KONINKLIJKE NEDERLANDSCHE AKADEMIE VAN WETENSCHAPPEN

On irreducible convex domains

BY

K. MAHLER

Reprinted from Proceedings Vol. L, No. 1, 1947

1947 NORTH-HOLLAND PUBLISHING COMPANY (N.V. Noord-Hollandsche Uitgevers Mij.) AMSTERDAM Mathematics. — On irreducible convex domains. By K. Mahler (Manchester). (Communicated by Prof. J. G. VAN DER CORPUT.)

(Communicated at the meeting of December 21, 1946.)

Let K be a bounded symmetrical star domain, or short, a star domain, in the (x_1, x_2) -plane, i.e. a bounded closed point set of the following kind:

1) The origin O = (0, 0) is an inner point of K.

2) When
$$X = (x_1, x_2)$$
 belongs to K , then so does the symmetrical point $X = (-x_1, -x_2)$.

3) The boundary C of K is a JORDAN curve which meets every radius vector from O in just one point. The star domain *K* is a convex domain, if it contains with any two points

The star domain
$$K$$
 is a convex domain, if it contains with any two point X and Y also all the points 1)
$$(1-t)X+tY, \qquad 0 \leqslant t \leqslant 1,$$

of the line segment XY joining these two points. A lattice Λ of basis

The lower bound

linear algebra or vector analysis.

$$X_1 = (x_{11}, x_{12}), \qquad X_2 = (x_{21}, x_{22})$$
 and of determinant

consists of all points $P = u_1 X_1 + u_2 X_2$ $(u_1, u_2 = 0, \mp 1, \mp 2, ...).$

$$= u_1 X_1 + u_2 X_2$$
 $(u_1, u_2 = 0, +1, +2, \ldots).$

 $d(\Lambda) = |x_{11} x_{22} - x_{12} x_{21}| > 0$

 Λ is called *K-admissible* if no lattice point except O is an *inner* point of K.

$$\triangle (K) = 1. b. d(\Lambda)$$

$$d\left(arLapha
ight)$$

of
$$d(\Lambda)$$
 extended over all K -admissible lattices Λ is a finite positive number. There exists at least one *critical lattice* of K , i.e. a K -admissible

lattice
$$\Lambda$$
 such that

 $d(\Lambda) = \Delta(K)$.

It is easily seen that
$$\triangle (K) \geqslant \triangle (H)$$

if K contains H. We say that K is irreducible if the stronger inequality $\triangle (H) < \triangle (K)$

holds for all star domains H contained in, but different from, K. I do not

We use the notation of sums and scalar products of points or vectors as usual in

know whether every star domain K contains an irreducible star domain K'(not necessarily different from K) such that

 $\triangle (K') = \triangle (K).$

fact, prove the slightly stronger result: Theorem 1: Every convex domain K contains an irreducible convex domain K' (not necessarily different from K) such that

§ 1. The parallelogram.

To prove Theorem 1, a number of simple lemmas are required. We begin with an example of an irreducible domain. **Lemma** 1: Every parallelogram with centre at O is irreducible.

 $\triangle (K') = \triangle (K).$

Proof: By affine invariance, it suffices to prove the assertion for the

unit square, K_0 :

 $|x_1| \leq 1, |x_2| \leq 1,$

for which, by MINKOWSKI's theorem on linear forms, $\triangle (K_0) = 1.$

Let H be any star domain contained in, but different from, K_0 . Then at least one point P_0 on the boundary C_0 of K_0 lies outside H; without loss of generality, this point P_0 belongs to the line segment

 $P_0 = (\xi, 1), \quad 0 < \xi < 1,$

of
$$C_0$$
. Denote by ϑ the number satisfying $0 < \vartheta < 1$

for which
$$\vartheta P_0$$
 lies on the boundary of H , and by $arLambda_0$ the lattice of basis

$$P_1 = \vartheta P_0 = (\vartheta \xi, \vartheta), \qquad P_2 = (1, \vartheta - 1).$$

This lattice is of determinant

$$d(A_0) = \begin{vmatrix} 1 & \vartheta - 1 \\ \vartheta \xi & \vartheta \end{vmatrix} = 1 - (1 - \vartheta)(1 - \vartheta \xi) < 1 = \triangle(K_0).$$

It is
$$H$$
-admissible since $\pm \vartheta P_0$ are its only points which are inner points of K_0 . Hence

It is
$$H$$
-admissible since $\pm \vartheta P_0$ are its only points which are inner point of K_0 . Hence

 $\triangle (H) \leq d (\Lambda_0) < \triangle (K_0)$

as asserted. Corollary: Theorem 1 holds for all parallelograms with centre at O.

§ 2. The parallelograms with three vertices on C.

Let K be a convex domain, and let P_1 be any point on its boundary. The line L_1 through O and P_1 divides the (x_1, x_2) -plane into two semiplanes,

 P_+ and P_- , say. Denote by C_+ the half of C in P_+ , by $C + P_1$, and

respectively. The two points $-P_1 + P_1 = O$ and $P_1 + P_1 = 2P_1$ lie on $C + P_1$, but are situated on different sides of C. Hence C and $C + P_1$ intersect at least once, and so, by symmetry, C_+ and $C_+ + P_1$ also have

a non-empty intersection, $I_2(P_1)$ say. If P_2 describes $I_2(P_1)$, then $P_3 \equiv P_2 - P_1$ runs over a second set, $I_3(P_1)$ say. Since $P_3 + P_1 \equiv P_2$ belongs to $C_+ + P_1$, P_3 lies on C_+ . Hence both sets $I_2(P_1)$ and $I_3(P_1)$ are subsets of C_+ .

Lemma 2: All points of $I_2(P_1)$ and $I_3(P_1)$ lie at the same distance

from the line L_1 . Proof: Denote by $\delta(P)$ the distance of P from L_1 , so that

 $\delta(P_2) = \delta(P_3)$

for corresponding points
$$P_2$$
 and $P_3 = P_2 - P_1$ of $I_2(P_1)$ and $I_3(P_1)$. Let the assertion be false. There exist then two points P_2' and P_2'' of

 $I_2(P_1)$ and the corresponding points $P_3' = P_2' - P_1$ and $P_3'' = P_2'' - P_1$ of

$$I_3(P_1)$$
 such that
$$\delta(P_2') = \delta(P_3') < \delta(P_2'') = \delta(P_3'').$$

 $\delta(P_2') = \delta(P_3') < \delta(P_2'') = \delta(P_3'').$

$$\delta\left(P_{2}^{'}\right) = \delta\left(P_{3}^{'}\right) < \delta\left(P_{2}^{''}\right) \stackrel{=}{=} \delta\left(P_{3}^{''}\right).$$

Since C_+ is a convex arc, $\delta(P)$ increases on C_+ from the value 0 at $P = P_1$

Since
$$C_+$$
 is a convex arc, $\delta(P)$ increases on C_+ from the value 0 at $P = P_1$ to a certain maximum value, and then decreases again to the value 0 at $P = -P_1$. Hence P_2'' , P_3'' lie on the arc of C_+ bounded by P_2' , P_3' , while

 P_1 , $-P_1$ lie outside this arc. From the construction, the two lines L_2 through P_2' , P_2'' , and L_3 through P_3' , P_3'' , are parallel. Therefore, by the convexity of C_+ , P_1 and P_1 lie in the parallel strip bounded by L_2 and

 L_3 . This is, however, impossible because the line segment P_1 , $-P_1$ is parallel to, but twice as long as, the line segments from P_2 to P_3 , or from $P_{2}^{"}$ to $P_{3}^{"}$.

Since $\delta(P)$ is constant in $I_2(P_1)$ and $I_3(P_1)$, only the following two cases arise. a) $I_2(P_1)$ consists of a single point P_2 , $I_3(P_1)$ of a single point

 $P_3 = P_2 - P_1$. The line segment P_2P_3 is parallel and of equal length to the segment OP_1 , and so $OP_1P_2P_3$ is a parallelogram. The line segment may possibly form part of C_+ , but then no larger segment containing it

has this property. b) $I_2(P_1)$ contains at least two different points P_2' , P_2'' , and $I_3(P_1)$

contains at least the corresponding points $P_3 = P_2 - P_1$, $P_3'' = P_2'' - P_1$

All four points P'_2 , P''_3 , P''_3 lie on one line L parallel to L_1 ; let Σ^* be the smallest line segment on L containing them. By the convexity of C_+ , Σ^* is a subset of this arc. There exists then a longest line segment \varSigma contained

in C_+ and itself containing Σ^* . This segment Σ is of greater length than OP_1 since Σ^* has this property. It is now clear that $I_2(P_1)$ consists of all

points P_2 of Σ for which $P_3=P_2-P_1$ also lies on Σ , and that $I_3(P_1) \equiv I_2(P_1) - P_1$. If P_2 , $P_3 \equiv P_2 - P_1$ is any pair of corresponding points in $I_2(P_1)$ and $I_3(P_1)$, then $OP_1P_2P_3$ is a parallelogram. By what has already been proved, the area of this parallelogram depends on P_1 , but not on P_2 and P_3 ; denote it by $A(P_1)$. Write further $A(P_1)$ for any

 $d(\Lambda(P_1)) \equiv A(P_1).$

 $|x_1| \leq 1, |x_2| \leq 1.$

It suffices, by symmetry, to consider points $P_1 = (1, \eta), \quad 0 \leqslant \eta \leqslant 1,$ which lie on the side $x_1 = 1$ of K_0 . Choose for P_+ the semiplane $y \ge \eta x$. Then, if $\eta \neq 0$, $I_2(P_1)$ consists of the single point $P_2 = (0,1)$, and

Example: Let K_0 be again the unit square

lattice of basis P_1 , P_2 where P_2 belongs to $I_2(P_1)$. Then

 $I_3(P_1)$ of the single point $P_3=(-1,\ 1-\eta)=P_2-P_1$. If, however,

 $\eta=0$, then $I_2(P_1)$ is the line segment of all points $P_2=(\xi,1)$ where $0 \leq \xi \leq 1$, and $I_3(P_1)$ is the adjoining line segment of all points

 $P_3 = (\xi', 1)$ where $-1 \le \xi' \le 0$. In both cases, $d(\Lambda(P_1)) = A(P_1) = 1$.

independent of the choice of P_1 .

6

 \S 3. The critical lattices of K.

By MINKOWSKI 2), the following result holds:

Lemma 3: Let Λ be any critical lattice of the convex domain K. Then A contains three points P_1 , P_2 , P_3 on C such that (i) P_1 , P_2 is a basis of

 \varLambda , and (ii) $OP_1P_2P_3$ is a parallelogram of area $d(\varLambda)= riangle(K)$. Conversely, if P_1 , P_2 , P_3 are three points on C such that $OP_1P_2P_3$ is a parallelogram,

then the area of this parallelogram is not less than $\triangle(K)$, and it is equal to $\triangle(K)$ if and only if the lattice of basis P_1 , P_2 is critical.

This lemma, together with the results of last paragraph, leads immediately to the following construction of the critical lattices of K. **Lemma 4:** Denote by Π the set of all points P_1 on C for which $A(P_1)$ assumes its smallest value, A say 3). Let further $\{\Lambda\}$ be the set of all lattices $\Lambda(P_1)$ where P_1 runs over Π . Then $\{\Lambda\}$ is identical with the set

of all critical lattices of K. Example: Let K_0 be again the unit square

 $|x_1| \leq 1$, $|x_2| \leq 1$.

Then $\Pi = C$, and all lattices $\Lambda(P_1)$, where P_1 is an arbitrary point on C,

are critical. We shall see that a similar result holds for all irreducible convex domains. For parallelograms with centre at O, Theorem 1 has already been proved

2) Diophantische Approximationen, § 4. See also my paper Proc. London Math. Soc. (2) 49 137, 158—159 (1946).

3) That such a minimum value is attained, follows immediately from Lemma 3 and the existence of critical lattices.

Lemma 5: Let P_1 be any point on C such that there exists a critical lattice Λ of K containing P_1 . Denote by P_2 and P_3 two further points of Λ on C such that $OP_1P_2P_3$ is a parallelogram of area $\triangle(K)$. Then all points

and it is assumed that K is a convex domain which is not a parallelogram.

of the line segment P_2P_3 different from P_2 and P_3 are inner points of K, and so Λ is the only critical lattice of K containing P_1 . Proof: Denote by L^* any tac line of C at P_1 , by L^{**} the line through P_2 and P_3 , by $-L^*$ and $-L^{**}$ the lines symmetrical to L^* and L^{**} in O,

and by K^* the parallelogram bounded by the four lines L^* , L^{**} , $-L^*$, $-L^{**}$. If at least one inner point of the segment P_2P_3 lies on L^{**} , then L^{**} is a tac line of C, and so K is contained in K^* as a subset. Now Λ is K^* -admissible, hence a critical lattice of K^* , whence

$$\triangle(K^*) = \triangle(K).$$
 Therefore, by Lemma 1, K^* coincides with K , contrary to hypothesis. This reverse the first part of the assertion. The second part also holds since

proves the first part of the assertion. The second part also holds since $I_2(P_1)$ reduces to the single point P_2 . **Corollary:** Every critical lattice Λ of K has just six points

Coronary: Every critical values
$$P_1$$
, P_2 , P_3 , $P_4 = -P_1$, $P_5 = -P_2$, $P_6 = -P_3$

$$P_1, P_2, P_3, P_4 = -P_1, P_5 = -P_2, P_6 = -P_3$$

on C. These points divide C into six arcs
$$A_1, ..., A_6$$
, none of which is a

line segment.

Lemma 6: Let
$$\Lambda$$
 and Λ^* be two different critical lattices of K ; let

 $P_1, ..., P_6$ be the six points of Λ on C; and let $A_1, ..., A_6$ be the six arcs into which these points divide C. Then Λ^* has just one point P_l^* on each arc A_1 . Proof: Write $\{X, Y\} = x_1y_2 - x_2y_1$ for the determinant of any two

points $X = (x_1, x_2)$ and $Y = (y_1, y_2)$, and choose the indices such that, if C is described in positive direction, the points of Λ on C are met in the order $P_1, P_2, P_3, P_4 = -P_1, P_5 = -P_2, P_6 = -P_3$

or in a cyclical permutation therefrom. Further denote by
$$A_1,\,...,\,A_6$$
 the six arcs

six arcs

$$\widehat{P_1P_2}$$
 , $\widehat{P_2P_3}$, ..., $\widehat{P_5P_6}$, $\widehat{P_6P_1}$

of C bounded by these points. By Lemma 3, P_1 and P_2 form a basis of Λ , and so $\{P_1, P_2\} = \triangle(K)$. (a):

$$= \triangle (K)$$
,

since the determinant on the left is positive.

One may assume that Λ^* contains a point P_1^* of A_1 ; this must be an

inner point of A_1 , since Λ^* is different from Λ (Lemma 5). None of the three arcs A_6 , A_1 , A_2 is a line segment; hence, by the convexity of C, P_1^*

103 is also an inner point of the triangle with vertices at P_1 , $P_1 + P_2$, P_2 .

Therefore, if P_1^* is written as

then s and t satisfy the inequalities, 0 < s < 1, 0 < t < 1, s + t > 1,

 $P_1^* = sP_1 + tP_2$

whence, by (a),
$$0 < \{P_1^* , P_2\} = s \bigtriangleup(K) < \bigtriangleup(K),$$

$$\{P_1^*\,,\,P_3\}=(s+t)\bigtriangleup(K)>(K),$$

$$0<\{P_1^*\,,\,P_4\}=t\bigtriangleup(K)<(K).$$
 Hence the line

 $\{P_1^*, X\} = \triangle(K)$ (b):

$$\{P_1^*, X\} = \triangle(K)$$

intersects C in at least one point P_2^* of A_2 and at least one points P_3^* of

intersects
$$C$$
 in at least one point P_2^* of A_2 and at least one points P_3^* of A_3 , and both points are inner points of these arcs. There cannot be more

than one such point of intersection on each arc A_2 and A_3 , since, by Lemma 5, Λ^* has just two points on C satisfying (b).

Lemma 7: Let
$$\Lambda$$
, Λ^* , Λ^{**} be three different critical lattices of K , and let P_l , P_l^* , P_l^{**} ($l=1,2,...,6$) be their points on C , the indices being chosen such that (i) the points P_l follow one another in their natural order

chosen such that (i) the points P1 follow one another in their natural order if C is described in positive direction, and (ii) the two points P_1^st and P_1^{stst} lie on the arc A_l bounded by P_l and P_{l+1} (P_7 is to mean the same as P_1).

If
$$P_1^*$$
 separates P_1 from P_1^{**} on A_1 , then, for $l=2,...,6$, P_l^* likewise separates P_l from P_l^{**} on A_l .

Proof: Assume the assertion is false. Let then λ with $2 \le \lambda \le 6$ be the smallest index for which P_{λ}^* does not separate P_{λ} from P_{λ}^{**} on A_{λ} . Then

 $P_{\lambda-1}^{**}$ and P_{λ}^{**} are two consecutive points of Λ^{**} on C such that the arc joining them contains no point of Λ^* , in contradiction to the last lemma.

$$\S$$
 4. The critical lattices of an irreducible convex domain. The last lemmas lead to a particularly simple result if K is irreducible

The last lemmas lead to a particularly simple result if K is irreducible.

I have proved elsewhere 4) the following result: Lemma 8: If K is an irreducible star domain, and if P is any point on

C, then there exists at least one critical lattice of K containing P. On combining this result with the Lemmas 5-7, one finds:

Lemma 9: Let K be an irreducible convex domain which is not a

parallelogram. Then to every point P_1 on C, there exists a unique critical lattice $\Lambda = \Lambda(P_1)$ containing P_1 . This lattice has just six points $P_l \equiv P_l(P_1)$ ($l \equiv 1,...,6$) on C. Let $A_1,...,A_6$ be the six arcs into which

these points divide C; denote further by P_1^* a variable point on A_1 , and by $P_l^* = P_l(P_l^*)$ for l = 2, ..., 6 the other five points of $\Lambda(P_l^*)$ on C. If P_l^*

Proc. Royal Acad. Amsterdam, 49, 331-343 (1946), Theorem C.

4)

Proof: Choose the indices in the same way as in the last proofs. The

line. $\{P_1^*, X\} = \triangle(K),$ $L(P_1^*)$: has two, and by Lemma 5 only two, points of intersection with C, namely

has two, and by Lemma 5 only two, points of intersection with
$$C$$
, namely P_2^* and P_3^* . When P_1^* describes A_1 continuously, then this line changes in a continuous manner, and so the same is true for P_2^* and P_3^* . Further, if P_1^*

runs over A_1 in positive direction, then, by Lemma 7, P_2^* and P_3^* do the same on A_2 and A_3 . By means of this lemma, one can construct all irreducible convex domains. In a further note, I shall apply this construction.

§ 5. Lemmas on reducible domains.

In the paper already mentioned, I proved the following results:

describes A_l in the same manner.

Lemma 10: Let K be a reducible star domain and P a point on C such

that no critical lattice of K contains P. Then there exists a star domain H

set. The set Π^* of all points of C which do not belong to II is therefore open and consists of an enumerable set of open arcs on C 6).

for which $\triangle(H) = \triangle(K)$ 5).

Lemma 12: If K is a convex domain, and if every point of C belongs to Π , then K is irreducible 7).

 $\triangle(H) = \triangle(K)$.

§ 6. The main lemma.

The following lemma forms the basis for the proof of Theorem 1:

Lemma 11: Let K be a star domain, and let Π be the set of all points on C which belong to at least one critical lattice of K. Then Π is a closed

contained in K, but not containing the two points $\pm P$ symmetrical in O,

Lemma 13: Let K be a reducible convex domain. Then there exists

Proof: Divide the points P on C into two classes A and B, according as to whether P is, or is not, an inner point of a line segment contained in C. By the hypothesis and by the Lemmas 11 and 12, Π^* is not the null set and so contains at least one arc of C. Assume, firstly, that at least one point P of Π^* is of class B. By Lemma 10, there exists a star domain H'

l.c. 4), proof of Theorem C.

6) l.c. 4), special case of Theorem B.

contained in K, but not containing the two points $\pm P$, such that $\triangle(H') = \triangle(K)$. Draw a line L' through P which has no point in common with H' and is not a tac line of C at P. Then a line L parallel to L', and separating L' from O, can be chosen which also has no points in common

7) l.c. 4), Theorems D and E.

a convex domain H contained in, but different from, K such that

105

of Γ are of class B, hence belong to Π . There exists therefore a largest sub-segment Γ_1 of Γ such that, (i) P is an inner point of Γ_1 ; (ii) all inner points of Γ_1 belong to Π^* ; (iii) the two endpoints P_1 , P'_1 of Γ_1 belong Denote by Λ , Λ' the two critical lattices of K containing P_1 and P'_1 , respectively, and by P_l , P'_l (l = 2, ..., 6) the other points of these two

 $\triangle(H) = \triangle(K)$.

lattices on C. Let the notation be again such that if C is described in positive direction, then the points P_l , and similarly the points P'_l , follow one another in the order of their indices; denote further by $A_1, ..., A_6$ the arcs $\widehat{P_1P_2}$, $\widehat{P_2P_3}$, ..., $\widehat{P_5P_6}$, $\widehat{P_6P_1}$

of C. By the hypothesis about Γ_1 , P'_1 belongs either to A_1 or to A_6 ;

with H'; denote by — L the line symmetrical to L in O, and by H the part of K between L and -L. Then H is a convex domain containing H', and is itself a proper subset of K. Evidently $\triangle(H') \leq \triangle(H) \leq \triangle(K)$, whence

Secondly, let all points of Π^* be of class A, and let P be one of these points. The tac line to C at P is unique, and its intersection with C is a line segment, Γ say. Then P is an inner point of Γ , and the two endpoints

assume, without loss of generality, that
$$P'_1$$
 lies on A_1 and so is an inner point of this arc. By Lemma 6, P'_l is then, for $l = 2, ..., 6$, an inner point of A_l , and so the arc

$$\Gamma_{l} = \widehat{P_{l} P_{l}} \qquad (l-2) \qquad 6$$

$$\Gamma_l = \widehat{P_l P_l'} \qquad (l = 2, \ldots, 6)$$

$$\Gamma_l = P_l \, P_l' \qquad (l = 2, \ldots, \epsilon)$$
 is a subarc of A_l .

that the inner points of these arcs belong to Π^* ; for this is the case for Γ_1 . But then the inner points of all arcs Γ_t are of class A, and so all six arcs ${\Gamma}_{l}$ are line segments.

By construction, the endpoints of all arcs Γ_l , where l=1,2,...,6, belong to H. On the other hand, it is immediately clear from Lemma 7

One shows now, just as in the proof of Lemma 6, that P'_1 , P'_2 and P'_3 are inner points of the triangles with vertices at P_1 , $P_1 + P_2$, P_2 , at P_2 ,

 $P_2 + P_3$, P_3 , and at P_3 , $P_1 + P_3$, P_1 , respectively. The three points

 $Q_1 = P_1' - P_1$, $Q_2 = P_2' - P_2$, $Q_3 = P_3' - P_3$

are therefore inner points of the triangles with vertices at
$$O$$
, P_2 , P_3 , at O , P_3 , $\dots P_1$, and at O , $\dots P_1$, $\dots P_2$, respectively. By the assumed choice of indices, the radius vector from O to Q_1 changes therefore into that from

O to Q_3 by a rotation in the *positive* sense of less than 180°, and so finally, $\{Q_1, Q_3\} > 0.$

Next, the general point P_l^* of the arc Γ_l , where l=1,2,3, is of the form $P_{l}^{*} = t_{l} P_{l}^{\prime} + (1-t_{l}) P_{l} = P_{l} + t_{l} Q_{l}$ where $0 \leq t_l \leq 1$.

 $P_1^* + P_3^* = P_2^*$. and so $OP_1^*P_2^*P_3^*$ is a parallelogram with three vertices on C. By the

11

Now, $\{P_1^*, P_3^*\} = \{P_1 + tQ_1, P_3 + tQ_3\}, = f(t) \text{ say,}$ can be written as

 $\{P_1^*, P_3^*\} > \triangle(K)$ for 0 < t < 1.

$$f(t) = a + bt + ct^2, \text{ where } c = \{Q_1, Q_3\}.$$
 Hence, by the construction of the points P_I and P'_I , and by (a) ,

$$f(0) = f(1) = \triangle(K), \ f''(t) = 2c > 0,$$

Choose, in particular, $t_1 \equiv t_2 \equiv t_3$, $\equiv t$ say. Then

hypothesis and by Lemma 3, this parallelogram is of area

and so there exists a number
$$\tau$$
 with $0 < \tau < 1$ such that $f(t)$ assumes a minimum value at $t = \tau$ satisfying

$$f(\tau) < \Delta(K)$$
.

The lattice of basis
$$P_1 + \tau Q_1$$
, $P_3 + \tau Q_3$, which is K-admissible, is therefore of determinant less than $\triangle(K)$, which is impossible.
This proves that all points of Π^* cannot be of class A , and so completes

the proof.

Let K be a reducible convex domain, hence, by Lemma 1, not a parallelogram. By the last lemma, the set P of all convex domains H contained in,

but different from, K and satisfying $\triangle(H) = \triangle(K)$, is not the null set. The elements H of P are all of area greater than $\triangle(K)$. For if $\tilde{\omega}$ is any parallelogram $OP_1P_2P_3$ with three vertices of the boundary of H, then $\tilde{\omega}$ is a subset of H, and so by Lemma 3,

$$V\left(H
ight) \geqq V\left(ilde{\omega}
ight) \geqq riangle \left(K
ight) ,$$
 where $V(J)$ denotes the area of J .

where V(J) denotes the area of J. Let now

$$v = \underset{H \text{ in } P}{\text{fin inf}} V(H)$$

be the lower bound of V(H) extended over all elements of P; evidently $v \geqslant \triangle(K) > 0$.

An infinite sequence of elements H_1 , H_2 , H_3 , ..., of P not necessarily all different, can be chosen such that

 $\lim V(H_n) = v.$

All elements of this sequence are convex domains contained in K; hence, by a selection theorem of W. BLASCHKE 8), a suitable subsequence, $K_1 = H_{n_1}, K_2 = H_{n_2}, K_3 = H_{n_3}, \dots$ $(n_1 < n_2 < n_3 < \dots)$

tends of a convex domain,
$$K'$$
 say. As we show now, this convex domain has the required properties.

 $V(K') = \lim_{n \to \infty} V(K_n) = v.$

For firstly 9)

Secondly, also
10
)

 $\triangle (K') = \lim_{n \to \infty} \triangle (K_n) = \triangle (K).$

Thirdly, K' is a subset of K. I assert that K' is irreducible. If this were false, then, by Lemma 13, there would exist a convex domain K'' contained in, but different from, K' such that $\triangle(K'') = \triangle(K') = \triangle(K)$. This is,

V(K'') < V(K') = v

contrary to the definition of v. This completes the proof.

September 5, 1946.

10) Theorem 9 of my paper "Lattice points in n-dimensional star bodies I". Proc. Royal Society, A, 187 (1946), 151—187.

Mathematics Department, Manchester University.

KREIS und KUGEL (Leipzig 1916), 62. 1.c. 8), 61.