\end{equation*}
$$

The inequalities (67) remain satisfied if the pair of points P_{1}, P_{2} is replaced by one of the four pairs

$$
P_{1}, P_{2}, \quad \text { or } \quad P_{2},-P_{1}, \quad \text { or } \quad-P_{1},-P_{2}, \quad \text { or } \quad-P_{2}, P_{1} ;
$$

and if the pair of points P_{3}, P_{4} is replaced by one of the four pairs

$$
P_{3}, P_{4}, \quad \text { or } \quad P_{4},-P_{3}, \quad \text { or }-P_{3},-P_{4}, \quad \text { or }-P_{4}, P_{3}
$$

This gives a set Ω of $4 \times 4=16$ pairs of bases of Λ.
By the basis property and by (68), there are four integers $a_{1}, \beta_{1}, a_{2}, \beta_{2}$ such that

$$
\begin{equation*}
P_{3}=a_{1} P_{1}+\beta_{1} P_{2}, \quad P_{4}=a_{2} P_{1}+\beta_{2} P_{2}, \quad a_{1} \beta_{2}-a_{2} \beta_{1}=+1 \tag{69}
\end{equation*}
$$

When the pair of bases P_{1}, P_{2} and P_{3}, P_{4} is replaced by one of the other pairs in Ω, then $a_{1}, \beta_{1}, a_{2}, \beta_{2}$ undergo certain permutations and shanges of signs, for which I refer to the following table.

The 16 elements of Ω.

P_{1}	P_{1}	P_{3}	P_{4}	a_{1}	β_{1}	a_{2}	β_{2}	\boldsymbol{X}	\boldsymbol{Y}	u	v	8	1
P_{1}	P_{8}	P_{4}	$-P_{8}$	a_{1}	β_{1}	$-a_{1}$	$-\beta_{1}$	\boldsymbol{X}	\boldsymbol{Y}	v	-u	-8	2
P_{1}	P_{8}	$-P_{3}$	$-P_{4}$	$-a_{1}$	$-\beta_{1}$	- ${ }_{2}$	$-\beta_{8}$	X	\boldsymbol{Y}	-u	$-v$	8	3
P_{1}	P_{8}	$-P_{4}$	P_{3}	$-a_{1}$	$-\beta_{2}$	a_{1}	β_{1}	\boldsymbol{X}	\boldsymbol{Y}	$-v$	u	-8	4
P_{2}	$-P_{1}$	P_{3}	P_{4}	β_{1}	$-a_{1}$	\boldsymbol{B}_{2}	$-a_{2}$	$-X$	\boldsymbol{Y}	u	v	8	5
P_{1}	$-P_{1}$	P_{4}	$-P_{8}$	β_{2}	- a_{2}	$-\beta_{1}$	a_{1}	$-X$	\boldsymbol{Y}	v	-u	-8	6
P_{1}	$-P_{1}$	$-P_{8}$	$-P_{4}$	$-\beta_{1}$	a_{1}	$-\beta_{2}$	a_{1}	$-X$	\boldsymbol{Y}	-u	$-v$	8	7
P_{1}	$-P_{1}$	$-P_{4}$	P_{3}	$-B_{2}$	α_{3}	$\boldsymbol{\beta}_{1}$	$-a_{1}$	$-X$	\boldsymbol{F}	-v	u	-8	8
$-P_{1}$	$-P_{2}$	P_{3}	P_{4}	$-a_{1}$	$-\beta_{1}$	$-a_{2}$	$-\beta_{2}$	X	Y	u	v	8	9
$-P_{1}$	$-P_{2}$	P_{4}	$-P_{3}$	$-a_{2}$	$-\beta_{2}$	a_{1}	β_{1}	X	\boldsymbol{Y}	$\cdot v$	$-u$	-8	10
$-P_{1}$	$-P_{2}$	$-P_{3}$	$-P_{4}$	α_{1}	β_{1}	${ }^{*}$	β_{2}	\boldsymbol{X}	\boldsymbol{Y}	-u	-v	s	11
$-P_{1}$	$-P_{2}$	$-P_{4}$	P_{3}	a_{2}	β_{2}	$-a_{1}$	$-\beta_{1}$	\boldsymbol{X}	\boldsymbol{Y}	-v	u	-8	12
$-P_{2}$	P_{1}	P_{3}	P_{4}	$-\beta_{1}$	a_{1}	$-\beta_{2}$	a_{2}	$-X$	\boldsymbol{Y}	u	v	8	13
$-P_{1}$	P_{1}	P_{4}	$-P_{3}$	$-\beta_{2}$	a_{1}	β_{1}	$-a_{1}$	$-X$	\boldsymbol{Y}	v	-u	-8	14
$-P_{2}$	P_{1}	$-P_{3}$	$-P_{4}$	β_{1}	$-a_{1}$	β_{2}	$-a_{2}$	$-X$	Y	-u	$-v$	8	15
$-P_{2}$	$P_{1}{ }_{1}$	$-P_{4}$	P_{s}	$\boldsymbol{\beta}_{2}$	$-a_{8}$	$-\beta_{1}$	a_{1}	$-X$	\boldsymbol{Y}	$-v$	u	-8	16
1	2	3	4	5	6	7	8	9	10	11	12	13	

Let a new system of rectangular coordinates U, V be defined by

$$
\begin{equation*}
x=x_{1} U-y_{1} V, \quad y=y_{1} U+x_{1} V \tag{70}
\end{equation*}
$$

or conversely, since $x_{1}{ }^{2}+y_{1}{ }^{2}=1$,

$$
\begin{equation*}
U=x_{1} x+y_{1} y, \quad V=-y_{1} x+x_{1} y \tag{71}
\end{equation*}
$$

In this system, P_{1} and P_{2} have the coordinates

$$
U_{1}=1, V_{1}=0 \quad \text { and } \quad U_{2}=X=x_{1} x_{2}+y_{1} y_{2}, V_{2}=Y=x_{1} y_{2}-x_{2} y_{1}
$$

here

$$
\begin{equation*}
X^{2}+Y^{2}=1, \quad Y=d(\Lambda)>0 \tag{72}
\end{equation*}
$$

Further, by (69), the coordinates of P_{3} and P_{4} are given by

$$
U_{3}=a_{1}+\beta_{1} X, \quad V_{3}=\beta_{1} Y \quad \text { and } \quad U_{4}=a_{2}+\beta_{2} X, \quad V_{4}=\beta_{2} Y
$$

Finally, if, as in $\S 28$, we introduce u, v by (62), then

$$
\begin{aligned}
& U=\left(a_{1}+\beta_{1} X\right) u+\left(a_{2}+\beta_{2} X\right) v \\
& V=\quad \beta_{1} X u+\quad \beta_{2} Y v
\end{aligned}
$$

and so, on solving for u and v, we have

$$
\left\{\begin{align*}
Y u & =+\beta_{2} Y U-\left(a_{2}+\beta_{2} X\right) V \tag{73}\\
Y v & =-\beta_{1} Y U+\left(a_{1}+\beta_{1} X\right) V
\end{align*}\right.
$$

I refer to the last table for the changes of these numbers $a_{1}, \beta_{1}, a_{2}, \beta_{2}$, X, Y, u, v, when the pair of bases P_{1}, P_{2} and P_{3}, P_{4} is replaced by another pair in Ω.

By $\S 28, f_{2}$ takes the form (63) in u and v. By (64) and (72),

$$
\begin{equation*}
s=\epsilon X, \quad \text { where } \quad \epsilon= \pm 1 \tag{74}
\end{equation*}
$$

An inspection of the table shows that it is always possible to choose the pair of bases P_{1}, P_{2} and P_{3}, P_{4} in Ω so that the following inequalities are satisfied:

$$
\begin{equation*}
X \geqslant 0, \quad s \geqslant 0, \quad a_{1} \geqslant 0 \tag{75}
\end{equation*}
$$

Therefore, in particular,

$$
\begin{equation*}
s=X \tag{76}
\end{equation*}
$$

Replace u and v by U and V. Then f_{2} changes into

$$
\begin{equation*}
f_{2}(x, y)=F_{2}(U, V)=A U^{2}+2 B U V+C V^{2} \tag{77}
\end{equation*}
$$

where, by (63), (73), and (76),

$$
\left\{\begin{align*}
A & =\beta_{1}^{2}-2 \beta_{1} \beta_{2} X+\beta_{2}^{2} \tag{78}\\
Y B & =-\beta_{1}\left(a_{1}+\beta_{1} X\right)+X\left\{\beta_{2}\left(a_{1}+\beta_{1} X\right)+\beta_{1}\left(a_{2}+\beta_{2} X\right)\right\}-\beta_{2}\left(a_{2}+\beta_{2} X\right) \\
Y^{2} C & =\left(a_{1}+\beta_{1} X\right)^{2}-2\left(a_{1}+\beta_{1} X\right)\left(a_{2}+\beta_{2} X\right) X+\left(a_{2}+\beta_{2} X\right)^{2}
\end{align*}\right.
$$

Further, since the change from x, y to U, V is an orthogonal transformation,

$$
f_{1}(x ; y)=F_{1}(U, V)=U^{2}+V^{2}
$$

Hence the simultaneous invariant

$$
J=A+C
$$

so that, by (72) and (78),

$$
\begin{align*}
&\left(a_{1}^{2}+a_{2}^{2}+\beta_{1}^{2}+\beta_{2}^{2}-J\right)-2\left(a_{1}-\beta_{2}\right)\left(a_{2}-\beta_{1}\right) X \tag{79}\\
&-\left\{2\left(a_{1} \beta_{2}+a_{2} \beta_{1}\right)-J\right\} X^{2}=0
\end{align*}
$$

For given J, this is a quadratic equation for X. It does not reduce to an identity, for then

$$
{a_{1}}^{2}+a_{2}{ }^{2}+\beta_{1}^{2}+\beta_{2}^{2}=J, \quad 2\left(a_{1} \beta_{2}+a_{2} \beta_{1}\right)=J ;
$$

hence

$$
\left(a_{1}-\beta_{2}\right)^{2}+\left(a_{2}-\beta_{1}\right)^{2}=0
$$

and since $a_{1} \geqslant 0, a_{1} \beta_{2}-a_{2} \beta_{1}=1$,

$$
a_{1}=\beta_{2}=1, \quad a_{2}=\beta_{1}=0, \quad J=2
$$

This value of J was, however, excluded by $\S 25$.
By the assumption (b) in §28, and by (72) and (75),

$$
\begin{equation*}
0 \leqslant X \leqslant \frac{1}{2} \tag{80}
\end{equation*}
$$

Suppose now, conversely, that (79) has a solution X satisfying these inequalities. Then the coefficients A, B, C of F are given by (78), with

$$
\begin{equation*}
Y=\left|\sqrt{ }\left(1-X^{2}\right)\right| . \tag{81}
\end{equation*}
$$

We further obtain the (U, V)-coordinates of $P_{1}, P_{2}, P_{3}, P_{4}$ from their expressions as functions of $a_{1}, \beta_{1}, a_{2}, \beta_{2}, X, Y$. There remains the reduction of $F_{1}(U, V)$ and $F_{2}(U, V)$ to the normal form (54) by means of an orthogonal transformation (71); this problem is dealt with in the theory of conics. After this reduction, the (x, y)-coordinates of $P_{1}, P_{2}, P_{3}, P_{4}$ and so the lattice Λ are known.

Therefore, in order to construct all elements of $S(J)$, it suffices to solve (79) with respect to X. Here the coefficients $a_{1}, \beta_{1}, a_{2}, \beta_{2}$ must take all integral values with

$$
\begin{equation*}
a_{1} \geqslant 0, \quad a_{1} \beta_{2}-a_{2} \beta_{1}=1 \tag{82}
\end{equation*}
$$

for which both (79) and (80) can be satisfied.

30. The finiteness of $S(J)$.

Theorem 26. The set $S(J)$ has only a finite number of elements.
Proof. It suffices to show that the conditions (79) and (80) are solvable for at most a finite number of sets of integers $a_{1}, \beta_{1}, a_{2}, \beta_{2}$.

The equation (79) can be written as

$$
\begin{equation*}
\Phi\left(X ; a_{1}, \beta_{1}, a_{2}, \beta_{2}\right)=J \tag{83}
\end{equation*}
$$

where

$$
\begin{aligned}
\Phi\left(X ; a_{1},\right. & \beta_{1}, \\
& \left.a_{2}, \beta_{2}\right) \\
& =\frac{\left(a_{1}^{2}+\beta_{1}^{2}+a_{2}^{2}+\beta_{2}^{2}\right)-2\left(a_{1}-\beta_{2}\right)\left(a_{2}-\beta_{1}\right) X-2\left(a_{1} \beta_{2}+a_{2} \beta_{1}\right) X^{2}}{1-X^{2}}
\end{aligned}
$$

This expression Φ is a positive definite quadratic form in $a_{1}, \beta_{1}, a_{2}, \beta_{2}$; for it can be written as

$$
\begin{aligned}
& \Phi\left(X ; a_{1}, \beta_{1}, a_{2}, \beta_{2}\right) \\
&=\frac{1}{1-X^{2}}\left(a_{1}-X^{2} \beta_{2}-X a_{2}+X \beta_{1}\right)^{2}+\left(1+X^{2}\right)\left(\beta_{2}+\frac{X}{1+X^{2}} a_{2}-\frac{X}{1+X^{2}} \beta_{1}\right)^{2} \\
&+\frac{1}{1+X^{2}}\left(a_{2}+X^{2} \beta_{1}\right)^{2}+\left(1-X^{2}\right) \beta_{1}{ }^{2}
\end{aligned}
$$

From this identity, by (80),

$$
\Phi\left(X ; a_{1}, \beta_{1}, a_{2}, \beta_{2}\right) \geqslant\left(1-X^{2}\right) \beta_{1}{ }^{2} \geqslant \frac{3}{4} \beta_{1}{ }^{2} .
$$

Further, from the definition of Φ,

$$
\begin{aligned}
& \Phi\left(X ; a_{1}, \beta_{1}, a_{2}, \beta_{2}\right)=\Phi\left(X ; \beta_{1}, a_{1}, \beta_{2}, a_{2}\right) \\
= & \Phi\left(X ; a_{2}, \beta_{2}, a_{1}, \beta_{1}\right)=\Phi\left(X ; \beta_{2}, a_{2}, \beta_{1}, a_{1}\right) .
\end{aligned}
$$

Hence β_{1} may be replaced by $a_{1}, \beta_{1}, a_{2}, \beta_{2}$ in the last inequality, and so, by (83),

$$
\begin{equation*}
\max \left(a_{1}{ }^{2}, \beta_{1}{ }^{2}, a_{2}{ }^{2}, \beta_{2}{ }^{2}\right) \leqslant \frac{4 J}{3}, \tag{84}
\end{equation*}
$$

which proves the assertion.
Let then

$$
\Lambda
$$

$$
(\nu=1,2, \ldots, n)
$$

be the elements of $S(J)$; let

$$
a_{1}^{(\nu)}, \beta_{1}^{(\nu)}, a_{2}^{(\nu)}, \beta_{2}^{(\nu)} \quad(\nu=1,2, \ldots, n)
$$

be the sets of four integers; and let

$$
\Phi_{\nu}(X)=\Phi\left(X ; a_{1}^{(\nu)}, \beta_{1}^{(\nu)}, a_{2}^{(\nu)}, \beta_{2}^{(\nu)}\right)(\nu=1,2, \ldots, n)
$$

be the functions leelonging to these lattices. The following table contains all functions Φ_{ν} which represent at least one value of J in $2 \leqslant J \leqslant 25$ for an argument X in $0 \leqslant X \leqslant \frac{1}{2}$.

Table of all functions Φ which represent J for $J \leqslant 25$.

$\Phi\left(\frac{1}{2}\right)$	$\left(1-X^{2}\right) \Phi\left(X ; a_{1}, \beta_{1}, a_{2}, \beta_{2}\right)$	a_{1}	β_{1}	a_{2}	β_{2}	a_{1}	β_{1}	a_{2}	β_{2}	a_{1}	β_{1}	a_{2}	$\boldsymbol{\beta}_{2}$	a_{1}	β_{1}	a_{2}	β_{2}
2	$2-2 X^{2} \quad \dagger$	1	0	0	1												
	$3-4 X+2 X^{2}$	0	1	-1	1	0	-1	1	-1	1	-1	1	0				
18.	$2+2 X^{2} \quad \ddagger$	0	1	-1	0	0	-1	1	0								
	$3-2 X^{2}$	1	1	0	1	1	0	1	1	1	-1	0	1	1	0	-1	1
	$6-8 X+2 X^{2}$	0	1	-1	2	0	-1	1	-2	2	-1	1	0				
	$7-12 X+6{ }^{2}$	1	-2	1	-1	1	-1	2	-1								
${ }_{3}^{22}$	$3+4 X+2 X^{2}$	0	1	-1	-1	0	-1	1	1	1	1	-1	0				
	$6-2 X^{2}$	1	2	0	1	1	-2	0	1	1	0	2	1	1	0	-2	1
	$7-6{ }^{2}$	1	1	1	2	1	-1	-1	2	2	1	1	1	2	-1	-1	1
	$11-12 X+2 X^{2}$	0	1	-1	3	0	-1	1	-3	3	-1	1	0				
	$15-24 X+10 X^{2}$	1	-3	1	-2	1	-1	3	-2	2	-3	1	-1	2	-1	3	-1
	$18-32 X+14 X^{2}$	1	-2	2	-3	3	-2	2	-1								
14	$6+8 X+2 X^{2}$	0	1	-1	-2	0	-1	1	2	2	1	-1	0				
	$11-2{ }^{2}$	1	3	0	1	1	-3	0	1	1	0	3	1	1	0	-3	1
	15-4X-10 ${ }^{2}$	1	2	1	3	1	-1	-2	2	3	1	2	1	3	--2	-1	1
	$18-16 X+2 X^{2}$	0	1	-1	4	0	-1	1	4	4	-1	1	0				
	$27-40 X+14 X^{2}$	1	-4	1	-3	1	-1	4	-3	3	-4	1	-1	3	-1	4	-1
	$38-72 X+34 X^{2}$	2	-3	3	-4	4	-3	3	-2								
58.	$7+12 X+6 X^{2}$	1	2	-1	-1	1	1	-2	-1								
	$15+4 X-10 X^{2}$	1	-2	-1	3	1	1	2	3	3	2	1	1	3	-1	-2	1
	$18-14 X^{2}$	2	3	1	2	2	-3	-1	2	2	1	3	2	2	-1	-3	2
	$34-48 X+18 X^{2}$	2	-5	1	-2	2	-1	5	-2								
	$39-60 X+22 X^{2}$	1	-3	2	-5	1	-2	3	-5	5	-3	2	-1	5	-2	3	-1
	$47-84 X+38 X^{2}$	3	-5	2	-3	3	-2	5	-3								
$7{ }^{3}$	$11+12 X+2 X^{2}$	0	1	-1	-3	0	-1	1	3	3	1	-1	0				
	$18-2 X^{2}$	1	4	0	1	1	-4	0	1	1	0	4	1	1	0	-4	1
	$27-20 X+2 X^{2}$	0	1	-1	5	0	-1	1	-5	5	-1	1	0				
	$27-12 X-14 X^{2}$	1	3	1	4	1	-1	-3	4	4	-3	-1	1	4	1	3	1
	$43-60 X+18 X^{2}$	1	-5	1	-4	1	-1	5	-4	4	-5	1	-1	4	-1	5	-1
	$66-128 X+62 X^{2}$	3	-4	4	-5	5	-4	4	-3								

Excluded case.
Singular lattices.

As this table shows, there are in general two, three, or four systems of integers $a_{1}^{(\nu)}, \beta_{1}^{(\nu)}, a_{2}^{(\nu)}, \beta_{2}^{(\nu)}$ belonging to the same function Φ_{ν} and so also an equal number of lattices $\Lambda_{\nu} \dagger$. It is easily seen that if there are different critical lattices belonging to the same function Φ_{ν}, then these are transformed into one another by the group G of order 4 generated by the following two affine transformations:

The symmetry in the y-axis,

$$
\text { A: } \quad x \rightarrow-x, \quad y \rightarrow y .
$$

The interchange of $f_{1}=1$ and $f_{2}=1$,
B :

$$
x \rightarrow \lambda^{-\frac{1}{2}} y, \quad y \rightarrow \lambda^{\ddagger} x .
$$

For A replaces the integers $\alpha_{1}, \beta_{1}, a_{2}, \beta_{2}$ by

$$
\epsilon \beta_{2}, \epsilon \alpha_{2}, \epsilon \beta_{1}, \epsilon a_{1},
$$

where $\epsilon= \pm 1$ is such that $\epsilon \beta_{2} \geqslant 0$, and B replaces them by

$$
a_{1},-a_{2},-\beta_{1}, \beta_{2}
$$

From now on, two critical lattices are considered as equivalent if they are related by an element of this group G; equivalent lattices belong to the same function Φ_{ν}.

31. The value of $D(J)$ for $2 \leqslant J \leqslant 25$.

By formula (66) in §28,

$$
D(J)=\min _{v=1,2, \ldots, n} d\left(\Lambda_{v}\right) .
$$

Hence, if

$$
Y=D(J), \quad X=\left|\sqrt{ }\left(1-Y^{2}\right)\right|, \quad \text { and } \quad Y_{\nu}=d\left(\Lambda_{\nu}\right), X_{\nu}=\mid \sqrt{ }\left(1-Y_{\nu}{ }^{2} \mid\right.
$$

then

$$
\begin{gather*}
\Phi_{\nu}\left(X_{\nu}\right)=J, \quad 0 \leqslant X_{\nu} \leqslant \frac{1}{2} \tag{85}\\
X=\max _{\nu=1,2, \ldots, n} X_{\nu} . \tag{86}
\end{gather*}
$$

\dagger Two systems of integers

$$
0,1,-1, \beta_{2}^{(\nu)} \text { and } 0,-1,1,-\beta_{2}^{(\nu)}
$$

are interchanged by elements of $\Omega(\S 29)$ and generate the same lattice.

By a study of the last table I find that for every J in $2 \leqslant J \leqslant 25$ and for every Φ_{ν} there is at most one solution X_{ν} of (85). Further, most of these solutions X_{ν} can be ignored for the following reasons.

The rows of the table have been arranged in sets of functions

$$
\left(1-X^{2}\right) \Phi_{\nu}(X)
$$

so that $\Phi_{\nu}\left(\frac{1}{2}\right)$ is the same in each set. It was also found possible to arrange the rows according to increasing values of these functions for variable values of X; e.g., in the second set,

$$
\frac{2+2 X^{2}}{1-\bar{X}^{2}} \leqslant \frac{3-2 X^{2}}{1-X^{2}} \leqslant \frac{6-8 X+2 X^{2}}{1-X^{2}} \leqslant \frac{7-12 X+8 X^{2}}{1-X^{2}} \text { for } 0 \leqslant X \leqslant \frac{1}{2}
$$

Hence, for a given value of J in $2 \leqslant J \leqslant 25$, the maximum $X=X_{\nu}$ belongs to one of those 11 equations

$$
\Phi_{\nu}\left(X_{v}\right)=J
$$

in which the function Φ_{ν} is either at the beginning or at the end of one of the 6 sets of rows of the table. There is no difficulty in deciding which is the largest of these solutions X_{ν}. The result depends on the value of J, and is given in the following table. This table further contains the minimum determinant

$$
D(J)=\Delta(K)
$$

and the corresponding critical lattice \dagger.
In the table, the numbers σ_{k} are defined thus:

$$
\sigma_{0}=2, \quad \sigma_{1}=\frac{1}{3}, \quad \sigma_{2}=\frac{22}{3}, \quad \sigma_{3}=14, \quad \sigma_{4}=\frac{58}{3}, \quad \sigma_{5}=\frac{70}{3} ;
$$

and J_{n} is defined thus

$$
\begin{gathered}
J_{1}=\frac{34}{15}, \quad J_{2}=\frac{3+14 \sqrt{ } 3}{6}, \quad J_{3}=10, \quad J_{4}=\frac{178+576 \sqrt{ } 14}{143} \\
J_{5}=\frac{63+88 \sqrt{ } 7}{14}
\end{gathered}
$$

[^2]$D(J)$ and critical lattices for $2 \leqslant J \leqslant 25$.

No.	Interval.	$\left(1-X^{2}\right) Y=$	$X=$	$D(J)=Y=$	Critical lattice.
1	$\sigma_{0} \leqslant J \leqslant J_{1}$	$3-4 X+2 X^{2}$	$\frac{2-\left(J^{2}-J-2\right)}{J+2}$	$\frac{\left\{5 J+2+4\left(J^{2}-J-2\right)^{i}\right\}^{i}}{J+2}$	$\begin{aligned} & P_{3}=r \\ & P_{4}=-P_{1}+P_{2} \end{aligned}$
2	$J_{1} \leqslant J \leqslant \sigma_{1}$	$2+2 \mathrm{X}^{2}$	$\left(\frac{J-2}{J+2}\right)^{i}$	$2(J+2)^{-3}$	$\begin{array}{ll} P_{3}= & P_{2} \dagger \\ P_{4}=-P_{1} & \end{array}$
3	$\sigma_{1} \leqslant J \leqslant J_{2}$	$7-12 X+6 X^{2}$	$\frac{6-\left(J^{2}-J-6\right)^{4}}{J+6}$	$\frac{\left\{13 J+6+12\left(J^{2}-J-6\right)^{4}\right\}^{4}}{J+6}$	$\begin{aligned} & P_{3}=P_{1}-2 P_{2} \\ & P_{4}=P_{1}-P_{2} \end{aligned}$
4	$J_{2} \leqslant J \leqslant \sigma_{2}$	$3+4 X+2 \mathrm{X}^{2}$	$\frac{-2+\left(J^{2}-J-2\right)^{4}}{J+2}$	$\frac{\left\{5 J+2+4\left(J^{2}-J-2\right)^{2}\right\}^{2}}{J+2} .$	$\begin{aligned} & P_{\mathbf{3}}=\quad P_{\mathbf{2}} \\ & P_{4}=-P_{1}-P_{2} \end{aligned}$
5	$\sigma_{2} \leqslant J \leqslant J_{3}$	$18-32 X+14 X^{2}$	$-\frac{J-18}{J+1 t}$	$\begin{gathered} 8(J-2) t \\ J+14 \end{gathered}$	$\begin{aligned} & P_{2}=P_{1}-2 P_{2} \\ & P_{4}=2 P_{1}-3 P_{2} \end{aligned}$
6	$J_{3} \leqslant J \leqslant \sigma_{3}$	$6+8 X+2 \mathrm{X}^{2}$	$\begin{aligned} & J-6 \\ & J+2 \end{aligned}$	$\frac{4(J-2)^{*}}{J+2}$	$\begin{array}{lr} P_{3}= & P_{2} \\ P_{4}= & =P_{1}-\partial P_{2} \end{array}$
7	$\sigma_{3} \leqslant J \leqslant J_{4}$	$38-72 \mathrm{x}+34 \mathrm{x}^{2}$	$-\begin{gathered} J-38 \\ J+34 \\ \hline \end{gathered}$	$\frac{12(J-2)^{\frac{1}{2}}}{J+34}$	$\begin{aligned} & P_{3}=2 P_{1}-3 P_{2} \\ & P_{4}=3 P_{1}-4 P_{2} \end{aligned}$
8	$J_{4} \leqslant J \leqslant \sigma_{4}$	$7+12 \mathrm{X}+6 \mathrm{X}^{2}$	$\frac{-6+\left(J^{2}-J-(6)^{3}\right.}{J+6}$	$\frac{\left\{13 J+6+12\left(J^{2}-J-6\right)\right\}}{J+6}$	$\begin{aligned} & P_{3}=P_{1}+2 P_{2} \\ & P_{4}=-P_{1}-P_{2} \end{aligned}$
9	$\sigma_{4} \leqslant J \leqslant J_{5}$	$47-84 \mathrm{~N}^{2}+38 \mathrm{I}^{2}$	$\frac{4 \cdot-\left(J^{2}-9 J-2 \cdot 2\right)^{1}}{J \div 38}$	$\frac{\left\{85 J-298+84\left(J^{2}-9 J-29\right)^{123}\right\}^{2}}{J+38}$	$\begin{aligned} & P_{3}=3 P_{1}-5 P_{2} \\ & P_{4}=\vartheta P_{1}-3 P_{2} \end{aligned}$
10	$J_{5} \leqslant J<\sigma_{5}$	$11+12 \mathrm{x}+\mathrm{X}^{2}$	$\frac{-6+\left(J^{2}-9 J+1 t\right)^{2}}{J+2}$	$\left\{13 J-\frac{46+\frac{\left.12\left(J^{2}-9 J+14\right)\right\}^{2}}{J+2}}{\text { 2 }}\right.$	$\begin{array}{lr} P_{3}= & P_{2} \\ P_{4}= & =-P_{1}-3 P_{2} \end{array}$
11	$\sigma_{5} \leqslant J \leqslant 25$	$66-128 x+6 x^{2}$	$-\frac{J-66}{J+62}$	$\frac{16(J-2)^{i}}{J+62}$	$\begin{aligned} & P_{3}=3 P_{1}-4 P_{2 \ddagger} \ddagger \\ & P_{4}=4 P_{1}-5 P_{2} \end{aligned}$

\dagger Singular lattice.
\ddagger These values of X and Y^{\prime} remain true for $\sigma_{5} \leqslant J \leqslant{ }_{7}^{206}$.

In the intervals No: 1-11 of the table, the functions $X=X(J)$ and $Y=Y(J)$ behave in the following manner:

$$
\left.\begin{array}{l}
X \\
Y
\end{array}\right\} \text { is steadily }\left\{\begin{array}{c}
\text { increasing } \\
\text { decreasing }
\end{array}\right\} \text { in the intervals No. 2, 4, 6, 8, } 10 .
$$

Further,

$$
X=\frac{1}{2}, \quad Y=\frac{\sqrt{ } 3}{2} \quad \text { for } \quad J=\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}
$$

and

$$
\begin{array}{lll}
X=\frac{1}{4}, & Y=\frac{\sqrt{ } 15}{4} & \text { for } J=J_{1}, \\
X=2-\sqrt{ } 3, & Y=\sqrt{ }\{4 \sqrt{ }(3)-6\} & \text { for } J=J_{2}, \\
X=\frac{1}{3}, & Y=\frac{2 \sqrt{ } 2}{3} & \text { for } J=J_{3} \\
X=\frac{21-4 \sqrt{ } 14}{14}, & Y=\sqrt{ }\left(\frac{24 \sqrt{ }(14)-67}{28}\right) & \text { for } J=J_{4}, \\
X=\frac{4-\sqrt{ } 7}{3} & Y=\sqrt{ }\left(\frac{8 \sqrt{ }(7)-14}{9}\right) & \text { for } J=J_{5}
\end{array}
$$

The interval No. 2 is particularly interesting, since here K has only a single critical lattice, and this is singular. At the lower end $J=\frac{34}{15}$ of this interval, K has this singular lattice, and also the regular lattice

$$
P_{3}=P_{2}, \quad P_{4}=-P_{1}+\dot{P}_{2}
$$

and the lattice symmetrical to it in the y-axis.
The table shows that the critical lattices of K have $2,3,4,5$, or 6 pairs of symmetrical points on C, depending on the value of \bar{J}.

The general law of the function $D(J)$ seems to be very complicated. By the table, the graph of $Y=D(J)$ is a saw-like curve for $2 \leqslant J \leqslant 25$, and possibly for all values of J. In the intervals No. 5, 6, 7, and 11, $D(J)$ takes a surprisingly simple form.

One can show that $\frac{\sqrt{ } 3}{2} \leqslant D(J) \leqslant \frac{\sqrt{ } 15}{4}$ for all values of J, and that

$$
\lim _{J \rightarrow \infty} D(J)=\frac{\sqrt{ } 3}{2}
$$

this limit equation was communicated to me by P. Erdös.
I remark finally that the problem and result of this chapter can be extended to a pair of positive definite Hermitian forms; but then the proof is preferably based on the geometrical theory of Picard's group.

The University, Manchester, 13.

[^0]: \dagger Bachmann, Quadratische Formen, II (Leipzig und Berlin, 1923), Kap. 5.

[^1]: \dagger It is possible for some of the lattice points on C_{1} to be identical with lattice points on C_{8} This happens when some of the points $Q_{1}, Q_{3}, Q_{3}, Q_{4}$ are lattice points

[^2]: \dagger If there exist several critical lattices, then they are all equivalent to the one given, except when J is one of the numbers σ_{ν} or J_{ν}.

