
THE THEOREM OF MINKOWSKI-HLAWKA

BY KURT M:AIILER

Let Rn where n >_ 2, be the n-dimensional Euclidean space of all points
X (x, xn) with real coordinates. A symmetrical bounded star body
K in Rn is defined as a closed bounded point set containing the origin 0
(0, 0) as an inner point and bounded by a continuous surface C sym-
metrical in 0 which meets every radius vector from 0 in just one point. A lattice

A" xh ahkuk (h 1,2, n; u,

of determinant

d(A) ahk h.-1.2 ......
is called K-admissible if no point of A except 0 is an inner point of K. Denote by

V(K) IK"" f dxn

the volume of K, by A(K) the lower bound of d(A) extended over all K-admissible
lattices, and put

V(K)Q(K)- A(K)"

A critical lattice of K is defined as a K-admissible lattice A such that d(A)
A(K).
A theorem due to Minkowski [4; 265, 270, 277], but first proved by E. Hlawka

[2; 288-298] and C. L. Siegel [6], states that

for all symmetrical bounded star bodies. It is a difficult problem to decide
whether the constant on the right-hand side is the best possible one. In the
present note, K is assumed to be a symmetrical convex body; under this restriction,
the constant 2(n) in (a) will be shown to be replaceable by a larger number.
The method used is quite different from that of Hlawka and Siegel, and de-

pends essentially on the theorem of Brunn and Minkowski on the sections of a
convex body. (See [1; 48].)
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1. Notation. Let K be any symmetrical convex body in R with centre at
0, and let D A(K). Denote
by Ko the intersection of K with the plane x 0, so that Ko is an (n 1)-

dimensional convex body symmetrical in 0;
by Ao any Ko -admissible (n 1)-dimensional lattice in x 0;
by Ph (xhl, xh.n-1,0), where h 1, 2, n 1, a basis of Ao
by d Ii xh h. the determinant of Ao
by $ (1, -) any point in (n 1)-dimensional space R_I
by W the cube 0 _< , _< 1, ..., 0 < ._ _< 1 in Rn-
by P* and P the points

t/,P + + lS-P,,- + P*

in Rn (Sums of points, or products of points into scalars, have the
meaning usual in linear algebra or vector analysis.);

by Ac the lattice in Rn of basis

and so of determinant

D
d(A()) d X A(K);

hence this lattice is either critical, or not K-admissible;
by K. for v 1, 2, 3, the intersection of K with the plane

D
x,=v d;

since K is bounded, K, is the null set for all sufficiently large v;
by o the (n 1)-dimensional volume

of K ;hence

K--0

when v is sufficiently large;
by c. any lower bound of Q(K) for all symmetrical convex bodies K in R,.

2. The main lemma. Let X (x x,_ vD/d) describe the set K,,
and define the point (1, ,/=_) in R._ by the equation

X vr,"’() v(P + + ,_P,,_ + P*.),
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so that

Xk --"V

n-1

(k 1, 2,.--,n-- 1).

Then describes a certain set in R._I, L say, and this set is of volume

IL f(1) ), d d$,_

since the linear equations connecting the x’s with the $’s are of determinant
v’- ld.
Next let M be the set of all points (7, .-) in the cube W for

which there exist n 1 integers ul, u._ such that the point

X ulP1 + + u._P,,_, +vr,,’-’(’)

(Ul + V’I)Pt + + (U,,--1 + V’q,,_)P,,_, + vP*
lies in K., and let

be the volume of this set.
defined by

,.- f:.. f d,l...d,._

Evidently v belongs to M. if, and only if, the point

v u, + v,,, ..., v._ u._, + v,._

is a point of L.. Since lies in W, these equations imply that

0 _< v u < v, 0 _< v._ u._ < v,

and so, for any given point of L., each of the integers ul, u,-1 has just v
possible values. Hence to every point of L. correspond at most v"-1 points, of M., obtained by as many translations from . Therefore

#9< .-1
__V

whence from (1),

,(2)

LEM 1. The volumes K. satisfy the inequality

Proof. Let be any point of W. The lattice A(’) is either critical or not
K-admissible. In the first case, there exist n independent points of h(") on the
boundary of K; in the second ease, at least one point of h(") different from 0
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is an inner point of K and so cannot belong to ho since ho is Ko -admissible.
Hence 3_ (’) contains in both cases a point

of K not in the plane xn O. Since K is symmetrical, -X also belongs to K;
therefore, without loss of generality, the coefficient u. or v say, is positive.
This means that X belongs to K,, hence v to M.. The cube W of unit volume
is therefore covered completely by the sets M1, M2, M3, whence

The assertion follows now from (2). (For Lemma 1 and its proof, see [3]. It
was used there for proving a slightly less exact result than the theorem of
Minkowski-Hlawka.)

3. A value for c2. In two dimensions, the theorem of Minkowski-Hlawka
gives

Q(K) >_ c2, where c2 2(2) -3 3.28 ....
We show the following better result:

LEMMA 2. If K is a symmetrical convex region in the plane, then

Q(K) >_ c where c 12 3.46 ....
Proof. Assume first that the boundary C of K does not contain any line

segments, and choose an arbitrary critical lattice A of K. Then this lattice has
three points P, P., P5 on C such that P -t- P5 P3, and any two of these
points form a basis of A. Since, if necessary, a suitable affine transformation
may be applied, we may assume that P, P, P are the points

( 3t) ( 1 3t)P (1,0), P ,- P -,-
and that therefore

3d(A) A(K) 2"

Let

P4 (0, )

be the point where the x2 -axis intersects C. By the hypothesis about C, P4 is
an inner point of the triangle with vertices at P, P* (0, 3t), and P, and so

3- < < 3t,
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whence

Therefore the line

3

separates P and P3, and so intersects C in a unique point

P ,, with 0 < < -between P and P.. Denote by P the point

Po =P-P --,}-- n

evidently } > 0. The lattice A of basis P, P is of determinant

3

d(A*) ’ 31/2
2

a(g);

0

it is thus either critical or not K-admissible. Hence P0 either lies on C or is an
inner point of K.

Therefore the 12-sided polygon with vertices at

=(,o),e.= ,n,-- 5,-,--(o,),P-- -,-,

P0 -, } n -P, -P,, -P3 -P4, -P5 -Po

is contained in K. This polygon is of area

+ 2 +(-’)

=3+ 2}
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whence

V(K) >_ 3, Q(K) >_ 3 121/2,
31/2/2

as asserted.
Finally, if C contains line segments, then C can be approximuted us nearly

as we like by means of symmetrical convex curves with continuous tangent.
The assertion follows now from the continuity of V(K) and A(K), hence of
Q(K), as functions of K. (The exact value of the lower bound of Q(K) for
n 2 will be discussed in more detail in a separate paper.)

4. Consequences of the Cheorem of Brunn-Minkowski. From now on, the
symbols K and K for the intersection of K with the plane xn vD/d and its
(n 1)-dimensional volume will be used even if v is not an integer. We further
denote by r. the quotient

by u and w two numbers such that

u <w and >0 if

by K(u, w) the section of K for which

uD/d <_ x,, <_ wD/d;

and by V(u, w) the volume

of K(u, w).

LEMMA 3. If

u<v<w;

KCu,w)

dx, dx,,

v (1 t)u+ tw and 0 <_ <_ 1,

then
1/(n--1). >_ (1 t)Klu - tK (n-l).

This is the theorem of Brunn and Minkowski. (See [l; 48] or [5; 57].)

LEMMh 4. The volume V(u, w) satisfies the inequality

Proof. Put v (1 t)u - tw, so that x, vD/d ((1 t)u tw)D/d.
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whence by Lemma 3,

> ,(o u)D f’V(u, W) d o

K. dx,, (w u)D C1d .

On evaluating the integral, the assertion follows at once.

LEMMA 5. If V >_ 1, then

gv < {):ll/(n--1) () I)K01\1/(a--l) n--1

and

Proof.
by O, 1, v, 1/v, respectively.
one on dividing by o.

617

r. _< {1 --v[1 r/(’-l)]} "-’.

The first inequality follows from Lemma 3 if u,. v, w, are replaced
The second inequality is obtained from the first

LEMMA 6. If V >_ 1, then

Tv . T

The assertion follows immediately from the last lemma on putting

5. Recursive ormulae for cn The evaluation of lower bounds for Q(K)
depends on a recursive algorithm. On the assumption that a value for cn-1 has
already been found, one for c. is obtained by the following considerations:

Choose the lattice Ao in the plane x. 0 as a critical lattice of Ko hence, by
the induction hypothesis,

Denote further by w the largest positive integer such that

(4) . > O.

By Lemma 1,

(5)

hence w >_ 1. We distinguish now two cases.

in the well-known inequality

Proof.

1--vx <_ (1 x).
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If w 1, then from (5), K1 >__ d. By symmetry, K contains the two congruent
convex bodies K(0, 1) and K(-1, 0), and so, by Lemma 4, is of volume

2DV(K) >_ 2V(O, 1) >_-
n--1

h n--h--l’l/(n--1)

Hence in this case,

lCn(6) Q(K) >_ c. where c :.-1)
LCn-1

Next let w >_ 2. Then K contains the two congruent convex bodies K(O, 2)
and K(- 2, 0), and so

V(K) >_ 2IV(O, 1) -}- V(1, 2)]

2D ._n_a)/(._)> o + -oZ: , .
The right-hand side is decreased on replacing 2 by 0 and 1 by any lower bound
for this number. Such a lower bound is deduced from (5) and Lemma 6 as
follows:

KOT1

1 7"1

whence from (3),

> d do
Ko + d’ > >

o+d- c._ + 1

Hence, on substituting in the inequality above,

V(K) >_ -- -o \c,, 1

and so in this case,

ii ii 2c._ ((c._-}- 1)"/("-1) 1(7) Q(K) >_ c., where c. -n(c_- 5(- 1) k(c._ -}- 1)/(-1) 1

The results just found may be formulated as

LEMx 7. Put

c. mm(c.,
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iiwhere c. and c,, are defined in (6) and (7); then

Q(K) >_ c.

for all symmetrical convex bodies in R.

6. The numerical evaluation of c.. If, in applying the last lemma, any one
iiof the two constants c. and c. is decreased, then c. does not increase and so

remains a lower bound fbr Q(K). It is therefore permitted to carry out all
numerical calculations to only three places after the decimal point.

Starting with the value

c2 3.464 < 12

given by Lemma 2, this remark leads to the following constants:

ca 4.216, c4 4.721,c 5.028, c6 5.187, c7 5.222, Cs 5.187,

c9 5.116, C,o 5.031, c,1 4.942, c12 4.857, c,3 4.779, c,, 4,709,

4.646, c,6 4.590, c17 4.551, c,s 4.505, c,9 4,464. Co 4.428.

From the computation,

c for n _< 5,
C.

c
ii

for 6 _< n _< 20,

and c. decreases from n 8 onwards.

7. The final result. It still remains to find a lower bound for c. as n tends
iito infinity. From their definitions, c. and c., and so also c., are greater than

iii 2On_ (c._1 + 1)"/("-1) 1 2c._1 ( 1c. -n(c._ q- 1)(c._ + 1)/(-1)- 1 n h-o c_ + 1

Further

-o c._+ 1 c,,_ q- 1 dx

(n : 1){1 (c,,._,. +. 1)7’’/‘’-’)
log (c,,_ + 1)

> (n,--,1){1 (e,,_ --k 1)-*}
log (c._ + 1)
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whence

or

Write for shortness,

Then by this inequality

and so even more,

(8)

Put

so that

Since

evidently

and therefore

KURT M/kHIER

i,i 2(n 1) c.-1 1 (c.-1 -b 1)-1c. >_
n log (c.-1 -t- 1)

iii Cn--1c >_ 2-
(c_ -[- 1) log (c._1 -[- 1)"

19 xo(x) 10 (x -t- 1) log (x -t- 1)"

iii
c. >_ (c.-1) for n >_ 20,

c. >_ (c._1) for n >_ 20.

k(x) (x -[- 2) log (x + 1) x,

19 xb(x)’(x) 10 {(x -t- 1) log (x -t- 1)} 2.

1
(0) O, el(x) log (x -{- 1) +x -t- 1 > 0 for x >_ O,

k(x) > 0 for x > 0

q’(x) > 0 for x > 0.

Hence o(x) is a steadily increasing function of x.
A simple discussion shows that the equation (x) x has the positive root,

x 3.296 therefore finally,

(9) q,(x) > X if x > X.

Since, by the table of the last paragraph, c. > X for n _< 20, we finally conclude
from (8) and (9) by complete induction that c, > X for all n. Hence the fol-
lowing result has been proved:
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THEOREM. There exists a positive constant a (which may be chosen as a 1/6)
such that

Q(K) >_ 2’(n) + a

for every dimension n >_ 2, and for every symmetrical convex body K in R. Hence
the Theorem of Minkowski-Hlawka does not give the best possible result for such
bodies.

It seems highly probably that the true lower bound of Q(K) tends rpidly to
infinity with n. A pointer in this direction is iven by the following values for
spheres S, in R

Q(S2) 3.627 ..., Q(S3) 5.923 ..., Q(S4) 9.869..-

Q(S) 14.888 ..., Q(S) 23.870

Q(ST) 37.798..., q(ss) 64.940....

On the other hand, the true lower bound for Q(K), in n dimensions, is almost
certainly not assumed for S., but has a smaller value, and I have in fact proved
this when n 2.
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