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If f(x,y) = ax*+2bxy+cy*

is a positive definite binary quadratic form of determinant

ac—b°— 1,

and E denotes the domain

/(*, y) < !>

bounded by the ellipse/(a:, y) = 1, then by a classical resultf,

There exists a continuous infinity of critical lattices A. Every such
lattice contains just six points ±P i , ±P2> ± P 3

 o n t n e boundary of E.
It is possible to choose the notation such that

Conversely, six arbitral^ boundary points of this type generate a critical
lattice, any two independent points among them forming a basis.

The present fourth chapter of this paper deals with the more com-
plicated domain K obtained by combining two concentric ellipses each
of area IT. An algorithm is developed for determining A (if), which turns
out to be a rather complicated function of the simultaneous invariant of
the two ellipses.

A similar method can be applied to all domains obtained by com-
bining two convex domains with centre at 0, e.g. the star-shaped octagon
investigated by Prof. Mordell.

f Bachmann, Quadratische Formen, II (Leipzig und Berlin, 1923), Kap. 5.
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CHAPTER IV. THE DOMAIN BOUNDED BY TWO ELLIPSES.

25. The invariant J.

Let

(50) f ^ x , y) = a1x
2+2b1xy+c1y

2 and f2(x, y) — a2x
2+2b2xy+c2y

2

be two positive definite binary quadratic forms of determinants

(51) a i c i—ft i 2 — » 2
C 2 — b < f = \ .

Further, let

(52) J = arc2—26]62+c1a2

be the simultaneous invariant of these two forms. If an affine trans-
formation of determinant unity,

(53) x = ax'-\-fiy', y — yx'-\-8y', where aS—/?y=l,

changes fx and / 2 into the new forms

and

f'2(x', y') = a'2x'*+2b'2x'y'+c'2y'*,

then by the invariantive property of the determinants and of J,

a'ic
f
l-b[2 = a!2c!2-b^^ 1, af

]c'2-2b[b2-\-c[af
2 = J.

It is always possible to choose the transformation (53) so that f{ and
/a take the canonical forms

(54) j[(x\ y') = x'*+y'n- and jZ(x', y') -= \x'*+ y y'\

where A is a positive number. In this case

(55) J = A + T '

I assume in this chapter that fx and f2, and so also / / and f2, are not
identical. Hence A ^ 1, and therefore, from (55),

(56) J > 2.

We may further suppose without loss of generality that A > 1.
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26. The domain K.

Let now K be the domain of all points (x, y) satisfying at least one
of the two inequalities

/ i (*,2/)<l and /2(z, y) ^ 1.

Hence K is formed by combining two concentric ellipses each of area TT.
It is svident that K is a simple star domain; we can then consider the
lower bound A (If).

The affine transformation (53) changes K into a domain K' formed by
the points (x', y') satisfying at least one of the inequalities

/ / (* ' , y') < 1 and / 2 ' ( z ' ) 2 / 'K l -

Hence K' is of the same type as K.
We can assert that

(67)

For (53) changes if-admissible lattices into IT-admissible lattices, and
critical lattices of K into critical lattices of K'; and it leaves the deter-
minant of two points and so also the determinant of a lattice invariant.

Choose the transformation (53) so that flt f2 change into the two
forms (54). Then K' becomes the set of all points (xf, y') for which at
least one of the inequalities

< l and 4+4 y< 1
A

holds. Here A is determined uniquely as a function of J by

A " 2

Hence the lower bound A (if) = A (if) becomes a function of J, say

(58) A(#) = D{J).

27. A property of the critical lattices.

By the last paragraph, we may assume from now on that

Mx, y) = x*+y\ fz(x, y) = As2+ - | y\

The two ellipses fx = 1 and /2 = 1 intersect at the four points

where
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Denote by Cx and C2 those arcs oif1= 1 a n d / 2 = 1, respectively, which
together form the boundary C— Ox+G2 of K. Hence, on describing C
in a positive direction, the arc of C

from Q4 to Qx belongs to Gx,

from Qx to Q2 belongs to C2,

from Q2 to Qz belongs to Gx,

from Q3 to #4 belongs to G2.

We use the convention of counting every one of the four points Qx, Q2, Q3, Q4

twice, once in Gx and once in C2.

The affine transformation of determinant unity,

(59) x^-X-ty, y-^-X^x,

evidently transforms K into itself, interchanges the parts Gx and C2 of C,
and permutes the points Qx, Qz, Q3, Q^ cyclically, and by the last para-
graph it changes critical lattices again into critical lattices. Hence to
every critical lattice with just m points on Cx and n points on Ca there
corresponds a second critical lattice with just n points on Gx and m points
on C2.

THEOREM 23. A critical lattice A of K has at most six points on Cx.
If it contains six points on Cx, then these are of the form ± Px, ± P 2 , ±-^3,
where Px+P2+P3 = 0. Further,

(60) A(K) = d(A) = Vl

and there are also six lattice points of the same type on C2f.

Proof. The lattice A is admissible with respect to the circle fx^l,
and so, by the introduction, cannot contain more than six points on its
boundary. If it has six points on Cx, then these are of the mentioned
form, and the lattice is critical with respect to the circle; hence (60) is
satisfied. Then A must also be critical with respect to the ellipse / 2 < 1;
for otherwise, since d{A) = -y/f» at least one lattice point P ^0 would be
an inner point of the ellipse and so also an inner point of K. Hence there
are also exactly six points of A on C2.

THEOREM 24. Let A be a critical lattice with less than six points on Cx.
Then there are just four lattice points ±PX, ±P2 on Cx, and four lattice
pointo ±P3, ± P 4 on (72f.

f It is possible for some of .the lattice points on Cx to be identical with lattice points
on C't This happens when some of the points Qx, Qa, Q3, Qt are lattice points
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Proof. First, let A be a singular lattice. Then, by Theorem 14, its
only points on G are Qv Q2, Q3, #4; the assertion is therefore true.
Secondly, let A be regular; then it has at least six points on C. We may
assume, by the last theorem, that there are just four points of A on Cx;
otherwise we apply the transformation (59) and thus obtain a regular
lattice with this property.

Let, then, the four lattice points on Cx be ±.Plt ±P 2 , and assume that
there are only two symmetrical lattice points ± P 3 on C2. Then at most
one of the two pairs of symmetrical points Qlt Q3 and Q2, Q^ belong to A.
Hence there exists a sufficiently small angle a such that the rotation

x->x cos a—y sin a, y-+x sina+y cos a

changes A into a new lattice A* with only four points. ztP^, db-P2
:|: o n ^i

and containing no further points P ^ 0 of K. This lattice is therefore
iC-admissibie, but not critical. Hence there exist lattices of smaller
determinants. But this is impossible, since obviously (/(A*) = d(A).

By Theorem 11, any two points of A on Clt or any two such points on
C2, form a basis. Hence, if for brevity we write

(61) Y = D(J), then Vf < ^ < 1 -

For K contains the circle/! — 1; further, |(JP, Q)\ ̂  1 for any two pointB
P and Q on Cv or on C2.

28. A sufficient condition for admissible lattices.

The construction of the critical lattices of K makes use of

THEOREM 25. Suppose that the lattice A of determinant

d(A) > VI

has a basis consisting of tivo points Px, P2onf1— 1, and a second basis con-
sisting of two points Pz, P 4 on f2 = 1. Then A is K-admissible.

Proof. It suffices to show that no lattice point P =£ 0 is an inner
point of /2 = 1; the analogous result for/j < 1 is proved similarly.

Every point P: (x, y) can be written as

(62) P = uP,+vPi, where u = j
3>
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The new coordinates u, v are integers if, and only if, P is a lattice point.
The result of replacing x, y by u, v is that / 2 takes the form

(63) f2(x, y) =/2*(w, v) = u1Jr%suv-\-vz,

since the two points u = 1, v = 0 and u — 0, v = 1 lie on/2* = 1. By the
invariance property of the determinant of a quadratic form,

(64) 1_,» = (P3, P4)» = <2(A)2 > f,

HO that

(65) - 4 <

Hence / 2* i6 a reduced form j . Its minimum for integral u, v not both
zero is then 1, as asserted.

Henceforth let S(J) be the set of lattices A with the following
properties:

(a) A Jias a basis Px, P2 on fx = 1, and a basis P3, P4 onf2= 1.

(b) The determinant d(A) > Vf •

We shall prove later that S(J) has only a finite number of elements, say
the lattices

Alt A2, ..., An.

By Theorem 25, these lattices are inadmissible; by Theorems 23 and 24,
all critical lattices A belong to S( J). Hence

(66) D(J)= min d(Ay),
y=l, 2, .... n

and so the critical lattices of K are just those elements Av of S(J) for
which d(Av) assumes the minimum value D{J).

29. Construction of the set S(J).

Let A be a lattice in S(J). We may assume, without loss of generality,
that the two bases

of A satisfy the inequalities

(67) (Px, P2) > 0 and (P3) P4) > 0;

I Seo footnote f, jmge 168.
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1} P2) = (P3, P4) = x ^ - x ^ = x^y^-

hence

(68) d{A) =

The inequalities (67) remain satisfied if the pair of points Px, P2 is
replaced by one of the four pairs

PltP%, or P2,-P1} or -Plt-P2i or -P» Px\

and if the pair of points P3, P4 is replaced by one of the four pairs

P8, P4, or P4, - P 3 , or - P 3 , - P 4 , or - P 4 , P3.

This gives a set Q of 4 X 4 = 16 pairs of bases of A.
By the basis property and by (68), there are four integers alt j8lf a2, j82

such that

(69) = a2P1+jS2P2, -a.fc = +1.
When the pair of bases Plt P2 and P3, P4 is replaced by one of the other
pairs in Q, then al9 j8ls a2, j82 undergo certain permutations and ohanges
of signs, for which I refer to the following table.

Pi

P i

P i

P i

p .

p .

p .

p .

- P i

- P i

p
•* 1

- P i

- P i

p
— * I

- p .

- P i

1

P i

p .

p .

p .

- P i

- P i

- P i

- P i

- p ,

p

p

p
—•» 1

P i

P i

P i

P i

2

P.

P*

- P .

- P 4

P ,

P«

-Pt

- P 4

P ,

P4

- P ,

- P 4

P .

P4

- P ,

- P 4

3

P*

- P ,

- P 4

P,

P4

- P .

- P 4

*>.

P4

- P .

- P 4

P ,

P4

- P .

- P 4

P ,

4

« i

«t

— « i

- o ,

* i

/3.

- * i

- * » i

- « i

- « i

« i

" i

-Pi

-Pt

Pi

Pt

5

The

Pi

Pt

~ / » l

-*»1

— «1

— "i

<*1

a l

-Pi

~Pt

Pi

Pt

« 1

« 1

— a l

— a ,

6

L6 elements <

««

- « i

— a ,

« i

<s.

~/8i

— 3 ,

Pi

— o ,

a i

« i

— B i

-Pt

Pi

Pt

£1

7

Pt

-Pi

-Pt

Px

— 0 ,

« i

<4

— «h

- ^ 1

i8i

0,

— 0i

« i

— «i

— a,

«i -

8

X

X

X

-X

-X

—X

—X

X

X

X

X

-X

-X

-X

-X

9

T

Y

Y

Y

Y

Y

Y

T

Y

Y

Y

Y

Y

Y

Y

Y

10

u

V

— M

—t;

u

V

— «

— V

u

•v

—tt

— V

u

V

—tt

11

V

—tt

— V

u

«

—tt

—«

u

V

—tt

— «

tt

V

—tt

— V

u

12

«

—0

8

— 6

8

—a

8

—a

8

— 8

8

— 8

8

— 8

8

—a

13

1

2

3

4

6

6

7

8

9

10

11

12

13

14

16

16
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Let a new system of rectangular coordinates U, V be defined by

(70) x = x1U-y1V) y = yxU+xxV,

or conversely, since a:1
2+y1

2= 1,

(71) U = x1x+y1y, V= -yxx+xxy.

In this system, Px and Pa have the coordinates

U1=l,V1 = 0 and U2 = X = x1x2+y1y2) V2=Y = x1y2—x2y1'i

here

(72) X 2 +7 2 = l , Y = d{A)>0.

Further, by (69), the coordinates of P 3 and P4 are given by

^ 3 = a1+iS1Z, F3 = j817 and tf4 = a2+j82X, F4 = j3ay.

Finally, if, as in §28, we introduce u, v by (62), then

F = &X u+ j82y v,

and so, on solving for u and v, we have

(73)

I refer to the last table for the changes of these numbers als j8ls a2, j92,
X, y, w, v, when the pair of bases Pt, P2 and P3, P4 is replaced by
another pair in ft.

By § 28, f2 takes the form (63) in u and v. By (64) and (72),

(74) 8=cX, where c = ± l .

An inspection of the table shows that it is always possible to choose the
pair of bases Plt P2 and P3, P4 in ft so that the following inequalities
are satisfied:

(75) X^O, 8^0, a^O.

Therefore, in particular,

(76) 8 = X.

Replace u and v by U and F. Then f2 changes into

(77) f%(x, y) = F2{U} V) = AU*+2BUV+CV\
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where, by (63), (73), and (76),

(78) YB = -j31(a1+i81X)fX{i82(a1+iS1Z)+i81(a2+i52Z)}-i32(a2+i8aX),

1 Y*C= (a1+i81X)2-2(a1+i81X)(a2+i82X)X+(a2+iS2Z)2.

Further, since the change from x, ytoU, V is an orthogonal transformation,

Mx;y) = Fi(U,V)
Hence the simultaneous invariant

so that, by (72) and (78),

(79) (a1«+ot«+i81«+i8l«-J)-2(o1-i81)(o1--i8l)Z

-{2(a1j3a+a2i81)-«/}X' = O.

For given J, this is a quadratic equation for X. It does not reduce
to an identity, for then

a^+e^+^+jSa2 = J, 2(0^+0, ft) = J;

hence (*i-h)*+ K~ft)2 = 0,
and since ax ^ 0, a]_j82—

a2& = >̂

This value of J was, however, excluded by § 25.
By the assumption (6) in § 28, and by (72) and (75),

(80) 0 < X ^ £ .

Suppose now, conversely, that (79) has a solution X satisfying these
inequalities. Then the coefficients A, B, G of F are given by (78),
with

(si) y = | V ( i - x 2 ) | .

We further obtain the (U, F)-coordinates of Pv P2, P3, P4 from their
expressions as functions of a1} j8ls a2, j82, X, Y. There remains the reduction
of F^U, V) and -Fa(^> V) to the normal form (54) by means of an
orthogonal transformation (71); this problem is dealt with in the theory
of conies. After this reduction, the (x, y)-coordinates of P1} P2, P3, P4

and so the lattice A are known.
Therefore, in order to construct all elements of S(J), it suffices to solve

(79) with respect to X. Here the coefficients al5 jS1} a2, j82 must take all
integral values with

(82) Oi^O, a i i 8 2 - a 2 f t = l ,

for which both (79) and (80) can be satisfied.
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30. Thefiniteness of S(J).

THEOREM 2^. The set 8{J) has only a finite number of elements.

Proof. It suffices to show that the conditions (79) and (80) are solv-
able for at most a finite number of sets of integers alt j8x, a2, £2.

The equation (79) can be written as

(83)

where

a1} ft, a2, &)

" l-X*
This expression O is a positive definite quadratic form in av ft, a2, /?2; for
it can be written as

; 04, ft, a2, j82)

(

From this identity, by (80),

O(Z; Ol, A, a2, &) > (1

Further, from the definition of O,

; al5 pv a2, jS2) = <D(X; ^ , a1$ &, a2)

; a2, j82, al5 ^ ) = O(Z; &, a2, /8lf ax).

Hence & may be replaced by alf (3lt a2, jSa in the last inequality, and so,
by (83),

(84) max(a12,j812,a22,)3a2)<^,

which proves the assertion.

Let then Ar (v= 1, 2, ..., n)

be the elements of 8( J); let

<>, ft'\ 4"), ft'> ( v = l , 2, ..., 7i)
be the sets of four integers; and let

O , ( X ) = < D ( X ; af> , ft">, aW ft->) (^ = 1 , 2 , . . . , n)

be the functions belonging to these lattices. The following table contains
all functions <!>„ which represent at least one value of J in 2 ^ J ^ 25 for
an argument X in 0 < X < £.

8KR. 2. VOL. 49. NO. 2300. N
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2

¥

14

70

*a*

ToWe o/ aw functions 0

l-X2)*(X;o1 ( j8i .aa , /32)

2-2X2 t

3-4X+2Xa

2+2X» J

3-2X2

6-8X+2X*

7-12X+6X2

3 + 4X + 2X2

6-2Xa

7-6Xa

ll-12X + 2Xa

15-24X+10X2

18-32X+14X2

6 + 8X+2X2

l l - 2 X a

15-4X-10X2

18-16X + 2X2

27-40X + 14X2

38-72X + 34X2

7 + 12X + 6X2

15 + 4X-10X2

18-14Xa

34-48X+18X2

39-60X + 22X2

47-84X + 38X2

11 + 12X + 2X2

18-2X2

27-20X + 2X2

27-12X-14X2

43-60X+18X*

66-128X + 62X2

a i

1

0

0

1

0

1

0

1

1

0

1

1

0

1

1

0

1

2

1

1

2

2

1

3

0

1

0

1

1

3

Pi

0

1

1

1

1

2

1

2

1

1

- 3

- 2

1

3

2

1

- 4

- 3

2

2

3

- 5

- 3

- 5

1

4

1

3

- 5

- 4

oa

0

- 1

- 1

0

- 1

1

- 1

0

1

- 1

1

2

- 1

0

1

- 1

1

3

- 1

- 1

1

1

2

2

- 1

0

- 1

1

1

4

* 2

1

1

0

1

2

- 1

- 1

1

2

3

- 2

3

0

1

3

4

- 3

- 4

i

3

2

- 2

- 5

- 3

- 3

1

5

4

- 4

- 5

which represent

1

0

0

1

0

1

0

1

1

0

1

3

0

1

1

0

1

4

1

1

2

2

1

3

0

1

0

1

1

5

0i

- 1

- 1

0

- 1

- 1

- 1

- 2

- 1

- 1

- 1

2

- 1

- 3

- 1

- 1

- 1

3

1

1

- 3

— 1

- 2

- 2

- 1

- 4

- 1

- 1

- 1

- 4

°2

1

1

1

1

2

1

0

- 1

1

3

2

1

0

— 2

1

4

3

- 2

2

- 1

5

3

5

1

0

1

- 3

5

4

0,

- 1

0

1

- 2

- 1

1

1

2

- 3

- 2

- 1

2

1

3

4

- 3

- 2

- 1

3

2

- 2

- 5

3

3

1

- 5

4

- 4

- 3

J for J

« i

1

1

2

1

1

2

3

2

2

1

3

4

3

3

2

5

3

1

5

4

4

0x

- 1

- 1

- 1

1

0

1

- 1

- 3

1

0

1

- 1

- 4

2

1

- 3

1

0

- 1

- 3

- 5

<25.

a2

1

0

1

- 1

2

1

1

1

- 1

3

2

1

1

1

3

2

- 1

4

1

- 1

1

02

0

1

0

0

1

1

0

J

0

1

1

0

- 1

1

2

- 1

0

1

0

1

- 1

• l

1

1

2

2

1

3

3

3

2

5

1

4

4

0i

0

0

- 1

- 1

0

- 2

- 1

- 1

- 1

2

0

1

- 1

"2

- 1

2

- 1

3

- 3

— 1

4

- 2

- 3

3

- 4

3

5

02

1

1

1

- 1

1

1

- 1

1

2

- 1

1

1

- 1

Excluded case.
Singular lattices.



1942.] LATTICE POINTS IN STAII DOMAINS (III). i79

As this table shows, there are in general two, three, or four systems
of integers a^, ^ \ a%\ fi^ belonging to the same function <!>„ and so also
an equal number of lattices Av~\. I t is easily seen that if there are different
critical lattices belonging to the same function $„, then these are trans-
formed into one another by the group G of order 4 generated by the
following two afnne transformations:

The symmetry in the y-axis,

A: x~> — x,

The intercJiange of fx = 1 and /2 = 1,

B : x->\-*y,

For A replaces the integers al5 f}v a2, j82 by

e&> ea2> €&> e a i>

where e = ± 1 is such that e/32 ^ 0, and B replaces them by

From now on, two critical lattices are considered as equivalent if they
are related by an element of this group G; equivalent lattices belong to
the same function <!>„.

31. The value of D(J) for 2 < J < 25.

By formula (66) in § 28,

D{J) = min d(A,.).
v=l, 2 »t

Hence, if

Y = D(J), X = |V(1-7 2 ) | , and Yv = d(Av), Xv =

then

(85) <DV(X,.) = J, 0 < X < i

(86) X= max Xv.
F = 1 , 2 n

f Two systems of integers

0, 1, - 1 , 4") and 0, - 1 , 1, -$[')

are interchanged by elements of A (§ 29) and generate the same lattice.
N 2
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By a study of the last table I find that for every J in 2 < J < 25
and for every <!>„ there is at most one solution Xv of (85). Further, most
of these solutions Xv can bo ignored for the following reasons.

The rows of the table have been arranged in sets of functions

(1-*«)*,(*)

so that Ov(|) is the same in each set. It was also found possible to
arrange the rows according to increasing values of these functions for variable
values of X; e.g., in the second set,

2+2X2 ^ 3-2X2 C-8X+2X2 7-12X+8X2 ,
T^X* ^ T=X* ^ 1 -X2 ^ 1-X* l 0 r ^ ^ *

Hence, for a given value of J in 2 < J < 25, the maximum X = Xv

belongs to one of those 11 equations

in which the function <!>„ is either at the beginning or at the end of one of
the 0 sets of rows of the table. There is no difficulty in deciding which is
the largest of these solutions Xv. The result depends on the value of «/,
and is given in the following table. This table further contains the
minimum determinant

and the corresponding critical lattice f.
In the table, the numbers ak are defined thus:

_ „ _ +y 1 0 —. i 2 2 f-m 1 A f— .. 5 R 7 0 *

and Jn is defined thus

j = 34 j _ LLiiV? j -in j - 178+576 y/14

T _ 63+88V7

f If there exist several critical lattices, then they are all equivalent to the one given,
except when J is one of the numbers a. or J v.
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•f Singular lattice.
\ These values of X and V remain true for a6 < J < 2?6.
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In the intervals No; 1-11 of the table, the functions X = X(J) and
Y = Y(J) behave in the following manner:

X]

Y

X

Y

Further,

and

• is steadily

is steadily

increasing

[ decreasing

decreasing

increasing

in the intervals No. 2, 4, 6, 8, 10.

in the intervals No. 1, 3, 5, 7, 9, 11.

= \, Y = ^ - for J = aQ, av a2> a3, cr4, CT6,

for J = JXi

for J = «72,

f o r J = J*>

Ibr j r -

The interval No. 2 is particularly interesting, since here K has only
a single critical lattice, and this is singular. At the lower end J = f £ of
this interval, K has this singular lattice, and also the regular lattice

* 8 = = •* 2» •* 4 = M " i " j i

and the lattice symmetrical to it in the y-axis.
The table shows that the critical lattices of K have 2, 3, 4, 5, or 6 pairs

of symmetrical points on C, depending on the value of J.
The general law of the function D(J) seems to be very complicated.

By the table, the graph of Y = D(J) is a saw-like curve for 2 ̂  J ^ 25,
and possibly for all values of J. In the intervals No. 5, 6, 7, and 11,
D(J) takes a surprisingly simple form.



1942.] LATTICE POINTS IN STAR DOMAINS (III). 183

One can show that ~ - < D(J) < ^- j— for all values of J, and that
2 4

lim

this limit equation was communicated to me by P. ErdOs.
I remark finally that the problem and result of this chapter can be

extended to a pair of positive definite Hermitian forms; but then the
proof is preferably based on the geometrical theory of Picard's group.

The University,
Manchester, 13.


