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Mathematics. — On irreducible convex domains. By K. MAHLER (Man-
chester). (Communicated by Prof. J. G. vAN DER CORPUT.)

(Communicated at the meeting of December 21, 1946.)

Let K be a bounded symmetrical star domain, or short, a star domain,
in the (xy, xo)-plane, i.e. a bounded closed point set of the following kind:

1) The origin O = (0, 0) is an inner point of K.

2) When X = (x4, xo) belongs to K, then so does the symmetrical
point — X = (— xq, — x3).

3) The boundary C of K is a JORDAN curve which meets every radius
vector from O in just one point.

The star domain K is a convex domain, if it contains with any two points
X and Y also all the points 1)

(1—t) X 4 tY, 0| <,

of the line segment XY joining these two points.
A lattice A of basis

Xy = (211, x12), Xy = (221, %22)
and of determinant
d (4) =[xy Xp—2%12 %2 | >0
consists of all points
P=u X, +u,X, (ay,u;=0,F 1,F2,...).
A is called K-admissible if no lattice point except O is an inner point of K.
The lower bound
A(K)= 1Lb. d(4) .
of d(A) extended over all K-admissible lattices A is a finite positive
number. There exists at least one critical lattice of K, i.e. a K-admissible
lattice A such that

d(4)=A (K).
It is easily seen that
A (K)= A (H)
if K contains H. We say that K is irreducible if the stronger inequality
A (H) < A(K)

holds for all star domains H contained in, but different from, K. I do not

1) 'We use the notation of sums and scalar products of points or vectors as usual in
linear algebra or vector analysis.
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know whether every star domain K contains an irreducible star domain K’
(not necessarily different from K) such that

A (K')= A (K).
In this note, I show that this is true at least for convex domains, and, in
fact, prove the slightly stronger result:

Theorem 1: Every convex domain K contains an irreducible convex
domain K’ (not necessarily different from K) such that

A (K')= A (K).

§ 1. The parallelogram.

To prove Theorem 1, a number of simple lemmas are required. We begin
with an example of an irreducible domain.

Lemma 1: Every parallelogram with centre at O is irreducible.

Proof: By affine invariance, it suffices to prove the assertion for the
unit square,

<L

KO : ’xl l < 19
for which, by MINKOWSK!'s theorem on linear forms,

Let H be any star domain contained in, but different from, K,. Then
at least one point P, on the boundary C, of K, lies outside ; without
loss of generality, this point P, belongs to the line segment

Py=(1), 0<CeC,

of Cy. Denote by ¢ the number satisfying

09 <1
for which 9P, lies on the boundary of H, and by A, the lattice of basis

P, =9 Py = (9¢&,9), Py, =(1,9-1).

This lattice is of determinant
19—
[9¢ 9

It is H-admissible since == #P, are its only points which are inner points
of K. Hence

d (4) = 1]: 1—(1—9) (1—08) < 1 = A (K,).

A (H) < d(4y) < A (Ko),
as asserted.
Corollary: Theorem 1 holds for all parallelograms with centre at O.

§ 2. The parallelograms with three vertices on C.

Let K be a convex domain, and let Py be any point on its boundary. The
line Z; through O and P, divides the (xy, x;)-plane into two semiplanes,
P, and P_, say. Denote by C, the half of C in P,, by C + P;, and
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C, + P, the sets of all points P + P; where P runs over C, and C,,
respectively. The two points — P; + P; = O and P; + P; = 2P, lie on
C + P, but are situated on different sides of C. Hence C and C + Py
intersect at least once, and so, by symmetry, C. and C, + P; also have
a non-empty intersection, [,(Py) say. If P, describes I,(Py), then
P; — P, — P, runs over a second set, I3(P,) say. Since Py + Py = P,
belongs to C, + Py, P3 lies on C,. Hence both sets I,(P;) and I;(P,)
are subsets of C,.

Lemma 2: All points of I,(Py) and I;(P,) lie at the same distance
[rom the line L,.

Proof: Denote by §(P) the distance of P from L,, so that

3 (Py)=10(Ps)

for corresponding points P, and Pz = Py — Py of I3(P;) and I3(P,).
Let the assertion be false. There exist then two points P35 and P3 of
I5(P;) and the corresponding points P;— P;— P; and P35 = Pj— P, of
I3(P) such that

8 (Py) = 0 (Ps) < 8 (P3) =8 (P5).

Since C, is a convex arc, §(P) increases on C from the value 0 at P = P
to a certain maximum value, and then decreases again to the value 0 at
P — —P,. Hence P3, Pj lie on the arc of C, bounded by P;, P;, while
P,, — P, lie outside this arc. From the construction, the two lines L,
through Pj, P, and Ly through Pj3, P, are parallel. Therefore, by the
convexity of C,, P, and — P, lie in the parallel strip bounded by L, and
L,. This is, however, impossible because the line segment P, — P is
parallel to, but twice as long as, the line segments from P; to P3, or from
P; to Pj.

Since 6(P) is constant in I,(P,) and I3(P,), only the following two
cases arise.

a) I,(P;) consists of a single point Py, I3(P;) of a single point
P, = P, — P,. The line segment P,P; is parallel and of equal length to
the segment OP;, and so OP{P,P; is a parallelogram. The line segment
may possibly form part of C,, but then no larger segment containing it
has this property.

b) I,(P,) contains at least two different points Pj, P;, and I3(P,)
contains at least the corresponding points P3= P;— P,, P53 =P5 — P,
All four points P3, P3, P, P} lie on one line L parallel to Ly; let &* be the
smallest line segment on L containing them. By the convexity of C,, 2*
is a subset of this arc. There exists then a longest line segment 3 contained
in C, and itself containing Z*. This segment X is of greater length than
OP;, since Z* has this property. It is now clear that I5(P) consists of all
points Py, of X for which P3 = Py—P; also lies on 2, and that
I;(P;) = I,(Py) — Py. If Py, P3 = P, — P, is any pair of corresponding
points in Io(Py) and I3(P;), then OP;P,P; is a parallelogram. By what
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has already been proved, the area of this parallelogram depends on by,
but not on P, and Pj; denote it by A(P;). Write further A(P,) for any
lattice of basis P, P, where P, belongs to I5(Py). Then
d(4(Py)) = A (Py).
Example: Let K, be again the unit square
‘ EAESS FREIES) P
It suffices, by symmetry, to consider points
Py=(l,7), 0=p=<1,
which lie on the side x; = 1 of K(.)‘ Choose for P, the semiplane y = #x.
Then, if 7 5£40, I3(Py) consists of the single point P, = (0, 1), and
I5(P,) of the single point P3 = (—1, 1—g5) = Py —P;. If, however,
7 = 0, then I,(P;) is the line segment of all points Py = (&, 1) where
0=¢=1, and I;(P;) is the adjoining line segment of all points
P, = (&, 1) where — 1 = & = 0. In both cases,

d(4(P))=AP)=1

independent of the choice of P;.

§ 3. The critical lattices of K.

By Minkowski 2), the following result holds:

Lemma 3: Let A be any critical lattice of the convex domain K. Then
A contains three points Py, Py, Py on C such that (i) Py, Py is a basis of
A, and (ii) OPPyP5 is a parallelogram of area d(A) = A(K). Conversely,
if Py, Py, Py are three points on C such that OP,P,Py is a parallelogram,
then the area of this parallelogram is not less than A(K), and it is equal
to N(K) if and only if the lattice of basis Py, Py is critical.

This lemma, together with the results of last paragraph, leads imme-
diately to the following construction of the critical lattices of K.

Lemma 4: Denote by II the set of all points Py on C for which A(P,)
assumes its smallest value, A say3). Let further {A} be the set of all
lattices A(P;) where P, runs over II. Then {A} is identical with the set
of all critical lattices of K.

Example: Let K, be again the unit square

lal <<l |x|<1

Then II — C, and all lattices A(P,), where P is an arbitrary point on C,
are critical. We shall see that a similar result holds for all irreducible

convex domains.
For parallelograms with centre at O, Theorem 1 has already been proved

2)  Diophantische Approximaticnen, § 4. See also my paper Proc. London Math. Soc.
(2) 49 137, 158-—159 (1946).

3)  That such a minimum value is attained, follows immediately from Lemma 3 and
the existence of critical lattices.
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in the corollary to Lemma 1. In the next three lemmas, this case is excluded,
and it is assumed that K is a convex domain which is not a parallelogram.

Lemma 5: Let P, be any point on C such that there exists a critical
lattice A of K containing P,. Denote by Py and Pj two [urther points of A
on C such that OP,P,P5 is a parallelogram of area A(K). Then all points
of the line segment PyP; different from Py and Py are inner points of K,
and so A is the only critical lattice of K containing P;.

Proof: Denote by L* any tac line of C at Py, by L** the line through
P, and P;, by — L* and — L** the lines symmetrical to L* and L** in O,
and by K* the parallelogram bounded by the four lines L*, L**, —L*,
— L**. If at least one inner point of the segment PyPj3 lies on L**, then
L** is a tac line of C, and so K is contained in K* as a subset. Now A is
K*-admissible, hence a critical lattice of K*, whence

A (K" = A (K).

Therefore, by Lemma 1, K* coincides with K, contrary to hypothesis. This
proves the first part of the assertion. The second part also holds since
I,(P;) reduces to the single point Py.

Corollary: Every critical lattice A of K has just six points

pl,p.P3,p4:-—-p|,p5:—p2,p6:—‘p3

on C. These points divide C into six arcs A, ..., Ag, none of which is a
line segment.

Lemma 6: Let A and A* be two different critical lattices of K; let
P, ..., P4 be the six points of A on C; and let Ay, ..., Ag be the six arcs
into which these points divide C. Then A* has just one point P on each
arc Ar.

Proof: Write {X, Y} = xyys — xoy; for the determinant of any two
points X = (xq, x¢) and Y = (yy, y2), and choose the indices such that,
if C is described in positive direction, the points of A on C are met in the
order

Pl' p;, p3. pqz"‘pl, p5:—p2, p6:-"'p3,

or in a cyclical permutation therefrom. Further denote by Ay, ..., Ag the
six arcs

P P P
p,pP,, PP, ..., PsPs, PsP,

of C bounded by these points. By Lemma 3, P; and P, form a basis of 4,
and so

(a): {Pi. P} = A (K),

since the .determinant on the left is positive,

One may assume that A* contains a point P{ of A;; this must be an
inner point of A;, since A* is different from A (Lemma 5). None of the
three arcs Ag, A, A, is a line segment; hence, by the convexity of C, P}
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is also an inner point of the triangle with vertices at Py, Py + P,, P,.
Therefore, if P{ is written as

P! =sP,+tP,,
then s and ¢ satisfy the inequalities,

0<s<<1,0<t<Ct, s+¢>1,
whence, by (a),

0< {P}, Pl =s A (K)<A(K),
{P1, Py} =(s+ 0 A (K) > (K),
0 < {Pr, Pyt =t A (K)<(K).

Hence the line
(b): {P, X} =A(K)

intersects C in at least one point P; of A, and at least one points P} of
Aj, and both points are inner points of these arcs. There cannot be more
than one such point of intersection on each arc A, and Aj, since, by
Lemma 5, A* has just two points on C satisfying (b).

Lemma 7: Let A, A*, A** be three different critical lattices of K, and

let P, P}, P (l—=1,2 .., 6) be their points on C, the indices being

chosen such that (i) the points P; follow one another in their natural order
Sk

if C is described in positive direction, and (ii) the two points P} and Pj
lie on the arc A; bounded by P1 and P;,, (P; is to mean the same as P,).
If P} separates Py from PY" on A,, then, for | =2, ...,6, P% likewise

separates P; from Py on Aj.
Proof: Assume the assertion is false. Let then 1 with 2 << 1 =6 be the

smallest index for which P§ does not separate P; from P on A; Then

P;", and P} are two consecutive points of A** on C such that the arc
joining them contains no point of A*, in contradiction to the last lemma.

§ 4. The critical lattices of an irreducible convex domain.

The last lemmas lead to a particularly simple result if K is irreducible.
I have proved elsewhere 4) the following result:

Lemma 8: If K is an irreducible star domain, and if P is any point on
C, then there exists at least one critical lattice of K containing P.

On combining this result with the Lemmas 5—7, one finds:

Lemma 9: Let K be an irreducible convex domain which is not a
parallelogram. Then to every point Py on C, there exists a unique critical
lattice A = A(Py) containing P;. This lattice has just six points
Py =Pi(P,y) (I=1,...,6) onC. Let A, ..., Ag be the six arcs into which
these points divide C; denote further by P} a variable point on Ay, and by
Pj=P;(P7) for l =2, ..., 6 the other five points of A(P}) on C.If P}

1) Proc. Royal Acad. Amsterdam, 49, 331—343 (1946), Theorem C.
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describes Ay continuously in positive direction, then Pj,for 1 =2, ..., 6,
describes A in the same manner.

Proof: Choose the indices in the same way as in the last proofs. The
line,

Lpr): {Pi. X} =A(K),

has two, and by Lemma 5 only two, points of intersection with C, namely
Pj and P;. When P{ describes A; continuously, then this line changes in
a continuous manner, and so the same is true for P and P3 . Further, ifP{
runs over A; in positive direction, then, by Lemma 7, P; and P3 do the
same on A, and Aj.

By means of this lemma, one can construct all irreducible convex domains.
In a further note, I shall apply this construction.

§ 5. Lemmas on reducible domains.

In the paper already mentioned, I proved the following results:

Lemma 10: Let K be a reducible star domain and P a point on C such
that no critical lattice of K contains P. Then there exists a star domain H
contained in K, but not containing the two points = P symmetrical in O,
for which A(H) = A(K) 5).

Lemma 11: Let K be a star domain, and let Il be the set of all points
on C which belong to at least one critical lattice of K. Then II is a closed
set. The set II* of all points of C which do not belong to II is therefore
open and consists of an enumerable set of open arcs on C 6),

Lemma 12: If K is a convex domain, and if every point of C belongs
to 11, then K is irreducible 7).

§ 6. The main lemma.

The following lemma forms the basis for the proof of Theorem 1:

Lemma 13: Let K be a reducible convex domain. Then there exists
a convex domain H contained in, but different from, K such that
A(H) = A(K).

Proof: Divide the points P on C into two classes A and B, according as
to whether P is, or is not, an inner point of a line segment contained in C.

By the hypothesis and by the Lemmas 11 and 12, II* is not the null set
and so contains at least one arc of C. Assume, firstly, that at least one
point P of IT* is of class B. By Lemma 10, there exists a star domain H’
contained in K, but not containing the two points = P, such that
A(H’) = A(K). Draw a line L’ through P which has no point in common
with H” and is not a tac line of C at P. Then a line L parallel to L’, and
separating L’ from O, can be chosen which also has no points in common

5) lc. 4), proof of Theorem C.
6) lc. %), special case of Theorem B.
7) lc. %), Theorems D and E.
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with H’; denote by — L the line symmetrical to L in O, and by H the part
of K between L and — L. Then H is a convex domain containing H’, and
is itself a proper subset of K. Evidently A(H’) = A(H) = A(K), whence
A(H) = A(K).

Secendly, let all points of IT* be of class A, and let P be one of these
points. The tac line to C at P is unique, and its intersection with C is a
line segment, I" say. Then P is an inner point of I', and the two endpoints
of I' are of class B, hence belong to II. There exists therefcre a largest
sub-segment I'y of I" such that, (i) P is an inner point of I'y; (ii) all inner
points of I'; belong to IT*; (iii) the two endpoints Py, P’y of I'y belong
to 11.

Denote by A, A’ the two critical lattices of K containing P; and Py,
respectively, and by Pi, P’; (I = 2, ..., 6) the other points of these two
lattices on C. Let the notation be again such that if C is described in
positive direction, then the points P, and similarly the points P’;, follow

one another in the order of their indices; denote further by Ay, ..., Ag the
arcs
b b,, PP, ..., PsP;, Pg P

of C. By the hypothesis about I';, P’y belongs either to A; or to Ag;
assume, without loss of generality, that P’; lies on A, and so is an inner
point of this arc. By Lemma 6, P’ is then, for [ = 2, ..., 6, an inner point
of Ai, and so the arc

—
I''=P, P; (I=2,...,6)
is a subarc of A;.

By construction, the endpoints of all arcs I'i, where [ =1,2,...,6,
belong to II. On the other hand, it is immediately clear from Lemma 7
that the inner points of these arcs belong to IT*; for this is the case for I'y.
But then the inner points of all arcs I'; are of class A, and so all six arcs
I'; are line segments.

One shows now, just as in the proof of Lemma 6, that Py, P’; and P4
are inner points of the triangles with vertices at Py, Py + Py, Po, at P,
Py + P3,Pj, and at P3, — P, + P;, — Py, respectively. The three points

Ql:pi*“py QZZPIZ"'pz, Q3::P§—-—P3

are therefore inner points of the triangles with vertices at O, P, P3, at
O, P;, — Py, and at O, — P, — Py, respectively. By the assumed choice
of indices, the radius vector from O to Q4 changes therefere into that from
O to Q3 by a rotation in the positive sense of less than 180°, and so finally,

{ Q1 Qst >0.

Next, the general point P} of the arc I';, where [ =1, 2, 3, is of the
form

P?:tlp’z—f-(l*—f[)pl:pz-{—f[Ql, where 0<t,<l.
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Choose, in particular, t; = t, == 3, = t say. Then
Py 4+ Ps =P,

and so OP{ P; P; is a parallelogram with three vertices on C. By the
hypothesis and by Lemma 3, this parallelogram is of area

{Pr, P3} > A(K) for 0 <t < 1.
Now,

{Py, P53} =1{P, +tQ,, P;+tQ;l. = f(f) say,
can be written as
fl)=a-+ bt +ct?, -where c={Q, Qs}.

Hence, by the construction of the points P; and P’s, and by (a),

fO)=Ff1)=AK), f’({)=2c>0,

and so there exists a number 7 with 0 <<t <C1 such that f(f) assumes a
minimum value at ¢ = 7 satisfying

f@) < A(K).

The lattice of basis P; + 7Qq, P3 + 1Qs, which is K-admissible, is there-
fore of determinant less than A(K), which is impossible. _

This proves that all points of I7* cannot be of class A, and so completes
the proof.

§ 7. Proof of Theorem 1.

Let K be a reducible convex domain, hence, by Lemma 1, not a parallelo-
gram. By the last lemma, the set P of all convex domains H contained in,
but different from, K and satisfying A(H) = A(K), is not the null set.
The elements H of P are all of area greater than A(K). For if & is any
parallelogram OP;P,P; with three vertices of the boundary of H, then &
is a subset of H, and so by Lemma 3,

VH)ZV (@)= A(K)

where V(]) denotes the area of J.
Let now

v="fininf V (H)

Hin P
be the lower bound of V(H) extended over all elements of P; evidently
v=>A(K)>0.

An infinite sequence of elements Hy, H,, Hj, ..., of P not necessarily all
different, can be chosen such that

lim V(H,) =v.

n—»
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All elements of this sequence are convex domains contained in K; hence,
by a selection theorem of W. BLASCHKE 8), a suitable subsequence,

K\ =H,, K;=H,,, Ks=H,, ... (my <n,<<ns<...)

tends of a convex domain, K’ say. As we show now, this convex domain
has the required properties.
For firstly 9)

VK)= lim V (K)=v.

n—» @
Secondly, also 10)

AK)= lim A (Kn)= A (K).

n— w

Thirdly, K’ is a subset of K. I assert that K’ is irreducible. If this were
false, then, by Lemma 13, there would exist a convex domain K” contained
in, but different from, K’ such that A(K”) = A(K’) = A(K). This is,
however, impossible, since by the construction,

VK"'Y<V(K')=v,

contrary to the definition of v. This completes the proof.

September 5, 1946.

Mathematics Department, Manchester University.

8)  KREIS und KUGEL (Leipzig 1916), 62.
9) lc. 8), 61,
10)  Theorem 9 of my paper “Lattice points in n-dimensional star bodies I". Proc.

Royal Society, A, 187 (1946), 151—187.



