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Mathematics. — Lattice points in n-dimensional star bodies II. (Reduci-
bility Theorems). By K. MAHLER. (First communication.) (Com-
municated by Prof. J. G. vaAN DER CORPUT.)

(Communicated at the meeting of February 23, 1946.)

The star body K is called reducible if there exists a star body H contained
in, but different from, K such that A(H) = A(K), and is otherwise called
irreducible. We say further that K is boundedly reducible if a bounded star
H contained in, but different from, K with A(H) = A(K) exists. In this
Part II, I prove conditions for K to be reducible (irreducible) or boundedly
reducible. The irreducible star bodies, as well as the boundedly reducible
star bodies, seem to have many interesting properties. and I believe that a
further study might lead to results of importance in themselves and for
applications to other problems.

As in Part I, I have stated a number of problems which seem to deserve
further study *).

In order to make this paper intelligible to a reader who has not seen the
first part, I repeat here the main definitions and theorems.

Let R, be the n-dimensional space of all points X — (xy, ..., xx),
Y = (yy, ..., yn), etc., with real coordinates; O = (o, ..., 0) is the origin
of Ru. Weput | X | = (x? + ... + x2)'k:, and use the notation X -+ Y and
tX for the points (x; + gy, ..., x» + yn) and (fx,, ... txa). The determinant

| xni || of n points X = (xn2, ..., xan) is denoted by { X, ..., Xa }. If this

determinant does not vanish, then the set of all points:
X —=u X, + ...+ uXa (ay, oo, an = 0,7F 1,F 2, ...)
forms a lattice .1 of basis Xy, ..., X and determinant
d(A) = { Xy, ... X0}

There always exist reduced bases, i.e. such that the quadratic form

n

Dy, . ..,up) = (e + .o+ Xnk un)?

is reduced in the sense of MINKOWSKI; for such reduced bases,
le “ le'-"Xn|§‘?’nd(A)'

where y» > 0 depends only on n.
An infinite sequence of lattices A, Ao, ... is called bounded if there are
two constants ¢ > 0 and ¢” > 0 such that

d(Ar) =c, and | X | ~ ¢ for every point X =4 O of A, (r=1,2,...).

The following theorem is fundamental for the whole paper:

*)  Part I of this paper is to appear in the Proceedings of the Royal Society.
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Theorem 2: Every bounded infinite sequence S of lattices contains a
convergent infinite subsequence S’ (i.e., reduced bases of the elements of
S’ tend to a basis of the limiting lattice A, and so A consists just of the
limit points of the lattices in S’).

A function F(X) — F(xy, ..., xa) of the variable point X in R, is called

a distance function if

(i)  F(X)=0 forall X 7 O in R,, and F(O) — 0.
(ii) F(tX) = |t| F(X) for all X andall real .
(iii) F(X) is a continuous function of X.

We then say that the point set K: F(X) = 1 is a star body. Such a star
body contains, and is symmetrical in, the origin; and with every point X
the whole line segment OX belongs to it. The boundary C of K may extend
to infinity, but is continuous in the finite part.

A lattice .1 is K-admissible if no point of A except O is an inner point
of K. According as to whether K-admissible lattices do, or do not, exist, we
say that K is of the finite or the infinite type; in the first case, A(K)
denotes the lower bound of d(A) extended over all admissible lattices, and
we put A(K) — o in the second case. It is nearly trivial that bounded star
bodies are of the finite type, and that unbounded star bodies of both types
exist. One proves easily:

Theorem 7: I} the star body H is contained in the star body K, then
A(H) = A(K).

From Theorem 2, the following existence theorem is derived:

Theorem 8: Every star body of the [inite type possesses at least one
critical lattice, i.e. a lattice /1 such that (i) d(A) = A(K), and (ii) A is
K-admissible.

Part 1 deals mainly with the properties of critical lattices, and discusses,
in particular, their points on, or near to, the boundary of the star body.
I quote the following theorems, since I refer to them in the present paper:

Theorem 9: Let K, K, K., ... be an infinity of star bodies of the [inite
type such that for every >0 and every t>0, (i) K, is contained in
(1 +&)K if r—ry(e), and (ii) the subset | X | =1t F(X) =1 of K is
contained in (1 + ¢)K, if r = vy (&, t). Then lim A (K;) = A(K).

Theorem 11: Every critical lattice of a bour’lc—;e)c;) star body has n inde-
pendent points on its boundary.

Theorem 15: There exists an unbounded star body of the f[inite type
with a critical lattice which has no points on its boundary.

Theorem 16: Let K: F(X) =1 be of the finite type, 2 a linear trans-
formation of Ru into itself of determinant w -0, F/(X) = F(QX), and
let K’ be the star body F'(X) = 1. Then also K’ is of the [inite type, and
AK') = o |-t A(K). ‘

Theorem 17: If the star body K of the [inite type admits the auto-
morphism Q (ie., F(QX) = F(X) identically in X), then Q is of deter-

minant w — =+ 1.
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Theorem 19: Let A Ao ... be a convergent sequence of lattices of
limit A, and let ¢ — lim F(A;) >0 exist (F(A,) denotes the lower

r—>mw
bound of F(X) extended over all points X =~ O of A,). Let there be a
constant ¢ >0 such that in each A there is a point P. -/ O satisfying
[P =c and lim F(P;) =¢. Then lim F(dA,;) = F(A), and there

r =—> ©

is a point P = O of A such that F(P) ;—l?(il)

Theorem 23: Let K: F(X) =1 be an unbounded star body of the
finite type, and let I' be the group of its automorphisms. Let there be a
constant ¢ > 0 such that, if P is any point of K, then | QP | = ¢ for at least
one element  of I'; and if t > 0 is arbitrary and P 7 O is any point of K,
let | QP | > ¢ Jor at least onc element {2 of I'. Then, however small ¢ > 0,
every critical lattice of K contains an infinity of different points P satis-
fying 1 = F(P) <1 + &,
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§ 1. Preliminary remark.

The theorems and definitions in Part I of this paper were numbered
with Arabic numerals, and the problems with Latin capitals, In order to
simplify references, theorems and definitions in the present Part II shall
be numbered with Latin capitals, and problems with Arabic numerals.

§ 2. The relations H <<K and H < K.

Let H: G(X) =1 and K: F(X) =1 be two star bodies of the finite
type in Ra. If H is a proper subset of K, then we write

H<K or K>H.



201
By Theorem 7, this relation implies that
NH) = N(K),

where the equality sign may, or may not, hold. We therefore use the
further symbol

H- Ko K -H
to denote that both

H < Kand A(H) = N(K).
From this definition,

ifH- Kand K-_L,then H- L,

and
ifH< K<L and H-~" L, then H- K- L.
It is further clear that

H <K implies H <~ K, if and only i} at least one critical lattice of H
is K-admissible.

Theorem A: To every star body H of the [inite type, there exist star
bodies K of the [inite type such that H < K.

Proof: Choose for A any critical lattice of H, and for K any star body
such that K > H and that A is K-admissible.

On the other hand, when K is given, then it is not always possible to
find a star body H such that f -7 K. We therefore define:

Definition A: The star body K is called reducible if there exists a star
body H such that H < K, and it is called irreducible if no star body H with
H - K exists.

Theorem A shows that there are reducible star bodies. We shall show
later that also irreducible star bodies exist, and give some examples of such
bodies. But we shall first obtain necessary, respectively sufficient, con-
ditions of irreducibility. So far, I have not yet succeeded in finding con-
ditions which are both necessary and sufficient.

§ 3. A necessary condition [or irreducibility.

We need the following lemma which is closely related to Theorem 19
in Part 1:

Theorem B: Let K: F(X) =1 be a star body of the [inite type, and

Ay, Ao, As, ... an infinite sequence of K-admissible lattices with the
following properties:
(a): lim d(A,) = A(K);
— o0
(b): Every lattice A, rco.ntains a point P,on the boundary C: F(X)=—1
of K;

(c): The points Py, Py, Py, ... tend to a limit point P.
Then P lies on C, and there exists a critical lattice A of K containing P.
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Proof: The first part of the assertion follows at once from

F(P) = lim F(P;) = lim 1 =1.

r—>n r—>w
For the second part, we first remark that the sequence of lattices

Ay, As, Ay, .
is bounded. Hence, by Theorem 2, there is an infinite subsequence

AW = Ap; AP = Apy; A = Ay; . . ., (bey, <hy <ky<...)
which tends to a limit, the lattice A say. We write P{) — Pkr. Choose in
every lattice A(") a reduced basis
Yo, Yy, ..., Yym
and in A a basis
Y, Yy ..., Y
such that
lile&[’—Yl::O g=1,2,...,n).

For o g
Then there are integers u{, u{",.. ., u{" not all zero such that
PO =N Y4 D YO - D Y (r=1,2,3,...),
and real numbers uy, u,, ..., us not all zero such that
P—=uY +uwY,+ .. +uwYs
From the hypothesis, the points
P,y Yo, o, Y (r=1,2,3,...)

n

are bounded; further
YD, Yo, o Y =d (A7) = A (K).
Hence, by the equations
uf) { Y, Yo, . Yob={Yp,.. Y L PO YL Yy
(g=12,...,n).
all coefficients u{",,..., u{) are bounded. Hence the left-hand side of the
identity
(P—P) 4 u (Y — Y )4 A uD (YD =Y )= (u, —u") Y, +
+.ooo (g, —d) Y,
and so also the right-hand side tends to O when r tends to infinity. Since

the points Y, Y,, ..., Y. are independent, this implies that

lim uf) =u, g=12,...,n).
r—rw

Now the coefficients u{Pare integers, hence also their limits u,, and so P
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is a point of A. As in earlier preofs, it is easy to prove that A is K-
admissible and therefore critical. This completes the proof.

Theorem C: Let K: F(X) = 1 be an irreducible star body of the [inite
type, and let P be any f[inite point on the boundary C of K. Then there
exists at least one critical lattice of K containing P.

Proof: Let us assume that on the contrary no critical lattice of K passes
through a certain finite point P on C; we shall show that K is then
reducible.

By the continuity of F(X), every point X on C sufficiently near to P
lies at a bounded distance from O. We assert, firstly, that a positive number
o exists such that no critical lattice of K passes through a point of the set §
consisting of all points X on C for which

X' X—|PI'Pl=o0.
For let this assertion be false. Then there exists an infinite sequence of
critical lattices
Ay, Ao, As, .o
of K with a point P, in each lattice A, such that

rrw
But then, by Theorem B, at least one critical lattice of K passes through P,
contrary to hypothesis.
We assert, secondly, that there is a positive number ¢ such that

d(A)=(1+ o) A (K)

for every K-admissible lattice which contains a point of S. For let this
assertion be false. Then an infinite sequence of K-admissible lattices

AI, Ao, Ag, ...

exists such that

lim d{A:;) = A(K),

r=>w
and that further each lattice A, contains a point P, of S. Since S is
bounded and closed, it is then possible to find an infinite sequence of
indices

ki ko ks oo (k< ko< k<)

such that the corresponding points

Py, Piy, Py, ...

tend to a point of S, the point P* say. Theorem B, if applied to the
sequence of lattices

Ay iy Aiy

gives now the existence of a critical lattice of K passing through P*, con-
trary to what had just been proved.
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Next put

G(X)=F(X) g 1 +§ max (0,0 —| X' X — [P P|){ ifXFO,
and
G(X)—=0if X =0,
so that G(X) is a distance function. Evidently
F(X) = G(X) = (1 + 8 F(X) for all points X,

and
G(X)>F(X) itandonlyif X#0O, || X'X—|P~'P| o
Hence the star body H: G(X) == 1 satisfies the relation

H<K.
The theorem is then proved if we can show that even

H - K.

Let this be untrue. Then there exists a critical lattice A4 of H which is
not K-admissible, and so the set X of all points

Qs+ 0O (s=1,2,3,..)

of A which are inner points of K, is not empty. Every point Q_ satisfies the
inequalities

F(Qs) <1 =G(Qs) = (1 +0) F(Qs),
whence
1
1+06 —
and it also satisfies the inequality
Q! Qe — [P Pl <o

By the definition of .5, these formulae imply that Qs belongs to a bounded
part of R,. Hence X has only a finite number of elements, the lattice points

F(Q,) <1,

Q, Q. ....Qr
say. Put

min F(Q)= /11 ,

§=1,2,...,r

so that

1<<Ai=1+24.
The lattice

AF = 2A

iz then K-admissible, and at least one of the points

IQy AQy, ..., AQr
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lies in the subset S on C. Hence, as we showed above,
d(A*) = (1 + o) A(K).
On the other hand,
d(A*) = ind(A) = I A(H),
since A is a critical lattice of H. Hence

pEn=gdw= (110 a0z A,

contrary to the assumption that A(H) < A(K).

The so proved Theorem C applies to all irreducible star bodies irrespec-
tive of whether these are bounded or not. The following problem arises
now:

Problem 1: Do there exist unbounded irreducible star bodies?

I have reasons to believe that the answer is in the negative. However, I
cannot prove this generally, but only for a special class of star bodies to
be considered later (Theorem H).

§ 4. A sufficient condition for irreducibility.

For this reason, the sufficient condition for irreducibility given in this
paragraph will apply only to bounded star bodies.

Let K: F{X) = 1 be a bounded star body, and A any critical lattice of
K. This lattice has only a finite number of points on the boundary C of K,
say the points

FP,FPy...,FPy;
here m = n by Theorem 11. Denote by Y, ..., Y a reduced basis of A,
and write the points P in the form

P,=du® Y, 4 ... +uby k=1,2,...,m),

n
so that the coefficients ul) are integers. Let ¢ > 0. Any n points YT, ..., Y},
satisfying
Y, Y, < (g=1,2,...,n)

generate a neighbouring lattice A*; we say that A* lies in a e-neighbourhood
of A. The points

p:;:u(lk)yr_*_.”_,_u(:)yz (k:1,2,...,m)

are then the only points of A* which lie on, or near to, the boundary C of
K, if ¢ sufficiently small.

Definition B: The critical lattice A of K is called a free lattice if to
every index k = 1,2,...,m and to every ¢ >0, there exists a lattice A*
with the following properties:

(a): A* lies in an e-neighbourhood of A.
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(b): d(A*) <d(A).

(c): A* contains no inner points of K except O and F Py.

For instance, every singular lattice A of K (i.e. a critical lattice with
m == n) is free. For let =F Py, ..., P, be the points of 4 on C. There
exists then a neighbouring lattice A* such that the points P:T of A* cor-
responding to Py, ..., Py are given by

P VP, ifg=1,...,k—1k+41,....n,
L) Py ifg —k.
Since
d (A7) = (1 — &) a(A) < d(A),
the conditions (a), (b), (c) are satisfied.

Other examples of free lattices are the critical lattices of the unit circle
24 x2]
in Ry, (m =3, n —2), and the critical lattices of the unit sphere

x4 x4 x21
in Ry (m — 6, n — 3). See the next paragraph.

Not every critical lattice is free, as is seen by the [ollowing example in
R, which is easily extended to more dimensions:

Denote by K the non-convex hexagon in R, of vertices

(1,0), (2,1), (—2,1), (—1,0), (—2,—1), (2,—1).
This hexagon contains the square Q,
[x; | =1, x| =1
as a subset; moreover, the critical lattice
A Xy Ty, Xp TS Uy (uy, u, =0, F 1, 2,...)

of Q is K-admissible, Hence K - Q, and A is also a critical lattice of K.
Denote by

A xy =+ @) uy + Puy, i —yuy + (1 + 0wy (uy,u,=0,F1,F2,...)
a neighbouring lattice; thus

e+ 1B+ 1y ]+ 18]
is very small. Then it is impossible that the point

(B, 1-+9)
of A* is an inner point of K, while the two other points
(I +atp 14y+0), (—1—at+p 1—y+9)
of A* lie on the boundary or outside of K, since the three inequalities
‘ L4 0<t, 14yto 1, 1—ypto—l

are mutually contradictory. Hence A is not free.
In this example, K is reducible. We may then ask:
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Problem 2: Does there exist a bounded irreducible star body with at
least one critical lattice which is not [ree?
I have so far not been able to solve this question.

Theorem D: Let K be a bounded star body, and X a set of points on
its boundary C which is everywhere dense. If further P is any point of X,
let there be a free lattice of K containing P. Then K is irreducible.

Proof: Assume there is a star body A such that H < K. There exists
then a point Q on C which lies outside H; hence ¢ > 0 can be chosen so
small that all points X with

[vaQ}(f{ e

lie also outside H. By the hypothesis, we can find a point P of X such that
e

let A be the free lattice through P. Then, by Definition B, there is a neigh-
bouring lattice A" of determinant

d(A") <d(A)

and containing no inner points of K except O and two symmetrical points
-F P* such that
£

PPl that is, |P*— Q|-+ ==

Hence A" is H-admissible, and so

ANH) =d(A") <d(A) = A(K),

contrary to hypothesis.
Remark: The same proof shows that if the hypothesis of Theorem D is
satisfied, then at least one free lattice of K passes through every point on C.

§ 5. Examples of irreducible convex star bodies.

By means of Theorem D, any number of irreducible star bodies can be
constructed. We first show that some of the two- and three-dimensional
convex regions considered already by MINKOWSKI 1) are irreducible. To
this end, we use the following results of MINKOWSKI:

(A) Every critical lattice A of a convex star domain K in R, contains
at least six points on the boundary C of K. If A contains only six such
points, then a system of parallel coordinates &, £, can be chosen in which
these six points are of coordinates 2)

(1,0), (0,1), (—1,1).

1) Diophantische Approximationen, 24—28, 54—55, 67—75, 75—77, 105—111. For the
case of the cylinder, see my note: “On lattice points in a cylinder”, which is to appear in
the Quarterly Journal.

2)  Diophantische Approximationen, 51—54.



541 15

(B) Every critical lattice A of a convex star body K in R contains at
least twelve points on the boundary C of K. If A contains only twelve such

points, then a system of parallel coordinates &y, &,, & can be chosen in
which these twelve points are either of coordinates

(1,0,0), (0,1,0), (0,0,1), (0, i, —1), (—1,0,1), (1,-—1,0),
or of coordinates 1)

(1,0,0), (0,1.0), (0,0,1), (0,1,1), (1,0.1), (1.1,0).

Theorem E: Let K be a convex star domain in R,, and A a critical
lattice of K with just six points on C. Then A is a [ree lattice.

Proof: It is clear from (A) that no three of the lattice points on C
are collinear. Hence there exists a line L which separates any chosen point
among these six from the five other ones. Let — L be the line symmetrical
to L in O, and let K* be the set of all points of K which are not separated
from O by either . or — L; then K* is also a convex star domain. Since
only four points of A lie on the boundary of K*, there exists a neighbouring
lattice A* which is K*-admissible and of determinant d(A*) <d(A); this
lattice satisfies the conditions of definition B.

Theorem F: Let K be a convex star body in R, and A a critical lattice
of K with just twelve points on C. Then A is a free lattice.

Proof: We first show that each one of the twelve lattice points on C
can be separated from the eleven others by a plane L. For if the twelve
lattice points are

(1,0,0), (0,1,0), (0,0,1), (0,1,—1), (—1,01), (1,—1,0),

then (1,0, 0) is separated from the other points by the plane

45, 428, + 28 -3=0,
and (0,1,—1) is separated by the plane

28,—28—3=0.
If, however, the twelve lattice points are
(1,0,0), (0,1,0), (0,0,1), (0.1,1), (1,0,1), (1,1,0),
then (1,0, 0) is separated from the other points by the plane
§—28—28&—5=0,

and (0,1, 1) is separated by the plane

26 —28—-2&+3=0.

By a cyclical permutation of the coordinates £y, &, & and by changing
&, &, &y into — &, — &, —&,, we obtain the equations of separating
planes belonging to the other points. Having thus fixed L, let — L be the
plane symmetrical to L in O, and K* the set of all points of K which are

1) Gesammelte Abhandlungen, II.
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not separated from O by either L or - 7; then K* is also a convex stas
body. Since A has only ten points on the boundary of K*, there exists a
neighbouring lattice A* which is K*-admissible and of determinant
d(A4*) <<d(A), hence satisfies the conditions of Definition B.
From Theorems E and F, we obtain now the following examples of
irreducible convex star bodies:
(a) The square K,
max (|x; [ [x,]) =1
in R, of determinant A(K,) = 1. For if 0<{|&| <1, then the critical
lattice of basis
(1,0), (&1)
passes through the boundary point (& 1) and the critical lattice of basis
1

(1.£), (0. 1)

passes through the boundary point (1, &); further both types of Iattice have
just six points on the boundary of K.

(b) The circle K,
b a)
in Ry of determinant A(K,) = 413, For if (cos 6, sin €) is any point
on C, then the critical lattice of basis

(cos @, sin ), (cos 3<9+73!:,sin:«9+§:>

passes through this point and has just six points on the boundary.
(¢) The cube K,
max (|x, ] |xa|, [x3]) =1,
in R; of determinant A(K3) — 1. For if 0<C|& | <C1,0<C[&, ] <1, then
the critical lattice of basis

(1,0.0), (£ 1,0), (&80, 1)

£
passes through the boundary point (&, &, 1), and similar lattices pass

through the points (&, 1, &,) and (1, &, &,). Morcover, these three types

of critical lattices have just twelve points on C.

(d) The sphere K4,
1V xHxd+x)
in Ry of determinant A(K,) = &. For all critical lattices are obtained
from the lattice of basis
(1,0,0), (5, 174,0,0,17 5,17 %)
by a rotation about O. They each contain twelve points on C, and they

pass through every point on this boundary.

(e) The cylinder K3,
max (+ 17 (x? -+ x2), | x5] ) = 1,
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in R; of determinant A(Kjy) — /3. For one type of critical lattice is
obtained from the lattice of basis

(1,0,0). (5,17 4. 0), (6, & 1)
by all rotations about the xj-axis; if
084821, 0@ — 12+, 0<(E =)+ E— 1)<
then this type of lattice has just twelve points on C, and it passes through
every point (xy, x5, x3) on C for which

0<<x?+x3<1, X3 =F 1.

Further a second type of critical lattice is obtained from the lattice of basis

(1.0.&). (5.17% &), (0,0, 1)
by all rotations about the xj-axis; if

0<|& <4 0| <,

then also this type of lattice contains just twelve points on C, and it passes
through every point on C for which

x?2+x3=1, 0<l|as| < 1.
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Lattice points in n-dimensional star bodies 11. (Reduci-
bility Theorems.) By K. MAHLER. (Second communication.) (Com-
municated by Prof. J. G. van per CorpuT.)

(Communicated at the meeting of March 30, 1946.)

§ 6. lIrreducible convex star domains in R..

Theorem G: A convex star domain K in R, is irreducible if and only
if all parallelograms with one vertex at O and the other three vertices on
the boundary C of K are of equal areas.

Proof: Every critical lattice of K has at least six and at most eight
points on C. If it has eight points on C, then K is a parallelogram, hence
irreducible; in this case, the inscribed parallelograms clearly satisfy the
assertion. Assume next that every critical lattice of K has just six points
on C, and let Py be any given point on C. There exists then on C at least
one pair of points P.,, P, such that

P,—P, +P, (P,.P,}>0;

ie, OP, P, P, is a parallelogram with its vertices described in this order
in positive direction. In general, only one such parallelogram exists for
given P,. If, however, C contains a line segment parallel to OP, and of
greater length than this vector, then there are an infinity of such paral-
lelograms, and all are of equal areas. Select one such parallelogram
OP, P, P; and call its area A(P;). Then the lattice A of basis P,, P, is
of determinant d(A) = A(P,) and is K-admissible, As is easily seen,
A (K) = min A (P,).

P,onC
The assertion follows therefore from the theorems, C, D, and E.
Theorem G enables us to construct any number of irreducible convex
star domains in R,. Take any three points Q, Q., Q4 in R, such that

Q2:Q1+Q3’ {Q1,Q2}>O‘
Denote by T, T, T the three triangles of vertices
Q. Qi+ Q. Qz or Q,, Q,+ Qz' Q3 or Qs Q3 —Q, —Q

and by A; and A, two continuous arcs of the following kind:
(a) Ay connects Q; with Q,, and A, connects Q, with Q.

) A, liesin Ty, and A, lies in T's.

) Neither A; nor A, contains a line segment 4).

) The region bounded by A, A,, and the two line segments OQ,
and OQ; is convex,

4) This condition is not essential. If it is dropped, then P2 need not be a single-valued
function of Py.
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To every point P, on A, there is then a unique point P, on A, such that
Py, Pyl = {Qy. Qal-

Denote by A, the arc of all points Py == P, — P, where P runs over A;
as is easily shown, Ay lies in 75 and connects Q3 with — Q;. Denote by
—A,, —A,, — A, the arcs symmetrical to Ay, Ay, Ay in O, and by K
the region bounded by the six arcs Ay, Ay, Az, — A, — Ay, — Ay If K
is convex, then K is irreducible.

As an example, let

Q = (1), Q=(L0), Q=I(1)
and let A, and A, be the arcs Q;Q, and QuQ; of the parabola

x = 1 —4y2
A simple calculation shows that Ay is the arc Qg — Q defined by
42yt —8y2 + 8y — y(y—2) (y2 4+ 2y —4);
hence
Fal 1Sy 6) -

for all points on A,. This arc is symmetrical in the y-axis. Hence its con-
vexity is proved if we can show that

a0 0T L LSy S
Now
2x j;:y3—4y+2f:(y—1)(y2+y~3)“1,
and

y—1=20y+y—3=0706)— 1) +15) 33~
—=2—-1/5<0, 0<2x<1,

hence
dx—_ |, <dx) =1
dy dy
Further
d’x dx\* _ ., ,
whence
d’x d*x
=3047(5)— 1) —4 — =12 — , ,
Zxdy =3017065)—1) 4 —-2X1 12—6175<0 dy2<0

whence the assertion. Both A, and A, have the gradient

dy

P
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at the point Qj. Hence the set K bounded by the six arcs Ay, Ay, As,
—A,, —A,, — A, is therefore an irreducible convex star domain of
determinant

AMK) ={QQ:} = 1;
its boundary has everywhere a continuous tangent.
Irreducible convex star domains in R, can also be obtained by the
following construction:
Denote by a,(t), b,(t), as(t), by(t) four continuous functions of ¢ of
period 1/6 which satisfy the identity
ay(t) by(t) —ay(t) by(t) = A,
where A is a positive constant, Let then C be the closed curve in R, con-
sisting of all points P(t) == (x{(¢), xo(¢)) where
x,(t) = a,(t) cos2at + b,(t) sin 2 at,
x5 (t) = ay(t) cos 2 at + by(t) sin 2 xf,

and where ¢ runs over any interval of unit length. It is easily verified that

Plt+H=P)+P(t+4. POPE+HI=A.
Hence C forms the boundary of an irreducible convex star domain K
provided it is a convex curve. In the special case that a,(t), by(f). as(?),
by (t) are constants, C is an ellipse. But there are an infinity of other per-
missible choices, and it is, in particular, possible to find algebraic curves C
different from ellipses and forming the boundaries of irreducible convex
star domains.

§ 7. Further examples of irreducible star domains.

In my note, Proc. Cambridge Phil. Soc., 40, part 2 (1944), 107—116,
I gave the first example of a non-convex irreducible star domain in R,
namely the domain K,

!xlxztgl, 1x1+x2|<l/5:

of determinant A(K) = 5. I shall prove in a separate paper that the
following non-convex star bodies in R, are likewise irreducible:

(1) The domain K,,

xS (e max(e T —{x?1—2cfh),  (0<c<H),
of determinant A\ (K{) = c,

(2) The domain Ko,

X421, | x| << max (sinc, { 2—2cos c—x7i'), <0<c<g>,
of determinant A(K,) = sinc.

(3) The domain K3,

=L Jw] < min (o {1 2efh— 1), (0<e<d),
of determinant A(K3) = c.



447 19
(4) The domain Ky,

—1= \xlxz\;\l(l~c) ]xl%—xzki\/i%——c, <3_«l/5/c<1>

. 1
of determinant N(Ky) — - —c.
c

There is no difficulty in constructing an infinity of cther examples in R,.
On the other hand, it is much more difficult to construct irreducible star
domains in Ry: I hope, however, to discuss also some examples of this kind
in the paper referred to.

§ 8. T'he concavity coefficient of a star body.

Let K: F(X)=1 be a bounded star body. Then F(X,+ X;) is a
continuous function of X and X, on the closed bounded set F(X ) + F(X.)
— 1, and so assumes a maximum value, wg say, on this set. Hence, by
homogeneity,

F(X, +X) < ox(F(X)+F(X)) . . . . . (a
for any two points X and Xo. We call wg the concavity cocfficient of K.
This coefficient is evidently an affine invariant. On putting X, = O in (a),
we see that wyg -~ 1; the equality sign holds if and only if K is a convex
body 5). On applying (a) repeatedly, one obtains the inequality

FX+.. . +X) ol (F(X)+...+F(Xy) . . . (b)
where n* denotes the integer defined by
D L (&
As an example, if K is the star body in R, defined by

{
i

[
ixlxzé\\‘l, x1+x2| [/5
je. if F(X) is the distance function

‘ 1
F(X)=max |z x5 [ a])
L5 |
then a simple discussion gives wg = 3/2.
Let K be of volume V(K), and let A be any lattice of determinant A (K).
Then by a theorem of L. J. MORDELL 6), A contains at least one point
P O such that

F(P) =< 2wk ( ﬁﬁ?i )”"‘

5) If K is not bounded, but of the finite type, then (a) does not hold for all points
X1, Xo, however large wK is taken.
6)  Comp. Math, 1, 248—253 (1935), in particular pp. 248 and 251.
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Let now A be a critical lattice of K. Then F(P)=-1, and so 7)
VIK)XQowr)"ANK). . . . . . . . (I
Next let 4 be a K-admissible lattice of determinant d(A4) with n
independent points Py, ..., Py on the boundary C of K,
FP)=... =FP,)=1.. . . . . . . (d)
The determinant
D:i§Pl,.‘-,pn§]
of these n points is a positive integral multiple
D= Nd(4)
of d(A); we call
N =ind (P,,..., Py
the index of the n lattice points Py, ..., Pr. An upper bound for this index
is obtained in the following way %):

A basis Ry, ..., Ru of A can be chosen such that
Rx = Pl,
Ry= Bt Fawn Bt P h 5y,

ag
where the a's are integers, and

ay=l,as=1,...,apn=1,aas...a,=N. . . . (e

Every point P of A can be written as

P:ulRl+~"+uan

with integral coefficients u;, ..., us. On replacing the R's by the P’s,
this gives

p:—'vlpl‘J{‘-u"f‘Unpn.

where

21 ani
U — uy + "’ ll2+ .t Un;

/z‘

an? 1
o — uz + u3 e g va= — un.
an an

By a theorem of l‘v’IINKOWSKl 9), integers wy, ..., ux not all zero can be
chosen such that

ot ol = ()

7) By a theorem of MINKOWSKI and HLAWKA (Math. Zeitschr, 49, 285-—312 (1943),
in particular pp. 288-—299), there is also a lower bound for V(K), namely

V(K)=2¢(n) A (K).

$) MINKOWSKI, Geometrie der Zahlen, 173—176 and 187—189.
Y)  Geometrie der Zahlen, p. 122. Put p =1, r = n, s = 0, and use (e).
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Therefore by (b) and (d),
1 = F(P)—of {F(v,P)+ ...+ F(va Py){ =
\ n
- (U?(* (v [ o) = wn* <§‘,) ,

N
whence
ind (P, Py ..., Ppy)y<nlor™ . . . . . . (I
Finally, let again A be K-admissible, let Py, ..., Pn be the only points

of A on C, and put P, = O. In the basis Ry, ..., R, of A, these points can

be written as
P,=uR +...+d” Ry (u=0,1,...,m)
with integral coefficients u{f. Denote by g the integer for which

2w << q L2041
Then

m<q"—1<Qowx+1)r—1. . . . . . (Il

For let this assertion be false, i.e. let m — q". Then two of the m + 1
points Py, Py, ..., Pm, the points Pu and Py say, satisfy the congruences

ul) = u‘gv) (mod q) g=1,2,...,n)
Hence

1
p :q (P.— P,)
is again a point of A, and P =£ O since p= ». But then

| F(P) <« 5F<1p,f) F(—lp,,)3<,, 1
_F(P) \(’K( q + a7y ,<K(q+

A
q;
a contradiction 10),

The two inequalities (II) and (III) apply, in particular, to the critical
lattices of K. They show that these critical lattices are essentially only of
a finite number of different types, depending alone on the value of the
concavity coefficient wg.

§ 9. Some unsolved problems.

Special results suggest that each one of the following four problems
has an affirmative answer, though I have not succeeded in obtaining proofs.
We assume always that K is a bounded irreducible star body in R, that
A is a critical lattice of K, and that V(K), ind (Py, ..., P.), and m have
the same meaning as in the last paragraph:

Problem 3: To decide whether, to every dimension n, there exists a
positive constant a, such that for all K,

ok < ap.

10)  Compare MINKOWSKI, Geometrie der Zahlen, 77—380.
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Problem 4:  To decide whether, to every dimension n, there exists a

positive constant bn such that for all K
V(K) == b, A (K).

Problem 5: 7o decide whether, to every dimension n, there exists a
positive constant ca such that for every K and for every critical lattice
Aof K,

ind (pl,“.,pn)gCn’

Problem 6: To decide whether, to every dimension n, there exists a
positive constant d, such that for every K and for every critical lattice
/1 Of Kv'

m < d,.

It is clear from the last paragraph that if the lirst one of these four
problems has an affirmative anwer, then the same is true for the three
other ones; by (I), (II), (III), we may then, in fact. put

by = (2 an)", cp =nlatm, dp =2 a, + 1)"—1.

n

But it is, of course, possible that no ax, but at least one of the three numbers
bn, cn, dn exists.

While the last problems deal with properties of given irreducible star
bodies, the main existence problem, as follows, refers to reducible star

bodies:

Problem 7: To decide whether every bounded reducible star body
contains at least one irreducible star body of equal determinant.

It is highly probable that the answer is in the affirmative, and that even
a continuous infinity of irreducible star bodies of the wanted kind exists;
but I have not succeeded in proving this. One reason for this failure is the
following fact: If H, K, K, K., ... are star bodies such that

H-< K, K (r=1, 2, 3,...)
Kl >’ K2 >> K3 ti\’ “ ey

then the star bodies K, tend to a limiting set, namely their intersection, buf
this set is not necessarily a star body. Presumably, a proof will be con-
structive and will consist of a finite number of steps. — If Problem 7 has
an affirmative answer, then only irreducible star bodies need be considered
for most purposes, in so far as bounded star bodies are concerned. — The
analogous problem for unbounded star bodies has probably a negative
answer; but again, I have not so far succeeded in proving this.

§ 10. A general principle.

We consider in the following paragraphs non-trivial examples of
unbounded reducible star bodies, and begin with a simple principle on star
bodies with automorphisms.
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Denote by F(X) and G(X) two distance functions in Rx, and by ¢ (x, y)
a distance function in R,, satisfying the following conditions:

(a): The star body K: FF(X) =1 is unbounded and of the finite type,
and admits a group I' of automorphisms (2.

(b): If s>0 is arbitrary, then there exists an element £ of I' such
that if | X|=s, then G(2-1X) =1

(c): @(1,0) =1, and ¢(1,y) = 1 for all real numbers y.
Hence

F(X)=¢ (F(X), G (X))
is also a distance function. By (¢),
F*'(X)Z—F(X) . . . . . . . . (d
for all points X; the star body K*: F*(X) =1 is therefore contained in K.

Theorem H: A(K*) = A(K).
Proof: We first prove a simple inequality for ¢. Denote by c the

maximum of ¢(x, y) if |x| -+ |y]|=1; this maximum exists since ¢ is a
continuous function. By homogeneity,
ey <c(lx|+lyl) . . . . . . . (o
Choose further ¢ > 0 arbitrarily small, and choose 0 > 0 so small that
2¢6 <1,

and that further
p(liy) <1-+e if ly|<<2cd;
this is possible by (c). Then

ple=lsle(LE)<tte iy <Ie< y<o
since |y/x| = 2cd; and by (e),

pleg) Sellxl+lg)=1 o [x1< . |0,

since 4 = 1/2¢. On combining these two inequalities,

p(x,y) <1+e if [x|<<1, lyl<6. . . . . (H

The proof proceeds now as follows: Denote by r an arbitrarily large
positive number, put s = r/d, and choose the automorphism Q = 2, in
I" such that

if | X|<s, then G(2;' X)<1,
and so, by homogeneity,
if| X|<rthenG(2'X)<<6.. . . . . . (g



24 452

The star body F*(£271X) = 1 is identical with ;K. We saw that K~
is a subset of K; hence, by the invariance of K,
Q. K"iscontainedin K. . . . . . . . (h)
Next, let K, be the set of all points X satisfying
FX)=<1, |X =n
hence by (g),
G (L' X) <.
Then by (f),
FrQ'X)=¢((F(X), G X)) <1+
which means that
K. iscontainedin(1 +¢ £, K*. . . . . . . (i
The two relations (h) and (i) imply, by Theorem 9 of Part I, that, as
e—0 and r —» o,
lim A (2, K") = A (K).
But, by Theorem 17 of Part I, all automorphisms (2, are of determinants
F 1. Hence by Theorem 16 of Part [,

N2, K") =/ (K"),

whence finally
A(K") = A (K),
as asserted.
Remark: The restriction (a) that K is of the finite type, is essential, as
the following example in Ry shows. Take
FX)=|xix; 'l G(X)=

o (x,y)=max (| x|, | |

The star domain K: F(X) =1 admits the automorphisms
x; =t xy, x, =1 X0
of arbitrary determinant ¢ =~ 0, hence is of the infinite type. On the other
hand, the star domain
K*: x| 1, x| =1
is of the finite type since it is contained in the star domain
H: 2,2, =<1
of determinant A (H) = |/5.

We see also that the more general star domain

K:: x| <1, x| 1

is of determinant
AK:D)= A KW T,

an expression which tends to 1nf1n1ty with 7.



§ 11, Applications of the last theorem.

Let us assume that, in the last theorem, G(X) and ¢(x, y) satisty the
additional conditions

G(X)#£0if F(X)+0,
and
@ (x,0)=|x[, @y > x| it y70
Then
F(X)=q¢(F(X),G(X)) > F(X) if F(X)#0,
and so every point of K*: F*(X) =1 is an inner point of K: F(X)=1
Hence the critical lattices of K, which by A(K¥) = A (K) are also critical
lattices  of K*, have no points on the boundary of K*. The simplest
n-dimensional star domain K* of this kind is obtained for
F(X) f— E X1 oo Xn ]‘1/”,
1 |
G (X)= 18 oo ) 1 ) = (27 g
For the star body K: /(X)) =1 admits the automorphisms
Q: Xy ==X, e X == E Xy, Xp ==t xp,
and so, if X is restricted by a condition | X | == r, then a number >0
depending only on r can be found such that G(£2-1X) = 1. The star body
K*: 22X (a4 al) =]

has therefore critical lattices with no points on its boundary 11).

As a second example, choose

F(X) =max (|27 x, U, [ X070 x [17),

take for G(X) either of the two distance functions
Xn

Snl

’

/| [ [ o 1\
G, (X')i:_'nla}:(Exl ,f..,x'111> or G,(X)=

i &1 €n—1

where ¢, ..., ea are arbitrary positive numbers, and put

-
The star body K: F(X) =1 is of the finite type and admits the auto-
morphisms

@ (x, y) = max (| x|,

Q: Xy =X, e, Xpo = EXxpoy, Xy =t xp

Therefore, if X is restricted by a condition | X | = r, then numbers >0
depending only on r can be found such that G;(£2-1X) =1, or such that
Go(0Q-1X)=1. Hence, by Theorem H, both star bodies

1
Ki: fx,l;” “max (| x|, ...

)<1. Ex1|<"31~-»' ixn—1|<6n71

11)  Compare a similar example in Theorem 15 of Part I which was proved in a far
more complicated way,
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and
o
K5 [ xn |7 max (| x

R - 7900 ) B P -
are of the same determinant

ANKT ) =N (K3)=N(K), =D say

as
1

K: [xp " "max (| x; ], ..., |xao1|) 1L
Hence, if ¢ >0 and d(A) = D, then at least one point P = O of A belongs
to (1 -F¢) K7, and at least one such point belongs to (1 +'¢)Kj5 .

Let now ay, ..., ay_; be n—1 real numbers at least one of which is

irrational; and let f,, ..., f,-1, 1 be n real numbers which are linearly
independent over the rational field. Both lattices

Ay xy=u;, —ayup, ..., Xpoy=tnp_1— anaty xp=Du,
(uy,..., un=0, F1, F2,...),
»
Ay xy=vy,..., xpm1=vp—1, xp=D (v, + ...+ Ba—1Vn—14vn)
(v1.e., vn=0, F1, F2,...),
are of determinant D. Hence, however small ¢, ¢, ..., &5 arc chosen,

there exist integers uy, ..., un» not all zero such that
1

(A): | Duy| "' max (|u; —a; up Upy— gyt ])<1+e,

luy —ayun| e, ..., |t —an_1tn| ey,

IEERE]

and however small ¢ and ¢ are chosen, there exist integers vy, ..., vs not
all zero such that

(B): |D(Byoy+... 4 Brarvn s +oa) [ max (|og ..., Joast|) < 146,
[Broy+... 4 Baivns + v | Son

Let now ¢y, ..., &n tend to zero. Then, from the hypothesis, both |un |
and max (|vy], ..., |vn—y1]) tend to infinity. Hence, by (A) and {B),
there exist an infinity of systems of n integers uy, ..., un such that

1 1
1 4¢jnm1 14¢lnm1
(C). [ul—alu,z|< Di;; seees !un-—l”anvl Un;< D;; ’ Iuni""o,
and an infinity of systems of n integers vy, ..., va such that
1 +¢
(D): |Broy -+ Baorvnms +va | < max (o], [ oaa )70,
max (|vy], ..., |vpa]) > .

Connected with this, the following problems seem of interest:
Problem 8: To evaluate D — A(K).

1
Problem 9: To decide whether the constant factors D™ n=1 and D-!
in (C) and (D) are the best possible ones.



Mathematics, — Lattice points in n-dimensional star bodies II. (Reduci-
bility Theorems.) By K. MaAHLER. (Third communication.) (Com-
municated by Prof. J. G. van DER CORPUT.)

(Communicated at the meeting of April 27, 1946.)

§ 12. Boundedly irreducible and reducible star bodies.

In the case of unbounded star bodies of the finite type, the following
definition seems to be of interest:

Definition C: The unbounded star body K of the finite type is called
bourza’edlj reducible if there exists a bounded star body H such that
H-~ K, and it is called boundedly irreducible if no bounded star body H
with H - K exists.

Theorem J: For every dimension n, there exists a boundedly irreducible
star body K in R,.
Proof: We choose for K the star body

K*: xpag.xk g ag L x) o ]

considered already in the last paragraph, and for H any bounded star body
contained in K. As we saw, K* is contained in

KO: ‘xle.‘¢x11‘<1

and of the same determinant A(K*) = A (K,); moreover, all boundary
points of K™ are inner points of K. Hence the boundary points of H are
likewise inner points of K,; there exists then a constant 6 with 0 << 9 <1
such that

’x, xz...x”“ia
for all points of . But this implies that
A H)= 60 A (K << A (KT),

and so it is not true that 7 < K, whence the assertion.

If K is any star body, then, as in Part I, we denote by K7 the set of all
points X of K for which | X|=¢.

Theorem K: [} the star body K: F(X) =1 is boundedly irreducible,
then there exists to every t>>0 a critical lattice A of K and an infinite
sequence of lattices Ay, A», As, ..., with the following properties:

(a): Al lattices A, are Kt-admissible.

(b): d(4dr) < A(K) (r=1,2,3...).

(c): The lattices A, tend to the lattice A.
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Proof: Denote, for r = 1, 2, 3, ..., by A) any critical lattice of K7+?;
all these lattices are K?-admissible, Since K"+ is a bounded subset of K,
from the hypothesis,

d (A = A (K™ < A(K) (r=1,2,3,...).
Further, by the corollary to Theorem 10 of Part I,
lim d (A7) =lim A (K™ = A (K).

r—»>w® r»wo
The lattices A, A®2), AB), ... form therefore a bounded sequence, and so,
by Theorem 2 of Part I, there exists an infinite subsequence
Ay =A®) Ay = Ak A= AR, (1 Tk < ky<ky<...),

which converges to a limiting lattice, A say. It is clear that the so defined
lattices A, and A satisfy the assertions (a), (b), and (c) of the theorem:;
but there remains to prove that A is a critical lattice of K.

We show firstly that A is K-admissible. Let P = O be any point of A.
There is then in each lattice A, a point P, =% O such that

lim | P,—P|=0.

r-»o

Further, if r is sufficiently large,

|Pr| <t + k.
Since A, is Kt+*r-admissible, this means that
FP)=1,
whence by the continuity of F(X),
F(P)=lim F(P,;) > 1,

r-—»o
i.e. Ais K-admissible.
Secondly, A is even critical since

d(4)=limd (4,) = A (K).

r—row
This completes the proof.
Definition D: Let K be an infinite star body of the finite type. Then a

critical lattice A of K is called strongly critical if there exists a bounded
star body K* contained in K such that

d(4) =d(4)
for every K*-admissible lattice A* sufficiently near to A 12).

12)  We say that A* is near to A if there exist reduced bases

*

Y, Ys...,Ynand Y1, Ys..., Y

of A and A* such that all numbers
| Yo—Y5| g=1.2,...,n)

are less than a prescribed constant.
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It is clear from this definition and from Theorem K that if K is boundedly
irreducible, then at least one critical lattice of K is not strongly critical.
Hence the following theorem follows at once:

Theorem L: Let K be an infinite star body of the [inite type, and let
further every critical lattice of K be strongly critical. Then K is boundedly
reducible.

Proof Assume that, on the contrary, K is boundedly irreducible, and
denote by K* any bounded star body contained in K. There exists then a
positive number ¢ such that | X | = ¢ for every point X of K*. If A is now
the critical lattice of K given for this value of ¢ by Theorem K, then A is
clearly not strongly critical.

Theorem L allows in many cases to decide whether a given unbounded
star body is boundedly reducible. A few such cases are discussed in the
next paragraphs.

§ 13. Examples of boundedly reducible star domains in Ro.

In his work on binary cubic forms 13), L. J. MORDELL showed that the
two star domains

K: |x, x2(xl+x2)1\(§:\l
and
K;: x3 a3

are of determinants

AK)=""7 and A (K)=""33.
It is of interest that his proof gave, incidentally, the result that both star
domains are boundedly reducible; they were the first non-trivial examples
of this kind. I later gave an even simpler example,

K3: le legl, Wlth A(Kg}):l/g,

of a boundedly reducible star domain, and made some applications of this
property of Kj 14),

By means of Theorem L, independent proofs that K, K,, and K5 are
boundedly reducible, may be easily obtained. To this purpose, one uses
considerations analogous to those in the next paragraphs.

13)  Since his latest proof has not yet appeared, I refer to two articles Journal Lond.
Math. 18, 201—210 and 210—217 (1943), where the two affine-equivalent regions

|23+ x2x,—2x x2—x3| <1 and |x}—x x2—x3| <1

are considered.
14)  Proc, Cambr. Phil. Soc. 40, 108—116, 116—120 (1943), and Journ. Lond. Math.
Soc, 18, 233—238 (1943).
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§ 14. The star body |x; xy x3| =1 in Rs.

By a theorem of H. DAVENPORT 15), the star body
K: |y x5 03] = 1
is of determinant

AN (K)=T7.
Let

2n 47 6
f=2cos 5, ¢=2cos~ , W=—2c0s =
70! 7Y 7
be the three roots of
2+ 2—2t—1=0.
Then
Ayixy =6 u +pu, +yus, x;=qu, Fyu,+Gus, x35—=yu,+O8u,+ @us,
(uy, 11, u3=0,F 1,% 2,..))
is a critical lattice of K, and every other critical lattice of K is of the form
A = Ay where Q is one of the automorphisms
Q: X\ =0 Xu, X, Tt X, X3l
of K; here t, ty, t3 are real numbers satisfying
t it =F 1,
and «, §, y is any permutation of 1, 2, 3.
Theorem M: The star body K: |x;xyx3] =1 in Ry is boundedly
reducible.
Proof: It suffices to show that Ay is a strongly critical lattice of K
because, by affine invariance, the same is then true for all critical lattices
of K, and so the assertion follows immediately from Theorem L.

By definition, the lattice A, is strongly critical if there exists a bounded
star body K* <K such that

d (A7) = d (4,)

for every K*-admissible lattice A* sufficiently near to A,. Such a lattice A*
near to /A, contains a point

b= (6", ¢*, v")
arbitrarily near to the point
By=(0, 9. v)

of A, obtained for u; =1, us =0, uy = 0. There exists then an
automorphism

0 a=0x7, =6Xx, xX3=6x (665=1)

15)  Proc. Lond. Math. Soc. 44, 412—431 (1938).
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of K which changes P* into a point 2% P* collinear with O and Py:
O 6 5y —=68:p:y.
Hence, by affine invariance, it suffices to show that
d (A7) = d (4)

for every K*-admissible lattice A* which is (i) sufficiently near to Ao, and
which (ii) contains a point

p* — ((9*, (p*' 'P*)
arbitrarily near to the point

Py = (6. 9.v)

of Ay such that O, Py, P* are collincar.
Now every lattice A* near to A, can be written in the form

A% xy = Boy 4 puy +yos,  x, = gvy -y, + Hus,  x3= o, + vy + pus
with

vy = u; -+ (ay uy + uyp 0y + w3 uz),

vy =1y + (az uy -+ g uy + uy3 us), (), upyus=0,F 1,F2,..)),

vy = us + (a3 u; + as us -+ azs us),
where the coefficients anr are real numbers such that

a=— max |an|
hk=1,2,3

is less than any given constant. The point P* of A* corresponding to Py is
P*:((l—}—a“)ﬁ‘l—az] ptas vy, (I4an)ptan ytas ‘9’(1+311)1P+82149+331‘P)
and is collinear with O and P, if and only if
(a): a, =as —0,
because the three points

Py=(8,¢.v)., Pi=(p,y.0), Pr=(y. 6, ¢

are linearly independent. We consider from now on only lattices A for
which the condition (a) is satisfied.
Put for shortness,

SU)=Ou, + gu +yus) (pu, +yu, + Gus) (yu, + Gu, + pus) =
= (B+u+ud) — 4 (u,  2Hu,uiHu i) + 3 (Guytuju +ufu) —u vy uy,
so that
x x5 =S (U)
for the point of A, belonging to U = (uy, us, u3). Similarly
x; %, x5 =5 (V)
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for the point of A" belonging to V' = (vy, vy, v3), or, on replacing V by
its value in U,
xy x5 =S (U) + T (U);
here
TU)=(A o+ Au;+ Aju) + (B, u,u? | Byu,u? 4 B, u, u2) +
+(C,Juy, + Cyulu, + Cyulu) + Du, u,u,,
with the coefficients

A= 3ay O (a?),
A, = 3ay —4a, ) + 3 ay, O (a?),
As= 3 ass — 4 ay; +3313+ O (a),
B, = —4ay—8as+3an+6ay+3a,— a;-+ 0@,
B,=—38ay, —4as; + 3 ay + 3ays +O(az),
B;= —4a;; —8ay +6a — as O (a),
Ci = 6ay+3a;— a,+3ay—8as;—4ay; %O(Z)'
C,= 3ay v + 6 as; T dap —8ay; '1‘ (a?),
Ci= 6a,+3a, +3a, —4as O (a?),
D =— a,— ap— a33—-—8alz—8323+6a32+6a13+O(a2),

where, in all cases, the O-term consists of the products of two or three of
the ank. These formulae imply, in particular, that when a tends to zero,
then the maximum

A=max((Ai], [Aof, |As], [Bil, |Bsl, [Bs], |Cil, [Cof [Csl, D))

satisfies the inequality

A =0 (a).
On solving for the coefficients anr,” we find further that
3a,;, = A, O(a?),
105 as = —70 A]’—“ 15A2+30A3_} 1831 _1237—“2783_‘61) _f (82 ,

)
105a5;5= 65A,+45A, —18B,+412B,+27B;—9D + O(a?,
35a,=—25A,— 5A,+15A;+ 9B,— 6B,— 6B;—3D 4+ O(a?),
35a,;,= 35A,+15A,— 5A;— 6B+ 9B,+ 9B;—3D + O(a?),
35a5;5,=—10A,+10A,+ 10454+ 6B,— 4B,4+ B;—2D + O(a?,
35a;= 25A,-}+ 5A,4 5A;— 2B,+ 8B,+ 3B;— D+ O(a?d,
and we also obtain the three identities,

5C,= 5A,— 5A,—10A;— 7B,+ 3B,— 2B;— D - O(a?),

5C,=—10A,+ 54,— 5A;— 2B,— 7B,+ 3B;— D O(a?,

5C;=— 5A,—10A,+ 5A;+ 3B,— 2B,— 7B;— D - O(a?),
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and the inequality

a=0(A), O (a%) = O (A?).

So far, the star body K* has not yet been defined; nor have we yet used
that A% is K*-admissible. Let then K* be a star body K* where ¢ is so large
that all points of Ay for which

SUN=1, w3 |n =3 |u <3
belong to K’. Then the ten points of A, given by
U=(10,0), (0,1,0), (0,0,1), (0.1, 1), (1,0, 1),(1,1,0),
(0, —1,—2), (—2,0,—1), (—1,—2,0), (—1,—1,—1),
satisfy the equation,
S()=1.

The points of A* belonging to the same Il cannot be inner of K* = K*
since A" is K*-admissible. The numbers

ay, g, az, Py, Ba Ba v Y2 Vs d
defined by

T(1,0,00=«, TO,1,1)=p,T( 0,—1,-2)=y,,

T©,1,00=a, T1,0,1)=p, T(—2, 0,—1)=y, T(-1,—1,—1)=9,
T©0,0,1)=as, T(1,1,0)=4p;, T(—1, =2, 0)=y;

are therefore non-negative because

X xx0=S{UN+TU)=1+TU)=1

for these points.
Hence, on substituting in T (U),

a, = A,

ay = A,

T— As,

= A+ A+ B, + G

fr= A, + A + B, + G

By= A+ A, ’ + B; + G,
Y= — A,—8A;—4B, —2C,

y,——8A, — A, —4B, —2GC,
ys—— A, —8A, —4B, —2GC,
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and conversely,

A, = ajy,
A, = ay,
A;= as,
B, = Yoy, —3a3— f — %7
B, =—3q +4as — p — %+
By= {a—3a — b — %73
C= —da,+ 205420 + &7
C,= 24q — 4o +28 + %72
C=—4a+2q +2p + 473
D = a+ e+ a— fi— fi— B — 9.
From these formulae, we deduce that identically,
n—= Za+ a;—2a; + 26, + 26+ O(a?),
B): yp=—2a;+2a0+ a +28+24+ O(ad)
V3= ay—2a,+2as+ 2 f +246+ Of(ad).
If further

. }ﬁaf' 71" l?’zl' IVal' [‘3[)»

then, by these formulae, all three numbers a, A, a are of the same order,

a=0()=0(A), O@)=0(), O(A)=0()

a=max (|a;|, |a;], |asl, |Bi]. |5,

The proof of the theorem proceeds now as follows:
The lattice A* is of determinant

l 1+ ay, apa s |
0 1+a,; ax
0 as, 1+ as;

d (4%) = d(4) d (45) (1 + o),

where

ay + ax + as; + O (a?),

A+ A+ A)— D+ O(A)),

oy +ar+a) + 4B+ B+ B) 5+ O (o).

Assume now that A* is so near to A, that a, hence also A and «, are

sufficiently small. Then
either

g

I

(c):

|

6 >0, d(4")>d(4y),
or
6—=0, d(4")=d(4,).
By (c), the second case cannot hold unless

(d): y=agy=a;=p=0=p=46=0,
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hence also
(e): rn—=r2=r3=0,
because by (b),

max (| y; |, | 72 " | V3 ;)
is of at most the same order as
max(] ay | |‘12 \’ as {» I #i l, ﬁzi s f d \)

The equations (d) and (e) imply next that
A =A,=A;=B,=B,=B;—=C,=C,=C;=D=0,
hence also
ay) T axpTTas T aj; —a—an—a;—0;

and so A" coincides with Ay. This concludes the proof.

Although the proof just given is a pure existence proof, it can easily be
altered so as to lead to the construction of a bounded star body K*
satisfying K* < K.

The next theorems are all proved in a manner similar to that of

Theorem M.
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for every K*-admissible lattice A* which is (i) sufficiently near to Ao, and
which (ii) contains a point P* arbitrarily near to P, and collinear with

O and P,.
Now every latice A* near to A, can be written in the form
. a- a? -+ f? a—f a? — p?
A% xy=v + 213 v, + — 2 U3, Xy — Y vy + 2i U3,
Xy =0, +yvy+y s,
with

vy =u; + (@, uy +au+ as u;),
vy =1, + (ay uy +an + ays uy), (0, upu3=0,F1,F2,.. bR
vy —u;z+ (as; uy + azuy + ass uy),

where the coefficients anx are real numbers such that

a— max |an|
h,k=1,2,3

is less than any given constant. The point P* corresponding to Pg is

P* = (x], x}, x3) where
. a-t+ a? - f? a— a?— p?
xi=I1+a;+ "‘iﬁ ay + ***2'“['}* asy, Xy — 21/3 a -+ ) ;i/l asy

xy=1+4ay, +ran+r*asn
and so P* is collinear with O and P, if and only if
(a): a, —asz —0,

because the three points

a — /o2 2 42 B2
(1,0, 1), (%E =E y), k”%tﬂ, 7/9 y2>

are linearly independent. We consider from now on only lattices
satisfying (a).
Put for shortness,
S(U)=(u, + auy + a®us) (uy + fu, + pPus) (uy + yuy + yPus) =
::(u?—i—ug—{—ug)%—ugu] +(——u2u§+2u3uf——u, ud) — 3u up us,
so that
(2] + ) x, = S (U)
for the point of A, belonging to U == (uy, us, u3). For the corresponding
point of A,
(x? 4+ x) x, = S(V),
or on replacing V = (vy, vg, v3) by its expression in U,

@2+ xd) =S (U) + T (U).
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Here
TU)=(A,u}+ A, u3+ Aju) + (B, ulu,+ B,u2u + B,u?u) +
+(Cu,ui+ C,u,u? + Cyu ud) + Dy, u,u,,

with the coefficients,
A= 3ay, + O (a?).
A, = 3 ax —  an O (a?),
As= 3as; — an +  a;; + O (a%),
B, = —3ap+3a;3—2a— a3+ O(ad),
B, = an 4 2 ass —3ay +4313+O(32)
B;= 33’12 + 3 a;; O (a?),
Ci= — an—2ap+ a; + 3 as; —3ay; + O (a?),
C,= +4ay, + 2 as3 +3313+O(32)
Ci=— a;—2ay — 3 as O (a?),
D =—3a,—3a;—3a;+4a,—2a3+2ay +O(a)

In all these formulae, the O-term consists of the products of two or three
of the ank. If

A=max(|A,],|A,[.|As].[Bi].|B,], 1G5l [ D),
then these formulae imply, in particular, that
A=0(a).

On solving for the coefficients anx, we find that
3a, = A, O (a?),
69 a,, — 2A,+27 A, +9B; -+ 6C3+O(a2),
69a;,=— A, +27A5;—9B, + 3G, O (a?),
23a,,= 2A, + 4A, +9B; —}—6C3—}—O(a2)
23a,;,=— 11 A, — 2A;—7B, +10GC, O (a?),
23a;,=— 3A,— 6A, —2B; —9C3—!—O(a2)
23a,;=— 10 A, — 6A;+2B, + 7C, + O (a?),
and also obtain the three identities,

B, =— A, — B, —B; + G, + O (a?)

Ci= A —A —C,— G5+ O (@),

D = —A,—As+ B, +B;—C, + O (a?)

and the inequality,
a=0(A), O(@)=0(A?.

So far, the star body K* has not yet been defined. Let then K* be a star
body K* where ¢ is so large that all points of A for which

S)=1, |u||<3, |u2|\/3 [u3[<3
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belong to K*. Then the ten points of A, given by
u=(1,0,0), (0,1,0), (0,0,1), (0,1, 1), (—1,0,1), (1, 1,0),
0,—1,1), 2,0,—1), (—1,1,0), (1,1, 1),
satisfy the equation,
SU)=1.
If A* is K*-admissible, then the points of A* belonging to the same U
cannot be inner points of K* — K*. The numbers
@y, ay, a3, By, B2 B3 7172 730 O

defined by

T1,0,0)=a,, T( 0,1,1)=p, T( 0,—1, 1)=y,,

T0,1,00=a, T(—1,0,1)=p, T( 2, 0,—1)=yp, T(1,1,1)=34,

TO01)=a, T( 1,1,0)=§; T(—1, 1, 0)=ys,
are then non-negative since

(24 32, =S+ T =1+ T(U) =1

for these points.

Hence, on substituting in 7 (U),

a= A,

a, = A,

az;=— As,

/31: A2+A3+B1 +C1'

p,=—A, + As — B, + C,,

ﬁ3: A1 +Az "*‘Bz +C3,
71 — A, + As+ B, —Cy,

72= 8A,; — A; + 2B, —4C,,
=—A, + A, + Bs —G;,

0= A +A+A+B + B,+B;+C, + C2+C3+D'

and conversely,

A= a;,

A, = a,,

As= as,

B, = — a+§p + 37

B, = 2q + 3 a —2p — 7

B; = — Q3 ‘l‘%/% +%7’3.
Cl_: — a + b — %t

C,= 3¢ + ¥ as — B — %7
CG=— g + % fs — %73

D==50+4+06—-2aq— g+3fh— f + n + 9.
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We deduce from these formulae that
By =— ot ay—ta 26— B3+ %72 +O(az)'
V1= a+ ay o as —4r2— 73+ 0O(@@)
0= 3q—2a+faa—20/+f—5rnt+irt O (a?).
Hence, if
o =— max (\“1[ 1“2E' Las), ’/’)1]' lﬂ?,’ |/€3= |71" yals [731’ [‘S')'
then all three numbers a, A, « are of the same order,
a=0()=0(4), O@)=0(}), O(A?)=0 ().
Finally, the lattice A™ is of determinant
l+a;, a,  ap i
0 1+ ay ax; 1' = d (Ay) (1 + o),
0 asy; 1+ ass|

d (1Y) = d (A,

and here
6=ay, 1+ axp + as + O(az)'
=45 (8 Ay +9A,4+9A;—3B,+3B;+ G, +2Cy) + O (A?,
=45Ba+6a,+5a0+5 Prt+ 5B+t Lty + O (a?).

We find therefore, just as in the last proof, that
either

6 >0, d(4Y)>d(dy),
or

6 =0, d(A")=d (),

and that the second case can hold only if « = a = A =: 0, that is, if A"
coincides with A,; whence the assertion.

§ 16. Some further examples.

I have applied the method of the last paragraphs to three further star
bodies in B3 and R4. From the well-known results of A. OPPENHEIM 18)
on the minima of the indefinite quadratic forms in three and four variables,
I have so deduced that

the star body Ky: | x? 4+ x2 — x2 | << 1 in Ry with A\ (K;) = |74
the star body K;: | x7 4 x2 + a2 — x2| << 1 in Ry with A (Kp) = |7
and the star body K: | x? 4+ x2 —'x2 — x2[ < | in Ry with A\ (K3)— §

are each one boundedly reducible. As before, Theorem L is the basis of the
proof; since no new ideas are used, I omit this proof.

s

3
K
T
ry

»

18} See L. E. DICKSON, Studies in the theory of numbers (Chicago 1930), chapters
8 and 9.
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In all these examples of boundedly reducible star bodies, it would be of
great interest to obtain irreducible star bodies of equal determinants
contained in them.

8 17. Applications.

The following theorems show that the preceeding results can be useful
for other purposes.

Theorem O: There exists a positive “constant ¢ with the [ollowing
propecty: If «y, as are real numbers, and ¢ is a positive number, then there
exist integers u, uy, uy not all zero such that

E—

l/23
_c

(1 — ay uz)? + (11, — us)’ = P t us i =t

(y — ay ug)? + (1, — as us)? | us | =<

Hence if «,, ay are irrational, then there are arbitrarily large integers
ty, Uy, uy such that 19)

N N [
us / U3 [/23 luy |3
Proof: By Theorem N, a positive number r exists such that
K*: (24 x x5l =1, x?+ x4 x3<<1?
is of the same determinant as
K: (x4 x2) x5 == 1,
namely A(K) == A(K") = 1/ (23)/2. On applying the transformation

Q: X =Txy, X =rxy, x3—=tv2x3 (t>0),
of K, we find that
K () | S R ) bR

is likewise of determinant A\ (K?¥) == A(K) = 1/(23)/2. Let A be the lattice

1/223 us (u, uy u;=0,F1,F2,...)
Since d(A) = 7 (23)/2, at least one point P =~ O of A lies inside or on
the boundary of K¥; let this be the point belonging to the integers uy, ug, u3
not all zero. Then

A xy==u—0y 3, XU, Ui, X3 =

2
t—ay t3)? + (uy—ay us)? i |u e
;(1 113) (2 23 '3| |/23
'[zg(ul"“(ll U3)2—!—(u v“(lz u3 §+ u§<[’2,

19) A slightly less exact result is proved in a joint paper by DAVENPORT and myself,
in. DUKE Math, Journal 13, 105—-111 (1946).
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hence
(u——au)+(u~a¢u)2/r72 [u|<—~21r
1 1 43 2 2U3) ~= ) ’ 3|~ ‘/23
If now
e 20 (232
L3 T\ e )
then
c
(11 —ay u3)? + (uy—ay 1)’ < rE lus| <t
as asserted. — Assume next that a4 is irrational and that ¢ tends to infinity.

Then uy is different from zero for sufficiently large ¢,and since |u; —a; u3 |
tends to zero, tends to infinity.
In a similar way, Theorem M leads to the following result:

Theorem P: There exists a positive constant y with the following
property: If f,, By are real numbers and t is a positive number, then
integers vy, vy, vy not all zero exist such that

|V102 ﬂ101+ﬁzvz+v3)| g
4

o=t o<t [Bionthrvtos|= 5.

Assume further that f,, fl» have the f[ollowing stronger properties: (i)
p1, Po. 1 are linearly independent over the rational field. (ii) When the
integers v, v', v” tend to infinity in any way, then

limo? | v+ v |=0c0, limv?|fv+ v’ |=0o.

Under these conditions, there exist an infinity of triples of integers vy, vs, vg

all different from zero such that

1

0 < 01+ﬁzvz+vs|\7‘
Uy

vzl

The results on boundedly reducible star bodies are also of use for
obtaining asymptotic formulae for the determinants of certain star bodies
depending on a parameter 20). For instance, it is easy to deduce from
Theorem M that when a > 0 tends to zero, then the star body

Ki: |x|*4|x|*+]x3*<<1 is of determinant A(K;)=1% e=2*(1+O(a)),
and the star body
(J2y |* 4 |22]%) | 2342 << 1 is of determinant A (K3)=14 e™* (14 O(a)).

I remark, finally, that the just given examples of boundedly reducible
star bodies in R3 and R, are all automorphic, and even satisfy the stronger

20)  For a special case, see my paper Proc. Cambr, Phil. Soc. 40, 116—120 (1944),
in particular the proof of Theorem 4.
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conditions of Theorem 23 of Part I. This suggests that the following
problem has an affirmative answer:

Problem 10: [s it true that every automorphic star body is boundedly
reducible if it satisfies the conditions of Theorem 23 of Part 17

§ 18. An addition to Theorem 9 of Part I.

In Theorem 9 of Part I, A(K) was proved to depend continuously on
K if K varied in a rather restricted way. To conclude this Part II, we
prove a more general continuity property of A(K).

Theorem Q: Let IF(X) and F(X) (r=1, 2, 3, ...) be distance

functions in R, such that

lim F, (X) = F(X)

>
uniformly in X on the unit sphere | X | =1 21); and let the star bodies
K: F(X)—1, and K,: F,(X)—1 (r=1,2,3,..))
be of the finite type. Then
lim inf A (K;) — A (K).

r—

Proof: Let ¢>> 0 be arbitrarily small. By the Corollary to Theorem 10
of Part I, there exists a positive number ¢ such that the determinant of the
star body

Kt: F(X)=1, | X ¢
satisfies the inequalities,
(I—e) A (K) =< A (K1) = A (K).

There is further an integer ro = ry (¢) such that

F.(X) =<1+ ¢ for the points X of K! if r=>=r,;
hence K* is contained in (1 -+ ¢) K, if r = ry. This implies
AKHY (14 ¢ A (K, if r =1,
whence
. . 1—e ,
AK) = (14 o A(KY) = (l-;féjﬁ AK)  ifrz=r

For ¢ — 0, the assertion is obtained.
In the result
lim inf A (K,) = A (K)
r—>w

{4

of Theorem Q, the sign ” =" cannot always be replaced by the equality
sign, as the following example shows,

21)  This implies the uniform convergence in every bounded set.
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Theorem R: For every dimension n, there exist star bodies K and K
(r—=1, 2, 3, ...) in R. satisfying the hypothesis of Theorem Q, but
such that

lim A(K:) exists and is greater then /\(K).

r>w
Proof: Denote by ¢> 0 a constant which is so large that the sphere

H: | X|=c

is of greater determinant than the star body

K: F(XxX)<1, where F(X)=|x, x;...x,]|'";

denote further by r==1, 2, 3, ... the sequence of all positive integers.
The distance function

2 cee 2 "a
F.(X)=min gF(X), -;1:_ (x‘ T zi,,x_":l + g2(n-1) xg) %

r

defines a star body K,: F,;(X) =1 which contains K and is easily seen
to be of the finite type. The automorphisms of K,

Q,: Xy TS0 XY, e, X = Xpe1, Xp=r =D x,
change K into Ky; hence
ANK)=NANK)=AN(K3)=...= lim A (K,).

r—»rw
On the other hand,
A(Ky) = A (H)> A (K)
since K, contains H; hence

lim A (K7) > A (K).

r-mw

Consider now F;(X) on the unit sphere | X | = 1. Here

2 2 Wy n—1
F(X)< 1, and _}; <x1 + .. .2—|— Fh-1 4 200 xlzl) >L_l;’ﬂi|

r =
and so
F.(X)=F(X) unless |x,| < cr =1,
If further
xa| e, | X =1,

then

F(X)<(ce=n)in, 0<F, (X) < F(X),
whence

|Fr (X) — F(X)| << F(X) < (co(n-V)in,
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and here the right-hand side tends to zero uniformly in X, as asserted.

Theorem Q leaves many interesting questions unsolved. For instance,
the star domain

K:: (7)) (¥ ) = 1
is easily proved to be of the finite type; is A(K:) a continuous function of 27
January 11, 1946.

Mathematics Department,
University of Manchester.



