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On lattice points in n-dimensional star bodies
I. Existence theorems
By K. ManvLur, Manchester
(Communicated by L. J. Mordell, F.R.S.—Received 27 April 1945)

Let F(X) = F(z,, ...,x,) be a continuous non-negative function of X satisfying F(t.X)
= ¢ F(X) for all real numbers {. The set K in n-dimensional Euclidean space I, defined
by F(X)<1 is called a star body. The author studies the lattices A in R, which are of
minimum determinant aad have no point except (0, ..., 0) inside K. He investigates how
many points of such lattices lie on, or near to, the boundary of K, and considers in detail
the case when K admits an infinite group of linear transformations into itself.

INTRODUCTION

Let K be an arbitrary bounded orunbounded point set in the n-dimensional Kuclidean
space R, of all points

X = (2,2, ...,%,) (x, @, ..., x, real numbers).

A point lattice 4,

n
= Yty (h=1,2,...0, U, Uy, ...;u, =0, +1, £2,..),
. . " |
in R, of determinant d(A) = | @pp | pr=r,2,...m|

is called K -admissible if no point P of A, except possibly the origin O = (0,0, ..., 0),
is an inner point of K. (P is an inner point of K if there is an n-dimensional sphere
with centre at P and contained in K.) The minimum determinant A(K) of K is



102 I, Mahler

defined as the lower bound of d(A1) extended over all K-admissible lattices. This
function A(K) depends on K in a very complicated way and is, in general, not a
continuous function of K. A K-admissible lattice A such that d(A) = A(K) is called
a critical lattice of K; such critical lattices exist, for instance, if K contains O as an
inner point and has at least one admissible lattice.
Minkowski proved in his classical theorem that if K is a convex body with centre
at O, then
2Ky = V(K).

where V(K) is the volume of K. He further gave a finite algorism for obtaining A(K)
and the critical lattices of K if K is such a convex body andn = 2 orn = 3, orif K
is of a certain type with n = 4 (Minkowski 1907, 1911).

Minkowski also considered another more general class of point sets, the star
bodies (Strahlenkorper). These are point sets defined by an inequality

FX)<1,
where F'(X) = F(xy,...,2,) is a continuous function of X such that
F(X)=0 for all points X,
Ftey, ... tx,) = [ t| Fxg, ...,x,) for real t.

The functional equation implies that K is symmetrical in O. This restriction is not
made by Minkowski, but is in no way essential. He found (1g9r11) for such point
sets that

28(n) MK) < V(K),
but his proof was never published. Recently, Hlawka (1943) gave a very ingenious
proof based on the theory of multiple integrals, and I found a geometrical proof
(Mahler 1944) for a slightly less exact inequality.®

New progress was made in the years from 1938 onwards when important special
examples of star bodies in two or three dimensions were investigated by Davenport
(1938, 1939 and 1944) and Mordell (1942, 1943, 1944, and the general method 1945).
In 1941 Mordell discovered a method for dealing with a certain important class of
such problems. This work led me to ask myself whether Minkowski’s method of
evaluating A(K) when K is convex (Minkowski 1907, 1911) could be extended to
arbitrary bounded star bodies. I succeeded in answering this question in the
affirmative, and found an algorism for the evaluation of A(X) if K is two-dimensional
and bounded; and T applied this method to a few special cases.

In the present paper, the aim is not to consider further special examples of star
bodies, but rather to lay the foundations of a general theory of bounded or un-
bounded n-dimensional star bodies and their critical lattices.

In this first part, I begin by proving that if the star body K,

FX)<1,

* Addition, May 1946. A beautiful new proof of the Minkowski-Hlawka theorem was

recently given by C. L. Siegel, Ann. Math. 46 (1945), 340-347.
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has at least one admissible lattice, then K also admits at least one critical lattice.
The points of such a critical lattice A on, or in the neighbourhood of, the boundary
(' of K are next studied. If K is bounded, then at least 2n points of /1 lie on C, as is
almost obvious; an example is constructed in which this lower bound is attained.
If K is not bounded, then /A need not have a single point on €, as is also proved by
means of an example. It is then easily proved that to every ¢ > 0 there is at least one
point P of A such that
IS F(P)<1l+e;

however, it remains an open question whether there are always n independent points
of A with this property.

From § 14 onwards, unbounded star bodies are considered with an infinite group
I of linear transformations into themselves; many of the most interesting lattice-
point problems are of this type. Three different assumptions about /" are made and
applied to the study of the critical lattices. Then three general classes of star bodies
are found with the following three properties respectively: (@) At least one critical
lattice of K has a point on € (theorem 21). (h) For every e > 0, every critical lattice
A of K contains an infinity of points P satisfying

1< F(P)y<1l+e

theorem 23). (¢) For every e > 0, every critical lattice A of K contains n independent
3 ; A I
points /4, ..., P, satisfying

ISF(P)<l+e (g=1,2,...,n)

(theorem 25). The simplest example of an n-dimensional star body with all three
properties (a), (b), (¢) is that defined by the inequality

|2y, ..o, | <1

In the second part of this paper which is appearing in the Proc. Royal Acad.
Amsterdam, T intend to study certain types of star bodies K according as they
contain, or do not contain, smaller star bodies K’ such that

AMK') = A(K).

1. NoTaTION
The following notation is used in this paper:
o, x,, ..., x, (n=2)are real numbers, then

‘Y = (xlvxzi"'vd"n) (J])

is the point in n-dimensional Euclidean space R, with rectangular co-ordinates
X4, L, ..., Z,. The non-negative number

in :-+»(:1:‘i+x§+...+x,‘i)é (1-2)
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is called the distance of X from the origin O = (0,0, ...,0). If

Xy = (@P, 2P, ...,a®), ..., X, = (@, 2], ..., 2D) (1-3)
are any points in R, and A, ..., A, are any real numbers, then

A X+ AKX,
is written for the point ‘

AP+ 2D A 2D 2D, A a4 A2,

rn
The determinant of n points
Xy = (@, 2, . al), .. X, = (&, 2, ..., ) (1-4)
2P 2P L 2|

!
. I XD 2D L 2@ |
is denoted by (X, Xy, X)) = | 71 T2 o

. S (1-5)
| x(n) zv'i{’) o x‘ﬂﬁ‘" :
The points are called independent, if this determinant does not vanish.
The set /1 of all points
X=u, X;+...4u,X,, where uy,...,u,=0,+1, +2, +3, ...,

is called a lattice if its determinant

d(d) = | {X,, Xy, ..., X} (1-6)

is not zero; then Xy, Xy, ..., X, are said to form a basis of 4. Any » points ¥}, Y,, ..., Y,
of /A form a basis of this lattice if and only if

Y, Y, .. Y} = +d(A). (1-7)

If P.Q, R, ... are points of A, then A—[P, @, R, ...] denotes the set of all points
of A different from P, Q, R, ....

2. THE REDUCED BASIS OF A LATTICE

TaeorEM 1. There exists a constant v, >0 depending only on the dimension n
of R,, with the following property : every lattice Ain R, has a reduced basis, i.c. a basis
Y. LY, for which

(N Y] Y, [ <y, d(A). (2-1)
Proof. Let X, = (@2, ..,a®), .., X, = @2, ..., ") (2-2)
be any basis of A. Then
T
Duy, ..., u,) = }jl(xg,”uﬁ» et = |y Xy + o, X, |2 (2:3)
P

is a positive definite quadratic form of discriminant

d(A)? = {X}, Xy, .o, X, 02 (2-4)
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There exists a linear unimodular substitution
K
Uy, = X a,,v,, where g=1,2,..n, (2-5)

=1

with integral coefficients by which @ is changed into a new form
~ , » S 9.
Dy, ..yuy,) = Py, ..., v,) = 3 L(z/‘ i+ Ly, (2-6)

which is reduced according to Minkowski (rgr1). Hence by his theorem
Y(1,0,...,0)P(0,1,...,0) ... (0,0, ..., 1) <y d(A)2, (2:7)

where v

v, > 0 depends only on n. The n points

Y= @008 ) Y = 7 980 ) (2:8)

form a basis of A since

Yy Y = (X, X, = +d(A). (2-9)
Moreover,
W(1,0,...,0) = | Y [2 WO, 1,...,0) = | Y, |5 ..., W(0,0,..,1) = | Y, |5, (2:10)

whence the assertion.

Theorem I may also be proved by the reduction method of Hermite (19os),
which has the advantage that the proof of the product formula for the ¥’s is of an
elementary character.

3. THE CONVERGENCE THEOREM
DeriNiTioN 1. An infinite sequence of lattices
Ay, Ay, Agy oo
is called bounded, if there exist two positive numbers cy, ¢y such that
d(A,)<ey Jor r=1,2,3,. (3-1)
| X|=e¢y, forall points X+0 of A,, when r=1,2,3,.... (3-2)

DeriNtTioN 2. An infinite sequence of lattices

Ay, Ay, Ag, oo
s savd to converge, and to have as its limit the lattice A, if there exist reduced bases
YO, Y9, ., YD of A, for r=1,23, .. (3-3)
and a basis Y. Y,,....Y, of 4,
such that m | YP—Y, | =0, where g=1,2, ... n. (3-4)

r—>a
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This definition implies that the points of /, in any finite region independent of r
tend to the points of /A, as » tends to infinity.

From these two definitions is derived the following theorem which is fundamental
for the study of star bodies:

TureoreM 2. Ewvery bounded infinite sequence of lattices conlains a convergent
infinite subsequence.

Proof. Let Ay, Ay, A, ... be anv bounded sequence, and let Y, Y, ..., Y be
a reduced basis of /1, 101 r=1,2,3, ..., then from definition I,
dA)<eq, | YP|>c, where g=1,2,. . mandr=123 .., (3-5)

and from theorem 1,

| YO Y9 | Y9 <y,d(4,), where r=1,2,3...., (3-6)
hence | YO <y, ce5 D, where g=1,2,..,nandr=123,... (37)
All co-ordinates of the basis points Yf(,") (g =1,2,....,n;r=1,2,3,...) are therefore

hounded, and so there exists an infinite sequence of indices

and a set of n points Y, Y, ... Y,

such that ]1m l )(")— Y,| =0, where g=12..n, (3-8)
whence I}}ilj}(l(/lrk) t/ln)i| (YR, Yg0, YO = [ (Y, Y, .., V0] (3-9)
Further, from Vud(A, )= | YT || XYY || YR [ = cf, (3-10)
and d(A,,) =y el (3-11)
it is deduced that YL Y, . Y [ 2yntes >0, (3-12)

and so the lattice A of basis Y}, Y,, ..., Y, satisfies the assertion.

4. DISTANCE FUNCTIONS AND STAR BODIES
DevriNiTioN 3. A function
F(X) = Flzy, 2y, ..., 2,) (4-1)

of the point X = (¥, %, ...,x,) in R, is called a distance function if it satisfies the
Sfollowing conditions :

(@) F(X)=0 for all points, and F(X)> 0 for at least one point;
(b) F(tX)=|t|F(X) for all points X and all real numbers t; hence
F(—-X)=F(X) and F(O)=0;

(¢) F(X)is acontinuous function of X.
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DeriNition 4. The set K of all points X satisfying F(X) < 1is called the star body
of distance function F(X); the subset C' of all points of K with F(X) =1 s called the
boundary of K.

1t is evident that a star body K has the following properties:

(A) If X belongs to K, then tX, where — 1 <#<1, also belongs to K.

(B) The limit point of a convergent sequence of points of K also belongs to K.

(C) The origin O is an inner point of K; i.e. there exists a positive number p such
that all points of the sphere | X | <p belong to K.

For since F(X)is continuous, it assumes on the sphere | X | = 1 a maximum value,
say 1/p. Then F(X)| X | 1<1/p for all X 40, whence F(X)<1,if X is a point of
the sphere | X | <p.

TuroreM 3. The star body K is bounded if and only if
F(X)>0 for all points X 0.

Proof. Asa continuous function, #(X) assumes on the sphere | X | = Laminimum,
say . 1f 5 = 0, then F(X) vanishes at a point X = O, and so it vanishes at all points
of the line through O and X; hence K is not bounded. If, however, x = 1/P> 0.
then F(X)| X [ 1= 1/Pforall X 40, hence | X | < Pif F(X)<1,and so K is bounded.

5. THE TWO TYPES OF STAR BODIES
DeriNttioN 5. The lattice A is called K-admissible if A—[O] contains no inner
points of K.
DerINITION 6. The star body K is called of the finite type if there exists at least one
K-admissible lattice ; it is called of the infinite type if no such lattice exists.
Turorem 4. Fovery bounded star body is of the finite type.

Proof. Let P> 0 be a number such that | X | <P for all points of K, and denote
by A the lattice of basis

X, = (P,0,...,0), X, = (0.P,...,0), .., X, = (0,0,..., P). (51)

Then | X | > P for all points X 40 of A; hence /1 is K-admissible.

TuroreM 5. Unbounded star bodies exist of the finite type, and also of the infinite
lype.
Proof. (1) The star body K of distance function
YUYY — | e . n 153
F(X)=|ayzy... 2, |W" (5-2)

is not bounded. To show that K is of the finite type, denote by & any totally real
algebraic field of degree n, by

o, P, ..., 09, where ¢g=1,2,...,n,
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conjugate integral bases of the n fields V, §®, ..., ®™ conjugate to &, and by A
the lattice of basis '

X, = (@P,0@, ..., o), where h=1,2,.. n. (5°3)
Then, except for the sign, F(X) is the norm of an integer a # 0 in § if X liesinA —[O];

hence F(X) =1 for all lattice points X 0.
(2) The star body of distance function

F(X) = |ada,...x, [VoriD (54)
likewise is not bounded, but it is of the infinite type. For let /A be any lattice, and

denote by ¢, t,, ..., 1,, n positive numbers of product d(A). By Minkowski’s theorem
on linear forms, there exists a point X = (z,2,, ..., 2,) %0 of A such that

Lo <ty 2| <ta s [, ] < (55)
hence 0< F(X) < {tyd(A)}Mon, (5-6)

If it be assumed now that t; <d(A)~%, then X is an inner point of A. Therefore A is

not K-admissible.
Unless otherwise stated, all star bodies considered are from now on assumed to

be of the finite type.
6. THE DETERMINANT OF A STAR BODY

Let K: F(X)<1, be a star body of the finite type. By definition 6, the set /1(K)
of all K-admissible lattices is not empty. Hence the lower bound

A(K) = Lb.d(A) (6:1)

extended over all elements of A(K), exists; A(K) is called the determinant of K.
For star bodies K of the infinite type, put A(K) = co.

TurorEM 6. The determinant of a star body is positive.

~ Proof. By the property (C') of a star body (§4), K contains the sphere | X | <p,

henece also the cube
max (|2, |, |2, ], ..., |2, |) < prt (6-2)

By Minkowski’s theorem on linear forms, every lattice of determinant
d(A)y<prn—in

contains an inner point X = O of this cube, i.e. of K, and so such a lattice cannot be
K-admissible. Hence, for every K-admissible lattice /1,

d(A) = prn—in, (6-3)
whence AK)=prnin>0. (6-4)
Turorem 7. [f the star body H is contained in the star body K, then
A(H) < A(K). (6-5)
Proof. Every K-admissible lattice is also H-admissible.
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7. THE BEXISTENCE OF A CRITICAL LATTICE
DrviNtrion 7. The lattice A is called a critical lattice of K if it is K-admissible
and d(A) = A(K).

The following theorem is fundamental for the theory:

Turorem 8. Hvery star body of the finite type possesses at least one critical lattice.

Proof. From the definition of A(K), there exists an infinite sequence of K-admis-
sible lattices
Ay, Ay, Agy oy

not necessarily all different, such that

limd(A,) = A(K); (

r—>00

~J
—

it may be assumed further, without loss of generality, that
d(A,)<24(K), where 7=1,23, ... (7-2)
X

Moreover, since the sphere < p is contained in K,

| X|=p forall points X+0 of A,, where r=1,2,3,.... (7-3)

r

From (7-2) and (7-3) the sequence {1} is bounded, and hence, from theorem 2
J \ ey s 5 B
it contains a convergent infinite subsequence

say of limit /. Denote by Y{y» Y§¥ .. Y& areduced basis of A
J J 1 2 ]
a basis of A, taken such that

v v .
s DY Y1, X, Y,

lim | Y Y where ¢=1,2,...,n, (7-4)
k>
hence
d(A) = [ Y, Yy, o, Vb | = lim [ {Y§0, YE%, . Y0} | = lim rl (4,,) = AK). (75)
k> k
Let further
Y=uY,+...4u,Y,+0, where u,,...,u, are integers (7-6)
be any point of A, and put
YO = g Y9+ . 4w, YI9, where k=1,23,...; (7-7)
then lim| Y™ Y| = 0. (7-8
F—>o0

Hence Y40 for sufficiently large &, and so F(Y®0)> 1 since A, is K-admissible,
whence
F(Y)=1lm F(Yrw)=1. (7-9)

k—w

From (7-5) and (7-9), A satisfies the assertion.
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8. Tar conTivuiTy or A(K)

If K: F(X)<1,is any star body, and if ¢ is a positive number, then we denote by
tK the star body of distance function t~1#(X), i.e. the set of all points X for which
F(X)<t. From homogeneity, it is evident that

A(UK) = " A(K). (8-1)
The set of all points X in K for which | X | <t is further denoted by K.

Turorem 9. Let K, K, K,, ... be an infinity of star bodies of the finite type, satis-
Sying the following conditions :

(a) Toevery e >0, there is a positive integer N (¢) such that K, is contained in (1 +¢) K
of r=Ne).

(by To every t>0 and every ¢ >0, there is a positive integer N(t,¢) such that K' s
contained in (1 +e) K, if r=N(t,e).
Then lim A(K,) = A(K). (8-2)

r—>w

Proof. From (a), by theorem 7,

ME)<A((1+6) K) = (1 +e) A(K), (83)
whence for ¢ 0, limsup A(K,) < A(K). (84)

It will now be shown that also

liminfA(K,) > A(K). (85)
>0
Let this inequality be false. Then there exists an infinite sequence of indices
7179, Ty, ... NOb smaller than N(p, 1) such that
AK,,) <24(K), and limA(K,)<A(K). (86)

k—>w

Denote by A

[, & critical lattice of K, ; therefore

d(A,,) < 2A(K). (8-7)

Then from (b) above, on taking ¢ = p, ¢ = 1, the star body 2K, contains K7, i.e. the
sphere | X | <p; hence K, contains the sphere | X | < jp. Since 4, is K, -admissible,
this implies that

| X | = 1p for all points X0 of 4,,.

It is clear from this and (8-7) that the sequence of lattices {,,} is bounded.
Therefore, from theorem 2, this sequence contains a convergent infinite subsequence

AR = A, AD = A, AV = A, ., (8-8)

iy

of limit A, say. For shortness write

KO = I{rlkl’ K® = ]{mg’ K® = K (8-9)

Thy 0
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then, as in the proof of the last theorem,

d(A) = lim d(A®) = lim A(K®), (8-10)
l—>w -
and so d(A) = lim A(K,,) < A(K). (8-11)
k>0

This means that A is not K-admissible; hence /A contains at least one point ¥ +0
which is an inner point of K.

Denote now by Y, Y9, ..., Y a reduced basis of A®, and by ¥,,Y,, ..., Y, a basis
of A taken such that

lim| YP-Y,| =0, where g=1,2..n; (8-12)
l—ow
then Y can be written as Y =uYi+...+u,Y, (8:13)
with integral coefficients uy, ..., u, not all zero. Now put
YO =u, YP+ .. +u, Y, (8:14)
then Y@ belongs to A, '
YO4+0, and lim|Y®-Y|=0, (8-15)
l—>w©
whence, for sufficiently large indices /,
| YO <2] Y. (8-16)
Since Y is an inner point of K and different from O, there is an ¢ > 0 such that
1
S0 817
) 1+ 3¢ (817)
hence, if [ is sufficiently large, from (8:15) it follows that
1
0y < 8-18
FYO) <150 (518)

and so (1+2¢) Y®4 0 belongs to K. This implies, from (8:16), that (1+2¢) Y@ is a
point of K, where t = 2(1+2¢) | Y |. Hence, from (b) above, the point (1+2¢) YO
belongs to (1+¢) K@ if [ is sufficiently large. This implies that Y® is a point of
I+e
+ 2¢
and since A% is a critical lattice of KO.

K® and so is an inner point of K®. However, this is impossible since Y00

Turorey 10. Let K : F(X)< 1 be a star body of the finite type, G(X) an arbitrary
distance function, and t a positive parameter. Then the star body
K, F(X)<1, where F(X)=max (F(X),1G(X)),
s also of the finite type, and further
lim A(K)) = A(K). (8-19)

{—>c0

Proof. It is evident from definition 3 that F(X) is a distance function. Since
F(X)> F(X) for all X and ¢, K, is contained in A and so is a star body of the finite

Vol. 187. A. 11
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type. Further, since the set /: G(X)<1 is a star body, there exists a number 7> 0
such that H contains the whole sphere | X | <7. The sphere | X | <t is then contained
in tH, and so A, which is a subset of this sphere, is contained in /,. The hypothesis
of theorem 9 is therefore satisfied, and so

A(K) = lim A(K,) (8-20)

r—>c0

for every sequence of positive numbers ¢, t,, {5, ... of limit infinity. This proves the
assertion.

The last theorem, for G(X) = | X |, shows that
A(K) = lHm A(KY). (8-21)
t—>c0

Originally (Mahler 1943), I used this formula as the definition of A(X’) for unbounded
star bodies, so reducing the problem to one for the bounded case.

Remark. The results of this paragraph remain true when A(K) = co.

9. LATTICE POINTS ON THE BOUNDARY OF A BOUNDED STAR BODY
Tuworem 11. If K is a bounded star body, then every critical lattice of K has n
independent points on the boundary C of K.
Proof. Let A be a K-admissible lattice which does not contain n independent

points on (. Then denote by [/ the set of all points of /4 on ¢, and by L the linear
space of lowest dimension f (0 <f<n—1) containing //. By Minkowski’s method of

adaptation of lattices, a basis Y}, ..., Y, of /4 can be found such that Y, ..., Y; lie in
and generate L, while Y, ..., Y, lie outside L. Let >0 be sufficiently small and

denote by A* the lattice of basis ¥y, ..., Y, (1—¢€) Y ,,...,(1—¢)Y,. This lattice is
K -admissible since O and the elements of /7 are its only points belongmg to K. Since
d(A*) = (1 —e)Td(A)<d(A), A% is of smaller determinant than .1, and so 4 is
not critical.

This theorem shows that in the case of a bounded star body A, every critical lattice
/A has at least 2n points on its boundary €, namely, » independent points P, ..., P,
and their images — P, ..., — P, in O. If

+ 0, +Fh, ..., +P,

are the only points on ' of the lattice /A, then A is called a singular lattice of K;
otherwise it is called a regular lattice. The example in the next paragraph shows that
star bodies with singular lattices do exist.

10. AN EXAMPLE OF A STAR BODY WITH A SINGULAR LATTICE

TaeoreEM 12. There exists a bounded star body with just one critical lattice. More-
over, this lattice is singular.

Proof. Let e be so small a positive constant that

(L—e)'> i (1—e133>1, e<n QW) —-1). (10-1)
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and let ¢ =0 be a point in R, . The set S,(@) of all points
P =1tQ+(t—1)eR, where t>1 and |R|<1, (10-2)

is a cone with vertex at ¢ and its open side away from O. For when ¢ is fixed and R
describes all points of the unit sphere | R | <1, then P lies on or in a sphere centre at
tQ and radius (¢ — 1) ¢; on varying ¢, we obtain S,(¢) as the sum set of these spheres.

Denote further by /A, the lattice of all points with integral co-ordinates, i.e. of basis

P =(1,0,...,0), B, = (0,1,...,0), ..., P, = (0,0, ..., 1), (10-3)

and of determinant d(A1,) = 1.

The cube W |2y | <UE, 2| <Y .., |2, | <H3 (10-4)
contains 3” points of A, namely, the origin O, the 2n points + P, + B, ..., + P,

and the m points P71, Pj, ..., P;,, where

n
Pl = (@), a0, ..aP), 2 =0,1,0r —1, E | >2 (10-5)
g=1
Denote by KA the set of all those points of W which are not inner points of one of the
cones

S.(+F), where g=1,2,...,n, or S[(1—¢€)P,], where h=1,2,...,m.

Then K is a bounded star body, and the cube
V. |z | <1—e, |2, <1—¢, ..., |2,|<1—¢, (10-6)

obviously is a subset of K. Therefore from theorem 7, Minkowski’s theorem on linear
forms, and tfrom (10-1)

MEK)=2A(V) = (L—¢e)r>2. (10-7)
On the other hand AK)<d(dy) = 1, (10-8)

since, by the construction, /A, is A-admissible. Hence, if A is any critical lattice
of K. then

s cd(A)< 1. (10-9)
Each one of the »n parallelepipeds

U

o lz, | <%, |o|<l—e for 1=1,2,..,9-1,9+1,...,n (10-10)

from (10-1) is of volume 21—ty > 2, (10-11)

Hence, from Minkowski’s theorem on linear forms, at least one point of 4 —[0] is
an inner point of U, say the point P¥ = (£, £9, ..., £?). This point lies in one of
the two cones S,( £ F,), since the other inner points Of U, are also inner points of K.
There is no loss of generahtv in assuming that P} belonﬂs to S,(F,) and so may be
written as

P¥ =1t,P+(t,—1)eR, where f,>1and|R,|<1. (10-12)

I1-2
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Therefore if, say, R, = (4@, 79, ..., 7®), then
£9 =t,+(t,—1)en® (10-13)
and P> —1; (10-14)
and since F), lies in U,
V289 =t,+(t,—)en@>1t,—(t,— 1) e>(1—e)t,, (10-15)
3
whence 1< N/z o where ¢ =1,2,. (10-16)

Denote now by D the determinant

D = {P¥, P, ..., P, (10-17)
by & the unit determinant
B ={(P,Py..,P) = d(Ay) = +1, (10-18)
and by E(91, G0 -5 ,), where 1<r<n, 1<g,<gy<...<g,<n,

the determinant which is obtained from £ if the points P, , P, ..., P, in it are

g1’ T g2t 9r
replaced by the points R, R, , ..., R, of the same indices. Obviously E(g,.¢s. ....4,)

a1
is equal to its cofactor of order r belonging to the rows and columns of indices

G1s G2y ---»4,. Hence
IE(glagz"-'ygr)IST! (1019)

since the moduli of the co-ordinates of R, R, ...,

gince a determinant of order r consists of ! terms.
From (10-12), D can be split into a sum of 2" determinants, namely,

R, are not larger than 1, and

'n* rt!h_lt(hs—l tgr_l 2
D=ttty t VE+3% B9, 9o s 9,) € , (10-20)
r=1 tg1 tgz tgr
n " n
with the abbreviation TE=3 3. (10-21)
r=1  r=1 0.0 Gr=

Now from (10-1) and (10-19)

| B(g1s Jas - 9,) | €7 <rlen < (re) < (ne) < () — 1), (10-22)

hence
t, —1 ¢t —1 n i, —1 ¢ —1
Gosooes ) €7 T Esz*{{‘/(%)—l}rm_"l L
t01 by, | =1 by, ty,
=110 = 1) 1= () IO +HGED 6, - D)= 1, (1023
g=1 g g=1
whence D< H{l +3(49) (t,— 1)}, (10-24)
g—1

and D;Qﬁtg—ﬁ{l + (35 t,— D} (10-25)
g=1 g=1
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From (1()-1), (10-16) and (10-24) then
) no /a1l "f'(ii )
DT+ - 1) = TTRE L < 11 () — g0 - <t
l]” g = (]: \ 1
(10-26)

Further, since 2 — (:5)" >0 for r = 1,2,...,n, then from (10-16) and (10-25),

[[ L+ *1);—11 L+ 338 - Dj

g=1
1+ ﬁ,l 2 (3 (= 1) oo (G, — )= 1, (10-27)
=

with D = lifand only ift, =t, = ... =¢, = L.

This proves that 1< D<$, (10-28)
the lower bound being assumed if and only if t; = ¢, = ... = ¢, = L, i.e.if

PF=P,Pi=PR, .. P:=0"D,.

Since D >0, the n points P¥, P¥, ..., P} are independent; therefore

D = jd(4), (10-29)
where j is a positive integer. From (10-9) and (10-28) it follows that
55j5.3 j<2, (10-30)

and soj = 1,d(A) = D> 1, with equality if and only if 4 = A,. Since 4, is K-admis-
sible and since d(1,) = 1, this completes the proof that A is the only critical lattice
of K, and also that A, is singular.

COROLLARY. For any given integer m =n, there exists a bounded star body K with
a critical lattice having just 2m points on the boundary of K.

Proof. Nearly obvious, because any star body K’ has the required property if
it satisfies the following three conditions: (a) K, as defined in the last proof, is a
subset of K'. (b) A,, as defined in the last proof, is K'-admissible. (¢) Just 2m points
of A, lie on the boundary of A’.

Remark. In an earlier paper on star domains,* I discussed a method by which
to obtain A(K) and the critical lattices for every bounded two-dimensional star body,
provided the boundary consists of a finite number of analytical arcs. This method
may be extended to the n-dimensional case, but, naturally, the calculations now
become very complicated.

11. THE LATTICE FUNCTION F(A4)
If A is a lattice, ¢ a positive number, and ¢4 denotes the lattice of all points {P
where P runs over /, it is obvious that
d(tA) = tnd(A). (11-1)

# Mahler—On lattice points in two-dimensional star domains, to appear in the
Proceedings of the London Mathematical Society.



166 K. Mahler

Further, if K denotes the star body (not necessarily bounded) of distance function
F(X), write

F(A) =1b. F(P), (11-2)
for the lower bound of F(P) extended over all points P+ 0 of A. Then the symbol
F(A) has the following evident properties:

A is K-admissible if and only if F(A)=1.
A is a critical lattice of K if and only if F(A) =1, d(A) = A(K);
further F(iA) =tF(A) if t>0. (11-3)

A star body is therefore of the finite type if F'(/1)> 0 for at least one lattice, and is
of the infinite type if #(A) = 0 for all lattices.
In the special case when K is a bounded star body, it is easily seen that F(A4) is
a continuous function of A; i.e. if Ay, A,, A,, ... is a convergent sequence of lattices
of limit A, then '
lim F(A,) = F(A). (11-4)
If, however, K is an unbounded star body, then F(A) need not be continuous, as
the following example shows. We choose

F(X)=|az,...2, |V, (11-5)
and take for / the lattice of basis
X, = (@0, 0P, ...,0\"), where h=12 .. n, (11-6)

as defined in the proof of part (1) of theorem 5; there is no restriction in assuming
that this basis is reduced. Further, denote by

XP, X9, .., X0 where r=1,23,...,
an infinity of sets of » independent points with rational co-ordinates such that

lim | X —X,| =0, where h=1,2,..,n, (11-7)

r—> 0

and such that further X, X¢, ..., X% form a reduced basis of the lattice .1, generated
by these n points. Then by the proof of theorem 5,

FA)=1, (11-8)
while, on the other hand, Fd,)=0 (11-9)
and lim F(4,) = 0, (11-10)

r—>0

since a linear form with rational coefficients represents zero.

12. LATTICE POINTS NEAR THE BOUNDARY OF AN UNBOUNDED STAR BODY

It was seen in § 9 that a critical lattice of any bounded star body has at least 2n
points on its boundary. For unbounded star bodies, this is no longer so; as will be
seen in the next paragraph, there exists an unbounded star body of the finite type
such that at least one of its critical lattices has no point on its boundary.
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It may then be asked, however, whether lattice points lie arbitrarily near to the
boundary of K. The answer is given by the nearly obvious

TrrEorREM 13. If K: F(X)<1 is a star body of the finite type and A is a critical
lattice of K, then to every € > 0 there exists a point P of A such that

I<F(P)<l+e. (12:1)
Proof. If F(P)>1+e for every point P+0 of A, then
F(A)>1+e, (12-2)
whence . F(»ﬁ—) =1. (12-3)
1+e

<

Therefore
1+e€

is also K-admissible, but is of smaller determinant than A, and so

A is not critical.
This theorem leads to:

ProBrLEM A. Let K: F(X)< 1 be a star body of the finite type, A a critical lattice of K,
and € > 0 any arbitrarily small number. Do there exist n independent points Py, B, ..., P,
of A such that

I<SF(P)<l+e, where g=1,2,..,n? (12-4)

I have not been able to decide this question. The difficulty lies in the fact. that
F(A) may be discontinuous, and so the method of the proof of theorem 11 cannot
be applied. .

Remark. From theorems 8 and 13, for any given ¢ > 0, every lattice of determinant
d(A) = A(K) contains a point P = O satisfying F(P)<1+e.

13. AN EXAMPLE OF AN UNBOUNDED STAR BODY WITH NO CRITICAL
LATTICE POINTS ON ITS BOUNDARY

TuEOREM 14. Let Fy(X) be the distance function

Fy(X) = |zy2y... 2, |17, (13-1)
and let further F(X) be any distance function satisfying the conditions
F(X)zF(X) o F(X)>0, (13-2)
F(X) .
L1 f F(X)>0, | X|1E(X)-=0. 13-3

Denote by K, and K the star bodies of distance functions Fy(X) and F(X), respectively.
Then
A(K) = A(K,). (13-4)

Proof. K is a subset of K, and so from theorem 7, it follows that

A(K) < A(K,). (13-5)
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Now assume that A(K) < A(Ky); (13-6)

this assumption leads to a contradiction, as will be proved.
The function f(X) defined by
F(X)
FX) = { B(X)
1

if F(X)+0, 1 137)

if Fy(X)=0, X#O,J
and not defined if X = O, is continuous and therefore bounded for all points of the
unit sphere | X | = 1. Let ¢> 1 be its upper bound on this sphere:

f(X)<e if |X|=1 (13-8)

Then, since f@X)=f(X) for ¢%0, - (139)
¢ is the upper bound of f(X) for all X = O, therefore

F(X)<cFy(X) (13-10)

for all X, since this inequality remains true if X = 0.
Let now /1 be any critical lattice of K; then, from (13-6),

d(A) < A(K,), (13-11)
or, say, d(A) = (1 +a) D A(K,), , (13-12)
where « is some positive number. Put
, I+a)d =4, (13-13)
so that A" is (1 +a) K-admissible, and
AA') = (1+a) L A(Ky) < A(K,). (13:14)

Denote further by X the set of all points of A" which are inner points of K,. If P
is any point of X, then

F(P)z1+a, K(P)<l, (13-15)
whence F(P) >1+a (13-16)
Fy(P) ’
and further, from (13-10),
1 1
E,(P)>EF(P)>M»+C—E>O. (13-17)
But from (13-3) there exists a positive number f such that
F(X) . .
FO(X)—1‘<OL if 'F;)(X):FOJ lX'—lFO(X)<ﬂ (13-18)

Hence, by the inequalities just proved,

| PP E(P) = B, (13-19)
and so _ |P.|<V°;),£)<%. (13-20)
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Next, if P = (py, ps, ---, P,,), then

14\
| p1p2--- P | =F0(P)n>(mc ) ) (13-21)
1
and max(lpll,]pz\,...,]pn|)<lPl<B; (13-22)
1 .
and so, finally, \p1|>]pz~-pn|"1(lja) ( M) Bt (13-23)

Denote by r any positive integer, and by ¥ = 2, X the unimodular linear trans-
formation
Yo =1""1ay, Yy, =112y, ..., y, =112, (13-24)

Further denote by A, = 2,4’ the lattice of all points @ = 2, P where P runs over
A’y and by X, = 0, the set of all points @ = 2, P where P lies in 2. Then obviously

d(4,) = d(4'), (13-25)

and X, consists of all and only all those points of A, which are inner points of K.
If P=(pg,Po-.-,0,) is a point of X and @ = 2, P = (q1,9,, ---,4,) is the corre-
sponding point of 2, then, from (13-23)

lqy| =7t I P I - (lvz_‘““)“ (Br)n1, (13-26)

and so Q> ;q1[>(1+“) (fr) (13-27)

Asin§8, denote by K, where t > 0, the set of all points X of K, for which | X | <t.
Then the last inequality for ¢ shows that there exists a monotone increasing
function R(t) of ¢ such that

A, is Ki-admissible if 7> R(t). (13-28)

r

Now the sphere | X | <1 is obviously a subset of K, hence also of K if ¢>1.
Therefore, from (13-28),

| @|>1 for all points Q+0 of A, if r>R(t) and t>1.
Also since d(4,) =d(A’) for »=1,23, ..., (13-29)

the sequence of lattices A4, 4,, A, ... is bounded.
But then, by theorem 2, this sequence contains a convergent infinite subsequence

of lattices
A, 4,4

r ry? rgy ***

say of limit A*. Since, from (13-14),

d(A%) = limd(A,,) = d(A') < A(K,), (13-30)

k—>
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A* cannot be K -admissible; there is then a point P* of A* which is an inner point
of K, and so also an inner point of Kf if ¢ is sufficiently large. Further, as in earlier
proofs, it may be shown that there are points

B,FB,FB, ..ot A, ,4,.4,,.. respectively,
such that lim | B, — P*| = 0. (13-31)
k—>w

But then P, is also an inner point of K{ if k is sufficiently large, contrary to (13-28).
This completes the proof.

THEOREM 15. There exists an unbounded star body of the finite type with a critical
lattice which has no points on the boundary of this body.

Proof. The same notation is used as in theorem 14, but it is assumed that ¥ (X)
satisfies, instead of (13-2), the stronger condition

F(X)>F(X) if Fy(X)>0; (13-32)
e.g. take F(X) = Fy(X) {1 +T°§(Xl)}. (13-33)

Let A be a critical lattice of K. Since K is a subset of K, A is K-admissible; further,
since from theorem 14,
d(A) = A(K,) = A(K), (13-34)

A is a critical lattice of K. But the boundary of K consists only of inner points of
K,, and so no point of 4 may lie on the boundary of K, as asserted.

It is easily proved from §15 that K, and so also K have an infinity of critical
lattices. The question also arises:

ProBrLEM B. Do there exist critical lattices of K, which are not critical lattices of K,
and do these lattices have points on the boundary of K?

14. STAR BODIES WITH AUTOMORPHISMS

Let X = (2,2, ...,2,) and X' = (21, 2,, ...,2,) be two points in E,. The linear
substitution

n
0 x, = Ya,x,, where g=1,2,..,n, (14-1)
k=1
of determinant w=|ay |12 . .2%0 (14-2)
or shorter X' =0X (14-3)
has an inverse X =01X'. (14-4)

The substitution defines a one-to-one mapping of R, on itself.

T A much simpler proof of theorem 15 will be given in Part II of this paper.
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If A is an arbitrary lattice, then 2/ denotes the lattice of all points P’ = QP
where P belongs to A; obviously

A(QA) = |w]|d(A). (14-5)

TaEOREM 16. Let K: F(X)<1 be a star body of the finite type, 2 a substitution of
determinant w %= 0, F'(X) the distance function

F'(X) = F(2X), (14-6)
and K' the star body F'(X)< 1. Then K’ is also of the finite type, and
AK') = |o | AK). (14-7)

Proof. If Aisany K-admissiblelattice, then A" = Q-4 isevidently K'-admissible,
and so K’ is also of the finite type. Further 4(K')is not greater than the lower bound
of d(Q14) = |w|~1d(A) extended over all K-admissible lattices, i.e.

AK)< | | AK). (14-8)
Since F(X) = F'(21X), conversely
A(K)< o | AK). (14-9)

From these two inequalities, the assertion follows at once.

DuriNtTiON 8. The linear substitution X' = QX s called an automorphism of the
star body K: F(X)< 1, if identically in X, '

F(X') = F(X). (14-10)

It is obvious that such an automorphism leaves both K and its boundary C
invariant.

TurEoREM 17. If the star body K is of the finite type and admits the automorphism
X' = QX of determinant w, then w = + 1.

Proof. By theorem 16, A(K) = |w|*4(K), whence |w | = 1 since 4(K)=+0.

This theorem shows that star bodies having automorphisms of determinant
w= + 1, are necessarily of the infinite type, e.g. the star body of distance function
F(X) = |23, ... 2, |Y+D with the automorphism

af = Vg x) = tw,, ..., ¥, =tx, ({>0). (14-11)

Tt is obvious that if K is of the finite type, then the set of all automorphisms of K
forms a group. Whether this group is finite or infinite, discrete or continuous, depends
on K itself.

DEFINITION 9. An unbounded star body K of the finite type is called automorphic
if it admits a group I of automorphisms Q with the following property : * There exists
a positive constant ¢ depending only on K and I such that to every point X of K there
is an element Q of I' satisfying

|2X |<e’ (14-12)

A few examples of automorphic star bodies are given in the next section.
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15. EXAMPLES OF AUTOMORPHIC STAR BODIES

(1) Letr>0and s> 0beintegers such thatr + 2s = n, and let '(X) be the distance

function

r S 1n
F(X)= H H( r+a+xr+s+0) . (15'1)
p: =

It was shown in the first part of the proof of theorem 5 that the star body
K: F(X)< lisofthe finite typeif r = n,s = 0. Just the same proof applies when s > 0,
except that the field ® there must now be algebraic with r real and 2s complex
conjugate fields. If the trivial cases r = 1, s = O and r = 0, s = 1 be excluded, then
K is not bounded and admits a continuous group of automorphisms depending on
n— 1 parameters, namely, the group of substitutions

¥, =t,x, where p=12..,r, (15-2)
/ ’
Lo = tr+trxr+¢r'— tr+s+axr+s+o" Lristo = tr+s+a' xr+<r+tr+<rxr+s+m
where o=1,2..s, (15-3)

t are n real numbers such that

o tn

while ¢, ¢,, ..

Ht H(r+o+tr+s+a') il' (15'4)
p=1 ¢r 1

The star body K is automorphic since obviously every point X of K can be trans-
formed into a point X’ of bounded distance from O by one of these automorphisms.

(2) Letr be an integer such that 1 <r<n—1, and let K be the star body of distance
function

1
z

(Zx—Zx ) (15-5)
o=r+1

By the theory of quadratic forms, K admits a group of automorphisms depending

on in(n—1)real parameters. It is again possible to show that every pointin K can

be transformed by one of these automorphisms into a point of bounded distance

from O. Hence K is automorphic provided it is of the finite type, and so the following

problem arises:

Prosrem C. Is the star body of distance function

] (15-6)

p=l o=r+1

r
-

F(X) =

of the finite or of the infinite type?t

For 2 < n < 4, K is of the finite type, because there exist indefinite quadratic forms
in n variables with integral coefficients and of given signature which do not repre-
sent zero non-trivially. If, however, n> 5, then, by Meyer’s theorem (Bachmann
1898), every indefinite quadratic form with integral coefficients does represent zero;
so the solution of problem C may be difficult.

+ Addition, May 1946. In a joint paper, H. Davenport and H. Heilbron have just shown
that K is of the infinite type if n > 5.



On lattice points 1n n-dimensional star bodves 173

(3) Let n = 2, and denote by 6 any number with 0 <6 < 1. The line segments
joining the pairs of points
(0%, 0-%) and (0F+1,0-%1), where k=0,+1,+2, ...,

form an infinite polygon I7; let C' be the curve consisting of /7 and the images of I7
in O and the two axes. Then C forms the complete boundary of a two-dimensional
star body K. There is no difficulty in proving that K is of the finite type and that it
admits the infinite group of automorphisms

wy =+ 0, xp=+0"%, where k=0,+1,+2, ..
and g=1,h=2 or g=2h=1. (15-7)

It can be shown that every point of K can be transformed by one of these auto-
morphisms into a point of bounded distance from O; hence K is an automorphic
star body.

16. PROPERTIES OF THE LATTICE FUNCTION F'(A)

It was seen in § 11 that F(A) need not be a continuous function of A. The next two
theorems on sequences of lattices have therefore some interest:

TurorEM 18. Let Ay, Ay, A, ... be a convergent sequence of lattices, say of limit A.
Then

F(A) =z liminf F(4,). (16-1)

Proof. Choose reduced bases Y9, YP, ..., Y® of A,, and a basis Y,,%,,...,Y, of

/ such that
lim|YP-Y,| =0, where g=1,2,...,n (16-2)

r—> 0

Every point P+0 of A can be written as

P=wuwY +.. +u,Y, (16-3)
with integral coefficients u,, ..., u,, not all zero. Put
Po=u, YD+ .. +u, Y, (16-4)
then P.+0, and P, lies in A4,. (16-5)
Hence F(P)y=F(A,). (16-6)
Therefore by the continuity of F(X),
F(P) =lim F(P,) > liminf F(A,), (16:7)

as asserted.

TurorEM 19. Let Ay, Ay, As, ... be a convergent sequence of lattices, say of limit A,

and assume that ¢ = lim F(A,) exists and is positive. Let there also be a constant ¢ >0
r—> 0

and an infinite sequence of points Py, Py, B, ... such that
P40; |P.|<c; Pliesin A, where r=1,23,.., (16-8)
lim F(P,) exists and is equal to ¢.

r—>0
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Then lim F(A,) = F(A), (16-9)
and there exists a point P =0 of A such that
F(P) = F(A). (16-10)

Proof. There is a positive number p such that the sphere | X [ <p is contained
in the star body F: F(X)<1. Put

o=1pp. (16-11)

Then the sphere | X | <o is contained in the star body F(X) <o /p,i.e.in F(X)< F(A,),
for all sufficiently large 7, say for r > r,. Therefore for every point ¢ + 0 of 4,, since
F(Q)= F(4,),

|Q|=z0 if r=r,. (16-12)
Let, in particular, Y{, Y, ..., Y% be a reduced basis of 4, and Y3,¥;, ..., Y, a basis
of /A taken such that

Tlirﬁ] YO-Y,| =0, where ¢g=1,2,...,n. (16-13)

Then | YO |20 for rzr, g=12,..,n (16-14)
On the other hand, from theorem 1,

| YO YD) ... | Y| <y, d(4,). (16-15)

Also, from the hypothesis, }1—{1; d(4,) = d(A), (16-16)

hence ldA)<d(A,)<2d(A) for 7>ry, say, (16-17)

and so
| YO | <200V, d(A) for r>max(ry,m), where ¢ =1,2,...,n. (16-18)

Since P, is a point of A, different from O,

P =uYP 4 +u)YD (16-19)
with integral coefficients u, ..., u{; not all zero. On solving this vector equation
for u{, ..., u®,

d(4,) | u®) = | Yy, YO, .Y |ul| = I{Y&’"), oo Yg)_l,Pr, Yo, ... Yo,
(16-20)

Hence the lower bound for d(,) and the upper bounds for Y and 7, imply that
lup| <, (16-21)
where ¢’ is a positive number independent of » and g.
There exists then an infinite sequence of indices
T =17y,7s 73 ..., Where limr; = o0, (16-22)
k—©

such that the coefficients
u? = u, say, where k=123, ..;9=12..mn, (16-23)
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assume integral values independent of £, and such that at least one of these integers
Uy, ..., U, is different from zero. Further

P, =u, Y+ 4w, YW, where k=1,23,.., (16-24)

and so the points 7, tend to the limit point
P=wuY+...4u,Y,+0 (16-25)

which is a point of 4. From the hypothesis
F(P) =klim F(P,) =lim F(F,) = rlim Fa,), (16-26)
whence F(A)<lim F(4,). (16-27)

Moreover, from the last theorem,
F(A)=1lim F(A,), (16-28)

r—>0

and so the assertion follows at once.

17. LATTICE POINTS ON THE BOUNDARY OF AN AUTOMORPHIC STAR BODY

THEOREM 20. Let K: F(X)< 1 be an automorphic star body, and let A be any lattice
such that F(A)> 0. Then there exists a lattice A* and a point P* of A* such that
F(P*) = F(A*) = F(A), d(A¥) =d(A). (17-1)
(Remark. A* need not be different from /. The theorem remains valid if (A1) = 0,
but then is nearly trivial.)
Proof. Assume that A contains no point P such that
F(P) = F(4); (17-2)
otherwise the assertion is certainly true. There exists then an infinite sequence of
points P, B, Py ... of A such that
lim F(P) = F(A4)>0; (17-3)

r—>0

assume that all these points are different from O.
For each point P, select an automorphism 2, of K such that

|Q,B|<c. (17-4)

Put QP =Q, 24=A41, (17-5)
so that @), belongs to A4,, is different from O, and satisfies the inequality

1Q,|<c. (17-6)

By the invariance of K, F(Q,) =FQ.F)=FF), (17-7)

hence from the hypothesis  lim F(Q,) = F(4)>0. (17-8)

r—>0
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Further, from theorem 17, 2, is of determinant + 1, and so

d(4,) = d(A). (17-9)
Next, it is shown that F(d,) = F(A). (17-10)
For if P runsover all points of A —[0], then @ = ©Q, P runs over all points of 4, —[0],
and vice versa. But by the invariance assumption,

FQ) = F(P), (17-11)
and by definition,

F(A)y= 1b. F(P), Fd,)= 1L1b. F(Q), (17-12)

Pin A—[0] Q in A4,—[0]

whence (17-10) follows at once.
Finally, the sequence of lattices

Ay Ay, Ay ..
is bounded. For from (17-9), the determinants d(/,) are bounded, and from (17-10),
F(Q)= F(A) for all points @40 of 4,. (17-13)

Hence, if p is any number such that K contains the sphere | X | <p, ie. F(4) K
contains the sphere | X | <pF(A), then

| Q| = F(A)p for all points Q=0 of A,. (17-14)
From theorem 2, there exists then an infinite subsequence of lattices

A,,4,,4

which tends to a limit, say the lattice A*; from (17-9) ‘
d(A*) = limd(4,,) = d(A). (17-15)

k—>w

Hence the supposition of theorem 19 is satisfied if one substitutes therein for the
sequence of lattices {/1,}, the lattice /1, and the sequence of points {F,} respectively,
the sequence of lattices {1, }, the lattice A%, and the sequence of points {¢),,} of the
present proof. The assertion follows therefore at once from theorem 19.

Remark. Theorem 20 does not assert that every lattice A* satisfying
F(A*) = F(4), d(A*) = d(1) (17-16)

contains a point P* such that F(P*) = F(A*). Thus take n = 2 and F(X) = |z, |*.
Then, as follows from results in the theory of indefinite binary quadratic forms
(Koksma 1936), there exists an infinity of lattices A* such that

FA*) =1, d(A*) =3, (17-17)
and some, but not all, of these lattices contain points P* such that
F(P*) = 1. . (17-18)

The following particular case of the last theorem is of special interest.
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TaEOREM 21. HKvery automorphic star body K has a critical lattice with at least one
potnt on the boundary of K.

Proof. A lattice A is a critical lattice of K if and only if
FA) =1, d(A)=A(K). (17-19)

Now, from theorem 8, critical lattices of K do exist; the assertion follows therefore
at once from theorem 20.

ProsLEM D. Does every critical laitice of an automorphic star body K have at least

one point on the boundary of K?
The example in theorem 20 does not answer this question, but makes it probable

that the answer is in the negative.
Theorem 20 further suggests the following:

ProsrEM E. To study the set dg of the values of d(A) where A runs over all lattices
A satisfying F(A) = 1.

The set dj has a smallest element which is, of course, A(K); this number and the
other elements of the set may be considered as the successive minima of the lattice
point problem for the body K: F(X)<1. Even in the case F(X) = |z,2, |}, dpisa
very complicated set (Koksma 1936), and the same is to be expected for other un-
bounded star bodies. It is then rather surprising that in the case of automorphic
star bodies, all these minima are actually attained in the sense that to every element
0 of dj, there exists a lattice A* and a point P* of A* such that

F(P*) = F(A*) =1, d(A*) = 6. (17-20)

18. THE INVARIANT SUBSET OF AN AUTOMORPHIC STAR BODY
Let K: F(X)<1 be an automorphic star body, and let I" be a group of auto-

morphisms 2 of K. We denote by X the set of the points X in R, which have the
following property:

‘There exists a positive number a(X) depending only on X such that
|2X | <a(X) for all Qin I'” (18-1)
This set X is called the invariant manifold of K. It may contain only the origin, and
it has the following properties:
(a) If X lies in X, and Q2 is an element of I, then ¥ = QX also lies in X', and we
may take
a(Y) = a(X). (18-2)
For let 2, be an arbitrary element of I'. Then 2, = 2,2 also belongs to I, and so

by the definition of a(X),
[2,7] =2, X | <a(X). (18:3)
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(0) If X,, X,, ..., X,, is any number of points of X, and if ¢,,¢,,...,t,, are real
numbers, then ¢, X, +#, X, +... +t, X, also lies in X', and we may take
at; Xy +6,Xo+ ... +1,X,) = |t |a(Xy)+ |t | a(X) +...+ |1, | a(X,,). (184)
For if Q is any element of I', then
|, X + ... +t,X,) | = [ ,2X+ ... +1,2X,, |
< QX |+ |t | 12X, | <t |a(X) + .o+ | by | (X)), (18°5)
From (b), 2 is a linear manifold. Let it be of dimension § where 0 < §<n, and let

P, ..., P be a set of § independent points of 2. Then the points X of X may be

written as
X=LP+...+&P (18-6)

with real coefficients £, ..., §;; conversely, every such point X belongs to 2. On
considering this vector equation as a system of n equations for the n co-ordinates,
we find on solving for §;, ..., §; that

max (| & [, ..., | &) <y] X|, (18-7)

where 7y is a positive number depending only on the choice of P, ..., F;.
(c) There exists a positive constant b such that if X is any point of X, £ any
element of I', and ¥ = QX, then

b1 X|<|Y|<b|X]. (18-8)
Forlet X = £ P +...+&;P;. Then
| Y| =|§QP+.. . +5QP | <max (| & ],....| &) (| 2P | +... +| 2F )
<yl X | {a(P)+...+a(P)} =b| X |, (189)
where b = y{a(P)+ ... +a(F)}.

Further if X isin X and ¥ = X, then Y is also in X, and X = 2-'Y. Hence by
the same proof | X | <b| Y|, whence the assertion.

Let now J = K x 2. be the set of all points of 2 which belong to K; we call
Jp the invariant subset of K.

(d) The invariant subset J;. is a bounded set. For let X be any point of J,. By
definition 9, there exists a positive constant ¢ and an element 2 of I" such that

|RX | <c. (18-10)
Hence from (c), | X |<b| QX |<be, (18-11)

as asserted.

This result shows that the dimension & of X', and J, is at most n — 1. For let this
assertion be false so that & = n. Then 2 coincides with the whole space R,, and
therefore J- is identical with K. Hence, from (d), K is a bounded set, contrary to the
definition of an automorphic star body.
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Probably & satisfies the stronger inequality §<n—2. The following example
shows, however, that ¢ can be any integer in the interval

0<d<n—2.
Take for K the star body of distance function
F(X) =max ({af+...+ a3}, |25, ... 2, |VO9), (18-12)

and for I" the group of automorphisms

X =g, Xy =Xy, Xyq = by Xy e, Xy = b, 8, (18-13)
where t;,,,...,t, are real numbers of product ¢, ...t, = 1; then X is the d-dimen-
sional linear manifold

Xy g = ... =2, =0, (18-14)

The automorphic star bodies with & = 0 are of particular interest; then both X,
and J reduce to the single point O. To this type belong, for instance, all the star

bodies considered in §15. In § 20, a general property of star bodies with & = 0 will
be proved.

19. AN IMPROVEMENT ON THEOREM 13

TureorEM 22. Let K: F(X)< 1 be any star body of the finite type. Then there exists
to every number € >0 a positive number ¢t = t(€) such that every critical lattice A of K
contains at least one point P satisfying the inequalities

1< F(P)<1l+e, |P]|<t. (19-1)

Proof. By the remark to theorem 10, there is a positive number ¢* = t*(¢) such
that the star body

K* = K®:; FX)<1, |X|<t*

is of determinant A(K*) > (1 +%)_n A(K). (19-2)
Put - (1 +~;—)t*, K — (1 +§)K* (19-3)
so that K** consists of the points satisfying

F(X)<1+g, |X|<(1+%>t*=t, (19-4)
then A(K**) = (1 +%)nA(K*) > A(K). (19-5)

Hence every lattice of determinant A(K) contains a point P #+ O for which

F(P)<1+5<l+e, |P|<t; (19-6)
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if the lattice is critical with respect to K, then moreover

F(P)>1, (19-7)
whence the assertion.

20. AUTOMORPHIC STAR BODIES WITH X}, = J, = {O}

Turorem 23. Let K: F(X)<1 be an automorphic star body for which X and so
also Jp consist of the single point O. Further let A be any critical lattice of K, and ¢ any
positive number. Then there exists an infinite sequence of different points Py, Py, Py, ...
of A such that

1<F(Pﬂ)<l—|—6, where = 1,2,3,.... (20-1)

Proof. Assume the assertion is false. There is then a positive number ¢ and a

critical lattice A of K such that the inequality

I<F(P)<1+e (20-2)
is satisfied by only a finite number of points of A, say by only the m points

P, B, ..., B,

by the last theorem, m is not zero. It may be assumed, without loss of generality,
that ¢ and 4 have been chosen so as to make m a minimum, that is,

There does not exist any positive number e* and any critical lattice A*
of K such that the inequality
1< F(P¥) <1+¢* (20-3)
is satisfied by less than m points P} of A*.
This minimum assumption implies, in particular, that
F(p)=1, where p=1,2,..,m; (20-4)

for if, for instance, F(P,) = 1+ 46> 1, then, on putting e* = §, A* = A, there are less

than m points P* of A* such that
1< F(P*) <1+e*, (20-5)

Let now 2 be any automorphism in I". Then from (20-2), (20-4) and theorem 22,
the lattice 2/ has the following properties:

There are just m points P* of 24 for which

1< F(P*) <1 +e, (20-6)
viz. the points P*=0QP, QP,, ..., QP,; (20-7)
and, in fact, FQP) =1, where p=1,2,...,m. (20-8)

There is, moreover, a positive number ¢ independent, of 2 and x such that

| QP, | <t for at least one index x with 1< u<m. (20-81)
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From (20-4), P, is different from O, and so does not belong to 2. Hence there
exists an infinite sequence

{Qhm) = {4, 4w, 4, .} (20-9)
of automorphisms Q% of K such that
lim | QM P, | = co. (20-10)
r—> o0

Now construct m — 1 infinite subsequences
{_Q(rﬂ)} = {Qgﬂ)_,géﬂ),ggu>’ ! (20-11)

of {£0"} according to the following rule:
Suppose the sequence {Q%+V} has been defined. If now

lim | Q4D P, | = oo, (20-12)
Tr—> 00
then let {Q%)} be identical with {Q{+D}:
QW = Qrtd - where r=1,2,3,.... (20-13)
If, however, lim inf | Q¥+D P, | (20-14)
r—>o

is finite, then choose for {2} an infinite subsequence

p(ﬂ) _Q(/H—l) Q<2/z) _Q(/t+1) .Q;;“) _Q(/t+1) (20-15)
of {Q4+D} such that the point sequence
{QPP,QPP, AP, ...} (20-16)

tends to a limit, say the point P7.

This means that the last sequence {2V} has the following properties:

lim QP P, | = . (20-17)
>0

If u is one of the indices 1, 2, ...,m — 1, then either
rl_i)rg | QP P,| = oo, (20-18)

or there exists a finite point P} such that

lim | QP P, — P¥| = 0. (20-19)

r—> 0

Denote then by sy, s, ..., i, those different indices x with 1< u <m for which

rle |QVP,| = oo, (20-20)
by wk, u¥, ..., pk those for which
rl_iiglg(’l)P"_P’ﬂ = 0; (20-21)

hence g+ % = m. From (20-11) and (20-17), then
' g=1, h>1. (20-22)
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Since Q% is an automorphism of K, it is evident that
dQPA) = d(A) = A(K), FOVA) = F() =1, where r=1,2,3,... (20-23)
(for the second equation, compare the proof of theorem 20), and so the lattices
{(QPA,09A,004, ...} (20-24)

form a bounded sequence. From theorem 2, one can therefore choose an infinite
subsequence {£,} of automorphisms

0, =00 0, =00 0, =00 . (20-25)
in {Q®} such that the corresponding sequence of lattices
A = QA Ay = QA Ay = Q4 A, .. (20-26)

tends to a limit, the lattice A*, say.
Then from (20-23) it follows that

limd(4,) = AK), lim F(4,) = 1. (20-27)

r—>®0 r—> 0

Further, from (20-81), and the construction of {2} and {,}, each lattice

A, =024, where r=1,23,.., (20-28)

contains a point PO =0.P, with 1<u(r)sm-—1, (20-29)

such that P00, |PO|<t, F(P)=1. (20-30)
An application of theorem 19 therefore gives

d(A%) =Tl_i)m d(A,) = A(K), F(A*)=lmF(1,)=1, (20-31)

which means that A* is a critical lattice. Now a consideration analogous to that in
earlier proofs makes it evident that the points

3k %k £
Pi. P, P

as defined in (20-21), are the only points P* of A* such that

1< F(P¥)<1 +g; (20-32)
moreover F(Phs) = F(Ph.)=...= F(P’/’jh*) = 1. (20-33)

Hence /A* is a lattice of the same type as A, except that m is replaced by the smaller
number k. This contradicts the minimum assumption (20-3); the hypothesis is
therefore false and the assertion is true.

ProBLEM F. Does the assertion of theorem 23 remain true if X is of positive
dimension 67

(Closely related to problem F is the following question which I also have not been
able to solve:
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ProBLEM G. To decide whether there exists an automorphic star body K: F(X)<1
with the following two properties : (a) The invariant manifold X . is of positive dimension.
(b) There exists a critical lattice A of K and a positive number o such that

F(P)>1+a (20-34)

Jor all points P of A which do not belong to 2.

21. STAR BODIES OF RANK 0§

The considerations in § 18 can be generalized and lead to the following definition:

DerintTioN 10. Let K: F(X)< 1 be a star body of the finite type with a group I'
of automorphisms Q, and let 8 be an integer such that 1 <6<n—1. Then K is said to be
of rank 8 with respect to I'if 8 is the largest integer such that to every positive number t*

and to every S-dimensional linear manifold M containing O there is an element
0Q = Q@*, M) of I' satisfying

| QX | =t*F(X) for all points X of M. (21-1)
An example on this definition is given by

TuroreM 24. Let K be the star body of distance function

1/n
, where r+2s=n, (21-2)

FX)=11 T, 11 (x$+u+x%+s+o’)

p=1 o=1

and let I be the group of all automorphisms 2 of K defined by

¥, =t,%, where p=1,2,..,r, (21-3)
Q: /x:-+o- = by rig— tr+s+crxr+s+<r\ where o =1,2,...,s, (21-4)
Tpisro = brisro%rpe T tr+o-xr+s+er (21-5)
where by, by, ..., t, are real numbers satisfying
r S
1 tﬁ 11 (t$+a+t%+s+o') = 1. (21-6)
p=1"o=1
Further let r=0, $=0, r+s>1.

Then K s of rank r +s— 1 with respect to I.
Proof. An arbitrary linear manifold M through O of dimension r+s—1 can be
defined by n— (r+s— 1) = s+ 1 independent homogeneous linear equations

g%y + Ao+ ... +ay, 2, =0, where h=1,2,..s+1, (21-7)

and where the a’s are real numbers. Two cases may now be distinguished:
(@) First assume that r > 0, and that at least one coefficient

ay, with 1<h<s+1,1<k<r

is different from zero, say the coefficient a,;.
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Then, on solving the equation,
Q1 %1+ ATyt ...+ 0,7, =0 (21-8)
for x,, Xy = byy+... +b,2,, (21-9)
where b,, ..., b, are real numbers; hence there is a positive constant y such that
|2y | <y{ad+.. .+t (21-10)

for all points X of M. Put now ¢ = y*7¢*, and apply the automorphism X' = QX
defined by

xy =tV wy = ta,, ..., X, = tx,, (21-11)
that is Xy =ty = ey, ., @, = i, (21-12)
Then F(X)=FX'), (21-13)

and from (21-10) it follows that ’
[t"*lxiléy{(x%Y—l—... +(§’£)2}%, (21-14)

whence
(X ) < play + ﬁ f‘[ (G A | B AR T R

e (21-15)

Hence
tnF(X)" =t F(X' )<yl X' |, |QX|=|X"|zy VF(X)=t*F(X), (21-16)
as asserted.
(b) Secondly, let either = 0, or assume that > 0, but that all coefficients
ay,, with 1<h<s+1,1<k<r

vanish.
Then the equations defining M are of the form

U1 Zpsr+ Wy o ¥ ot oo+ 2, = 0, where h=1,2,..,s+1. (21-17)
Arrange the 2s co-ordinates x,,,, %, 5, ..., 2, as s pairs
()i Tpygro), Where o =1,2,...s. (21-18)

Since the s+ 1 equations defining M are independent, and since there are only s such
pairs of co-ordinates, it must be possible to express at least one such pair of these
co-ordinates in terms of the others. Now assume this is the pair (x,,,,2,,4,4), and
that on solving for ,, 4, @,,,,, the following equations are obtained.:

Me
34

xr+1 - E (ba xr—Hf + b:r xr+s+o’)? xr~+-s+1 = (Cﬂ'x7'+0' + c;xr+s+¢7)’ (2 1 : 19)

=2 o=
where the coefficients b,, b, c,, ¢, are real numbers. Hence there is a positive con-
stant y such that

S
r+1+xr+s+1\ Z( ri—a’+x3+s+a’)’ (21-20)
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for all points X of M. Put now ¢t = y¥2¢*1/2 and apply the automorphism X’ = QX
defined by

¥, =x, where p=12 .7, (21-21)

By = 06w, g =06, (21-22)

Xy =gy Xpigig =12, g ,, Where o =23 .. s, (21-23)

or conversely, T, = ¥, where p=1,2,..r (21-24)

Ty = F00 0, By = 010 0, (21-25)

g =tY00, 0, X, =t12 ., Wwhere o=2,3 .. s (21-26)

Then again F(X)=FX'), (21-27)
and from (21-20)

PO 4 ) Y S (@ b ) S X (2028)

o=2
whence

r S
BEX) <y | X2 T a, T (07 + @y g,) | Sy X2 b=y X' |n (21-29)
p=1 o=2
Hence |QX | = | X' [zy Vi F(X) = t*F(X), (21-30)
as asserted.
Up to now it has only been proved that the rank ¢ of K with respect to I'is at least
r+s—1; one now proves that ¢ <r+s. This is trivial from definition 10 if s = 0.

Let therefore s>0. Consider the special (r+s)-dimensional linear manifold M,
defined by the equations

Xpporo =0, where o=1,2,..s. (21-31)

It suffices to prove that, however 2 is chosen in I, there is at least one point X of
M, such that

| QX | <{(n+1) F(X). (21-32)
There is no loss of generality in assuming that the point X is such that
F(X) =1, (21-33)
hence the point X = (2, ..., 2,, #, 4, ..., %, 0, ..., 0) of M, satisfies the equation
r S
Iz, II 27, =1, (21-34)
p=1 o=1

but is otherwise arbitrary.

Let now 2 be any element of I', and X the point above of M,,. Then the co-ordinates
of X' = QX take the form

¥, = t,x,, where p=1.2 .7, (21-35)
x;+cr = by Trio x;+s+<r = lisioTryy Where o =1,2,..s, (21-36)
r S
and where - IMe, I (2 ,+82 ., =1 (21-37)
p=1 o=1
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Choose now X in M, such that

x,=1t;1 where p=1,2,..r, (21-38)
Tpio = (ChigF i) ) ‘ (21-39)
where o =1,2,...,s;

Tpisio = 0, J (21-40)

then evidently /'(X) = 1, as assumed. This choice of X implies that
¥, =1, where p=12..,r, (21-41)
o+ . =1, where o=12 .5, (21-42)
and so | X' |2P=r+s<n+1, (21-43)
whence [QX | = | X' | <Jn+1) = (n+1) F(X), (21-44)

as asserted. This completes the proof.

TueEOREM 25. Let K: F(X) <1 be a star body of rank & with respect to I', A a critical
lattice of K, and € an arbitrary positive number. Then there exist §+ 1 independent
points P, By, ..., Py 4 of A such that

I<F(P)<l+e, where p=1,2,.., 8+1. (21-45)

Proof. Let the assertion be false, i.e. assume that there is a critical lattice A,
of K and a positive number ¢ such that all lattice points F, of A, satisfying

1< F(P)<1+e (21-46)

lie in a certain d-dimensional linear manifold A/ containing O.
From theorem 22, there is a positive number ¢ such that every critical lattice A
of K contains at least one point P such that

IS F(P)<l+e, |P|<t. (21-47)

Further, by the last definition applied with t* = ¢+ 1, there exists an automorphism
£ in I'such that
| QX |>(+1)F(X) forall points X in M. (21-48)

Denote now by P, PR, F, ..
the points of A, for which
1<F(P)<1l+e, where r=1,23,...; (21-49)

by hypothesis, these points belong to M. Then the only points ), of the lattice
A = 024, satisfying

1< FQ)<1+e (21-50)
are those given by Q,=0QP, where r=1,23,..., (21-51)
and for these points | Q,| = |QPF.|>(t+1) F(B)>t+1, (21-52)

contrary to the existence result (21-47). Hence the assertion is true.
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From theorems 24 and 25, it is deduced that if K is the star body of distance
function
F(X)=|z2,...o, [V, (21-53)

and A is any critical lattice of K, then there exist n» independent points P, B, ..., P,
of A such that
IS F(F)<l4e¢, where g=1,2,...,n, (21-54)

however small ¢ is chosen. Hence problem A can be solved in this special case, and
the answer is in the affirmative.

I am greatly indebted to Professor Mordell for his help with the manuscript.
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