ON LATTICE POINTS IN A CYLINDER

By K. MAHLER (Manchester)

[Received 18 May 1944]

Denote by x_1, x_2, x_3 rectangular coordinates in three-dimensional space, and by K a convex body with the origin O = (0, 0, 0) as its centre. A lattice Λ ,

$$x_h = \sum_{k=1}^{3} \alpha_{hk} u_k \quad (h = 1, 2, 3; u_1, u_2, u_3 = 0, \mp 1, \mp 2,...),$$

say of determinant

$$d(\Lambda) = \left| |\alpha_{hk}|_{h,k=1,2,3} \right|,$$

is called *K-admissible* if O is its only point which is an *inner* point of K. Let $\Delta(K)$ be the lower bound of $d(\Lambda)$ extended over all

K-admissible lattices. Then $\Delta(K) > 0$, and there is at least one critical lattice, i.e., a K-admissible lattice Λ such that $d(\Lambda) = \Delta(K)$.*

Minkowski's theorem on convex bodies may be expressed as

$$\Delta(K) \geqslant \frac{1}{8}V$$
,

where V is the volume of K. In general, the sign '>' holds in this inequality, and so the problem arises of finding the exact value of

 $K: \quad x_1^2 + x_2^2 \leq 1, \quad -1 \leq x_3 \leq +1,$

$$\Delta(K)$$
. Minkowski himself solved this problem for the cube, the octahedron, and the sphere. In this note I solve it for the cylinder

by proving that \uparrow $\Delta(K) = \frac{1}{2}\sqrt{3}$,

$$3, (1)$$

a result which surprisingly has escaped notice. That $\Delta(K) \leq \frac{1}{2}\sqrt{3}$ is nearly trivial, because the following lattices of determinant $\frac{1}{2}\sqrt{3}$ are evidently K-admissible:

by any rotation about the x_3 -axis;

- (i) The lattices Λ_1 derived from the particular lattice
- $x_1 = u_1 + \frac{1}{2}u_2 + \alpha u_3, \quad x_2 = \frac{1}{2}\sqrt{3} \ u_2 + \beta u_3, \quad x_3 = u_3 \quad (\alpha, \beta \text{ arbitrary})$
- * For the two-dimensional case of these rather obvious statements see my note, J. of London Math. Soc. 17 (1942), 130–3.
- † The same proof shows that $\Delta(K) = \frac{1}{2}\sqrt{3}$, where K is the n-dimensional convex body $x_1^2 + x_2^2 \leq 1$, $|x_3| \leq 1, ..., |x_n| \leq 1$ $(n \geq 2)$.

ON LATTICE POINTS IN A CYLINDER (ii) The lattices Λ_2 derived from the particular lattice

I use the following lemmas. Lemma 1. Let π be a plane convex polygon of area A with angles not

 $x_1 = u_1 + \frac{1}{2}u_2$, $x_2 = \frac{1}{2}\sqrt{3}u_2$, $x_3 = \alpha u_1 + \beta u_2 + u_3$ (α, β arbitrary)

 $\Delta(K) \geqslant \frac{1}{2}\sqrt{3}$

by any rotation about the x_3 -axis.* It suffices therefore to show that

in order to prove the assertion (1).

greater than 120° , and let C_1 , C_2 ,..., C_s be non-overlapping circles of radius r contained in π . Then $s \leqslant \frac{A}{x^{2\sqrt{12}}}.\dagger$

Lemma 2. Let n be a positive integer, and let W be the cube $|x_1| \leqslant n$, $|x_2| \leqslant n$, $|x_3| \leqslant n$.

Let further $Z_1, Z_2, ..., Z_t$ be non-overlapping circular cylinders of radius

 $\frac{1}{2}$ and height 1, all contained in W with their axes parallel to the x_3 -axis. Then

 $t \leqslant \frac{16}{\sqrt{2}}n^3$.

Proof. Denote by x any number in the interval $-n \leqslant x \leqslant n$. The plane $x_3 = x$ intersects the cylinders $Z_1, Z_2, ..., Z_t$ in a certain point set J(x), say of area Q(x). Then the integral $\int_{0}^{+n} Q(x) dx$ equals the

total volume of the cylinders $Z_1, Z_2, ..., Z_t$, and so

total volume of the cylinders
$$Z_1,\ Z_2,...,\ Z_t,$$
 and so $\int\limits_{-n}^{+n}Q(x)\ dx=rac{1}{4}\pi t.$

(3)Now there are at most 2t different values of x for which the plane $x_3 = x$ contains either the base or the top of one of these cylinders; let x be different from these exceptional values. Then J(x) consists

of a finite number, say s, of circles of radius $\frac{1}{2}$; no two of these circles overlap, and all lie inside the square

 $|x_1| \leqslant n, \qquad |x_2| \leqslant n, \qquad x_3 = x$

* The lattices Λ_1 and Λ_2 are the only critical lattices of K, as can be proved. One can further show that, if H is any convex body symmetrical in O which is

contained in, but different from K, then $\Delta(H) < \Delta(K)$. † For a proof see the note 'On the densest packing of circles' by B. Segre and myself, American Math. Monthly, 51 (1944), 261-70.

3695.17

of area $A = 4n^2$. Hence, by Lemma 1, $s \leqslant \frac{4n^2}{(\frac{1}{4})^2 \sqrt{12}} = \frac{8}{\sqrt{3}}n^2.$

Then

whence

Then
$$Q(x) = \frac{1}{4}\pi s \leqslant \frac{2\pi}{\sqrt{3}}n^2$$
, and so, by (3),
$$\frac{1}{4}\pi t = \int_{-\infty}^{+n} Q(x) dx \leqslant \int_{-\infty}^{+n} \frac{2\pi}{\sqrt{3}}n^2 dx = \frac{4\pi}{\sqrt{3}}n^3$$
,

ON LATTICE POINTS IN A CYLINDER

 $t \leqslant \frac{16}{\sqrt{2}}n^3$. Proof of (2). Put $F(x_1, x_2, x_3) = \max(|\sqrt{(x_1^2 + x_2^2)}|, |x_3|),$

so that the cylinder
$$K$$
 consists of all points satisfying $F(x_1,x_2,x_3)\leqslant 1$. Denote by Λ any K -admissible lattice. Then at every point $X=(x_1^0,x_2^0,x_3^0)$ of Λ place a cylinder
$$Z(X): \qquad F(x_1-x_1^0,x_2-x_2^0,x_3-x_3^0)\leqslant \frac{1}{2}$$

of half the linear dimensions of K, and with its centre at R and axis parallel to the x_3 -axis. Since Λ is K-admissible and since K is convex, no two of these cylinders overlap.*

no two of these cylinders overlap.*

Let
$$n$$
 now be a large positive integer. Since every lattice parallelepiped is of volume $d(\Lambda)$, the cube

$$|x_1|\leqslant n-rac{1}{2}, \qquad |x_2|\leqslant n-rac{1}{2}, \qquad |x_3|\leqslant n-rac{1}{2}$$
 contains $rac{8n^3}{16n^3}+O(n^2)$

contains
$$rac{8n^3}{d(\Lambda)}+O(n^2)$$

points X of Λ ; at least as many cylinders Z(X) lie therefore in the cube

Thus, by Lemma 2,
$$|x_1|\leqslant n, \qquad |x_2|\leqslant n, \qquad |x_3|\leqslant n.$$

 $\frac{8n^3}{d(\Lambda)} + O(n^2) \leqslant \frac{16}{\sqrt{3}}n^3,$ whence $d(\Lambda) \geqslant \frac{1}{2}\sqrt{3} - o(1)$, i.e. $d(\Lambda) \geqslant \frac{1}{2}\sqrt{3}$, $\Delta(K) \geqslant \frac{1}{2}\sqrt{3}$,

as asserted. * Minkowski, Geometrie der Zahlen, 74.