LATTICE POINTS IN TWO-DIMENSIONAL STAR DOMAINS (III)

By KURT MAHLER.

[Received 14 May, 1942.-Read 21 May, 1942.]

If $f(x, y) = ax^2 + 2bxy + cy^2$

is a positive definite binary quadratic form of determinant

 $ac-b^2 = 1$,

and E denotes the domain

 $f(x, y) \leqslant 1$,

bounded by the ellipse f(x, y) = 1, then by a classical result[†],

 $\Delta(E) = \sqrt{\frac{3}{4}}.$

There exists a continuous infinity of critical lattices Λ . Every such lattice contains just six points $\pm P_1$, $\pm P_2$, $\pm P_3$ on the boundary of E. It is possible to choose the notation such that

$$P_1 + P_2 + P_3 = 0.$$

Conversely, six arbitrary boundary points of this type generate a critical lattice, any two independent points among them forming a basis.

The present fourth chapter of this paper deals with the more complicated domain K obtained by combining two concentric ellipses each of area π . An algorithm is developed for determining $\Delta(K)$, which turns out to be a rather complicated function of the simultaneous invariant of the two ellipses.

A similar method can be applied to all domains obtained by combining two convex domains with centre at O, e.g. the star-shaped octagon investigated by Prof. Mordell.

[†] Bachmann, Quadratische Formen, II (Leipzig und Berlin, 1923), Kap. 5.

1942.] LATTICE POI

CHAPTER IV. THE DOMAIN BOUNDED BY TWO ELLIPSES.

25. The invariant J.

Let

(50)
$$f_1(x, y) = a_1 x^2 + 2b_1 xy + c_1 y^2$$
 and $f_2(x, y) = a_2 x^2 + 2b_2 xy + c_2 y^2$

be two positive definite binary quadratic forms of determinants

(51)
$$a_1c_1-b_1^2=a_2c_2-b_2^2=1$$

Further, let

$$(52) J = a_1 c_2 - 2b_1 b_2 + c_1 a_2$$

be the simultaneous invariant of these two forms. If an affine transformation of determinant unity,

(53)
$$x = ax' + \beta y', \quad y = \gamma x' + \delta y', \quad \text{where} \quad a\delta - \beta \gamma = 1,$$

changes f_1 and f_2 into the new forms

$$f_1'(x', y') = a_1' x'^2 + 2b_1' x' y' + c_1' y'^2$$

and

$$f'_2(x', y') = a'_2 x'^2 + 2b'_2 x' y' + c'_2 y'^2,$$

then by the invariantive property of the determinants and of J,

$$a_1'c_1'-b_1'^2 = a_2'c_2'-b_2'^2 = 1, \quad a_1'c_2'-2b_1'b_2'+c_1'a_2' = J$$

It is always possible to choose the transformation (53) so that f'_1 and f'_2 take the canonical forms

(54)
$$f'_1(x', y') = x'^2 + y'^2$$
 and $f'_2(x', y') = \lambda x'^2 + \frac{1}{\lambda} y'^2$,

where λ is a positive number. In this case

$$(55) J = \lambda + \frac{1}{\lambda}.$$

I assume in this chapter that f_1 and f_2 , and so also f_1' and f_2' , are not identical. Hence $\lambda \neq 1$, and therefore, from (55),

$$(56) J > 2.$$

We may further suppose without loss of generality that $\lambda > 1$.

26. The domain K.

Let now K be the domain of all points (x, y) satisfying at least one of the two inequalities

$$f_1(x, y) \leqslant 1$$
 and $f_2(x, y) \leqslant 1$.

Hence K is formed by combining two concentric ellipses each of area π . It is swident that K is a simple star domain; we can then consider the lower bound $\Delta(K)$.

The affine transformation (53) changes K into a domain K' formed by the points (x', y') satisfying at least one of the inequalities

 $f_1'(x', y') \leq 1$ and $f_2'(x', y') \leq 1$.

Hence K' is of the same type as K.

We can assert that

$$\Delta(K) = \Delta(K').$$

For (53) changes K-admissible lattices into K'-admissible lattices, and critical lattices of K into critical lattices of K'; and it leaves the determinant of two points and so also the determinant of a lattice invariant.

Choose the transformation (53) so that f_1, f_2 change into the two forms (54). Then K' becomes the set of all points (x', y') for which at least one of the inequalities

$$x'^2+y'^2\leqslant 1$$
 and $\lambda x'^2+rac{1}{\lambda}y'^2\leqslant 1$

holds. Here λ is determined uniquely as a function of J by

$$\lambda = \frac{J + \sqrt{J^2 - 4}}{2}.$$

Hence the lower bound $\Delta(K) = \Delta(K')$ becomes a function of J, say (58) $\Delta(K) = D(J).$

27. A property of the critical lattices.

By the last paragraph, we may assume from now on that

$$f_1(x, y) = x^2 + y^2, \quad f_2(x, y) = \lambda x^2 + \frac{1}{\lambda} y^2$$

The two ellipses $f_1 = 1$ and $f_2 = 1$ intersect at the four points

$$\begin{aligned} Q_1:(\mu,\nu), \quad Q_2:(-\mu,\nu), \quad Q_3:(-\mu,-\nu), \quad Q_4:(\mu,-\nu), \\ \mu = \sqrt{\left(\frac{1}{\lambda+1}\right)}, \quad \nu = \sqrt{\left(\frac{\lambda}{\lambda+1}\right)}. \end{aligned}$$

where

Denote by C_1 and C_2 those arcs of $f_1 = 1$ and $f_2 = 1$, respectively, which together form the boundary $C = C_1 + C_2$ of K. Hence, on describing C in a positive direction, the arc of C

from Q_4 to Q_1 belongs to C_1 , from Q_1 to Q_2 belongs to C_2 , from Q_2 to Q_3 belongs to C_1 , from Q_3 to Q_4 belongs to C_2 .

We use the convention of counting every one of the four points Q_1 , Q_2 , Q_3 , Q_4 twice, once in C_1 and once in C_2 .

The affine transformation of determinant unity,

(59) $x \to \lambda^{-\frac{1}{2}} y, \quad y \to \lambda^{\frac{1}{2}} x,$

evidently transforms K into itself, interchanges the parts C_1 and C_2 of C, and permutes the points Q_1 , Q_2 , Q_3 , Q_4 cyclically, and by the last paragraph it changes critical lattices again into critical lattices. Hence to every critical lattice with just m points on C_1 and n points on C_2 there corresponds a second critical lattice with just n points on C_1 and m points on C_2 .

THEOREM 23. A critical lattice Λ of K has at most six points on C_1 . If it contains six points on C_1 , then these are of the form $\pm P_1$, $\pm P_2$, $\pm P_3$, where $P_1 + P_2 + P_3 = 0$. Further,

(60)
$$\Delta(K) = d(\Lambda) = \sqrt{\frac{3}{4}},$$

and there are also six lattice points of the same type on C_2^{\dagger} .

Proof. The lattice Λ is admissible with respect to the circle $f_1 \leq 1$, and so, by the introduction, cannot contain more than six points on its boundary. If it has six points on C_1 , then these are of the mentioned form, and the lattice is critical with respect to the circle; hence (60) is satisfied. Then Λ must also be critical with respect to the ellipse $f_2 \leq 1$; for otherwise, since $d(\Lambda) = \sqrt{\frac{3}{4}}$, at least one lattice point $P \neq O$ would be an *inner* point of the ellipse and so also an inner point of K. Hence there are also exactly six points of Λ on C_2 .

THEOREM 24. Let Λ be a critical lattice with less than six points on C_1 . Then there are just four lattice points $\pm P_1$, $\pm P_2$ on C_1 , and four lattice points $\pm P_3$, $\pm P_4$ on C_2^{\dagger} .

[†] It is possible for some of the lattice points on C_1 to be identical with lattice points on C_2 This happens when some of the points Q_1 , Q_3 , Q_4 are lattice points

Proof. First, let Λ be a singular lattice. Then, by Theorem 14, its only points on C are Q_1 , Q_2 , Q_3 , Q_4 ; the assertion is therefore true. Secondly, let Λ be regular; then it has at least six points on C. We may assume, by the last theorem, that there are just four points of Λ on C_1 ; otherwise we apply the transformation (59) and thus obtain a regular lattice with this property.

Let, then, the four lattice points on C_1 be $\pm P_1$, $\pm P_2$, and assume that there are only two symmetrical lattice points $\pm P_3$ on C_2 . Then at most one of the two pairs of symmetrical points Q_1 , Q_3 and Q_2 , Q_4 belong to Λ . Hence there exists a sufficiently small angle a such that the rotation

$$x \rightarrow x \cos a - y \sin a, \quad y \rightarrow x \sin a + y \cos a$$

changes Λ into a new lattice Λ^* with only four points $\pm P_1^*$, $\pm P_2^*$ on C_1 and containing no further points $P \neq O$ of K. This lattice is therefore K-admissible, but not critical. Hence there exist lattices of smaller determinants. But this is impossible, since obviously $d(\Lambda^*) = d(\Lambda)$.

By Theorem 11, any two points of Λ on C_1 , or any two such points on C_2 , form a basis. Hence, if for brevity we write

(61)
$$Y = D(J)$$
, then $\sqrt{\frac{3}{4}} \leqslant Y \leqslant 1$.

For K contains the circle $f_1 = 1$; further, $|(P, Q)| \leq 1$ for any two points P and Q on C_1 , or on C_2 .

28. A sufficient condition for admissible lattices.

The construction of the critical lattices of K makes use of

THEOREM 25. Suppose that the lattice Λ of determinant

$$d(\Lambda) \ge \sqrt{\frac{3}{4}}$$

has a basis consisting of two points P_1 , P_2 on $f_1 = 1$, and a second basis consisting of two points P_3 , P_4 on $f_2 = 1$. Then Λ is K-admissible.

Proof. It suffices to show that no lattice point $P \neq O$ is an inner point of $f_2 = 1$; the analogous result for $f_1 \leq 1$ is proved similarly.

Every point P:(x, y) can be written as

(62)
$$P = uP_3 + vP_4$$
, where $u = \frac{(P, P_4)}{(P_3, P_4)}, v = -\frac{(P, P_3)}{(P_3, P_4)}$

The new coordinates u, v are integers if, and only if, P is a lattice point. The result of replacing x, y by u, v is that f_2 takes the form

(63)
$$f_2(x, y) = f_2^{\pm}(u, v) = u^{\pm} + 2suv + v^2,$$

since the two points u = 1, v = 0 and u = 0, v = 1 lie on $f_2^* = 1$. By the invariance property of the determinant of a quadratic form,

(64)
$$1-s^2 = (P_3, P_4)^2 = d(\Lambda)^2 \ge \frac{3}{4}$$

so that

$$(65) -\frac{1}{2} \leqslant s \leqslant \frac{1}{2}.$$

Hence f_2^* is a reduced form[†]. Its minimum for integral u, v not both zero is then 1, as asserted.

Henceforth let S(J) be the set of lattices Λ with the following properties:

- (a) Λ has a basis P_1 , P_2 on $f_1 = 1$, and a basis P_3 , P_4 on $f_2 = 1$.
- (b) The determinant $d(\Lambda) \ge \sqrt{\frac{3}{4}}$.

We shall prove later that S(J) has only a finite number of elements, say the lattices

$$\Lambda_1, \Lambda_2, \ldots, \Lambda_n.$$

By Theorem 25, these lattices are K-admissible; by Theorems 23 and 24, all critical lattices Λ belong to S(J). Hence

(66)
$$D(J) = \min_{\nu=1, 2, ..., n} d(\Lambda_{\nu}),$$

and so the critical lattices of K are just those elements Λ_{ν} of S(J) for which $d(\Lambda_{\nu})$ assumes the minimum value D(J).

29. Construction of the set S(J).

Let Λ be a lattice in S(J). We may assume, without loss of generality, that the two bases

$$P_1: (x_1, y_1), P_2: (x_2, y_2) \text{ and } P_3: (x_3, y_3), P_4: (x_4, y_4)$$

of Λ satisfy the inequalities

(67) $(P_1, P_2) > 0$ and $(P_3, P_4) > 0;$

† See footnote †, page 168.

hence

(68)
$$d(\Lambda) = (P_1, P_2) = (P_3, P_4) = x_1y_2 - x_2y_1 = x_3y_4 - x_4y_3.$$

The inequalities (67) remain satisfied if the pair of points P_1 , P_2 is replaced by one of the four pairs

$$P_1, P_2, \text{ or } P_2, -P_1, \text{ or } -P_1, -P_2, \text{ or } -P_2, P_1;$$

and if the pair of points P_3 , P_4 is replaced by one of the four pairs

$$P_3, P_4, \text{ or } P_4, -P_3, \text{ or } -P_3, -P_4, \text{ or } -P_4, P_3.$$

This gives a set Ω of $4 \times 4 = 16$ pairs of bases of Λ .

By the basis property and by (68), there are four integers a_1 , β_1 , a_2 , β_2 such that

(69)
$$P_3 = a_1 P_1 + \beta_1 P_2, P_4 = a_2 P_1 + \beta_2 P_2, a_1 \beta_2 - a_2 \beta_1 = +1.$$

When the pair of bases P_1 , P_2 and P_3 , P_4 is replaced by one of the other pairs in Ω , then a_1 , β_1 , a_2 , β_2 undergo certain permutations and changes of signs, for which I refer to the following table.

P ₁	P ₁	P ₁	P ₄	a ₁	\$ 1	az	βs	X	¥	u	U	8	1
<i>P</i> ₁	P ₁	P4	-P _s	a _s	βs	-a1	$-\beta_1$	X	Y.	V	-u	-8	2
P ₁	P ₁	$-P_3$	-P4	- a ₁	- B ₁	a2	- \$ ₂	X	Y	-u	-v	8	3
<i>P</i> ₁	P ₁	-P ₄	P,	- a ₂	β ₃	α ₁	· β 1	X	Y	-v	u	-8	4
P 3	$-P_1$	P3	P4	<i>β</i> 1	-a ₁	ß	a ₂	-X	Y	u	v	8	5
P 1	$-P_1$	P4	-P ₁	βs	— a ₂	- B ₁	a ₁	-X	Y	U	-u	-8	6
P ₁	$-P_1$	-P,	-P ₄	- \$ ₁	a ₁	- B ₂	ag	-X	Y	-u	-v	8	7
P,	$-P_1$	-P4	P.	- B ₃	a ₁	\$ 1	-a ₁	X	Y	-v	u	8	8
$-P_1$	-P ₃	P,	P4	-a ₁	- B 1	- a ₂	- B _3	X	Y	u	v	8	9
$-P_1$	-P ₂	P4	$-P_3$	-a1	$-\beta_1$	a ₁	\$ 1	X	Y	"บ	-u	-8	10
$-P_1$	-P ₁	$-P_3$	$-P_4$	α1	β ₁	4 2	β ₃	X	Y	-u	-v	8	11
$-P_1$	$-P_1$	-P ₄	P,	a ₂	βı	-a1	- B ₁	X	Y	-v	u	-8	12
-P ₁	P ₁	P ₁	P4	- B ₁	a ₁	- B	a ₂	-X	Y	u	v	8	13
$-P_1$	P ₁	P4	-P,	- \$ ₁	ag	\$ 1	-a ₁	-X	Y	v	- u	-8	14
-P ₁	P ₁	$-P_3$	-P4	\$ 1	-a1	ß	- a ₂	-X	Ŷ	- <i>u</i>	-v	8	15
-P,	P ₁	-P ₄	P ₃	β2	- a3	- \$_1	a ₁ -	-X	Y.	. v	u	-8	16
1	2	3	4	5	6	7	8	9	10	11	12	13	

The 16 elements of Ω ,

Let a new system of rectangular coordinates U, V be defined by

(70)
$$x = x_1 U - y_1 V, \quad y = y_1 U + x_1 V$$

or conversely, since $x_1^2 + y_1^2 = 1$,

(71)
$$U = x_1 x + y_1 y, \quad V = -y_1 x + x_1 y.$$

In this system, P_1 and P_2 have the coordinates

 $U_1 = 1, V_1 = 0$ and $U_2 = X = x_1 x_2 + y_1 y_2, V_2 = Y = x_1 y_2 - x_2 y_1;$ here

(72)
$$X^2 + Y^2 = 1, \quad Y = d(\Lambda) > 0.$$

Further, by (69), the coordinates of P_3 and P_4 are given by

$$U_3 = a_1 + \beta_1 X$$
, $V_3 = \beta_1 Y$ and $U_4 = a_2 + \beta_2 X$, $V_4 = \beta_2 Y$.

Finally, if, as in §28, we introduce u, v by (62), then

$$U = (a_1 + \beta_1 X) u + (a_2 + \beta_2 X) v,$$

$$V = \beta_1 X u + \beta_2 Y v,$$

and so, on solving for u and v, we have

(73)
$$\begin{cases} Yu = +\beta_2 YU - (a_2 + \beta_2 X) V. \\ Yv = -\beta_1 YU + (a_1 + \beta_1 X) V. \end{cases}$$

I refer to the last table for the changes of these numbers a_1 , β_1 , a_2 , β_2 , X, Y, u, v, when the pair of bases P_1 , P_2 and P_3 , P_4 is replaced by another pair in Ω .

By §28, f_2 takes the form (63) in *u* and *v*. By (64) and (72),

(74)
$$s = \epsilon X$$
, where $\epsilon = \pm 1$.

An inspection of the table shows that it is always possible to choose the pair of bases P_1 , P_2 and P_3 , P_4 in Ω so that the following inequalities are satisfied:

(75)
$$X \ge 0, \quad s \ge 0, \quad a_1 \ge 0.$$

Therefore, in particular,

$$(76) s = X.$$

Replace u and v by U and V. Then f_2 changes into

(77)
$$f_2(x, y) = F_2(U, V) = AU^2 + 2BUV + CV^2,$$

where, by (63), (73), and (76),

(78)
$$\begin{cases} A = \beta_1^2 - 2\beta_1\beta_2 X + \beta_2^2, \\ YB = -\beta_1(a_1 + \beta_1 X) + X\{\beta_2(a_1 + \beta_1 X) + \beta_1(a_2 + \beta_2 X)\} - \beta_2(a_2 + \beta_2 X), \\ Y^2C = (a_1 + \beta_1 X)^2 - 2(a_1 + \beta_1 X)(a_2 + \beta_2 X) X + (a_2 + \beta_2 X)^2. \end{cases}$$

Further, since the change from x, y to U, V is an orthogonal transformation,

$$f_1(x, y) = F_1(U, V) = U^2 + V^2.$$

Hence the simultaneous invariant

$$J = A + C,$$

so that, by (72) and (78),

(79)
$$(a_1^2 + a_2^2 + \beta_1^2 + \beta_2^2 - J) - 2(a_1 - \beta_2)(a_2 - \beta_1) X$$

- $\{2(a_1\beta_2 + a_2\beta_1) - J\} X^2 = 0.$

For given J, this is a quadratic equation for X. It does not reduce to an identity, for then

$$a_1^2 + a_2^2 + \beta_1^2 + \beta_2^2 = J, \quad 2(a_1\beta_2 + a_2\beta_1) = J;$$

 $(a_1 - \beta_2)^2 + (a_2 - \beta_1)^2 = 0.$

hence

 $(a_1-\beta_2)^2+(a_2-\beta_1)^2=0,$

and since $a_1 \ge 0$, $a_1\beta_2 - a_2\beta_1 = 1$,

 $a_1 = \beta_2 = 1, \quad a_2 = \beta_1 = 0, \quad J = 2.$

This value of J was, however, excluded by §25.

By the assumption (b) in §28, and by (72) and (75),

$$(80) 0 \leqslant X \leqslant \frac{1}{2}.$$

Suppose now, conversely, that (79) has a solution X satisfying these inequalities. Then the coefficients A, B, C of F are given by (78), with

(81)
$$Y = |\sqrt{(1-X^2)}|.$$

We further obtain the (U, V)-coordinates of P_1 , P_2 , P_3 , P_4 from their expressions as functions of a_1 , β_1 , a_2 , β_2 , X, Y. There remains the reduction of $F_1(U, V)$ and $F_2(U, V)$ to the normal form (54) by means of an orthogonal transformation (71); this problem is dealt with in the theory of conics. After this reduction, the (x, y)-coordinates of P_1 , P_2 , P_3 , P_4 and so the lattice Λ are known.

Therefore, in order to construct all elements of S(J), it suffices to solve (79) with respect to X. Here the coefficients a_1 , β_1 , a_2 , β_2 must take all integral values with

(82)
$$a_1 \ge 0, \quad a_1\beta_2 - a_2\beta_1 = 1,$$

for which both (79) and (80) can be satisfied.

[May 21,

176

1942.]

30. The finiteness of S(J).

THEOREM 26. The set S(J) has only a finite number of elements.

Proof. It suffices to show that the conditions (79) and (80) are solvable for at most a finite number of sets of integers a_1 , β_1 , a_2 , β_2 .

The equation (79) can be written as

(83)
$$\Phi(X; a_1, \beta_1, a_2, \beta_2) = J_2$$

where

$$\Phi(X; a_1, \beta_1, a_2, \beta_2) = \frac{(a_1^2 + \beta_1^2 + a_2^2 + \beta_2^2) - 2(a_1 - \beta_2)(a_2 - \beta_1) X - 2(a_1 \beta_2 + a_2 \beta_1) X^2}{1 - X^2}.$$

This expression Φ is a *positive definite* quadratic form in a_1 , β_1 , a_2 , β_2 ; for it can be written as

$$\begin{split} \Phi(X; \ a_1, \ \beta_1, \ a_2, \ \beta_2) \\ &= \frac{1}{1-X^2} \left(a_1 - X^2 \beta_2 - X a_2 + X \beta_1 \right)^2 + (1+X^2) \left(\beta_2 + \frac{X}{1+X^2} \ a_2 - \frac{X}{1+X^2} \ \beta_1 \right)^2 \\ &\quad + \frac{1}{1+X^2} \left(a_2 + X^2 \beta_1 \right)^2 + (1-X^2) \beta_1^2. \end{split}$$

From this identity, by (80),

$$\Phi(X; a_1, \beta_1, a_2, \beta_2) \ge (1-X^2)\beta_1^2 \ge \frac{3}{4}\beta_1^2.$$

Further, from the definition of Φ ,

$$\Phi(X; a_1, \beta_1, a_2, \beta_2) = \Phi(X; \beta_1, a_1, \beta_2, a_2)$$

= $\Phi(X; a_2, \beta_2, a_1, \beta_1) = \Phi(X; \beta_2, a_2, \beta_1, a_1).$

Hence β_1 may be replaced by a_1 , β_1 , a_2 , β_2 in the last inequality, and so, by (83),

(84)
$$\max(\alpha_1^2, \beta_1^2, \alpha_2^2, \beta_2^2) \leqslant \frac{4J}{3};$$

which proves the assertion.

Let then
$$\Lambda_{\nu}$$
 $(\nu = 1, 2, ..., n)$

be the elements of S(J); let

$$a_1^{(\nu)}, \beta_1^{(\nu)}, a_2^{(\nu)}, \beta_2^{(\nu)}$$
 ($\nu = 1, 2, ..., n$)

be the sets of four integers; and let

$$\Phi_{\nu}(X) = \Phi(X; a_1^{(\nu)}, \beta_1^{(\nu)}, a_2^{(\nu)}, \beta_2^{(\nu)}) \quad (\nu = 1, 2, ..., n)$$

be the functions belonging to these lattices. The following table contains all functions Φ_{ν} which represent at least one value of J in $2 \leq J \leq 25$ for an argument X in $0 \leq X \leq \frac{1}{2}$.

SER. 2. VOL. 49. NO. 2360.

N

$\Phi(\frac{1}{2})$	$(1 - X^2) \Phi(X; a_1, \beta_1, a_2, \beta_2)$	a1	β1	a 2	ß2	a ₁	β1	α2	β2	α1	β1	a2	₿₂	a ₁	β1	03	ß ₂
2	2-2X ² †	1	0	0	1												
	$3-4X+2X^2$	0	. 1	-1	1	0	-1	1	-1	1	1	1	0				
<u>10</u> 3	2+2X ² ‡	0	1	1	0	0	-1	1	0								
	3-2X2	1	1	0	1	1	0	1	1	1	-1	0	1	1	0	-1	1
	$6-8X+2X^2$	0	1	-1	2	0	-1	1	-2	2	-1	1	0				
	$7 - 12X + 6X^2$	1	-2	1	-1	1	-1	2	-1								
22	$3+4X+2X^2$	0	1	-1	-1	0	-1	1	1	1	1	-1	0				
	$6-2X^2$	1	_2	0	1	1	-2	0	1	1	0	2	1	1	0	-2	1
	7-6X2	1	1	1	2	1	-1	-1	2	2	1	1	1	2	-1	-1	1
	$11 - 12X + 2X^2$	0	1	-1	3	0	-1	1	-3	3	-1	1	0				
	$15 - 24X + 10X^2$	1	-3	1	-2	1	-1	3	-2	2	-3	1	-1	2	-1	3	-1
	$18 - 32X + 14X^2$	1	-2	2	-3	3	-2	2	-1								
14	$6+8X+2X^2$	0	1	-1	-2	0	-1	1	2	2	1	-1	0				
	$11 - 2X^2$	1	3	0	1	1	-3	0	1	1	0	3	1	1	0	-3	1
	$15 - 4X - 10X^2$	1	2	1	3	1	-1 _,	-2	3	3	1	2	1	3	·-2	-1	1
	$18 - 16X + 2X^2$	0	1	-1	4	0	-1	1	4	4	-1	1	0				
	$27 - 40X + 14X^2$	1	-4	1	-3	1	-1	4	-3	3	-4	1	-1	3	-1	4	-1
	$38 - 72X + 34X^2$	2	-3	3	-4	4	-3	3	-2								
58. 3	$7 + 12X + 6X^2$	1	2	-1	-1	1	1	-2	-1								
	$15+4X-10X^{2}$	1	-2	-1	3	1	1	2	3	3	2	1	1	3	-1	-2	1
	18-14X ²	2	3	1	2	2	-3	-1	2	2	1	3	2	2	-1	-3	2
	$34 - 48X + 18X^2$	2	-5	1	-2	2	-1	5	-2								
	$39-60X+22X^2$	1	-3	2	-5	1	-2	3	-5	5	-3	2	-1	5	-2	3	-1
	47-84X+38X ²	3	-5	2	-3	3	-2	5	3								
<u>70</u> 3	$11 + 12X + 2X^2$	0	1	-1	- 3	0	1	1	3	3	1	-1	0				
	18-2X ²	1	4	0	1	1	-4	0	1	1	0	4	1	1	0	-4	1
	$27 - 20X + 2X^{2}$	0	1	-1	5	0	-1	1	-5	5	-1	1	0				
ļ	27-12X-14X ²	1	3	1	4	1	-1	-3	4	4	-3	-1	1	4	1	3	1
	43-60X+18X ²	1	-5	1	-4	1	-1	5	-4	4	-5	1	-1	4	-1	5	-1
Ļ	$66 - 128X + 62X^2$	3	-4	4	-5	5	-4	4	-3								

Table of all functions Φ which represent J for $J \leqslant 25$.

Excluded case. \$ingular lattices.

......

As this table shows, there are in general two, three, or four systems of integers $a_1^{(\nu)}$, $\beta_1^{(\nu)}$, $a_2^{(\nu)}$, $\beta_2^{(\nu)}$ belonging to the same function Φ_{ν} and so also an equal number of lattices Λ_{ν} . It is easily seen that if there are different critical lattices belonging to the same function Φ_{ν} , then these are transformed into one another by the group G of order 4 generated by the following two affine transformations:

The symmetry in the y-axis,

A: $x \to -x, y \to y.$

The interchange of $f_1 = 1$ and $f_2 = 1$,

B:
$$x \to \lambda^{-\frac{1}{2}} y, \quad y \to \lambda^{\frac{1}{2}} x.$$

For A replaces the integers a_1 , β_1 , a_2 , β_2 by

$$\epsilon \beta_2, \epsilon a_2, \epsilon \beta_1, \epsilon a_1,$$

where $\epsilon = \pm 1$ is such that $\epsilon \beta_2 \ge 0$, and B replaces them by

$$a_1, -a_2, -\beta_1, \beta_2.$$

From now on, two critical lattices are considered as equivalent if they are related by an element of this group G; equivalent lattices belong to the same function Φ_{ν} .

31. The value of D(J) for $2 \leq J \leq 25$.

By formula (66) in §28,

$$D(J) = \min_{\nu=1, 2, ..., n} d(\Lambda_{\nu}).$$

Hence, if

$$Y = D(J), X = |\sqrt{(1-Y^2)}|, \text{ and } Y_{\nu} = d(\Lambda_{\nu}), X_{\nu} = |\sqrt{(1-Y_{\nu}^2)}|,$$

then

(85)
$$\Phi_{\nu}(X_{\nu}) = J, \quad 0 \leqslant X_{\nu} \leqslant \frac{1}{2},$$

(86)
$$X = \max_{\nu=1, 2, ..., n} X_{\nu}$$

† Two systems of integers

0, 1, -1,
$$\beta_{2}^{(\nu)}$$
 and 0, -1, 1, $-\beta_{2}^{(\nu)}$

are interchanged by elements of Ω (§ 29) and generate the same lattice.

By a study of the last table I find that for every J in $2 \le J \le 25$ and for every Φ_{ν} there is *at most one* solution X_{ν} of (85). Further, most of these solutions X_{ν} can be ignored for the following reasons.

The rows of the table have been arranged in sets of functions

$$(1-X^2)\Phi_{\nu}(X)$$

so that $\Phi_{\nu}(\frac{1}{2})$ is the same in each set. It was also found possible to arrange the rows according to *increasing values of these functions* for variable values of X; *e.g.*, in the second set,

$$\frac{2+2X^2}{1-X^2} \leqslant \frac{3-2X^2}{1-X^2} \leqslant \frac{6-8X+2X^2}{1-X^2} \leqslant \frac{7-12X+8X^2}{1-X^2} \quad \text{for} \quad 0 \leqslant X \leqslant \frac{1}{2}.$$

Hence, for a given value of J in $2 \leq J \leq 25$, the maximum $X = X_{\nu}$ belongs to one of those 11 equations

$$\Phi_{\nu}(X_{\nu}) = J$$

in which the function Φ_{ν} is either at the *beginning* or at the *end* of one of the 6 sets of rows of the table. There is no difficulty in deciding which is the largest of these solutions X_{ν} . The result depends on the value of J, and is given in the following table. This table further contains the minimum determinant

$$D(J) = \Delta(K)$$

and the corresponding critical lattice[†].

In the table, the numbers σ_k are defined thus:

$$\sigma_0 = 2, \quad \sigma_1 = \frac{1}{3}, \quad \sigma_2 = \frac{2}{3}, \quad \sigma_3 = 14, \quad \sigma_4 = \frac{58}{3}, \quad \sigma_5 = \frac{70}{3};$$

and J_n is defined thus

$$J_1 = \frac{34}{15}, \quad J_2 = \frac{3+14\sqrt{3}}{6}, \quad J_3 = 10, \quad J_4 = \frac{178+576\sqrt{14}}{143},$$
$$J_5 = \frac{63+88\sqrt{7}}{14}.$$

† If there exist several critical lattices, then they are all equivalent to the one given, except when J is one of the numbers σ_v or J_v .

$D(J)$ and critical lattices for $2 \leqslant J \leqslant 25$.	Critical lattice.	$P_3 = P_2$ $P_4 = -P_1 + P_3$	$P_3 = P_2 + P_2 + P_3 $	$P_3 = P_1 - 2P_3$ $P_4 = P_1 - P_3$	$P_{\mathbf{a}} = P_{\mathbf{a}}$ $P_{4} = -P_{1} - P_{\mathbf{a}}$	$P_{4} = P_{1} - 2P_{2}$ $P_{4} = 2P_{1} - 3P_{2}$	$P_4 = -P_1 - 2P_2$	$P_{3} = 2P_{1} - 3P_{2}$ $P_{4} = 3P_{1} - 4P_{2}$	$P_3 = P_1 + 2P_2$ $P_4 = -P_1 - P_2$	$P_{4} = 3P_{1} - 5P_{2}$ $P_{4} = 2P_{1} - 3P_{2}$	$P_3 = P_2$ $P_4 = -P_1 - 3P_2$	$P_{3} = 3P_{1} - 4P_{3}^{+}$ $P_{4} = 4P_{1} - 5P_{3}$
	D(J) = Y =	$\frac{\{5J+2+4(J^2-J-2)^4\}^4}{J+2}$	$2(J+2)^{-4}$	$\frac{\{13J+6+12(J^2-J-6)^4\}}{J+6}$	$\{5J+2+4(J^2-J-2)^{\frac{1}{2}}\}$	$\frac{8(J-2)!}{J+1!}$	$\frac{4(J-2)!}{J+2}$	$\frac{12(J-2)^4}{J+34}$	$\frac{\{13J+6+12(J^2-J-6)^4\}}{J+6}$	$\frac{\{85J - 298 + 84(J^2 - 9J - 22)\}}{J + 38}$	$\{13J - 46 + 12(J^2 - 9J + 14)i\}$	$\frac{16(J-2)!}{J+62}$
	- X =	$\frac{2-(J^2-J-2)!}{J+2}$	$\left(\frac{J-2}{J+2}\right)^{4}$	$\frac{6-(J^2-J-6)^4}{J+6}$	$\frac{-2+(J^2-J-2)!}{J+2}$	$-\frac{J-18}{J+14}$	1 - 8 1 + 2	$-\frac{J-38}{J+34}$	$\frac{-6+(J^2-J-6)!}{J+6}$	$\frac{42 - (J^2 - 9J - 22)}{J + 38}$	$\frac{-6+(J^2-9J+14)!}{J+2}$	$-\frac{J-66}{J+62}$
	$(1-X^2) Y =$	$3-4X+2X^{2}$	$2+2X^2$ $7-12X+6X^2$		$3 + 4X + 2X^2$	$18 - 32X + 14X^{2}$	$6+8X+2X^{2}$	$38-72X+34X^{2}$	$7 + 12X + 6X^{2}$	47-84X+38X ²	$11 + 12X + 2X^2$	$66 - 128X + 62X^{2}$
	Interval.	$\sigma_0 \leqslant J \leqslant J_1$	$J_1 \leqslant J \leqslant \sigma_1$ $\sigma_1 \leqslant J \leqslant J_2$		$J_2 \leqslant J \leqslant \sigma_2$	$\sigma_2 \leqslant J \leqslant J_3$	$J_{3}\leqslant J\leqslant\sigma_{3}$	$\sigma_3 \leqslant J \leqslant J_4$	$J_{4} \leqslant J \leqslant \sigma_{4}$	$\sigma_{4} \leqslant J \leqslant J_{5}$	$J_{\mathfrak{b}} \leqslant J \leqslant \sigma_{\mathfrak{b}}$	$\sigma_b \leqslant J \leqslant 25$
	No.	1	5	£	4	υ	9	2	œ	6	10	11

† Singular lattice. ‡ These values of X and Y remain true for $\sigma_{\delta} \leqslant J \leqslant \frac{206}{7}$.

In the intervals No. 1-11 of the table, the functions X = X(J) and Y = Y(J) behave in the following manner:

$$\begin{cases} X \\ Y \end{cases} \text{ is steadily } \begin{cases} \text{increasing} \\ \text{decreasing} \end{cases} \text{ in the intervals No. 2, 4, 6, 8, 10.} \\ \\ \begin{cases} X \\ Y \end{cases} \text{ is steadily } \begin{cases} \text{decreasing} \\ \text{increasing} \end{cases} \text{ in the intervals No. 1, 3, 5, 7, 9, 11.} \end{cases}$$

Further,

$$X = \frac{1}{2}, \quad Y = \frac{\sqrt{3}}{2}$$
 for $J = \sigma_0, \sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5,$

and

$$X = \frac{1}{4},$$
 $Y = \frac{\sqrt{15}}{4}$ for $J = J_1,$
 $X = 2 - \sqrt{3},$ $Y = \sqrt{4\sqrt{3}-6}$ for $J = J_2,$
 $X = 1$ $Y = \sqrt{4\sqrt{3}-6}$ for $J = J_2,$

$$X = \frac{1}{3}, \qquad Y = \frac{2\sqrt{2}}{3} \qquad \text{for } J = J_3,$$

$$X = \frac{21 - 4\sqrt{14}}{14}, \quad Y = \sqrt{\left(\frac{24\sqrt{(14)} - 67}{28}\right)} \quad \text{for} \quad J = J_4,$$

$$X = \frac{4 - \sqrt{7}}{3}$$
 $Y = \sqrt{\left(\frac{8\sqrt{(7) - 14}}{9}\right)}$ for $J = J_5$

The interval No. 2 is particularly interesting, since here K has only a single critical lattice, and this is singular. At the lower end $J = \frac{34}{15}$ of this interval, K has this singular lattice, and also the regular lattice

$$P_3 = P_2, P_4 = -P_1 + P_2,$$

and the lattice symmetrical to it in the y-axis.

The table shows that the critical lattices of K have 2, 3, 4, 5, or 6 pairs of symmetrical points on C, depending on the value of J.

The general law of the function D(J) seems to be very complicated. By the table, the graph of Y = D(J) is a saw-like curve for $2 \leq J \leq 25$, and possibly for all values of J. In the intervals No. 5, 6, 7, and 11, D(J) takes a surprisingly simple form. One can show that $\frac{\sqrt{3}}{2} \leqslant D(J) \leqslant \frac{\sqrt{15}}{4}$ for all values of J, and that

$$\lim_{J\to\infty} D(J) = \frac{\sqrt{3}}{2};$$

this limit equation was communicated to me by P. Erdös.

I remark finally that the problem and result of this chapter can be extended to a pair of positive definite Hermitian forms; but then the proof is preferably based on the geometrical theory of Picard's group.

The University, Manchester, 13.